
Chapter 1
Introduction

2

Chapter 1 Objectives

• Know the difference between computer
organization and computer architecture.

• Understand units of measure common to computer
systems.

• Appreciate the evolution of computers.

• Understand the computer as a layered system.

• Be able to explain the von Neumann architecture
and the function of basic computer components.

3

 Why study computer organization and
architecture?
– Design better programs, including system software

such as compilers, operating systems, and device
drivers.

– Optimize program behavior.

– Evaluate (benchmark) computer system performance.

– Understand time, space, and price tradeoffs.

1.1 Overview

4

1.1 Overview

• Computer organization
– Encompasses all physical aspects of computer systems.
– E.g., circuit design, control signals, memory types.
– How does a computer work?

• Computer architecture
– Logical aspects of system implementation as seen by the

programmer.
– E.g., instruction sets, instruction formats, data types,

addressing modes.
– How do I design a computer?

5

1.2 Computer Components

• There is no clear distinction between matters
related to computer organization and matters
relevant to computer architecture.

• Principle of Equivalence of Hardware and
Software:
– Anything that can be done with software can

also be done with hardware, and anything that
can be done with hardware can also be done
with software.*

* Assuming speed is not a concern.

6

• At the most basic level, a computer is a
device consisting of three pieces:
– A processor to interpret and execute programs
– A memory to store both data and programs
– A mechanism for transferring data to and from the

outside world.

1.2 Computer Components

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

7

Consider this advertisement:

1.3 An Example System

MHz??

MB??

PCI??
USB??

L1 Cache??

What does it all mean??

8

Measures of capacity and speed:
• Kilo- (K) = 1 thousand = 103 and 210

• Mega- (M) = 1 million = 106 and 220

• Giga- (G) = 1 billion = 109 and 230

• Tera- (T) = 1 trillion = 1012 and 240

• Peta- (P) = 1 quadrillion = 1015 and 250

1.3 An Example System

Whether a metric refers to a power of ten or a power
of two typically depends upon what is being measured.

9

• Hertz = clock cycles per second (frequency)
– 1MHz = 1,000,000Hz
– Processor speeds are measured in MHz or GHz.

• Byte = a unit of storage
– 1KB = 210 = 1024 Bytes
– 1MB = 220 = 1,048,576 Bytes
– Main memory (RAM) is measured in MB
– Disk storage is measured in GB for small systems, TB

for large systems.

1.3 An Example System

10

1.3 An Example System

Measures of time and space:
• Milli- (m) = 1 thousandth = 10 -3

• Micro- (µ) = 1 millionth = 10 -6

• Nano- (n) = 1 billionth = 10 -9

• Pico- (p) = 1 trillionth = 10 -12

• Femto- (f) = 1 quadrillionth = 10 -15

11

• Millisecond = 1 thousandth of a second
– Hard disk drive access times are often 10 to 20

milliseconds.

• Nanosecond = 1 billionth of a second
– Main memory access times are often 50 to 70

nanoseconds.

• Micron (micrometer) = 1 millionth of a meter
– Circuits on computer chips are measured in microns.

1.3 An Example System

12

• We note that cycle time is the reciprocal of clock
frequency.

• A bus operating at 133MHz has a cycle time of
7.52 nanoseconds:

1.3 An Example System

Now back to the advertisement ...

133,000,000 cycles/second = 7.52ns/cycle

13

1.3 An Example System

A system bus moves data within the
computer. The faster the bus the better.
This one runs at 133MHz.

The microprocessor is the “brain” of
the system. It executes program
instructions. This one is a Pentium III
(Intel) running at 667MHz.

14

1.3 An Example System

• Computers with large main memory capacity can
run larger programs with greater speed than
computers having small memories.

• RAM is an acronym for random access memory.
Random access means that memory contents
can be accessed directly if you know its location.

• Cache is a type of temporary memory that can be
accessed faster than RAM.

15

1.3 An Example System

… and two levels of cache memory, the level 1 (L1)
cache is smaller and (probably) faster than the L2 cache.
Note that these cache sizes are measured in KB.

This system has 64MB of (fast)
synchronous dynamic RAM
(SDRAM) . . .

Mobile User

Mobile User

Mobile User

16

1.3 An Example System

This one can store 30GB. 7200 RPM is the rotational
speed of the disk. Generally, the faster a disk rotates,
the faster it can deliver data to RAM. (There are
many other factors involved.)

Hard disk capacity determines
the amount of data and size of
programs you can store.

17

1.3 An Example System

A CD-ROM can store about 650MB of data, making
it an ideal medium for distribution of commercial
software packages. 48x describes its speed.

EIDE stands for enhanced integrated drive electronics,
which describes how the hard disk interfaces with (or
connects to) other system components.

18

1.3 An Example System

This system has
four ports.

Ports allow movement of data
between a system and its external
devices.

19

1.3 An Example System

• Serial ports send data as a series of pulses along
one or two data lines.

• Parallel ports send data as a single pulse along
at least eight data lines.

• USB, universal serial bus, is an intelligent serial
interface that is self-configuring. (It supports
“plug and play.”)

20

1.3 An Example System

System buses can be augmented by
dedicated I/O buses. PCI, peripheral
component interface, is one such bus.

This system has two PCI devices: a
sound card, and a modem for
connecting to the Internet.

21

1.3 An Example System
The number of times per second that the image on
the monitor is repainted is its refresh rate. The dot
pitch of a monitor tells us how clear the image is.

This monitor has a dot pitch of
0.24mm and a refresh rate of 85Hz.

The graphics card contains memory and
programs that support the monitor.

Mobile User

22

 Throughout the remainder of this book you will
see how these components work and how they
interact with software to make complete
computer systems.

This statement raises two important questions:

What assurance do we have that computer
components will operate as we expect?

And what assurance do we have that
computer components will operate together?

1.3 An Example System

23

• There are many organizations that set
computer hardware standards-- to include
the interoperability of computer components.

• Throughout this book, and in your career,
you will encounter many of them.

• Some of the most important standards-
setting groups are . . .

1.4 Standards Organizations

24

• The Institute of Electrical and Electronic
Engineers (IEEE)

– Promotes the interests of the worldwide electrical
engineering community.

– Establishes standards for computer components,
data representation, and signaling protocols,
among many other things.

1.4 Standards Organizations

25

• The International Telecommunications Union
(ITU)
– Concerns itself with the interoperability of

telecommunications systems, including data
communications and telephony.

• National groups establish standards within their
respective countries:
– The American National Standards Institute (ANSI)
– The British Standards Institution (BSI)

1.4 Standards Organizations

26

• The International Organization for
Standardization (ISO)

– Establishes worldwide standards for everything
from screw threads to photographic film.

– Is influential in formulating standards for
computer hardware and software, including their
methods of manufacture.

Note: ISO is not an acronym. ISO comes from the Greek,
 isos, meaning “equal.”

1.4 Standards Organizations

27

• To fully appreciate the computers of today, it is
helpful to understand how things got the way they
are.

• The evolution of computing machinery has taken
place over several centuries.

• In modern times computer evolution is usually
classified into four generations according to the
salient technology of the era.

We note that many of the following dates are approximate.

1.5 Historical Development

Mobile User

Mobile User

28

• Generation Zero: Mechanical Calculating Machines
(1642 - 1945)
– Calculating Clock - Wilhelm Schickard (1592 - 1635).
– Pascaline - Blaise Pascal (1623 - 1662).
– Difference Engine - Charles Babbage (1791 - 1871),

also designed but never built the Analytical Engine.
– Punched card tabulating machines - Herman Hollerith

(1860 - 1929).
Hollerith cards were commonly used for
computer input well into the 1970s.

1.5 Historical Development

29

• The First Generation: Vacuum Tube Computers
(1945 - 1953)

– Atanasoff Berry
Computer (1937 -
1938) solved systems
of linear equations.

– John Atanasoff and
Clifford Berry of
Iowa State University.

1.5 Historical Development

30

• The First Generation: Vacuum Tube Computers
(1945 - 1953)

– Electronic Numerical
Integrator and
Computer (ENIAC)

– John Mauchly and J.
Presper Eckert

– University of
Pennsylvania, 1946

The first general-purpose computer.

1.5 Historical Development

31

• The First Generation: Vacuum Tube Computers
(1945 - 1953)

– IBM 650
(1955)

– Phased out
in 1969.

The first mass-produced computer.

1.5 Historical Development

32

• The Second Generation: Transistorized
Computers (1954 - 1965)

– IBM 7094 (scientific)
and 1401 (business)

– Digital Equipment
Corporation (DEC)
PDP-1

– Univac 1100
– . . . and many others.

DEC PDP-1

1.5 Historical Development

33

• The Third Generation: Integrated Circuit
Computers (1965 - 1980)
– IBM 360
– DEC PDP-8 and

PDP-11
– Cray-1

supercomputer
– . . . and many

others.
IBM 360

Cray-1

1.5 Historical Development

34

• The Fourth Generation: VLSI Computers
(1980 - ????)
– Very large scale integrated circuits

(VLSI) have more than 10,000
components per chip.

– Enabled the creation of
microprocessors.

– The first was the 4-bit Intel 4004.
Later versions, such as the 8080, 8086, and 8088
spawned the idea of “personal computing.”

Intel
4004

1.5 Historical Development

35

• Moore’s Law (1965)

– Gordon Moore, Intel founder

– “The density of transistors in an integrated circuit
will double every year.”

• Contemporary version:

– “The density of silicon chips doubles every 18
months.”

But this “law” cannot hold forever ...

1.5 Historical Development

36

• Rock’s Law

– Arthur Rock, Intel financier

– “The cost of capital equipment to build
semiconductors will double every four years.”

– In 1968, a new chip plant cost about $12,000.

At the time, $12,000 would buy a nice home in
the suburbs.
An executive earning $12,000 per year was
“making a very comfortable living.”

1.5 Historical Development

37

• Rock’s Law

– In 2003, a chip plant under construction will cost
over $2.5 billion.

– For Moore’s Law to hold, Rock’s Law must fall,
or vice versa. But no one can say which will
give out first.

$2.5 billion is more than the gross domestic
product of some small countries, including
Belize, Bhutan, and the Republic of Sierra
Leone.

1.5 Historical Development

38

• Computers consist of many things besides
chips.

• Before a computer can do anything worthwhile,
it must also use software.

• Writing complex programs requires a “divide
and conquer” approach, where each program
module solves a smaller problem.

• Complex computer systems employ a similar
technique through a series of virtual machine
layers.

1.6 The Computer Level Hierarchy

39

• Each virtual machine
layer is an abstraction of
the level below it.

• The machines at each
level execute their own
particular instructions,
calling upon machines at
lower levels to perform
tasks as required.

• Computer circuits
ultimately carry out the
work.

1.6 The Computer Level Hierarchy

40

• Level 6: The User Level

– Program execution and user interface level.

– The level with which we are most familiar.

• Level 5: High-Level Language Level

– The level with which we interact when we write
programs in languages such as C, Pascal, Lisp, and
Java.

