
Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq Introduction To C#

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq Introduction To C#

C# Introduction

What is C#?

C# is pronounced "C-Sharp".

It is an object-oriented programming language created by Microsoft that

runs on the .NET Framework.

C# has roots from the C family, and the language is close to other popular

languages like C++ and Java.

The first version was released in year 2002. The latest version, C# 8, was

released in September 2019.

C# is used for:

 Mobile applications

 Desktop applications

 Web applications

 Web services

 Web sites

 Games

 Database applications

 And much, much more!

Why Use C#?

 It is one of the most popular programming language in the world

 It is easy to learn and simple to use

 It has a huge community support

 C# is an object oriented language which gives a clear structure to

programs and allows code to be reused, lowering development costs.

 As C# is close to C, C++ and Java, it makes it easy for programmers

to switch to C# or vice versa

mailto:waleed.kareem@uoanbar.edu.iq
https://www.w3schools.com/cpp/default.asp
https://www.w3schools.com/java/default.asp
https://www.w3schools.com/cpp/default.asp
https://www.w3schools.com/java/default.asp

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq Introduction To C#

How C# Program Work

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq Introduction To C#

C# Structures

using System;

namespace MyApplication

{

class First Program

 {

 static void Main(tring[] args)

 {

 یكتب الكود هنا//

 }

 }

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email:waleed.kareem@uoanbar.edu.iq C# Variables

C# Variables

C# Variables

Variables are containers for storing data values.

In C#, there are different types of variables (defined with different

keywords), for example:

 int - stores integers (whole numbers), without decimals, such as 123

or -123

 double - stores floating point numbers, with decimals, such as 19.99

or -19.99

 char - stores single characters, such as 'a' or 'B'. Char values are

surrounded by single quotes

 string - stores text, such as "Hello World". String values are

surrounded by double quotes

 bool - stores values with two states: true or false

Declaring (Creating) Variables

To create a variable, you must specify the type and assign it a value:

Syntax

type variableName = value;

Where type is a C# type (such as int or string), and variableName is the

name of the variable (such as x or name). The equal sign is used to assign

values to the variable.

To create a variable that should store text, look at the following example:

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email:waleed.kareem@uoanbar.edu.iq C# Variables

Example

Create a variable called name of type string and assign it the value "John":

string name = "John";

Console.WriteLine(name);

To create a variable that should store a number, look at the following

example:

Example

Create a variable called myNum of type int and assign it the value 15:

int myNum = 15;

Console.WriteLine(myNum);

You can also declare a variable without assigning the value, and assign the

value later:

Example

int myNum;

myNum = 15;

Console.WriteLine(myNum);

Note that if you assign a new value to an existing variable, it will overwrite

the previous value:

Example

Change the value of myNum to 20:

int myNum = 15;

myNum = 20; // myNum is now 20

Console.WriteLine(myNum);

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email:waleed.kareem@uoanbar.edu.iq C# Variables

Constants

However, you can add the const keyword if you don't want others (or

yourself) to overwrite existing values (this will declare the variable as

"constant", which means unchangeable and read-only):

Example

const int myNum = 15;

myNum = 20; // error

The const keyword is useful when you want a variable to always store the

same value, so that others (or yourself) won't mess up your code. An

example that is often referred to as a constant, is PI (3.14159...).

Note: You cannot declare a constant variable without assigning the value. If

you do, an error will occur: A const field requires a value to be provided.

Other Types

A demonstration of how to declare variables of other types:

Example

int myNum = 5;

double myDoubleNum = 5.99D;

char myLetter = 'D';

bool myBool = true;

string myText = "Hello";

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email:waleed.kareem@uoanbar.edu.iq C# Variables

You will learn more about data types in the next chapter.

Display Variables

The WriteLine() method is often used to display variable values to the

console window.

