
Operator Overloading-Part 1

Lecture 1

University of Anbar

College of Computer Science and Information Technology

Department of Computer Science

Object Oriented Programming

Second Class

Dr. Ruqayah R. Al-Dahhan

2nd Semester

What is Operator Overloading?

• The mechanism of giving special meanings to an operator is known
as operator overloading.

• In simple words, it means assigning additional job to an operator;
relative to a specific class (user-defined type)

• Allows us to define the behavior of operators when applied to objects
of a class

• Operator Overloading does not allow us to alter the meaning of
operators when applied to built-in types(i.e none of their original
meaning will be lost).
– one of the operands must be an object of a class

Operator Overloading

• Operators are overloaded by creating
Operator Functions.

• Overloading an operator :

-Write function definition as normal

– Function name is keyword operator followed
by the symbol for the operator being overloaded

–operator+ used to overload the addition
operator (+)

Operator Functions

• Operator functions can be either :

– Member function of a class or

– Non-member function (friend function).

• The way of writing operator functions

differs between member and non-member

functions.

5

General Format of Member Function

Prototype
returnType operator*(parameters);

  
any type keyword operator symbol

or
returnType classname::operator* (params);

  
any type keyword operator symbol

• Return type may be whatever the operator returns

Operator Functions as Class Members

vs. as friend Functions

• Operator functions as member functions

✓ member function has no argument for unary
operators and only one argument for binary operators

• Operator functions as non-member functions

– Must be friends if needs to access private members

– Friend function will have only one argument for unary
operators and two for binary operators

Operator Overloading

Unary Operators

• Can overload as

– member function with no arguments.

– As a global function with one argument.

• Argument must be class object or reference to class

object.

Simple Example of

Unary Operator

Overloading

#include<iostream>

using namespace std;

class space

{int x; int y; int z;

public:

space(int r , int m, int c)

{x=r; y=m; z=c; }

void operator-();//unary operator

void display(); };//end class

void space::display()

{cout<<x<<" "<<y<<" "<<z<<" "<< endl; }

void space:: operator-()

{x=-x; y=-y; z=-z; }

main()

{space S(11,-22,33);

cout<<"s: "; S.display();

-S; cout<<"s: "; S.display(); }

Operator Overloading

Overloading Binary Operators

• member function with one argument.

or

• Global function with two arguments:

– One argument must be class object or reference to a

class object.

Simple Example of

Binary Operator

Overloading

#include<iostream>
using namespace std;
class complex {
double x, y;

public:
complex(){ }
complex(double r, double i)

{x=r; y=i;}
complex operator+(complex b);
void display();

};
complex complex:: operator+(complex c)

{complex temp;
temp.x=x+c.x;
temp.y=y+c.y;
return(temp);
}

void complex::display()
{cout<<x<<" + "<<y<<"\n";
}

main()
{complex c1,c2(1.6,2.7),c3;
c1=complex(2.5,3.5);
c3=c1+c2;
cout<<"c1 "<<"\n";c1.display();
cout<<"c2 "<<"\n";c2.display();
cout<<"c3 "<<"\n";c3.display();
}

Operator Overloading- Part2

University of Anbar

College of Computer Science and Information Technology

Department of Computer Science

Object Oriented Programming

Second Class

Dr. Ruqayah R. Al-Dahhan

Lecture 2

2nd Semester

Example1: An example of(++

operator and - - operator) functions)member

functions) that operate on the object of Check

class (object m in this case).

Sol:

#include <iostream>

using namespace std;

class Check

{ private:

int count;

public:

Check(){count=5;}

void operator ++()

{ count = count+1; }

void Display()

{ cout<<"Count: "<<count<< endl; }

void operator --()

{ count= count-1; }

};

main()

{ Check m;

++ m ; // calls "operator

++()" function

m.Display();

-- m ;

m.Display();

}

Output:

Count: 6

Count: 5

Note:

++ operator operates on object m to

increase the value of data member

count by 1.

- - operator operates on object m to

decrease the value of data member

Overloading Binary Operators

Using Friend Functions
• Must precede with friend keyword, and declare a

function class scope.
Friend returnType operator*(parameters);

  
any type keyword operator symbol

• Keeping in mind, friend operator function takes two
parameters in a binary operator, varies one parameter
in a unary operator.

• All the working and implementation would same as
binary operator function(Member Function) except this
function will be implemented outside of the class scope.

Example2: An example of (+,-,*,/,==,>,<,unary -

,>>,<< operator) functions (Friend functions) that operate on

objects of Money class .