1.6 The Computer Level Hierarchy

41

• Level 4: Assembly Language Level

– Acts upon assembly language produced from
Level 5, as well as instructions programmed
directly at this level.

• Level 3: System Software Level
– Controls executing processes on the system.
– Protects system resources.
– Assembly language instructions often pass

through Level 3 without modification.

1.6 The Computer Level Hierarchy

42

• Level 2: Machine Level

– Also known as the Instruction Set Architecture
(ISA) Level.

– Consists of instructions that are particular to the
architecture of the machine.

– Programs written in machine language need no
compilers, interpreters, or assemblers.

1.6 The Computer Level Hierarchy

43

• Level 1: Control Level
– A control unit decodes and executes instructions

and moves data through the system.
– Control units can be microprogrammed or

hardwired.
– A microprogram is a program written in a low-

level language that is implemented by the
hardware.

– Hardwired control units consist of hardware that
directly executes machine instructions.

1.6 The Computer Level Hierarchy

44

• Level 0: Digital Logic Level
– This level is where we find digital circuits (the

chips).
– Digital circuits consist of gates and wires.
– These components implement the mathematical

logic of all other levels.

1.6 The Computer Level Hierarchy

45

• On the ENIAC,
all programming
was done at the
digital logic
level.

• Programming
the computer
involved moving
plugs and wires.

1.7 The von Neumann Model

46

• Inventors of the ENIAC, John Mauchley and
J. Presper Eckert, conceived of a computer
that could store instructions in memory.

• The invention of this idea has since been
ascribed to a mathematician, John von
Neumann, who was a contemporary of
Mauchley and Eckert.

• Stored-program computers have become
known as von Neumann Architecture systems.

1.7 The von Neumann Model

47

1.7 The von Neumann Model

• Today’s stored-program computers have the
following characteristics:
– Three hardware systems:

• A central processing unit (CPU)
• A main memory system
• An I/O system

– The capacity to carry out sequential instruction
processing.

– A single data path between the CPU and main
memory.

• This single path is known as the von Neumann
bottleneck.

48

1.7 The von Neumann Model

• This is a general
depiction of a von
Neumann system:

• These computers
employ a fetch-
decode-execute
cycle to run
programs as
follows . . .

49

1.7 The von Neumann Model

• The control unit fetches the next instruction from
memory using the program counter to determine where
the instruction is located.

50

1.7 The von Neumann Model

• The instruction is decoded into a language that the ALU
can understand.

51

1.7 The von Neumann Model

• Any data operands required to execute the instruction
are fetched from memory and placed into registers
within the CPU.

52

1.7 The von Neumann Model

• The ALU executes the instruction and places results in
registers or memory.

53

• Conventional stored-program computers have
undergone many incremental improvements
over the years.

• These improvements include adding
specialized buses, floating-point units, and
cache memories, to name only a few.

• But enormous improvements in computational
power require departure from the classic von
Neumann architecture.

• Adding processors is one approach.

1.8 Non-von Neumann Models

54

• In the late 1960s, high-performance computer
systems were equipped with dual processors
to increase computational throughput.

• In the 1970s supercomputer systems were
introduced with 32 processors.

• Supercomputers with 1,000 processors were
built in the 1980s.

• In 1999, IBM announced its Blue Gene
system containing over 1 million processors.

1.8 Non-von Neumann Models

55

• Parallel processing is only one method of
providing increased computational power.

• More radical systems have reinvented the
fundamental concepts of computation.

• These advanced systems include genetic
computers, quantum computers, and dataflow
systems.

• At this point, it is unclear whether any of these
systems will provide the basis for the next
generation of computers.

1.8 Non-von Neumann Models

56

• This chapter has given you an overview of the
subject of computer architecture.

• You should now be sufficiently familiar with
general system structure to guide your studies
throughout the remainder of this course.

• Subsequent chapters will explore many of
these topics in great detail.

Conclusion

57

End of Chapter 1

Chapter 2
Data Representation in

Computer Systems

2

Chapter 2 Objectives

• Understand the fundamentals of numerical data
representation and manipulation in digital
computers.

• Master the skill of converting between various
radix systems.

• Understand how errors can occur in computations
because of overflow and truncation.

3

Chapter 2 Objectives

• Gain familiarity with the most popular character
codes.

• Become aware of the differences between how
data is stored in computer memory, how it is
transmitted over telecommunication lines, and how
it is stored on disks.

• Understand the concepts of error detecting and
correcting codes.

4

2.1 Introduction

• A bit is the most basic unit of information in a
computer.
– It is a state of “on” or “off” in a digital circuit.
– Sometimes these states are “high” or “low” voltage

instead of “on” or “off..”
• A byte is a group of eight bits.

– A byte is the smallest possible addressable unit of
computer storage.

– The term, “addressable,” means that a particular byte can
be retrieved according to its location in memory.

5

2.1 Introduction

• A word is a contiguous group of bytes.
– Words can be any number of bits or bytes.

– Word sizes of 16, 32, or 64 bits are most common.

– In a word-addressable system, a word is the smallest
addressable unit of storage.

• A group of four bits is called a nibble (or nybble).
– Bytes, therefore, consist of two nibbles: a “high-order

nibble,” and a “low-order” nibble.

6

2.2 Positional Numbering Systems

• Bytes store numbers when the position of each bit
represents a power of 2.

– The binary system is also called the base-2 system.

– Our decimal system is the base-10 system. It uses
powers of 10 for each position in a number.

– Any integer quantity can be represented exactly
using any base (or radix).

7

2.2 Positional Numbering Systems

• The decimal number 947 in powers of 10 is:

• The decimal number 5836.47 in powers of 10 is:

5 × 10 3 + 8 × 10 2 + 3 × 10 1 + 6 × 10 0

 + 4 × 10 -1 + 7 × 10 -2

9 × 10 2 + 4 × 10 1 + 7 × 10 0

8

2.2 Positional Numbering Systems

• The binary number 11001 in powers of 2 is:

• When the radix of a number is something other
than 10, the base is denoted by a subscript.

– Sometimes, the subscript 10 is added for emphasis:
 110012 = 2510

 1 × 2 4 + 1 × 2 3 + 0 × 2 2 + 0 × 2 1 + 1 × 2 0

= 16 + 8 + 0 + 0 + 1 = 25

9

2.3 Decimal to Binary Conversions

• Because binary numbers are the basis for all data
representation in digital computer systems, it is
important that you become proficient with this radix
system.

• Your knowledge of the binary numbering system
will enable you to understand the operation of all
computer components as well as the design of
instruction set architectures.

10

2.3 Decimal to Binary Conversions

• In a previous slide, we said that every integer
value can be represented exactly using any radix
system.

• You can use either of two methods for radix
conversion: the subtraction method and the
division remainder method.

• The subtraction method is more intuitive, but
cumbersome. It does, however reinforce the ideas
behind radix mathematics.

11

• Suppose we want to convert
the decimal number 190 to
base 3.

– We know that 3 5 = 243 so
our result will be less than six
digits wide. The largest
power of 3 that we need is
therefore 3 4 = 81, and
81 × 2 = 162.

– Write down the 2 and subtract
162 from 190, giving 28.

2.3 Decimal to Binary Conversions

12

• Converting 190 to base 3...

– The next power of 3 is
3 3 = 27. We’ll need one
of these, so we subtract 27
and write down the numeral
1 in our result.

– The next power of 3, 3 2 =
9, is too large, but we have
to assign a placeholder of
zero and carry down the 1.

2.3 Decimal to Binary Conversions

HiTech Center
Sticky Note
Let

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

13

2.3 Decimal to Binary Conversions

• Converting 190 to base 3...
– 3 1 = 3 is again too large,

so we assign a zero
placeholder.

– The last power of 3, 3 0 =
1, is our last choice, and it
gives us a difference of
zero.

– Our result, reading from
top to bottom is:

 19010 = 210013

14

2.3 Decimal to Binary Conversions

• Another method of converting integers from
decimal to some other radix uses division.

• This method is mechanical and easy.

• It employs the idea that successive division by a
base is equivalent to successive subtraction by
powers of the base.

• Let’s use the division remainder method to again
convert 190 in decimal to base 3.

15

• Converting 190 to base 3...

– First we take the number
that we wish to convert and
divide it by the radix in
which we want to express
our result.

– In this case, 3 divides 190
63 times, with a remainder
of 1.

– Record the quotient and the
remainder.

2.3 Decimal to Binary Conversions

HiTech Center
Highlight

HiTech Center
Highlight

16

• Converting 190 to base 3...

– 63 is evenly divisible by 3.

– Our remainder is zero, and
the quotient is 21.

2.3 Decimal to Binary Conversions

17

• Converting 190 to base 3...

– Continue in this way until
the quotient is zero.

– In the final calculation, we
note that 3 divides 2 zero
times with a remainder of 2.

– Our result, reading from
bottom to top is:

 19010 = 210013

2.3 Decimal to Binary Conversions

18

2.3 Decimal to Binary Conversions

• Fractional values can be approximated in all
base systems.

• Unlike integer values, fractions do not
necessarily have exact representations under all
radices.

• The quantity ½ is exactly representable in the
binary and decimal systems, but is not in the
ternary (base 3) numbering system.

19

2.3 Decimal to Binary Conversions

• Fractional decimal values have nonzero digits to
the right of the decimal point.

• Fractional values of other radix systems have
nonzero digits to the right of the radix point.

• Numerals to the right of a radix point represent
negative powers of the radix:

0.4710 = 4 × 10 -1 + 7 × 10 -2

0.112 = 1 × 2 -1 + 1 × 2 -2

 = ½ + ¼
 = 0.5 + 0.25 = 0.75

20

2.3 Decimal to Binary Conversions

• As with whole-number conversions, you can use
either of two methods: a subtraction method and
an easy multiplication method.

• The subtraction method for fractions is identical to
the subtraction method for whole numbers.
Instead of subtracting positive powers of the target
radix, we subtract negative powers of the radix.

• We always start with the largest value first, n -1,
where n is our radix, and work our way along
using larger negative exponents.

21

• The calculation to the
right is an example of
using the subtraction
method to convert the
decimal 0.8125 to binary.

– Our result, reading from
top to bottom is:

 0.812510 = 0.11012

– Of course, this method
works with any base,
not just binary.

2.3 Decimal to Binary Conversions

HiTech Center
Highlight

HiTech Center
Highlight

22

• Using the multiplication
method to convert the
decimal 0.8125 to binary,
we multiply by the radix 2.

– The first product carries
into the units place.

2.3 Decimal to Binary Conversions

23

• Converting 0.8125 to binary . . .
– Ignoring the value in the units

place at each step, continue
multiplying each fractional
part by the radix.

2.3 Decimal to Binary Conversions

24

• Converting 0.8125 to binary . . .
– You are finished when the

product is zero, or until you
have reached the desired
number of binary places.

– Our result, reading from top to
bottom is:

 0.812510 = 0.11012

– This method also works with
any base. Just use the target
radix as the multiplier.

2.3 Decimal to Binary Conversions

25

2.3 Decimal to Binary Conversions

• The binary numbering system is the most
important radix system for digital computers.