To combine both text and a variable, use the + character:

Example

string name = "John";

Console.WriteLine("Hello " + name);

You can also use the + character to add a variable to another variable:

Example

string firstName = "John ";

string lastName = "Doe";

string fullName = firstName + lastName;

Console.WriteLine(fullName);

For numeric values, the + character works as a mathematical operator

(notice that we use int (integer) variables here):

Example

int x = 5;

int y = 6;

Console.WriteLine(x + y); // Print the value of x + y

mailto:waleed.kareem@uoanbar.edu.iq
https://www.w3schools.com/cs/cs_data_types.asp

Introducer: waleed K. awad

Email:waleed.kareem@uoanbar.edu.iq C# Variables

From the example above, you can expect:

 x stores the value 5

 y stores the value 6

 Then we use the WriteLine() method to display the value of x + y,

which is 11

Declare Many Variables

To declare more than one variable of the same type, use a comma-separated

list:

Example

int x = 5, y = 6, z = 50;

Console.WriteLine(x + y + z);

C# Identifiers

All C# variables must be identified with unique names.

These unique names are called identifiers.

Identifiers can be short names (like x and y) or more descriptive names (age,

sum, totalVolume).

Note: It is recommended to use descriptive names in order to create

understandable and maintainable code:

Example

// Good

int minutesPerHour = 60;

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email:waleed.kareem@uoanbar.edu.iq C# Variables

// OK, but not so easy to understand what m actually is

int m = 60;

The general rules for constructing names for variables (unique identifiers)

are:

 Names can contain letters, digits and the underscore character (_)

 Names must begin with a letter

 Names should start with a lowercase letter and it cannot contain

whitespace

 Names are case sensitive ("myVar" and "myvar" are different

variables)

 Reserved words (like C# keywords, such as int or double) cannot be

used as names

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Data Type Lecture

C# Data Types

C# Data Types

A data type specifies the size and type of variable values. It is important to

use the correct data type for the corresponding variable; to avoid errors, to

save time and memory, but it will also make your code more maintainable

and readable. The most common data types are:

Data

Type

 Size Description

int 4 bytes Stores whole numbers from -2,147,483,648 to

2,147,483,647

long 8 bytes Stores whole numbers from -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7

decimal digits

double 8 bytes Stores fractional numbers. Sufficient for storing 15

decimal digits

bool 1 bit Stores true or false values

char 2 bytes Stores a single character/letter, surrounded by single

quotes

string 2 bytes per character Stores a sequence of characters, surrounded by double

quotes

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Data Type Lecture

 Numbers

Number types are divided into two groups:

1. Integer types stores whole numbers, positive or negative (such as 123

or -456), without decimals. Valid types are int and long. Which type

you should use, depends on the numeric value.

2. Floating point types represents numbers with a fractional part,

containing one or more decimals. Valid types are float and double.

 Booleans

A boolean data type is declared with the bool keyword and can only take the

values true or false

bool isCSharpFun = true;

bool isFishTasty = false;

Console.WriteLine(isCSharpFun); // Outputs True

Console.WriteLine(isFishTasty); // Outputs False

 Characters

The char data type is used to store a single character. The character must be

surrounded by single quotes, like 'A' or 'c'.

 Strings

The string data type is used to store a sequence of characters (text). String

values must be surrounded by double quotes

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Data Type Lecture

Example of all Types

int myNum = 5; // Integer (whole number)

double myDoubleNum = 5.99D; // Floating point number

char myLetter = 'D'; // Character

bool myBool = true; // Boolean

string myText = "Hello"; // String

C# Type Casting

C# Type Casting

Type casting is when you assign a value of one data type to another type.

In C#, there are two types of casting:

 Implicit Casting (automatically) - converting a smaller type to a

larger type size

char -> int -> long -> float -> double

 Explicit Casting (manually) - converting a larger type to a smaller

size type

double -> float -> long -> int -> char

Implicit Casting

Implicit casting is done automatically when passing a smaller size type to a

larger size type:

Example

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Data Type Lecture

int myInt = 9;

double myDouble = myInt; // Automatic casting: int to double

Console.WriteLine(myInt);

Console.WriteLine(myDouble);

Explicit Casting

Explicit casting must be done manually by placing the type in parentheses in

front of the value:

Example

double myDouble = 9.78;

int myInt = (int) myDouble; // Manual casting: double to int

Console.WriteLine(myDouble); // Outputs 9.78

Console.WriteLine(myInt); // Outputs 9

Type Conversion Methods

It is possible to convert data types explicitly by using built-in methods,

suchas Convert.ToBoolean, Convert.ToDouble, Convert.ToString, Convert.