#include <cmath>

#include <iostream>

using namespace std;

class Money // Class for amounts of money in US currency

{

friend const Money operator+(const Money& amount1, const Money& amount2);

friend const Money operator-(const Money& amount1, const Money& amount2);

friend const Money operator*(const Money& amount1, const Money& amount2);

friend const Money operator/(const Money& amount1, const Money& amount2);

friend bool operator==(const Money& amount1, const Money& amount2);

friend bool operator>(const Money& amount1, const Money& amount2);

friend bool operator<(const Money& amount1, const Money& amount2);

friend const Money operator-(const Money& amount);

friend istream& operator>>(istream& istr, Money& amount);

friend ostream& operator<<(ostream& ostr, const Money& amount);

public:

Money();

Money(int theDollars);

Money(double amount);

Money(int theDollars, int theCents);

private:

int dollars;

int cents;

int dollarsPart(double amount) const; //private member function

int centsPart(double amount) const; //private member function

int round(double number) const; //private member function

};

//Addition operator

const Money operator+(const Money& amount1, const Money& amount2)

{ int finalDollars= amount1.dollars+ amount2.dollars;

int finalCents= amount1.cents+ amount2.cents;

return Money(finalDollars, finalCents);

}

//Subtraction operator

const Money operator-(const Money& amount1, const Money& amount2)

{ int finalDollars= amount1.dollars- amount2.dollars;

int finalCents= amount1.cents- amount2.cents;

return Money(finalDollars, finalCents);

}

//Multiplication operator

const Money operator*(const Money& amount1, const Money& amount2)

{ int finalDollars= amount1.dollars * amount2.dollars;

int finalCents= amount1.cents * amount2.cents;

return Money(finalDollars, finalCents);

}

//Division operator

const Money operator/(const Money& amount1, const Money& amount2)

{ int finalDollars= amount1.dollars / amount2.dollars;

int finalCents= amount1.cents / amount2.cents;

return Money(finalDollars, finalCents);

}

//Equal to operator

bool operator==(const Money& amount1, const Money& amount2)

{ return ((amount1.dollars == amount2.dollars) && (amount1.cents ==

amount2.cents));

}

//Greater than operator

bool operator>(const Money& amount1, const Money& amount2)

{ return ((amount1.dollars > amount2.dollars)&& (amount1.cents >

amount2.cents));

}

//Less than operator

bool operator<(const Money& amount1, const Money& amount2)

{ return ((amount1.dollars < amount2.dollars)&& (amount1.cents < amount2.cents)

);}

//Unary subtraction operator

const Money operator-(const Money& amount)

{ return Money(-amount.dollars, -amount.cents);

}

istream& operator>>(istream& istr, Money& amount)

{ char dollarSign;

istr >> dollarSign;

if (dollarSign != '$') // if (strcmp(dollarSign, '$') == 0)

{ cout << "No dollar sign in Money input. \n";

exit(1); }

double amountAsDouble;

istr >> amountAsDouble;

amount.dollars = amount.dollarsPart(amountAsDouble);

amount.cents = amount.centsPart(amountAsDouble);

return istr; }

ostream& operator<<(ostream& ostr, const Money& amount)

{ int absDollars = abs(amount.dollars);

int absCents = abs(amount.cents);

ostr << "Account balance: ";

if (amount.dollars < 0 || amount.cents < 0)

ostr << "$";

else

ostr << '$' << amount.dollars;

if (absCents >= 10)

ostr << "." << absCents << endl;

else

ostr << "." << '0' << absCents << endl;

return ostr;

}

// Constructors

Money :: Money()

{ dollars = 0.0;

cents = 0.0;}

Money :: Money(double amount)

{ dollars = dollarsPart(amount);

cents = centsPart(amount);

}

Money :: Money(int theDollars)

{ dollars = theDollars;

cents = 0.0;

}

Money :: Money(int theDollars, int theCents)

{ if ((theDollars < 0 && theCents > 0) ||(theDollars > 0 && theCents < 0))

{ cout << "Inconsistent money data.\n";

exit(1);

}

dollars = theDollars;

cents = theCents;

}

// Private member functions

int Money :: dollarsPart(double amount) const

{ return static_cast<int> (amount); //Use <cmath> }

int Money :: centsPart(double amount) const

{ double doubleCents = amount * 100;

int intCents = (round(fabs(doubleCents)));

if (amount < 0) intCents = -intCents;

return (intCents % 100); //Return the amount in 'cents'

}

int Money :: round(double number) const

{ return static_cast<int> (floor (number+0.5)); //Use <cmath>

}

int main()

{ Money baseAmount(100, 60), fullAmount;

fullAmount = baseAmount + 25;

cout << fullAmount << endl;