• However, it is difficult to read long strings of binary
numbers-- and even a modestly-sized decimal
number becomes a very long binary number.
– For example: 110101000110112 = 1359510

• For compactness and ease of reading, binary
values are usually expressed using the
hexadecimal, or base-16, numbering system.

26

2.3 Decimal to Binary Conversions

• The hexadecimal numbering system uses the
numerals 0 through 9 and the letters A through F.
– The decimal number 12 is B16.
– The decimal number 26 is 1A16.

• It is easy to convert between base 16 and base 2,
because 16 = 24.

• Thus, to convert from binary to hexadecimal, all
we need to do is group the binary digits into
groups of four.

A group of four binary digits is called a hextet

27

2.3 Decimal to Binary Conversions

• Using groups of hextets, the binary number
110101000110112 (= 1359510) in hexadecimal is:

• Octal (base 8) values are derived from binary by
using groups of three bits (8 = 23):

Octal was very useful when computers used six-bit words.

28

2.4 Signed Integer Representation

• The conversions we have so far presented have
involved only positive numbers.

• To represent negative values, computer systems
allocate the high-order bit to indicate the sign of a
value.
– The high-order bit is the leftmost bit in a byte. It is also

called the most significant bit.
• The remaining bits contain the value of the

number.

29

2.4 Signed Integer Representation

• There are three ways in which signed binary
numbers may be expressed:
– Signed magnitude,
– One’s complement and
– Two’s complement.

• In an 8-bit word, signed magnitude
representation places the absolute value of
the number in the 7 bits to the right of the
sign bit.

30

2.4 Signed Integer Representation

• For example, in 8-bit signed magnitude,
positive 3 is: 00000011

• Negative 3 is: 10000011
• Computers perform arithmetic operations on

signed magnitude numbers in much the same
way as humans carry out pencil and paper
arithmetic.
– Humans often ignore the signs of the operands

while performing a calculation, applying the
appropriate sign after the calculation is complete.

31

2.4 Signed Integer Representation

• Binary addition is as easy as it gets. You need
to know only four rules:

0 + 0 = 0 0 + 1 = 1
1 + 0 = 1 1 + 1 = 10

• The simplicity of this system makes it possible
for digital circuits to carry out arithmetic
operations.
– We will describe these circuits in Chapter 3.

Let’s see how the addition rules work with signed
magnitude numbers . . .

32

2.4 Signed Integer Representation

• Example:
– Using signed magnitude

binary arithmetic, find the
sum of 75 and 46.

• First, convert 75 and 46 to
binary, and arrange as a sum,
but separate the (positive)
sign bits from the magnitude
bits.

33

2.4 Signed Integer Representation

• Example:
– Using signed magnitude

binary arithmetic, find the
sum of 75 and 46.

• Just as in decimal arithmetic,
we find the sum starting with
the rightmost bit and work left.

34

2.4 Signed Integer Representation

• Example:
– Using signed magnitude

binary arithmetic, find the
sum of 75 and 46.

• In the second bit, we have a
carry, so we note it above the
third bit.

35

2.4 Signed Integer Representation

• Example:
– Using signed magnitude

binary arithmetic, find the
sum of 75 and 46.

• The third and fourth bits also
give us carries.

36

2.4 Signed Integer Representation

• Example:
– Using signed magnitude binary

arithmetic, find the sum of 75
and 46.

• Once we have worked our way
through all eight bits, we are
done.

In this example, we were careful careful to pick two
values whose sum would fit into seven bits. If that is not
the case, we have a problem.

HiTech Center
Highlight

37

2.4 Signed Integer Representation

• Example:
– Using signed magnitude binary

arithmetic, find the sum of 107
and 46.

• We see that the carry from the
seventh bit overflows and is
discarded, giving us the
erroneous result: 107 + 46 = 25.

38

2.4 Signed Integer Representation

• The signs in signed
magnitude representation
work just like the signs in
pencil and paper arithmetic.
– Example: Using signed

magnitude binary arithmetic,
find the sum of - 46 and - 25.

• Because the signs are the same, all we do is
add the numbers and supply the negative sign
when we are done.

39

2.4 Signed Integer Representation

• Mixed sign addition (or
subtraction) is done the
same way.
– Example: Using signed

magnitude binary arithmetic,
find the sum of 46 and - 25.

• The sign of the result gets the sign of the number
that is larger.
– Note the “borrows” from the second and sixth bits.

HiTech Center
Highlight

40

2.4 Signed Integer Representation

• Signed magnitude representation is easy for
people to understand, but it requires
complicated computer hardware.

• Another disadvantage of signed magnitude is
that it allows two different representations for
zero: positive zero and negative zero.

• For these reasons (among others) computers
systems employ complement systems for
numeric value representation.

41

2.4 Signed Integer Representation

• In complement systems, negative values are
represented by some difference between a
number and its base.

• In diminished radix complement systems, a
negative value is given by the difference between
the absolute value of a number and one less than
its base.

• In the binary system, this gives us one’s
complement. It amounts to little more than flipping
the bits of a binary number.

42

2.4 Signed Integer Representation

• For example, in 8-bit one’s complement,
positive 3 is: 00000011

• Negative 3 is: 11111100
– In one’s complement, as with signed magnitude,

negative values are indicated by a 1 in the high order bit.
• Complement systems are useful because they

eliminate the need for special circuitry for
subtraction. The difference of two values is found
by adding the minuend to the complement of the
subtrahend.

43

2.4 Signed Integer Representation

• With one’s complement
addition, the carry bit is
“carried around” and added
to the sum.
– Example: Using one’s

complement binary arithmetic,
find the sum of 48 and - 19

We note that 19 in one’s complement is 00010011,
so -19 in one’s complement is: 11101100.

44

2.4 Signed Integer Representation

• Although the “end carry around” adds some
complexity, one’s complement is simpler to
implement than signed magnitude.

• But it still has the disadvantage of having two
different representations for zero: positive
zero and negative zero.

• Two’s complement solves this problem.

• Two’s complement is the radix complement of
the binary numbering system.

45

2.4 Signed Integer Representation

• To express a value in two’s complement:
– If the number is positive, just convert it to binary and

you’re done.
– If the number is negative, find the one’s complement of

the number and then add 1.
• Example:

– In 8-bit one’s complement, positive 3 is: 00000011
– Negative 3 in one’s complement is: 11111100
– Adding 1 gives us -3 in two’s complement form: 11111101.

46

2.4 Signed Integer Representation

• With two’s complement arithmetic, all we do is add
our two binary numbers. Just discard any carries
emitting from the high order bit.

We note that 19 in one’s complement is: 00010011,
so -19 in one’s complement is: 11101100,
and -19 in two’s complement is: 11101101.

– Example: Using one’s
complement binary
arithmetic, find the sum of
48 and - 19.

47

2.4 Signed Integer Representation

• When we use any finite number of bits to
represent a number, we always run the risk of
the result of our calculations becoming too large
to be stored in the computer.

• While we can’t always prevent overflow, we can
always detect overflow.

• In complement arithmetic, an overflow condition
is easy to detect.

48

2.4 Signed Integer Representation

• Example:
– Using two’s complement binary

arithmetic, find the sum of 107
and 46.

• We see that the nonzero carry
from the seventh bit overflows into
the sign bit, giving us the
erroneous result: 107 + 46 = -103.

 Rule for detecting two’s complement overflow: When the
“carry in” and the “carry out” of the sign bit differ, overflow
has occurred.

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

49

2.5 Floating-Point Representation

• The signed magnitude, one’s complement,
and two’s complement representation that we
have just presented deal with integer values
only.

• Without modification, these formats are not
useful in scientific or business applications
that deal with real number values.

• Floating-point representation solves this
problem.

50

2.5 Floating-Point Representation

• If we are clever programmers, we can perform
floating-point calculations using any integer format.

• This is called floating-point emulation, because
floating point values aren’t stored as such, we just
create programs that make it seem as if floating-
point values are being used.

• Most of today’s computers are equipped with
specialized hardware that performs floating-point
arithmetic with no special programming required.

51

2.5 Floating-Point Representation

• Floating-point numbers allow an arbitrary
number of decimal places to the right of the
decimal point.
– For example: 0.5 × 0.25 = 0.125

• They are often expressed in scientific notation.
– For example:

0.125 = 1.25 × 10-1

5,000,000 = 5.0 × 106

HiTech Center
Highlight

52

2.5 Floating-Point Representation

• Computers use a form of scientific notation for
floating-point representation

• Numbers written in scientific notation have three
components:

53

• Computer representation of a floating-point
number consists of three fixed-size fields:

• This is the standard arrangement of these fields.

2.5 Floating-Point Representation

54

• The one-bit sign field is the sign of the stored value.

• The size of the exponent field, determines the
range of values that can be represented.

• The size of the significand determines the precision
of the representation.

2.5 Floating-Point Representation

HiTech Center
Sticky Note
عشري

55

• The IEEE-754 single precision floating point
standard uses an 8-bit exponent and a 23-bit
significand.

• The IEEE-754 double precision standard uses an
11-bit exponent and a 52-bit significand.

2.5 Floating-Point Representation

 For illustrative purposes, we will use a 14-bit model
with a 5-bit exponent and an 8-bit significand.

56

• The significand of a floating-point number is always
preceded by an implied binary point.

• Thus, the significand always contains a fractional
binary value.

• The exponent indicates the power of 2 to which the
significand is raised.

2.5 Floating-Point Representation

57

• Example:
– Express 3210 in the simplified 14-bit floating-point

model.

• We know that 32 is 25. So in (binary) scientific
notation 32 = 1.0 x 25 = 0.1 x 26.

• Using this information, we put 110 (= 610) in the
exponent field and 1 in the significand as shown.

2.5 Floating-Point Representation

58

• The illustrations shown
at the right are all
equivalent
representations for 32
using our simplified
model.

• Not only do these
synonymous
representations waste
space, but they can also
cause confusion.

2.5 Floating-Point Representation

59

• Another problem with our system is that we have
made no allowances for negative exponents. We
have no way to express 0.5 (=2 -1)! (Notice that
there is no sign in the exponent field!)

2.5 Floating-Point Representation

 All of these problems can be fixed with no
changes to our basic model.

60

• To resolve the problem of synonymous forms,
we will establish a rule that the first digit of the
significand must be 1. This results in a unique
pattern for each floating-point number.
– In the IEEE-754 standard, this 1 is implied meaning

that a 1 is assumed after the binary point.
– By using an implied 1, we increase the precision of the

representation by a power of two. (Why?)

2.5 Floating-Point Representation

 In our simple instructional model,
we will use no implied bits.

61

• To provide for negative exponents, we will use a
biased exponent.

• A bias is a number that is approximately midway
in the range of values expressible by the
exponent. We subtract the bias from the value
in the exponent to determine its true value.
– In our case, we have a 5-bit exponent. We will use 16

for our bias. This is called excess-16 representation.
• In our model, exponent values less than 16 are

negative, representing fractional numbers.

2.5 Floating-Point Representation

62

• Example:
– Express 3210 in the revised 14-bit floating-point model.