ToInt32 (int) and Convert.ToInt64 (long):

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Data Type Lecture

Example

int myInt = 10;

double myDouble = 5.25;

bool myBool = true;

Console.WriteLine(Convert.ToString(myInt)); // convert int to

string

Console.WriteLine(Convert.ToDouble(myInt)); // convert int to

double

Console.WriteLine(Convert.ToInt32(myDouble)); // convert double

to int

Console.WriteLine(Convert.ToString(myBool)); // convert bool to

string

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# I/O Lecture

C# User Input

Get User Input

You have already learned that Console.WriteLine() is used to output (print)

values. Now we will use Console.ReadLine() to get user input.

In the following example, the user can input his or hers username, which is

stored in the variable userName. Then we print the value of userName:

Example

// Type your username and press enter

Console.WriteLine("Enter username:");

// Create a string variable and get user input from the keyboard and

store it in the variable

string userName = Console.ReadLine();

// Print the value of the variable (userName), which will display the

input value

Console.WriteLine("Username is: " + userName);

User Input and Numbers

The Console.ReadLine() method returns a string. Therefore, you cannot get

information from another data type, such as int. The following program will

cause an error:

Example

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# I/O Lecture

Console.WriteLine("Enter your age:");

int age = Console.ReadLine();

Console.WriteLine("Your age is: " + age);

ERROR MRSSAGE

The error message will be something like this: Cannot implicitly convert

type 'string' to 'int'

Like the error message says, you cannot implicitly convert type 'string' to

'int'.

Example

Console.WriteLine("Enter your age:");

int age = Convert.ToInt32(Console.ReadLine());

Console.WriteLine("Your age is: " + age);

Note: If you enter wrong input (e.g. text in a numerical input), you will get

an exception/error message (like System.FormatException: 'Input string was

not in a correct format.').

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# I/O Lecture

C# Operators

C# Operators : Operators are used to perform operations on variables and

values.

In the example below, we use the + operator to add together two values:

Example

 int x = 10 + 20;

Although the + operator is often used to add together two values, like in the

example above, it can also be used to add together a variable and a value, or

a variable and another variable:

Example

int sum1 = 100 + 50; // 150 (100 + 50)

int sum2 = sum1 + 250; // 400 (150 + 250)

int sum3 = sum2 + sum2; // 800 (400 + 400)

Arithmetic Operators

Arithmetic operators are used to perform common mathematical operations:

Operator Name Description Example

+ Addition Adds together two values x + y

- Subtraction Subtracts one value from

another

x - y

* Multiplication Multiplies two values x * y

/ Division Divides one value by another x / y

% Modulus Returns the division x % y

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# I/O Lecture

remainder

++ Increment Increases the value of a

variable by 1

x++

-- Decrement Decreases the value of a

variable by 1

x--

C# Assignment Operators

Assignment operators are used to assign values to variables.

In the example below, we use the assignment operator (=) to assign the

value 10 to a variable called x:

Example

int x = 10;

The addition assignment operator (+=) adds a value to a variable:

Example

int x = 10;

x += 5;

A list of all assignment operators:

Operator Example Same As

= x = 5 x = 5

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# I/O Lecture

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

C# Comparison Operators

Comparison operators are used to compare two values:

Operator Name Example

== Equal to x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal

to

x >= y

<= Less than or equal to x <= y

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# I/O Lecture

C# Logical Operators

Logical operators are used to determine the logic between variables or

values:

Operator Name Description Example

&& Logical

and

Returns true if both statements are

true

x < 5 && x <

10

|| Logical or Returns true if one of the statements

is true

x < 5 || x < 4

! Logical

not

Reverse the result, returns false if the

result is true

!(x < 5 && x <

10)

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Operator Lecture

C# Operators

C# Operators : Operators are used to perform operations on variables and

values.