//fullAmount = 25 + baseAmount;

Money yourAmount, myAmount(10,9);

cout << "Enter an amount of money, (use the dollar sign in front): ";

cin >> yourAmount;

cout << "Your amount is: " << yourAmount << endl;

fullAmount = yourAmount + 25.34;

cout << "Your amount + 25.34 is: " << fullAmount << endl;

fullAmount = yourAmount - 70.78;

cout << "Your amount - 70.78 is: " << fullAmount << endl;

fullAmount=baseAmount+fullAmount;

cout << "fullAmount: " << fullAmount << endl;

return 0;

}

Output

When the previous code (i.e Example2) is

compiled and executed, it produces the

following results:

Account balance: $125.60

Enter an amount of money, (use the

dollar sign in front): $567.93

Your amount is: Account balance:

$567.93

Your amount + 25.34 is: Account

balance: $592.127

Your amount - 70.78 is: Account

balance: $497.15

Notes

• C++ is able to input and output the built-in

data types using the stream extraction operator

>> and the stream insertion operator <<. The

stream insertion and stream extraction

operators also can be overloaded to perform

input and output for user-defined types like an

object.

• Here, it is important to make operator

overloading function a friend of the class

because it would be called without creating an

• Static Cast: This is the simplest type of cast which can be used. It is a
compile time cast. It does things like implicit conversions between
types (such as int to float), and it can also call explicit conversion
functions (or implicit ones).

static_cast <new_type> (expression)→Returns a value of type new_type.

• The floor() function in C++ returns the largest possible integer value
which is less than or equal to the given argument.

• fabs() function is a library function of cmath header, it is used to find
the absolute value of the given number, it accepts a number and
returns absolute value.

Notes

ASSIGNMENT
Submission Deadline:23rd March 2020

1- Re-write the Example 1(in this lecture) to

overload the operators ++ and -- using friend

functions instead of the member functions.

2- Write a class Person with a couple of private

members ((String) Name and (integer) Age) to

overload the stream insertion >> and extraction

operators << using a friend function.

Inheritance -Part 1

Lecture 3

University of Anbar

College of Computer Science and Information Technology

Department of Computer Science

Object Oriented Programming

Second Class

Dr. Ruqayah R. Al-Dahhan

2nd Semester

25

Inheritance

• One of the most important concepts in object-oriented

programming is that inheritance. Inheritance allows us to define a

class in terms of another class, which makes it easier to create and

maintain an application. This also provides an opportunity to reuse

the code functionality and fast implementation time

• We frequently classify objects.

Mammals are

•warm-blooded

•higher vertebrates.

This information is valid for elephant and mouse but is best if we only

have to express it only once for all mammals and not have to

duplicate for every mammal.

Large body of knowledge can be presented in a compact way.

26

The class cat is derived from the class mammal.We say

that a cat “is a mammal” and is also a “living creature”.

But a cat “is not a reptile”. It is often useful to build

our Object-Oriented programs this way.

living

creatures

mammal

elephant

reptile

snake
cat

Inheritance

27

Inheritance

• Inheritance is the capability of one class to acquire

properties and characteristics from another class.

• The class whose properties are inherited by other

class is called the Parent or Base or Super class.

• The class which inherits properties of other class is

called Child or Derived or Sub class.

How to define a derived class?

• To define a derived class, we use a class

derivation list to specify the base class(es). A

class derivation list names one or more base

classes and has the form:
Class Derivedclass: Access-Specifier Baseclass

 
Keyword (Public, Private, Protected)

• If the access-specifier is not used, then it is
private by default. 28

Example:Consider a base class Shape

and its derived class Rectangle as

follows:

#include <iostream>

using namespace std;

// Base class

class Shape {

public:

void setWidth(int w) {

width = w;

}

void setHeight(int h) {

height = h;

}

protected:

int width;

int height;

};
29

// Derived class

class Rectangle: public Shape {

public:

int getArea() {

return (width * height);

}

};

main() {

Rectangle Rect;

Rect.setWidth(5);

Rect.setHeight(7);

// Print the area of the object.

cout << "Total area: " << Rect.getArea() <<

endl;

return 0;

}

Notes
• The Output: When the previous code is compiled and

executed, it produces the following result:

Total area: 35

• The public inheritance relations between the classes:

– Shape is the base class, and Rectangle is derived from it.

• We can group information (and avoid having to duplicate
code) in a way that reflects our application and the real
things or ideas that our code models.

• In main, a Rect object can call any functions in the Base
class (Shape) that is derived from.