• We know that 32 = 1.0 x 25 = 0.1 x 26.

• To use our excess 16 biased exponent, we add 16 to
6, giving 2210 (=101102).

• Graphically:

2.5 Floating-Point Representation

63

• Example:
– Express 0.062510 in the revised 14-bit floating-point

model.
• We know that 0.0625 is 2-4. So in (binary) scientific

notation 0.0625 = 1.0 x 2-4 = 0.1 x 2 -3.
• To use our excess 16 biased exponent, we add 16 to

-3, giving 1310 (=011012).

2.5 Floating-Point Representation

64

• Example:
– Express -26.62510 in the revised 14-bit floating-point

model.
• We find 26.62510 = 11010.1012. Normalizing, we

have: 26.62510 = 0.11010101 x 2 5.
• To use our excess 16 biased exponent, we add 16 to

5, giving 2110 (=101012). We also need a 1 in the sign
bit.

2.5 Floating-Point Representation

65

• The IEEE-754 single precision floating point
standard uses bias of 127 over its 8-bit exponent.
– An exponent of 255 indicates a special value.

• If the significand is zero, the value is ± infinity.
• If the significand is nonzero, the value is NaN, “not a

number,” often used to flag an error condition.
• The double precision standard has a bias of 1023

over its 11-bit exponent.
– The “special” exponent value for a double precision number

is 2047, instead of the 255 used by the single precision
standard.

2.5 Floating-Point Representation

66

• Both the 14-bit model that we have presented and
the IEEE-754 floating point standard allow two
representations for zero.
– Zero is indicated by all zeros in the exponent and the

significand, but the sign bit can be either 0 or 1.

• This is why programmers should avoid testing a
floating-point value for equality to zero.
– Negative zero does not equal positive zero.

2.5 Floating-Point Representation

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

67

• Floating-point addition and subtraction are done
using methods analogous to how we perform
calculations using pencil and paper.

• The first thing that we do is express both
operands in the same exponential power, then
add the numbers, preserving the exponent in the
sum.

• If the exponent requires adjustment, we do so at
the end of the calculation.

2.5 Floating-Point Representation

68

• Example:
– Find the sum of 1210 and 1.2510 using the 14-bit floating-

point model.
• We find 1210 = 0.1100 x 2 4. And 1.2510 = 0.101 x 2 1 =

0.000101 x 2 4.

2.5 Floating-Point Representation

• Thus, our sum is
0.110101 x 2 4.

69

• Floating-point multiplication is also carried out in
a manner akin to how we perform multiplication
using pencil and paper.

• We multiply the two operands and add their
exponents.

• If the exponent requires adjustment, we do so at
the end of the calculation.

2.5 Floating-Point Representation

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

70

• Example:
– Find the product of 1210 and 1.2510 using the 14-bit

floating-point model.
• We find 1210 = 0.1100 x 2 4. And 1.2510 = 0.101 x 2 1.

2.5 Floating-Point Representation

• Thus, our product is
0.0111100 x 2 5 =

0.1111 x 2 4.

• The normalized
product requires an
exponent of 2010 =
101102.

71

• No matter how many bits we use in a floating-point
representation, our model must be finite.

• The real number system is, of course, infinite, so our
models can give nothing more than an approximation
of a real value.

• At some point, every model breaks down, introducing
errors into our calculations.

• By using a greater number of bits in our model, we
can reduce these errors, but we can never totally
eliminate them.

2.5 Floating-Point Representation

72

• Our job becomes one of reducing error, or at least
being aware of the possible magnitude of error in our
calculations.

• We must also be aware that errors can compound
through repetitive arithmetic operations.

• For example, our 14-bit model cannot exactly
represent the decimal value 128.5. In binary, it is 9
bits wide:
 10000000.12 = 128.510

2.5 Floating-Point Representation

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

73

• When we try to express 128.510 in our 14-bit model,
we lose the low-order bit, giving a relative error of:

• If we had a procedure that repetitively added 0.5 to
128.5, we would have an error of nearly 2% after only
four iterations.

2.5 Floating-Point Representation

128.5 - 128
128

≈ 0.39%

74

• Floating-point errors can be reduced when we use
operands that are similar in magnitude.

• If we were repetitively adding 0.5 to 128.5, it would
have been better to iteratively add 0.5 to itself and
then add 128.5 to this sum.

• In this example, the error was caused by loss of the
low-order bit.

• Loss of the high-order bit is more problematic.

2.5 Floating-Point Representation

75

• Floating-point overflow and underflow can cause
programs to crash.

• Overflow occurs when there is no room to store
the high-order bits resulting from a calculation.

• Underflow occurs when a value is too small to
store, possibly resulting in division by zero.

2.5 Floating-Point Representation

 Experienced programmers know that it’s better for a
program to crash than to have it produce incorrect, but
plausible, results.

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

76

• Calculations aren’t useful until their results can
be displayed in a manner that is meaningful to
people.

• We also need to store the results of calculations,
and provide a means for data input.

• Thus, human-understandable characters must be
converted to computer-understandable bit
patterns using some sort of character encoding
scheme.

2.6 Character Codes

77

• As computers have evolved, character codes
have evolved.

• Larger computer memories and storage
devices permit richer character codes.

• The earliest computer coding systems used six
bits.

• Binary-coded decimal (BCD) was one of these
early codes. It was used by IBM mainframes in
the 1950s and 1960s.

2.6 Character Codes

78

• In 1964, BCD was extended to an 8-bit code,
Extended Binary-Coded Decimal Interchange
Code (EBCDIC).

• EBCDIC was one of the first widely-used
computer codes that supported upper and
lowercase alphabetic characters, in addition to
special characters, such as punctuation and
control characters.

• EBCDIC and BCD are still in use by IBM
mainframes today.

2.6 Character Codes

79

• Other computer manufacturers chose the 7-bit
ASCII (American Standard Code for Information
Interchange) as a replacement for 6-bit codes.

• While BCD and EBCDIC were based upon
punched card codes, ASCII was based upon
telecommunications (Telex) codes.

• Until recently, ASCII was the dominant
character code outside the IBM mainframe
world.

2.6 Character Codes

80

• Many of today’s systems embrace Unicode, a 16-
bit system that can encode the characters of
every language in the world.
– The Java programming language, and some operating

systems now use Unicode as their default character
code.

• The Unicode codespace is divided into six parts.
The first part is for Western alphabet codes,
including English, Greek, and Russian.

2.6 Character Codes

81

• The Unicode
codespace allocation
is shown at the right.

• The lowest-numbered
Unicode characters
comprise the ASCII
code.

• The highest provide
for user-defined
codes.

2.6 Character Codes

HiTech Center
Highlight

HiTech Center
Highlight

82

• When character codes or numeric values are stored
in computer memory, their values are unambiguous.

• This is not always the case when data is stored on
magnetic disk or transmitted over a distance of more
than a few feet.
– Owing to the physical irregularities of data storage and

transmission media, bytes can become garbled.
• Data errors are reduced by use of suitable coding

methods as well as through the use of various error-
detection techniques.

2.7 Codes for Data Recording
And Transmission

83

• To transmit data, pulses of “high” and “low” voltage
are sent across communications media.

• To store data, changes are induced in the magnetic
polarity of the recording medium.
– These polarity changes are called flux reversals.

• The period of time during which a bit is transmitted,
or the area of magnetic storage within which a bit is
stored is called a bit cell.

2.7 Codes for Data Recording
And Transmission

84

• The simplest data recording and transmission
code is the non-return-to-zero (NRZ) code.

• NRZ encodes 1 as “high” and 0 as “low.”

• The coding of OK (in ASCII) is shown below.

2.7 Codes for Data Recording
And Transmission

85

• The problem with NRZ code is that long strings of
zeros and ones cause synchronization loss.

• Non-return-to-zero-invert (NRZI) reduces this
synchronization loss by providing a transition (either
low-to-high or high-to-low) for each binary 1.

2.7 Codes for Data Recording
And Transmission

86

• Although it prevents loss of synchronization over long
strings of binary ones, NRZI coding does nothing to
prevent synchronization loss within long strings of
zeros.

• Manchester coding (also known as phase modulation)
prevents this problem by encoding a binary one with
an “up” transition and a binary zero with a “down”
transition.

2.7 Codes for Data Recording
And Transmission

87

• For many years, Manchester code was the dominant
transmission code for local area networks.

• It is, however, wasteful of communications capacity
because there is a transition on every bit cell.

• A more efficient coding method is based upon the
frequency modulation (FM) code. In FM, a transition is
provided at each cell boundary. Cells containing
binary ones have a mid-cell transition.

2.7 Codes for Data Recording
And Transmission

88

• At first glance, FM is worse than Manchester code,
because it requires a transition at each cell boundary.

• If we can eliminate some of these transitions, we would
have a more economical code.

• Modified FM does just this. It provides a cell boundary
transition only when adjacent cells contain zeros.

• An MFM cell containing a binary one has a transition in
the middle as in regular FM.

2.7 Codes for Data Recording
And Transmission

89

• The main challenge for data recording and trans-
mission is how to retain synchronization without
chewing up more resources than necessary.

• Run-length-limited, RLL, is a code specifically
designed to reduce the number of consecutive
ones and zeros.
– Some extra bits are inserted into the code.
– But even with these extra bits RLL is remarkably

efficient.

2.7 Codes for Data Recording
And Transmission

90

• An RLL(d,k) code dictates a minimum of d and a
maximum of k consecutive zeros between any pair
of consecutive ones.
– RLL(2,7) has been the dominant disk storage coding

method for many years.
• An RLL(2,7) code contains more bit cells than its

corresponding ASCII or EBCDIC character.
• However, the coding method allows bit cells to be

smaller, thus closer together, than in MFM or any
other code.

2.7 Codes for Data Recording
And Transmission

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

91

• The RLL(2,7) coding for OK is shown below,
compared to MFM. The RLL code (bottom)
contains 25% fewer transitions than the MFM
code (top).

2.7 Codes for Data Recording
And Transmission

 The details as to how this code is
derived are given in the text.

92

• It is physically impossible for any data recording or
transmission medium to be 100% perfect 100% of the
time over its entire expected useful life.

• As more bits are packed onto a square centimeter of
disk storage, as communications transmission
speeds increase, the likelihood of error increases--
sometimes geometrically.

• Thus, error detection and correction is critical to
accurate data transmission, storage and retrieval.

2.8 Error Detection and Correction

93

• Check digits, appended to the end of a long number
can provide some protection against data input
errors.
– The last character of UPC barcodes and ISBNs are check

digits.

• Longer data streams require more economical and
sophisticated error detection mechanisms.

• Cyclic redundancy checking (CRC) codes provide
error detection for large blocks of data.

2.8 Error Detection and Correction

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

94

• Checksums and CRCs are examples of systematic
error detection.

• In systematic error detection a group of error control
bits is appended to the end of the block of
transmitted data.
– This group of bits is called a syndrome.

• CRCs are polynomials over the modulo 2 arithmetic
field.