In the example below, we use the + operator to add together two values:

Example

 int x = 10 + 20;

Although the + operator is often used to add together two values, like in the

example above, it can also be used to add together a variable and a value, or

a variable and another variable:

Example

int sum1 = 100 + 50; // 150 (100 + 50)

int sum2 = sum1 + 250; // 400 (150 + 250)

int sum3 = sum2 + sum2; // 800 (400 + 400)

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Operator Lecture

Arithmetic Operators

Arithmetic operators are used to perform common mathematical operations:

Operator Name Description Example

+ Addition Adds together two values x + y

- Subtraction Subtracts one value from

another

x - y

* Multiplication Multiplies two values x * y

/ Division Divides one value by another x / y

% Modulus Returns the division

remainder

x % y

++ Increment Increases the value of a

variable by 1

x++

-- Decrement Decreases the value of a

variable by 1

x--

C# Assignment Operators

Assignment operators are used to assign values to variables.

In the example below, we use the assignment operator (=) to assign the

value 10 to a variable called x:

Example

int x = 10;

The addition assignment operator (+=) adds a value to a variable:

Example

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Operator Lecture

int x = 10;

x += 5;

A list of all assignment operators:

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Operator Lecture

C# Comparison Operators

Comparison operators are used to compare two values:

Operator Name Example

== Equal to x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal

to

x >= y

<= Less than or equal to x <= y

C# Logical Operators

Logical operators are used to determine the logic between variables or

values:

Operator Name Description Example

&& Logical

and

Returns true if both statements are

true

x < 5 && x <

10

|| Logical or Returns true if one of the statements

is true

x < 5 || x < 4

! Logical

not

Reverse the result, returns false if the

result is true

!(x < 5 && x <

10)

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Conditions statement Lecture

C# Conditions and If Statements

C# supports the usual logical conditions from mathematics:

 Less than: a < b

 Less than or equal to: a <= b

 Greater than: a > b

 Greater than or equal to: a >= b

 Equal to a == b

 Not Equal to: a != b

You can use these conditions to perform different actions for different

decisions.

C# has the following conditional statements:

 Use if to specify a block of code to be executed, if a specified

condition is true

 Use else to specify a block of code to be executed, if the same

condition is false

 Use else if to specify a new condition to test, if the first condition is

false

 Use switch to specify many alternative blocks of code to be executed

The if Statement

Use the if statement to specify a block of C# code to be executed if a

condition is True.

int x = 20;

int y = 18;

if (x > y)

{ Console.WriteLine("x is greater than y");

}

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Conditions statement Lecture

The else Statement

Use the else statement to specify a block of code to be executed if the

condition is False.

int time = 20;

if (time < 18)

{ Console.WriteLine("Good day."); }

else

{ Console.WriteLine("Good evening."); }

The else if Statement

Use the else if statement to specify a new condition if the first condition

is False.

if (condition1)

{ // block of code to be executed if condition1 is True }

else if (condition2)

{ // block of code to be executed if the condition1 is false and

condition2 is True }

else

{ // block of code to be executed if the condition1 is false and

condition2 is False }

A

Example

int time = 22;

if (time < 10)

{

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Conditions statement Lecture

 Console.WriteLine("Good morning."); }

else if (time < 20)

{

Console.WriteLine("Good day."); }

else

{ Console.WriteLine("Good evening."); }

Short Hand If...Else (Ternary Operator)

There is also a short-hand if else, which is known as the ternary

operator because it consists of three operands. It can be used to replace

multiple lines of code with a single line. It is often used to replace simple if

else statements:

Syntax

 variable = (condition) ? expressionTrue : expressionFalse;

Instead of writing:

Example

int time = 20;

if (time < 18)

{

 Console.WriteLine("Good day.");

}

else

{

 Console.WriteLine("Good evening.");

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Conditions statement Lecture

}

You can simply write:

Example

int time = 20;

string result = (time < 18) ? "Good day." : "Good evening.";

Console.WriteLine(result);

C# Switch

C# Switch Statements

Use the switch statement to select one of many code blocks to be executed.