30

Inheritance -Part 2

Lecture 4

University of Anbar

College of Computer Science and Information Technology

Department of Computer Science

Object Oriented Programming

Second Class

Dr. Ruqayah R. Al-Dahhan

2nd Semester

32

Inheritance in C++

Sphere

Shape

TwoD ThreeD

Circle Rectangl

e

Parent, base class

Child, derived class

How can we code our objects like this?

33

#include <iostream>

Using namespace std;

const static double PI = 3.141592654;

class Shape{ // base class

private:

char * label; // a string label for the shape

};

class TwoD : public Shape{ // two dimensional shapes

private:

double x, y;

};

class ThreeD : public Shape{ // three dimensional shapes

private:

double x, y, z;

};

class Circle : public TwoD{ // Circle extends TwoD

public:

double area(){ return PI * radius * radius; }

private:

double radius;

};

class Rectangle : public TwoD{

public:

double area(){ return width * height; }

private:

double width, height;

};

class Sphere : public ThreeD{

public:

double volume(){ return 3.0 / 4.0 * PI * radius * radius

* radius; }

private:

double radius;

};

int main(){

Sphere s1;

Circle c1;

Shape *shptr;

shptr = & s1;

shptr = & c1;

return 0;

}

Notes

• No output - this is only a skeleton code.

• The public inheritance relations between the classes.

• Shape is the base class, and TwoD and ThreeD are derived

from it.

• We can group information (and avoid having to duplicate

code) in a way that reflects our application and the real things

or ideas that our code models.

• Note that in main, a Shape pointer can point to any object

that is derived from it.

35

Inheritance

For the parent (of class Circle) we might write:

class TwoD : public Shape{

public:

void print(){cout<< x;}

//..

protected:

double x,y;

//..

};

protected: data of the class is accessible to the

derived classes (and friends), but not any other part of

the program.

36

Inheritance
For the parent class of Circle we

write:

class TwoD:public Shape{

public:

void print(){cout<<…;}

//..

protected:

double x,y;

//..

};

For the derived class we write:

class Circle:public TwoD{

public:

double area();

private:

double radius;

};

public print() and

protected x and y, are also part of

Circle - inherited from the parent.

37

This is called public inheritance.

public and protected

data of the parent class are

inherited in the derived class and

have the same access type. (We

can have private and protected

inheritance as well. Public

inheritance is the most commonly

used.)

class Circle:public TwoD{

public:

double area();

private:

double radius;

};

Inheritance

38

#include <iostream>

Using namespace std;

const static double PI = 3.141592654;

class Shape{ // base class

private:

char * label; // a string label for the shape

};

class TwoD : public Shape{ // two dimensional
shapes

protected:

double x, y;

};

class ThreeD : public Shape{ // three dimensional
shapes

protected:

double x, y, z;

};

class Circle : public TwoD{ // Circle extends TwoD

public:

double area(){ return PI * radius * radius; }

private:

double radius;

};

class Rectangle : public TwoD{

public:

double area(){ return width * height; }

private:

double width, height;

};

class Sphere : public ThreeD{

public:

double volume(){ return 4.0 / 3.0 * PI * radius * radius *

radius; }

private:

double radius;

};

int main(){

Sphere s1;

Circle c1;

cout << "size of s1 is " << sizeof(s1) << endl;

cout << "size of c1 is " << sizeof(c1) << endl;

return 0;

}

Notes

• Output:

size of s1 is 36

size of c1 is 28
36 = 4 (char *) + 3 * 8 (double) + 8 (double)

28 = 4 (char*) + 2 * 8 (double) + 8 (double)

Circles inherit label and x and y

Spheres inherit label, x,y and z

Inheritance -Part 3

Lecture 5

University of Anbar

College of Computer Science and Information Technology

Department of Computer Science

Object Oriented Programming

Second Class

Dr. Ruqayah R. Al-Dahhan

2nd Semester

41

class GraduateStudent : public Student {

public:

GraduateStudent(string s,int id,string t);

protected:

string thesis;

};

class Student {

public:

Student(string s,int id);

void print();

protected:

string surname;

int studentID;

};

We can create a new type

Graduate from Student with

added extra information. How do we

get initialisation of the information?

Inheritance

42

• Each class has its own constructor.
• The constructor for Student is placed in the initialiser list of the GraduateStudent

constructor.

• Student::Student(string s,int id) {surname=s; ID=id;}

• GraduateStudent::GraduateStudent(string s, int id, string t)

{Student (s,id);

thesis=t; // code}

• The constructor for Student (base class) is placed in the initialiser list of the

GraduateStudent (derived class) constructor.

Inheritance

• The derived class constructor does not always need

to call the base class constructor.