2.8 Error Detection and Correction

 The mathematical theory behind modulo 2 polynomials
is beyond our scope. However, we can easily work with
it without knowing its theoretical underpinnings.

95

• Modulo 2 arithmetic works like clock arithmetic.
• In clock arithmetic, if we add 2 hours to 11:00, we

get 1:00.
• In modulo 2 arithmetic if we add 1 to 1, we get 0.

The addition rules couldn’t be simpler:

2.8 Error Detection and Correction

 You will fully understand why modulo 2 arithmetic is so
handy after you study digital circuits in Chapter 3.

0 + 0 = 0 0 + 1 = 1
1 + 0 = 1 1 + 1 = 0

96

• Find the quotient and
remainder when 1111101 is
divided by 1101 in modulo 2
arithmetic.
– As with traditional division,

we note that the dividend is
divisible once by the divisor.

– We place the divisor under the
dividend and perform modulo
2 subtraction.

2.8 Error Detection and Correction

HiTech Center
Highlight

HiTech Center
Sticky Note

HiTech Center
Sticky Note
المقسوم

HiTech Center
Sticky Note
المقسوم عليه

97

• Find the quotient and
remainder when 1111101 is
divided by 1101 in modulo 2
arithmetic…
– Now we bring down the next

bit of the dividend.
– We see that 00101 is not

divisible by 1101. So we place
a zero in the quotient.

2.8 Error Detection and Correction

98

• Find the quotient and
remainder when 1111101 is
divided by 1101 in modulo 2
arithmetic…
– 1010 is divisible by 1101 in

modulo 2.
– We perform the modulo 2

subtraction.

2.8 Error Detection and Correction

99

• Find the quotient and
remainder when 1111101 is
divided by 1101 in modulo 2
arithmetic…

– We find the quotient is 1011,
and the remainder is 0010.

• This procedure is very useful
to us in calculating CRC
syndromes.

2.8 Error Detection and Correction

 Note: The divisor in this example corresponds
to a modulo 2 polynomial: X 3 + X 2 + 1.

100

• Suppose we want to transmit the
information string: 1111101.

• The receiver and sender decide to
use the (arbitrary) polynomial
pattern, 1101.

• The information string is shifted
left by one position less than the
number of positions in the divisor.

• The remainder is found through
modulo 2 division (at right) and
added to the information string:
1111101000 + 111 = 1111101111.

2.8 Error Detection and Correction

101

• If no bits are lost or corrupted,
dividing the received
information string by the
agreed upon pattern will give a
remainder of zero.

• We see this is so in the
calculation at the right.

• Real applications use longer
polynomials to cover larger
information strings.
– Some of the standard poly-

nomials are listed in the text.

2.8 Error Detection and Correction

102

• Data transmission errors are easy to fix once an error
is detected.
– Just ask the sender to transmit the data again.

• In computer memory and data storage, however, this
cannot be done.
– Too often the only copy of something important is in

memory or on disk.

• Thus, to provide data integrity over the long term,
error correcting codes are required.

2.8 Error Detection and Correction

HiTech Center
Highlight

HiTech Center
Sticky Note
3 bits

103

• Hamming codes and Reed-Soloman codes are two
important error correcting codes.

• Reed-Soloman codes are particularly useful in
correcting burst errors that occur when a series of
adjacent bits are damaged.
– Because CD-ROMs are easily scratched, they employ a type

of Reed-Soloman error correction.
• Because the mathematics of Hamming codes is

much simpler than Reed-Soloman, we discuss
Hamming codes in detail.

2.8 Error Detection and Correction

104

• Hamming codes are code words formed by adding
redundant check bits, or parity bits, to a data word.

• The Hamming distance between two code words is
the number of bits in which two code words differ.

• The minimum Hamming distance for a code is the
smallest Hamming distance between all pairs of
words in the code.

2.8 Error Detection and Correction

This pair of bytes has a
Hamming distance of 3:

105

• The minimum Hamming distance for a code,
D(min), determines its error detecting and error
correcting capability.

• For any code word, X, to be interpreted as a
different valid code word, Y, at least D(min)
single-bit errors must occur in X.

• Thus, to detect k (or fewer) single-bit errors, the
code must have a Hamming distance of
D(min) = k + 1.

2.8 Error Detection and Correction

106

• Hamming codes can detect D(min) - 1 errors

and correct errors

• Thus, a Hamming distance of 2k + 1 is
required to be able to correct k errors in any
data word.

• Hamming distance is provided by adding a
suitable number of parity bits to a data word.

2.8 Error Detection and Correction

107

• Suppose we have a set of n-bit code words
consisting of m data bits and r (redundant) parity
bits.

• An error could occur in any of the n bits, so each
code word can be associated with n erroneous
words at a Hamming distance of 1.

• Therefore,we have n + 1 bit patterns for each
code word: one valid code word, and n erroneous
words.

2.8 Error Detection and Correction

108

• With n-bit code words, we have 2 n possible code
words consisting of 2 m data bits (where m = n + r).

• This gives us the inequality:

(n + 1) × 2 m ≤ 2 n

• Because m = n + r, we can rewrite the inequality
as:

 (m + r + 1) × 2 m ≤ 2 m + r or (m + r + 1) ≤ 2 r

– This inequality gives us a lower limit on the number of
check bits that we need in our code words.

2.8 Error Detection and Correction

HiTech Center
Highlight

HiTech Center
Sticky Note

HiTech Center
Sticky Note
n = m + r

109

• Suppose we have data words of length m = 4.
Then:
 (4 + r + 1) ≤ 2 r

implies that r must be greater than or equal to 3.
• This means to build a code with 4-bit data words

that will correct single-bit errors, we must add 3
check bits.

• Finding the number of check bits is the hard part.
The rest is easy.

2.8 Error Detection and Correction

110

• Suppose we have data words of length m = 8.
Then:
 (8 + r + 1) ≤ 2 r

implies that r must be greater than or equal to 4.
• This means to build a code with 8-bit data words

that will correct single-bit errors, we must add 4
check bits, creating code words of length 12.

• So how do we assign values to these check
bits?

2.8 Error Detection and Correction

111

• With code words of length 12, we observe that each
of the digits, 1 though 12, can be expressed in
powers of 2. Thus:
 1 = 2 0 5 = 2 2 + 2 0 9 = 2 3 + 2 0
 2 = 2 1 6 = 2 2 + 2 1 10 = 2 3 + 2 1

 3 = 2 1 + 2 0 7 = 2 2 + 2 1 + 2 0 11 = 2 3 + 2 1 + 2 0
 4 = 2 2 8 = 2 3 12 = 2 3 + 2 2

– 1 (= 20) contributes to all of the odd-numbered digits.
– 2 (= 21) contributes to the digits, 2, 3, 6, 7, 10, and 11.
– . . . And so forth . . .

• We can use this idea in the creation of our check bits.

2.8 Error Detection and Correction

112

• Using our code words of length 12, number each
bit position starting with 1 in the low-order bit.

• Each bit position corresponding to an even
power of 2 will be occupied by a check bit.

• These check bits contain the parity of each bit
position for which it participates in the sum.

2.8 Error Detection and Correction

113

• Since 2 (= 21) contributes to the digits, 2, 3, 6, 7, 10,
and 11. Position 2 will contain the parity for bits 3,
6, 7, 10, and 11.

• When we use even parity, this is the modulo 2 sum
of the participating bit values.

• For the bit values shown, we have a parity value of
0 in the second bit position.

2.8 Error Detection and Correction

 What are the values for the other parity bits?

114

• The completed code word is shown above.
– Bit 1checks the digits, 3, 5, 7, 9, and 11, so its value is

1.
– Bit 4 checks the digits, 5, 6, 7, and 12, so its value is 1.
– Bit 8 checks the digits, 9, 10, 11, and 12, so its value is

also 1.
• Using the Hamming algorithm, we can not only

detect single bit errors in this code word, but also
correct them!

2.8 Error Detection and Correction

115

• Suppose an error occurs in bit 5, as shown above.
Our parity bit values are:
– Bit 1 checks digits, 3, 5, 7, 9, and 11. Its value is 1, but

should be zero.
– Bit 2 checks digits 2, 3, 6, 7, 10, and 11. The zero is

correct.
– Bit 4 checks digits, 5, 6, 7, and 12. Its value is 1, but

should be zero.
– Bit 8 checks digits, 9, 10, 11, and 12. This bit is correct.

2.8 Error Detection and Correction

116

• We have erroneous bits in positions 1 and 4.
• With two parity bits that don’t check, we know that

the error is in the data, and not in a parity bit.
• Which data bits are in error? We find out by

adding the bit positions of the erroneous bits.
• Simply, 1 + 4 = 5. This tells us that the error is in

bit 5. If we change bit 5 to a 1, all parity bits check
and our data is restored.

2.8 Error Detection and Correction

117

• Computers store data in the form of bits, bytes,
and words using the binary numbering system.

• Hexadecimal numbers are formed using four-bit
groups called nibbles (or nybbles).

• Signed integers can be stored in one’s
complement, two’s complement, or signed
magnitude representation.

• Floating-point numbers are usually coded using
the IEEE 754 floating-point standard.

Chapter 2 Conclusion

118

• Character data is stored using ASCII, EBCDIC,
or Unicode.

• Data transmission and storage codes are
devised to convey or store bytes reliably and
economically.

• Error detecting and correcting codes are
necessary because we can expect no
transmission or storage medium to be perfect.

• CRC, Reed-Soloman, and Hamming codes are
three important error control codes.

Chapter 2 Conclusion

119

End of Chapter 2

Chapter 6
Memory

2

Chapter 6 Objectives

• Master the concepts of hierarchical memory
organization.

• Understand how each level of memory contributes
to system performance, and how the performance
is measured.

• Master the concepts behind cache memory, virtual
memory, memory segmentation, paging and
address translation.

3

6.1 Introduction

• Memory lies at the heart of the stored-program
computer.

• In previous chapters, we studied the
components from which memory is built and the
ways in which memory is accessed by various
ISAs.

• In this chapter, we focus on memory
organization. A clear understanding of these
ideas is essential for the analysis of system
performance.

4

6.2 Types of Memory

• There are two kinds of main memory: random
access memory, RAM, and read-only-memory,
ROM.

• There are two types of RAM, dynamic RAM (DRAM)
and static RAM (SRAM).

• Dynamic RAM consists of capacitors that slowly leak
their charge over time. Thus they must be refreshed
every few milliseconds to prevent data loss.

• DRAM is “cheap” memory owing to its simple design.

5

6.2 Types of Memory

• SRAM consists of circuits similar to the D flip-flop
that we studied in Chapter 3.

• SRAM is very fast memory and it doesn’t need to
be refreshed like DRAM does. It is used to build
cache memory, which we will discuss in detail later.

• ROM also does not need to be refreshed, either. In
fact, it needs very little charge to retain its memory.

• ROM is used to store permanent, or semi-
permanent data that persists even while the system
is turned off.

6

6.3 The Memory Hierarchy

• Generally speaking, faster memory is more
expensive than slower memory.