Syntax

switch(expression)

{

 case x:

 // code block

 break;

 case y:

 // code block

 break;

 default:

 // code block

 break;

}

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Conditions statement Lecture

This is how it works:

 The switch expression is evaluated once

 The value of the expression is compared with the values of each case

 If there is a match, the associated block of code is executed

The example below uses the weekday number to calculate the weekday

name:

Example

int day = 4;

switch (day)

{

 case 1:

 Console.WriteLine("Monday");

 break;

 case 2:

 Console.WriteLine("Tuesday");

 break;

 case 3:

 Console.WriteLine("Wednesday");

 break;

 case 4:

 Console.WriteLine("Thursday");

 break;

 case 5:

 Console.WriteLine("Friday");

 break;

 case 6:

 Console.WriteLine("Saturday");

 break;

 case 7:

 Console.WriteLine("Sunday");

 break;

}

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Conditions statement Lecture

The break Keyword

When C# reaches a break keyword, it breaks out of the switch block.

This will stop the execution of more code and case testing inside the block.

When a match is found, and the job is done, it's time for a break. There is no

need for more testing.

A break can save a lot of execution time because it "ignores" the execution

of all the rest of the code in the switch block.

The default Keyword

The default keyword is optional and specifies some code to run if there is no

case match:

Example

int day = 4;

switch (day)

{

 case 6:

 Console.WriteLine("Today is Saturday.");

 break;

 case 7:

 Console.WriteLine("Today is Sunday.");

 break;

 default:

 Console.WriteLine("Looking forward to the Weekend.");

 break;

}

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Iterations statement Lecture

C# Iterations Statements

Loops

 Loops can execute a block of code as long as a specified condition is

reached.

 Loops are handy because they save time, reduce errors, and they make

code more readable.

 C# For Loop
When you know exactly how many times you want to loop through a block

of code, use the for loop instead of a while loop:

Syntax

for (statement 1; statement 2; statement 3)

{ // code block to be executed }

Statement 1 is executed (one time) before the execution of the code block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been

executed.

The example below will print the numbers 0 to 4:

Example

for (int i = 0; i < 5; i++)

{ Console.WriteLine(i); }

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Iterations statement Lecture

 The foreach Loop

There is also a foreach loop, which is used exclusively to loop through

elements in an array:

Syntax

foreach (type variableName in arrayName)

{

 // code block to be executed

}

The following example outputs all elements in the cars array, using

a foreach loop:

Example

string[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

foreach (string i in cars)

{

 Console.WriteLine(i);

}

 C# While Loop

The while loop loops through a block of code as long as a specified

condition is True:

Syntax

while (condition)

{ // code block to be executed }

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Iterations statement Lecture

In the example below, the code in the loop will run, over and over again, as

long as a variable (i) is less than 5:

Example

int i = 0;

while (i < 5)

{ Console.WriteLine(i);

 i++; }

 The Do/While Loop

The do/while loop is a variant of the while loop. This loop will execute the

code block once, before checking if the condition is true, then it will repeat

the loop as long as the condition is true.

Syntax

do {

 // code block to be executed

}

while (condition);

The example below uses a do/while loop. The loop will always be executed

at least once, even if the condition is false, because the code block is

executed before the condition is tested:

Example

int i = 0;
do

{ Console.WriteLine(i);

 i++; }

while (i < 5);

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq

C# Break and Continue

C# Break

The break statement to "jump out" of a switch statement. It can also be used

to jump out of a loop. This example jumps out of the loop when i is equal

to 4:

Example

for (int i = 0; i < 10; i++)

{

 if (i == 4)

 {

 break;

 }

 Console.WriteLine(i);

}

C# Continue

The continue statement breaks one iteration (in the loop), if a specified

condition occurs, and continues with the next iteration in the loop.

This example skips the value of 4:

Example

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq

for (int i = 0; i < 10; i++)

{

 if (i == 4)

 {

 continue;

 }

 Console.WriteLine(i);

}

Break and Continue in While Loop

You can also use break and continue in while loops:

Break Example

int i = 0;

while (i < 10)

{

 Console.WriteLine(i);

 i++;

 if (i == 4)

 {

 break;

 }}

Continue Example

int i = 0;

while (i < 10)

{

 if (i == 4)

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq

 {

 i++;

 continue;

 }

 Console.WriteLine(i);

 i++;

}

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Methods Lecture

C# Methods

C# Math

The C# Math class has many methods that allows you to perform

mathematical tasks on numbers You call any static method by specifying the

name of the class in which the method is declared, followed by the member

access (.) operator and the method name.