• If the base class has a constructor with defaulted

arguments, then the derived class does not need to

call the constructor of the base class; otherwise it

must call it.

Inheritance

#include <iostream>

#include <cstring>

using namespace std;

class Student{

public:Student(){};

Student(string , int); // normal initialiser

list

protected:

string surname;int ID;};

Student::Student(string s, int id=0)

{ surname=s; ID=id; }

class GraduateStudent : public Student{

public:

GraduateStudent(string , int , string);

private:

string thesis; // thesis topic

};

GraduateStudent::GraduateStudent(string s, int id,

string t)

{Student (s,id);

thesis=t; cout<< s << " "<<id <<"

"<<thesis<<endl;}

main()

{Student s1("Somename",001);

GraduateStudent gs1("Distributed

Computing",12, "Anothername");

}

Access Control

• Derived class can access all non-private members of the base class. So if

you do not want a member function of the base class to be accessed by the

derived class should be declared as private in the base class.

• A derived class inherits all the methods of the base class, but does not

include:

– Base class constructor, destructor, and copy constructor.

– Operator overloading the base class.

– Friend base class function.

46

Summary

• Inheritance is the mechanism of deriving new classes from old ones.

• The keywords public, private, and protected are used as visibility

modifiers for class members.

I\O Streams

Lecture 6

University of Anbar

College of Computer Science and Information Technology

Department of Computer Science

Object Oriented Programming

Second Class

Dr. Ruqayah R. Al-Dahhan

2nd Semester

• cin represent the input stream connected to the standard input device (usually

the keyboard).

• cout represent the output stream connected to the standard output device

(usually the screen).

• We use cin and cout objects for input and output data of various types.

• The reading for variable will be terminated at the encounter of a white space or

a character that doesn't match the destination type.

Example

Ex:-

int code;

cin>>code;

if input

458D

• The operator will read the characters up to 8, the character D remains in the

input stream and will be input to the next cin statement.

Put() and get() functions:-

• get() function defined in istream class.

• get() handle a single character.

• There two form : get(char*) and get(void).

• get() can fetch a charter including the blank space, tab, and the new line character.

• The get(char*) assign the input character to its argument.

• The get(void) return the input character.

• Since these functions are members of I\O stream classes, we must invoke them using an appropriate

object.

Example

char c;

cin.get(c) // or c = cin.get();

while (c!= '\n')

{

cout<<c;

cin.get(c);

}

• The above while loop will not work properly if cin>> c; is used instead cin.get(c); .

• The function put(), a member of ostream class, can be used to output a line of text, character by

character.

include < iostream >

using namespace std;

main()

{

int count = 0;

char c;

cout<<"Input Text \n";

cin.get(c);

while (c != '\n')

{ cout.put(c);

count++;

cin.get(c); }

cout<<"\n Number of characters= "<<count<<"\n"; }

• When we type a line of input, the text is sent to the

program as soon as we press Return key. (cin begin read

from istream).

• The program then reads one character at a time using the

statement cin.get(c); and display it using cout.put(c).

getline() and write() functions

• The getline() function reads a whole line of text that ends with a newline character (Return key). This

function can be invoked using the object cin as follow:-

cin.getline (line, size);

• This invoke reads character input into the variable line, the reading is terminated as soon as either the

newline is encountered or size -1 characters are read.

• The newline character is read but not saved, instead it is replaced by the null character.

• Following example show use of getline() :

#include <iostream>

Using namespace std;

main ()

{ int size =20 ;

char city [20]

cout<<"Enter city name \n";

cin>>city;

cout <<"city name :"<<city <<"\n\n";

cout<<"Enter city name agin : \n";

cin.getline (city , size);

cout <<"city name now :"<<city <<"\n\n";

cout <<"Enter another city name : \n";

cin.getline (city , size);

cout <<"New city name :"<<city <<"\n\n";

}

O/P:?

• The write() function display an entire line and has the following form :-

• cout . write (line , size);

• line : represents the name of the string to be displayed .

• size : indicates the number of characters to display.

• * if the size is greater than the length of line , then it display beyond the bound of line.

#include <iostream >

#include<cstring >

Using namespace std

main()

{ char *string1 ="C++";

char *string2 ="programming";

int m =strlen (string1);

int n = strlen (string2);

for (int i=1; i<n ; i++)

{ cout . write (string2 ,i); cout<<"\n"; }

for (i=n ; i>0 ; i--)

{ cout . write (string2 ,i); cout<<"\n"; }

cout . write (string1,m). write (string2,n);

cout<<"\n";

cout . write (string1,10); }