• To provide the best performance at the lowest cost,
memory is organized in a hierarchical fashion.

• Small, fast storage elements are kept in the CPU,
larger, slower main memory is accessed through
the data bus.

• Larger, (almost) permanent storage in the form of
disk and tape drives is still further from the CPU.

7

6.3 The Memory Hierarchy

• This storage organization can be thought of as a pyramid:

8

6.3 The Memory Hierarchy

• To access a particular piece of data, the CPU first
sends a request to its nearest memory, usually
cache.

• If the data is not in cache, then main memory is
queried. If the data is not in main memory, then
the request goes to disk.

• Once the data is located, then the data, and a
number of its nearby data elements are fetched
into cache memory.

9

6.3 The Memory Hierarchy

• This leads us to some definitions.
– A hit is when data is found at a given memory level.
– A miss is when it is not found.
– The hit rate is the percentage of time data is found at a given

memory level.
– The miss rate is the percentage of time it is not.
– Miss rate = 1 - hit rate.
– The hit time is the time required to access data at a given

memory level.
– The miss penalty is the time required to process a miss,

including the time that it takes to replace a block of memory
plus the time it takes to deliver the data to the processor.

10

6.3 The Memory Hierarchy

• An entire blocks of data is copied after a hit
because the principle of locality tells us that once a
byte is accessed, it is likely that a nearby data
element will be needed soon.

• There are three forms of locality:
– Temporal locality- Recently-accessed data elements tend

to be accessed again.
– Spatial locality - Accesses tend to cluster.
– Sequential locality - Instructions tend to be accessed

sequentially.

11

6.4 Cache Memory

• The purpose of cache memory is to speed up
accesses by storing recently used data closer to the
CPU, instead of storing it in main memory.

• Although cache is much smaller than main memory,
its access time is a fraction of that of main memory.

• Unlike main memory, which is accessed by address,
cache is typically accessed by content; hence, it is
often called content addressable memory.

• Because of this, a single large cache memory isn’t
always desirable-- it takes longer to search.

12

6.4 Cache Memory

• The “content” that is addressed in content
addressable cache memory is a subset of the bits of
a main memory address called a field.

• The fields into which a memory address is divided
provide a many-to-one mapping between larger
main memory and the smaller cache memory.

• Many blocks of main memory map to a single block
of cache. A tag field in the cache block
distinguishes one cached memory block from
another.

13

6.4 Cache Memory

• The simplest cache mapping scheme is direct
mapped cache.

• In a direct mapped cache consisting of N blocks of
cache, block X of main memory maps to cache block
Y = X mod N.

• Thus, if we have 10 blocks of cache, block 7 of cache
may hold blocks 7, 17, 27, 37, . . . of main memory.

• Once a block of memory is copied into its slot in
cache, a valid bit is set for the cache block to let the
system know that the block contains valid data.

What could happen without having a valid bit?

14

6.4 Cache Memory

• The diagram below is a schematic of what cache
looks like.

• Block 0 contains multiple words from main memory,
identified with the tag 00000000. Block 1 contains
words identified with the tag 11110101.

• The other two blocks are not valid.

15

6.4 Cache Memory

• The size of each field into which a memory address
is divided depends on the size of the cache.

• Suppose our memory consists of 214 words, cache
has 16 = 24 blocks, and each block holds 8 words.
– Thus memory is divided into 214 / 2 8 = 211 blocks.

• For our field sizes, we know we need 4 bits for the
block, 3 bits for the word, and the tag is what’s left
over:

HiTech Center
Highlight

HiTech Center
Sticky Note

HiTech Center
Sticky Note
3

HiTech Center
Sticky Note
(we need 3 bits to uniquely identify one of 8 words in a block)

16

6.4 Cache Memory

• As an example, suppose a program generates the
address 1AA. In 14-bit binary, this number is:
00000110101010.

• The first 7 bits of this address go in the tag field, the
next 4 bits go in the block field, and the final 3 bits
indicate the word within the block.

17

6.4 Cache Memory

• If subsequently the program generates the address
1AB, it will find the data it is looking for in block
0101, word 011.

• However, if the program generates the address,
3AB, instead, the block loaded for address 1AA
would be evicted from the cache, and replaced by
the blocks associated with the 3AB reference.

18

6.4 Cache Memory

• Suppose a program generates a series of memory
references such as: 1AB, 3AB, 1AB, 3AB, . . .
The cache will continually evict and replace
blocks.

• The theoretical advantage offered by the cache is
lost in this extreme case.

• This is the main disadvantage of direct mapped
cache.

• Other cache mapping schemes are designed to
prevent this kind of thrashing.

19

6.4 Cache Memory

• Instead of placing memory blocks in specific
cache locations based on memory address, we
could allow a block to go anywhere in cache.

• In this way, cache would have to fill up before
any blocks are evicted.

• This is how fully associative cache works.

• A memory address is partitioned into only two
fields: the tag and the word.

20

6.4 Cache Memory

• Suppose, as before, we have 14-bit memory
addresses and a cache with 16 blocks, each block
of size 8. The field format of a memory reference
is:

• When the cache is searched, all tags are searched
in parallel to retrieve the data quickly.

• This requires special, costly hardware.

21

6.4 Cache Memory

• You will recall that direct mapped cache evicts a
block whenever another memory reference
needs that block.

• With fully associative cache, we have no such
mapping, thus we must devise an algorithm to
determine which block to evict from the cache.

• The block that is evicted is the victim block.
• There are a number of ways to pick a victim, we

will discuss them shortly.

HiTech Center
Highlight

22

6.4 Cache Memory

• Set associative cache combines the ideas of direct
mapped cache and fully associative cache.

• An N-way set associative cache mapping is like
direct mapped cache in that a memory reference
maps to a particular location in cache.

• Unlike direct mapped cache, a memory reference
maps to a set of several cache blocks, similar to the
way in which fully associative cache works.

• Instead of mapping anywhere in the entire cache, a
memory reference can map only to the subset of
cache slots.

23

6.4 Cache Memory

• The number of cache blocks per set in set
associative cache varies according to overall system
design.

• For example, a 2-way set associative cache can be
conceptualized as shown in the schematic below.

• Each set contains two different memory blocks.

24

6.4 Cache Memory

• In set associative cache mapping, a memory
reference is divided into three fields: tag, set, and
word, as shown below.

• As with direct-mapped cache, the word field chooses
the word within the cache block, and the tag field
uniquely identifies the memory address.

• The set field determines the set to which the memory
block maps.

HiTech Center
Highlight

HiTech Center
Highlight

25

6.4 Cache Memory

• Suppose we have a main memory of 214 bytes.
• This memory is mapped to a 2-way set associative

cache having 16 blocks where each block contains 8
words.

• Since this is a 2-way cache, each set consists of 2
blocks, and there are 8 sets.

• Thus, we need 3 bits for the set, 3 bits for the word,
giving 8 leftover bits for the tag:

26

6.4 Cache Memory

• With fully associative and set associative cache, a
replacement policy is invoked when it becomes
necessary to evict a block from cache.

• An optimal replacement policy would be able to look
into the future to see which blocks won’t be needed
for the longest period of time.

• Although it is impossible to implement an optimal
replacement algorithm, it is instructive to use it as a
benchmark for assessing the efficiency of any other
scheme we come up with.

27

6.4 Cache Memory

• The replacement policy that we choose depends
upon the locality that we are trying to optimize--
usually, we are interested in temporal locality.

• A least recently used (LRU) algorithm keeps track of
the last time that a block was assessed and evicts
the block that has been unused for the longest
period of time.

• The disadvantage of this approach is its complexity:
LRU has to maintain an access history for each
block, which ultimately slows down the cache.

28

6.4 Cache Memory

• First-in, first-out (FIFO) is a popular cache
replacement policy.

• In FIFO, the block that has been in the cache the
longest, regardless of when it was last used.

• A random replacement policy does what its name
implies: It picks a block at random and replaces it
with a new block.

• Random replacement can certainly evict a block that
will be needed often or needed soon, but it never
thrashes.

29

6.4 Cache Memory

• The performance of hierarchical memory is
measured by its effective access time (EAT).

• EAT is a weighted average that takes into account
the hit ratio and relative access times of successive
levels of memory.

• The EAT for a two-level memory is given by:
EAT = H × AccessC + (1-H) × AccessMM.

where H is the cache hit rate and AccessC and AccessMM are
the access times for cache and main memory, respectively.

30

6.4 Cache Memory

• For example, consider a system with a main memory
access time of 200ns supported by a cache having a
10ns access time and a hit rate of 99%.

• The EAT is:
0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns.

• This equation for determining the effective access
time can be extended to any number of memory
levels, as we will see in later sections.

31

6.4 Cache Memory

• Cache replacement policies must also take into
account dirty blocks, those blocks that have been
updated while they were in the cache.

• Dirty blocks must be written back to memory. A
write policy determines how this will be done.

• There are two types of write policies,write through
and write back.

• Write through updates cache and main memory
simultaneously on every write.

32

6.4 Cache Memory

• Write back (also called copyback) updates memory
only when the block is selected for replacement.

• The disadvantage of write through is that memory
must be updated with each cache write, which slows
down the access time on updates. This slowdown is
usually negligible, because the majority of accesses
tend to be reads, not writes.

• The advantage of write back is that memory traffic is
minimized, but its disadvantage is that memory does
not always agree with the value in cache, causing
problems in systems with many concurrent users.

33

6.5 Virtual Memory

• Cache memory enhances performance by providing
faster memory access speed.

• Virtual memory enhances performance by providing
greater memory capacity, without the expense of
adding main memory.

• Instead, a portion of a disk drive serves as an
extension of main memory.

• If a system uses paging, virtual memory partitions
main memory into individually managed page frames,
that are written (or paged) to disk when they are not
immediately needed.

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

HiTech Center
Highlight

34

6.5 Virtual Memory

• A physical address is the actual memory address of
physical memory.

• Programs create virtual addresses that are mapped
to physical addresses by the memory manager.

• Page faults occur when a logical address requires
that a page be brought in from disk.

• Memory fragmentation occurs when the paging
process results in the creation of small, unusable
clusters of memory addresses.

35

6.5 Virtual Memory

• Main memory and virtual memory are divided into
equal sized pages.

• The entire address space required by a process
need not be in memory at once. Some parts can be
on disk, while others are in main memory.

• Further, the pages allocated to a process do not
need to be stored contiguously-- either on disk or in
memory.

• In this way, only the needed pages are in memory
at any time, the unnecessary pages are in slower
disk storage.

36

6.5 Virtual Memory

• Information concerning the location of each page,
whether on disk or in memory, is maintained in a data
structure called a page table (shown below).

• There is one page table for each active process.

37

6.5 Virtual Memory

• When a process generates a virtual address, the
operating system translates it into a physical memory
address.

• To accomplish this, the virtual address is divided into
two fields: A page field, and an offset field.

• The page field determines the page location of the
address, and the offset indicates the location of the
address within the page.

• The logical page number is translated into a physical
page frame through a lookup in the page table.