 ClassName.MethodName(arrgument);

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Methods Lecture

Math.Max(x,y)

The Math.Max(x,y) method can be used to find the highest value of x and y:

Example

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine(Math.Max(5, 10));

 }

 }

}

Math.Min(x,y)

The Math.Min(x,y) method can be used to find the lowest value of

of x and y:

Example

Math.Min(5, 10)

Math.Sqrt(x)

The Math.Sqrt(x) method returns the square root of x:

Example

Math.Sqrt(64);

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Methods Lecture

C# Methods

 A method is a block of code which only runs when it is called.

 You can pass data, known as parameters, into a method.

 Methods are used to perform certain actions, and they are also known

as functions.

 Why use methods? To reuse code: define the code once, and use it

many times.

Create a Method

A method is defined with the name of the method, followed by

parentheses (). C# provides some pre-defined methods, which you already

are familiar with, such as Main(), but you can also create your own methods

to perform certain actions:

Example

Create a method inside the Program class:

class Program

{

 static void MyMethod()

 {

 // code to be executed

 }

}

Call a Method

To call (execute) a method, write the method's name followed by two

parentheses () and a semicolon;

In the following example, MyMethod(); is used to print a text (the action),

when it is called:

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Methods Lecture

Example

Inside Main(), call the myMethod() method:

static void MyMethod()

{

 Console.WriteLine("I just got executed!");

}

static void Main(string[] args)

{

 MyMethod();

}

// Outputs "I just got executed!"

Note: A method can be called multiple times:

Example

static void MyMethod()

{

 Console.WriteLine("I just got executed!");

}

static void Main(string[] args)

{

 MyMethod();

 MyMethod();

 MyMethod();

}

// I just got executed!

// I just got executed!

// I just got executed!

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Methods Lecture

C# Method Parameters

Parameters and Arguments

Information can be passed to methods as parameter. Parameters act as

variables inside the method.

They are specified after the method name, inside the parentheses. You can

add as many parameters as you want, just separate them with a comma.

The following example has a method that takes a string called fname as

parameter. When the method is called, we pass along a first name, which is

used inside the method to print the full name:

Example

static void MyMethod(string fname)
{
 Console.WriteLine(fname + " Refsnes");
}

static void Main(string[] args)
{
 MyMethod("Liam");
 MyMethod("Jenny");
 MyMethod("Anja");
}

// Liam Refsnes
// Jenny Refsnes
// Anja Refsnes

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Methods Lecture

Multiple Parameters

You can have as many parameters as you like:

Example

static void MyMethod(string fname, int age)
{
 Console.WriteLine(fname + " is " + age);
}

static void Main(string[] args)
{
 MyMethod("Liam", 5);
 MyMethod("Jenny", 8);
 MyMethod("Anja", 31);
}
// Liam is 5
// Jenny is 8
// Anja is 31

Return Values

The void keyword, used in the examples above, indicates that the method

should not return a value. If you want the method to return a value, you can

use a primitive data type (such as int or double) instead of void, and use

the return keyword inside the method:

Example

static int MyMethod(int x)
{
 return 5 + x;
}

static void Main(string[] args)
{
 Console.WriteLine(MyMethod(3));
}

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Methods Lecture

// Outputs 8 (5 + 3)

This example returns the sum of a method's two parameters:

Example

static int MyMethod(int x, int y)
{
 return x + y;
}

static void Main(string[] args)
{
 Console.WriteLine(MyMethod(5, 3));
}

// Outputs 8 (5 + 3)

You can also store the result in a variable (recommended, as it is easier to

read and maintain):

Example

static int MyMethod(int x, int y)
{
 return x + y;
}

static void Main(string[] args)
{
 int z = MyMethod(5, 3);
 Console.WriteLine(z);
}

// Outputs 8 (5 + 3)

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email: waleed.kareem@uoanbar.edu.iq C# Arrays-Part 1

C# Arrays

Create an Array

Arrays are used to store multiple values in a single variable, instead of

declaring separate variables for each value.