38

6.5 Virtual Memory

• If the valid bit is zero in the page table entry for the
logical address, this means that the page is not in
memory and must be fetched from disk.
– This is a page fault.
– If necessary, a page is evicted from memory and is replaced

by the page retrieved from disk, and the valid bit is set to 1.

• If the valid bit is 1, the virtual page number is replaced
by the physical frame number.

• The data is then accessed by adding the offset to the
physical frame number.

39

6.5 Virtual Memory

• As an example, suppose a system has a virtual address
space of 8K and a physical address space of 4K, and the
system uses byte addressing.
– We have 213/210 = 23 virtual pages.

• A virtual address has 13 bits (8K = 213) with 3 bits for the page
field and 10 for the offset, because the page size is 1024.

• A physical memory address requires 12 bits, the first two bits
for the page frame and the trailing 10 bits the offset.

40

6.5 Virtual Memory

• Suppose we have the page table shown below.
• What happens when CPU generates address 545910

= 10101010100112?

41

6.5 Virtual Memory

• The address 10101010100112 is converted to
physical address 010101010011 because the page
field 101 is replaced by frame number 01 through a
lookup in the page table.

42

6.5 Virtual Memory

• What happens when the CPU generates address
10000000001002?

43

6.5 Virtual Memory

• We said earlier that effective access time (EAT) takes
all levels of memory into consideration.

• Thus, virtual memory is also a factor in the
calculation, and we also have to consider page table
access time.

• Suppose a main memory access takes 200ns, the
page fault rate is 1%, and it takes 10ms to load a
page from disk. We have:

EAT = 0.99(200ns + 200ns) 0.01(10ms) = 100, 396ns.

44

6.5 Virtual Memory

• Even if we had no page faults, the EAT would be
400ns because memory is always read twice: First to
access the page table, and second to load the page
from memory.

• Because page tables are read constantly, it makes
sense to keep them in a special cache called a
translation look-aside buffer (TLB).

• TLBs are a special associative cache that stores the
mapping of virtual pages to physical pages.

The next slide shows how all the pieces fit together.

45

6.5 Virtual Memory

46

6.5 Virtual Memory

• Another approach to virtual memory is the use of
segmentation.

• Instead of dividing memory into equal-sized pages,
virtual address space is divided into variable-length
segments, often under the control of the programmer.

• A segment is located through its entry in a segment
table, which contains the segment’s memory location
and a bounds limit that indicates its size.

• After a page fault, the operating system searches for
a location in memory large enough to hold the
segment that is retrieved from disk.

47

6.5 Virtual Memory

• Both paging and segmentation can cause
fragmentation.

• Paging is subject to internal fragmentation because a
process may not need the entire range of addresses
contained within the page. Thus, there may be many
pages containing unused fragments of memory.

• Segmentation is subject to external fragmentation,
which occurs when contiguous chunks of memory
become broken up as segments are allocated and
deallocated over time.

48

6.5 Virtual Memory

• Large page tables are cumbersome and slow, but with
its uniform memory mapping, page operations are
fast. Segmentation allows fast access to the segment
table, but segment loading is labor-intensive.

• Paging and segmentation can be combined to take
advantage of the best features of both by assigning
fixed-size pages within variable-sized segments.

• Each segment has a page table. This means that a
memory address will have three fields, one for the
segment, another for the page, and a third for the
offset.

49

6.6 A Real-World Example

• The Pentium architecture supports both paging and
segmentation, and they can be used in various
combinations including unpaged unsegmented,
segmented unpaged, and unsegmented paged.

• The processor supports two levels of cache (L1 and
L2), both having a block size of 32 bytes.

• The L1 cache is next to the processor, and the L2
cache sits between the processor and memory.

• The L1 cache is in two parts: and instruction cache (I-
cache) and a data cache (D-cache).

The next slide shows this organization schematically.

50

6.6 A Real-World Example

51

• Computer memory is organized in a hierarchy, with
the smallest, fastest memory at the top and the
largest, slowest memory at the bottom.

• Cache memory gives faster access to main memory,
while virtual memory uses disk storage to give the
illusion of having a large main memory.

• Cache maps blocks of main memory to blocks of
cache memory. Virtual memory maps page frames
to virtual pages.

• There are three general types of cache: Direct
mapped, fully associative and set associative.

Chapter 6 Conclusion

52

• With fully associative and set associative cache,
as well as with virtual memory, replacement
policies must be established.

• Replacement policies include LRU, FIFO, or LFU.
These policies must also take into account what
to do with dirty blocks.

• All virtual memory must deal with fragmentation,
internal for paged memory, external for
segmented memory.

Chapter 6 Conclusion

53

End of Chapter 6

Chapter 7
Input/Output and
Storage Systems

2

Chapter 7 Objectives

• Understand how I/O systems work, including I/O
methods and architectures.

• Become familiar with storage media, and the
differences in their respective formats.

• Understand how RAID improves disk performance
and reliability.

• Become familiar with the concepts of data
compression and applications suitable for each
type of compression algorithm.

3

7.1 Introduction

• Data storage and retrieval is one of the primary
functions of computer systems.

• Sluggish I/O performance can have a ripple
effect, dragging down overall system
performance.

• This is especially true when virtual memory is
involved.

• The fastest processor in the world is of little use
if it spends most of its time waiting for data.

4

7.2 Amdahl’s Law

• The overall performance of a system is a result of
the interaction of all of its components.

• System performance is most effectively improved
when the performance of the most heavily used
components is improved.

• This idea is quantified by Amdahl’s Law:
where S is the overall speedup;
f is the fraction of work performed
by a faster component; and
k is the speedup of the faster
component.

5

7.2 Amdahl’s Law

• Amdahl’s Law gives us a handy way to estimate the
performance improvement we can expect when we
upgrade a system component.

• On a large system, suppose we can upgrade a
CPU to make it 50% faster for $10,000 or upgrade
its disk drives for $7,000 to make them 250% faster.

• Processes spend 70% of their time running in the
CPU and 30% of their time waiting for disk service.

• An upgrade of which component would offer the
greater benefit for the lesser cost?

6

7.2 Amdahl’s Law

• The processor option offers a 130% speedup:

• And the disk drive option gives a 122% speedup:

• Each 1% of improvement for the processor costs
$333, and for the disk a 1% improvement costs $318.

Should price/performance be your only concern?

7

7.3 I/O Architectures

• We define input/output as a subsystem of
components that moves coded data between
external devices and a host system.

• I/O subsystems include:
– Blocks of main memory that are devoted to I/O functions.
– Buses that move data into and out of the system.
– Control modules in the host and in peripheral devices
– Interfaces to external components such as keyboards and

disks.
– Cabling or communications links between the host system

and its peripherals.

8

7.3 I/O Architectures

This is a
model I/O
configuration.

9

• I/O can be controlled in four general ways.
• Programmed I/O reserves a register for each

I/O device. Each register is continually polled to
detect data arrival.

• Interrupt-Driven I/O allows the CPU to do other
things until I/O is requested.

• Direct Memory Access (DMA) offloads I/O
processing to a special-purpose chip that takes
care of the details.

• Channel I/O uses dedicated I/O processors.

7.3 I/O Architectures

10

This is a DMA
configuration.

Notice that the DMA
and the CPU share the
bus.

The DMA runs at a
higher priority and
steals memory cycles
from the CPU.

7.3 I/O Architectures

11

• Very large systems employ channel I/O.
• Channel I/O consists of one or more I/O

processors (IOPs) that control various channel
paths.

• Slower devices such as terminals and printers are
combined (multiplexed) into a single faster
channel.

• On IBM mainframes, multiplexed channels are
called multiplexor channels, the faster ones are
called selector channels.

7.3 I/O Architectures

12

• Channel I/O is distinguished from DMA by the
intelligence of the IOPs.

• The IOP negotiates protocols, issues device
commands, translates storage coding to memory
coding, and can transfer entire files or groups of
files independent of the host CPU.

• The host has only to create the program
instructions for the I/O operation and tell the IOP
where to find them.

7.3 I/O Architectures

13

• This is a channel I/O configuration.

7.3 I/O Architectures

14

• I/O buses, unlike memory buses, operate
asynchronously. Requests for bus access must
be arbitrated among the devices involved.

• Bus control lines activate the devices when they
are needed, raise signals when errors have
occurred, and reset devices when necessary.

• The number of data lines is the width of the bus.

• A bus clock coordinates activities and provides
bit cell boundaries.

7.3 I/O Architectures

15

This is how a bus connects to a disk drive.

7.3 I/O Architectures

16

Timing
diagrams,
such as this
one, define
bus
operation in
detail.

7.3 I/O Architectures

17

• Magnetic disks offer large amounts of durable
storage that can be accessed quickly.

• Disk drives are called random (or direct) access
storage devices, because blocks of data can be
accessed according to their location on the disk.
– This term was coined when all other durable storage

(e.g., tape) was sequential.

• Magnetic disk organization is shown on the
following slide.

7.4 Magnetic Disk Technology

18

Disk tracks are
numbered
from the
outside edge,
starting with
zero.

7.4 Magnetic Disk Technology

19

• Hard disk platters
are mounted on
spindles.

• Read/write heads
are mounted on a
comb that swings
radially to read the
disk.

7.4 Magnetic Disk Technology

20

• The rotating disk
forms a logical
cylinder beneath
the read/write
heads.

• Data blocks are
addressed by their
cylinder, surface,
and sector.

7.4 Magnetic Disk Technology

21

• There are a number of electromechanical properties
of hard disk drives that determine how fast its data
can be accessed.

• Seek time is the time that it takes for a disk arm to
move into position over the desired cylinder.

• Rotational delay is the time that it takes for the
desired sector to move into position beneath the
read/write head.

• Seek time + rotational delay = access time.

7.4 Magnetic Disk Technology

22

• Transfer rate gives us the rate at which data can be
read from the disk.

• Average latency is a function of the rotational
speed:

• Mean Time To Failure (MTTF) is a statistically-
determined value often calculated experimentally.
– It usually doesn’t tell us much about the actual expected

life of the disk. Design life is usually more realistic.

7.4 Magnetic Disk Technology

Figure 7.11 in the text shows a sample disk specification.

23

• Floppy (flexible) disks are organized in the same
way as hard disks, with concentric tracks that are
divided into sectors.

• Physical and logical limitations restrict floppies to
much lower densities than hard disks.

• A major logical limitation of the DOS/Windows
floppy diskette is the organization of its file
allocation table (FAT).
– The FAT gives the status of each sector on the disk:

Free, in use, damaged, reserved, etc.

7.4 Magnetic Disk Technology

24

• On a standard 1.44MB floppy, the FAT is limited
to nine 512-byte sectors.
– There are two copies of the FAT.

• There are 18 sectors per track and 80 tracks on
each surface of a floppy, for a total of 2880
sectors on the disk. So each FAT entry needs at
least 14 bits (214=4096 < 213 = 2048).
– FAT entries are actually 16 bits, and the organization is

called FAT16.

7.4 Magnetic Disk Technology

25

• The disk directory associates logical file names with
physical disk locations.

• Directories contain a file name and the file’s first
FAT entry.