To declare an array, define the variable type with square brackets:

 string[] cars;

We have now declared a variable that holds an array of strings.

To insert values to it, we can use an array literal - place the values in a

comma-separated list, inside curly braces:

string[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

To create an array of integers, you could write:

int[] myNum = {10, 20, 30, 40};

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email: waleed.kareem@uoanbar.edu.iq C# Arrays-Part 1

Access the Elements of an Array

You access an array element by referring to the index number. This

statement accesses the value of the first element in cars:

Example

string[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

Console.WriteLine(cars[0]);

// Outputs Volvo

Note: Array indexes start with 0: [0] is the first element. [1] is the

second element, etc.

Change an Array Element

To change the value of a specific element, refer to the index number:

Example

cars[0] = "Opel";

Example

string[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

cars[0] = "Opel";

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email: waleed.kareem@uoanbar.edu.iq C# Arrays-Part 1

Console.WriteLine(cars[0]);

Array Length

To find out how many elements an array has, use the Length property:

Example

string[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

Console.WriteLine(cars.Length);

// Outputs 4

Loop Through an Array

You can loop through the array elements with the for loop, and use

the Length property to specify how many times the loop should run.

The following example outputs all elements in the cars array:

Example

string[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

for (int i = 0; i < cars.Length; i++)

{

 Console.WriteLine(cars[i]);

}

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email: waleed.kareem@uoanbar.edu.iq C# Arrays-Part 1

The foreach Loop

There is also a foreach loop, which is used exclusively to loop through

elements in an array:

Syntax

foreach (type variableName in arrayName)

{

 // code block to be executed

}

The following example outputs all elements in the cars array, using

a foreach loop:

Example 1

string[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

foreach (string i in cars)

{

 Console.WriteLine(i);

}

The example above can be read like this: for each string element (called i -

as in index) in cars, print out the value of i.

If you compare the for loop and foreach loop, you will see that

the foreach method is easier to write, it does not require a counter (using

the Length property), and it is more readable.

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email: waleed.kareem@uoanbar.edu.iq C# Arrays-Part 1

Example 2

public static void Main(string[] args)
 {
 int[] array = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };
 int total = 0;

// add each element's value to total
 foreach (int number in array)
 total += number;

 Console.WriteLine("Total of array elements: {0}", total);
} // end Main
} // end class ForEachTest

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email: waleed.kareem@uoanbar.edu.iq C# Arrays-Part 2

C# Arrays

Sort Arrays

There are many array methods available, for example Sort(), which sorts an

array alphabetically or in an ascending order:

Example

// Sort a string
string[] cars = {"Volvo", "BMW", "Ford", "Mazda"};
Array.Sort(cars);
foreach (string i in cars)
{
 Console.WriteLine(i);
}

// Sort an int
int[] myNumbers = {5, 1, 8, 9};
Array.Sort(myNumbers);
foreach (int i in myNumbers)
{
 Console.WriteLine(i);
}

System.Linq Namespace

Other useful array methods, such as Min, Max, and Sum, can be found in

the System.Linq namespace:

Example

using System;
using System.Linq;

namespace MyApplication
{
 class Program
 {
 static void Main(string[] args)

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email: waleed.kareem@uoanbar.edu.iq C# Arrays-Part 2

 {
 int[] myNumbers = {5, 1, 8, 9};
 Console.WriteLine(myNumbers.Max()); // returns the
largest value
 Console.WriteLine(myNumbers.Min()); // returns the
smallest value
 Console.WriteLine(myNumbers.Sum()); // returns the sum
of elements
 } } }

Other Ways to Create an Array

If you are familiar with C#, you might have seen arrays created with

the new keyword, and perhaps you have seen arrays with a specified size as

well. In C#, there are different ways to create an array:

// Create an array of four elements, and add values later
string[] cars = new string[4];

// Create an array of four elements and add values right
away
string[] cars = new string[4] {"Volvo", "BMW", "Ford",
"Mazda"};