• If the file spans more than one sector (or cluster),
the FAT contains a pointer to the next cluster (and
FAT entry) for the file.

• The FAT is read like a linked list until the <EOF>
entry is found.

7.4 Magnetic Disk Technology

26

• A directory entry says that a file we want to read starts at
sector 121 in the FAT fragment shown below.

– Sectors 121, 124, 126, and 122 are read. After each sector is
read, its FAT entry is to find the next sector occupied by the file.

– At the FAT entry for sector 122, we find the end-of-file marker
<EOF>.

7.4 Magnetic Disk Technology

How many disk accesses are required to read this file?

27

• Optical disks provide large storage capacities very
inexpensively.

• They come in a number of varieties including CD-
ROM, DVD, and WORM.

• Many large computer installations produce
document output on optical disk rather than on
paper. This idea is called COLD-- Computer Output
Laser Disk.

• It is estimated that optical disks can endure for a
hundred years. Other media are good for only a
decade-- at best.

7.5 Optical Disks

28

• CD-ROMs were designed by the music industry in
the 1980s, and later adapted to data.

• This history is reflected by the fact that data is
recorded in a single spiral track, starting from the
center of the disk and spanning outward.

• Binary ones and zeros are delineated by bumps in
the polycarbonate disk substrate. The transitions
between pits and lands define binary ones.

• If you could unravel a full CD-ROM track, it would be
nearly five miles long!

7.5 Optical Disks

29

• The logical data format for a CD-ROM is much more
complex than that of a magnetic disk. (See the text
for details.)

• Different formats are provided for data and music.
• Two levels of error correction are provided for the

data format.
• DVDs can be thought of as quad-density CDs.
• Where a CD-ROM can hold at most 650MB of data,

DVDs can hold as much as 8.54GB.
• It is possible that someday DVDs will make CDs

obsolete.

7.5 Optical Disks

30

• First-generation magnetic tape was not much more
than wide analog recording tape, having capacities
under 11MB.

• Data was usually written in nine vertical tracks:

7.6 Magnetic Tape

31

• Today’s tapes are digital, and provide multiple
gigabytes of data storage.

• Two dominant recording methods are serpentine
and helical scan, which are distinguished by how the
read-write head passes over the recording medium.

• Serpentine recording is used in digital linear tape
(DLT) and Quarter inch cartridge (QIC) tape
systems.

• Digital audio tape (DAT) systems employ helical
scan recording.

7.6 Magnetic Tape

These two recording methods are shown on the next slide.

32

7.6 Magnetic Tape

← Serpentine

Helical Scan →

33

• RAID, an acronym for Redundant Array of
Independent Disks was invented to address
problems of disk reliability, cost, and performance.

• In RAID, data is stored across many disks, with
extra disks added to the array to provide error
correction (redundancy).

• The inventors of RAID, David Patterson, Garth
Gibson, and Randy Katz, provided a RAID
taxonomy that has persisted for a quarter of a
century, despite many efforts to redefine it.

7.7 RAID

34

• RAID Level 0, also known as drive spanning,
provides improved performance, but no redundancy.
– Data is written in blocks across the entire array

– The disadvantage of RAID 0 is in its low reliability.

7.7 RAID

35

• RAID Level 1, also known as disk mirroring,
provides 100% redundancy, and good performance.
– Two matched sets of disks contain the same data.

– The disadvantage of RAID 1 is cost.

7.7 RAID

36

• A RAID Level 2 configuration consists of a set of data
drives, and a set of Hamming code drives.
– Hamming code drives provide error correction for the data drives.

– RAID 2 performance is poor and the cost is relatively high.

7.7 RAID

37

• RAID Level 3 stripes bits across a set of data drives
and provides a separate disk for parity.
– Parity is the XOR of the data bits.

– RAID 3 is not suitable for commercial applications, but is good
for personal systems.

7.7 RAID

38

• RAID Level 4 is like adding parity disks to RAID 0.
– Data is written in blocks across the data disks, and a parity block

is written to the redundant drive.

– RAID 4 would be feasible if all record blocks were the same
size.

7.7 RAID

39

• RAID Level 5 is RAID 4 with distributed parity.
– With distributed parity, some accesses can be serviced

concurrently, giving good performance and high reliability.

– RAID 5 is used in many commercial systems.

7.7 RAID

40

• RAID Level 6 carries two levels of error protection
over striped data: Reed-Soloman and parity.
– It can tolerate the loss of two disks.

– RAID 6 is write-intensive, but highly fault-tolerant.

7.7 RAID

41

• Large systems consisting of many drive arrays may
employ various RAID levels, depending on the
criticality of the data on the drives.
– A disk array that provides program workspace (say for file

sorting) does not require high fault tolerance.

• Critical, high-throughput files can benefit from
combining RAID 0 with RAID 1, called RAID 10.

• Keep in mind that a higher RAID level does not
necessarily mean a “better” RAID level. It all depends
upon the needs of the applications that use the disks.

7.7 RAID

42

• Data compression is important to storage systems
because it allows more bytes to be packed into a
given storage medium than when the data is
uncompressed.

• Some storage devices (notably tape) compress
data automatically as it is written, resulting in less
tape consumption and significantly faster backup
operations.

• Compression also reduces Internet file transfer
time, saving time and communications bandwidth.

7.8 Data Compression

43

• A good metric for compression is the compression
factor (or compression ratio) given by:

• If we have a 100KB file that we compress to 40KB,
we have a compression factor of:

7.8 Data Compression

44

• Compression is achieved by removing data
redundancy while preserving information content.

• The information content of a group of bytes (a
message) is its entropy.
– Data with low entropy permit a larger compression ratio than

data with high entropy.
• Entropy, H, is a function of symbol frequency. It is the

weighted average of the number of bits required to
encode the symbols of a message:

H= -P(x) × log2P(xi)

7.8 Data Compression

45

• The entropy of the entire message is the sum of the
individual symbol entropies.

∑ -P(x) × log2P(xi)
• The average redundancy for each character in a

message of length l is given by:

∑ P(x) × li - ∑ -P(x) × log2P(xi)

7.8 Data Compression

46

• Consider the message: HELLO WORLD!
– The letter L has a probability of 3/12 = 1/4 of appearing in

this message. The number of bits required to encode this
symbol is -log2(1/4) = 2.

• Using our formula, ∑ -P(x) × log2P(xi), the average
entropy of the entire message is 3.022.
– This means that the theoretical minimum number of bits per

character is 3.022.

• Theoretically, the message could be sent using only
37 bits. (3.022 ×12 = 36.26)

7.8 Data Compression

47

• The entropy metric just described forms the basis
for statistical data compression.

• Two widely-used statistical coding algorithms are
Huffman coding and arithmetic coding.

• Huffman coding builds a binary tree from the letter
frequencies in the message.
– The binary symbols for each character are read directly

from the tree.
• Symbols with the highest frequencies end up at the

top of the tree, and result in the shortest codes.

7.8 Data Compression

An example is shown on the next slide.

48

7.8 Data Compression

HIGGLETY PIGGLTY POP
THE DOG HAS EATEN THE MOP
THE PIGS IN A HURRY THE CATS IN A FLURRY
HIGGLETY PIGGLTY POP

49

• The second type of statistical coding, arithmetic
coding, partitions the real number interval between
0 and 1 into segments according to symbol
probabilities.
– An abbreviated algorithm for this process is given in the

text.
• Arithmetic coding is computationally intensive and

it runs the risk of causing divide underflow.
• Variations in floating-point representation among

various systems can also cause the terminal
condition (a zero value) to be missed.

7.8 Data Compression

50

• For most data, statistical coding methods offer
excellent compression ratios.

• Their main disadvantage is that they require two
passes over the data to be encoded.
– The first pass calculates probabilities, the second encodes

the message.

• This approach is unacceptably slow for storage
systems, where data must be read, written, and
compressed within one pass over a file.

7.8 Data Compression

51

• Ziv-Lempel (LZ) dictionary systems solve the two-pass
problem by using values in the data as a dictionary to
encode itself.

• The LZ77 compression algorithm employs a text window
in conjunction with a lookahead buffer.
– The text window serves as the dictionary. If text is found in

the lookahead buffer that matches text in the dictionary, the
location and length of the text in the window is output.

7.8 Data Compression

52

• The LZ77 implementations include PKZIP and IBM’s
RAMAC RVA 2 Turbo disk array.
– The simplicity of LZ77 lends itself well to a hardware

implementation.

• LZ78 is another dictionary coding system.
• It removes the LZ77 constraint of a fixed-size

window. Instead, it creates a trie as the data is read.
• Where LZ77 uses pointers to locations in a

dictionary, LZ78 uses pointers to nodes in the trie.

7.8 Data Compression

53

• GIF compression is a variant of LZ78, called LZW,
for Lempel-Ziv-Welsh.

• It improves upon LZ78 through its efficient
management of the size of the trie.

• Terry Welsh, the designer of LZW, was employed by
the Unisys Corporation when he created the
algorithm, and Unisys subsequently patented it.

• Owing to royalty disputes, development of another
algorithm PNG, was hastened.

7.8 Data Compression

54

• PNG employs two types of compression, first a
Huffman algorithm is applied, which is followed by
LZ77 compression.

• The advantage that GIF holds over PNG, is that GIF
supports multiple images in one file.

• MNG is an extension of PNG that supports multiple
images in one file.

• GIF, PNG, and MNG are primarily used for graphics
compression. To compress larger, photographic
images, JEPG is often more suitable.

7.8 Data Compression

55

• Photographic images incorporate a great deal of
information. However, much of that information can be
lost without objectionable deterioration in image quality.

• With this in mind, JPEG allows user-selectable image
quality, but even at the “best” quality levels, JPEG
makes an image file smaller owing to its multiple-step
compression algorithm.

• It’s important to remember that JPEG is lossy, even at
the highest quality setting. It should be used only
when the loss can be tolerated.

7.8 Data Compression

The JPEG algorithm is illustrated on the next slide.

56

7.8 Data Compression

57

• I/O systems are critical to the overall performance
of a computer system.

• Amdahl’s Law quantifies this assertion.
• I/O systems consist of memory blocks, cabling,

control circuitry, interfaces, and media.
• I/O control methods include programmed I/O,

interrupt-based I/O, DMA, and channel I/O.
• Buses require control lines, a clock, and data

lines. Timing diagrams specify operational details.

Chapter 7 Conclusion

58

• Magnetic disk is the principal form of durable
storage.

• Disk performance metrics include seek time,
rotational delay, and reliability estimates.

• Optical disks provide long-term storage for large
amounts of data, although access is slow.

• Magnetic tape is also an archival medium.
Recording methods are track-based, serpentine,
and helical scan.

Chapter 7 Conclusion

59

• RAID gives disk systems improved performance
and reliability. RAID 3 and RAID 5 are the most
common.

• Many storage systems incorporate data
compression.

• Two approaches to data compression are
statistical data compression and dictionary
systems.

• GIF, PNG, MNG, and JPEG are used for image
compression.

Chapter 7 Conclusion

60

End of Chapter 7