// Create an array of four elements without specifying the
size
string[] cars = new string[] {"Volvo", "BMW", "Ford",
"Mazda"};

// Create an array of four elements, omitting the new
keyword, and without specifying the size
string[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email: waleed.kareem@uoanbar.edu.iq C# Arrays-Part 2

An Example of Array

using System;

 public class InitArray

 {

 public static void Main(string[] args)

{

// initializer list specifies the value for each element

 int[] array = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

Console.WriteLine("{0}{1,8}", "Index", "Value"); // headings

// output each array element's value

 for (int counter = 0; counter < array.Length; counter++)

 Console.WriteLine("{0,5}{1,8}", counter, array[counter]);

 }

Another Example

using System;

 public class SumArray

 {

 public static void Main(string[] args)

{

 int[] array = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };

int total = 0;

// add each element's value to total

for (int counter = 0; counter < array.Length; counter++)

total += array[counter];

 Console.WriteLine("Total of array elements: {0}", total);

} Output///// Total of array elements: 849

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email:waleed.kareem@uoanbar.edu.iq C# Strings

C# Strings

C# Strings

A string is an object of type String whose value is text. Internally, the text is

stored as a sequential read-only collection of Char objects.

A string variable contains a collection of characters surrounded by double

quotes:

Example

Create a variable of type string and assign it a value:

string greeting = "Hello";

String Length

A string in C# is actually an object, which contain properties and methods

that can perform certain operations on strings. For example, the length of a

string can be found with the Length property:

string txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

Console.WriteLine("The length of the txt string is: " +
txt.Length);

Other Methods

There are many string methods available, for

example ToUpper() and ToLower(), which returns a copy of the string

converted to uppercase or lowercase:

mailto:waleed.kareem@uoanbar.edu.iq
https://docs.microsoft.com/en-us/dotnet/api/system.string
https://docs.microsoft.com/en-us/dotnet/api/system.char

Introducer: waleed K. awad

Email:waleed.kareem@uoanbar.edu.iq C# Strings

string txt = "Hello World";

Console.WriteLine(txt.ToUpper()); // Outputs "HELLO WORLD"

Console.WriteLine(txt.ToLower()); // Outputs "hello world"

String Concatenation

The + operator can be used between strings to combine them. This is

called concatenation:

Example

string firstName = "John ";

string lastName = "Doe";

string name = firstName + lastName;

Console.WriteLine(name);

Note that we have added a space after "John" to create a space between firstName and

lastName on print.

You can also use the string.Concat() method to concatenate two strings:

Example

string firstName = "John ";

string lastName = "Doe";

string name = string.Concat(firstName, lastName);

Console.WriteLine(name);

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email:waleed.kareem@uoanbar.edu.iq C# Strings

Access Strings

You can access the characters in a string by referring to its index number

inside square brackets [].

This example prints the first character in myString:

Example

string myString = "Hello";

Console.WriteLine(myString[0]); // Outputs "H"

Note: String indexes start with 0: [0] is the first character. [1] is the second

character, etc.

This example prints the second character (1) in myString:

Example

string myString = "Hello";

Console.WriteLine(myString[1]); // Outputs "e"

You can also find the index position of a specific character in a string, by

using the IndexOf() method:

Example

string myString = "Hello";

Console.WriteLine(myString.IndexOf("e")); // Outputs "1"

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email:waleed.kareem@uoanbar.edu.iq C# Strings

Another useful method is Substring(), which extracts the characters from a

string, starting from the specified character position/index, and returns a new

string. This method is often used together with IndexOf() to get the specific

character position:

Example

// Full name
string name = "Waleed Kareem";

// Location of the letter D
int charPos = name.IndexOf("K");

// Get last name
string lastName = name.Substring(charPos);

// Print the result
Console.WriteLine(lastName);

Special Characters

Because strings must be written within quotes, C# will misunderstand this

string, and generate an error:

Example

string txt = "We are the so-called "Vikings" from the north.";

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email:waleed.kareem@uoanbar.edu.iq C# Strings

The solution to avoid this problem, is to use the backslash escape

character.

The backslash (\) escape character turns special characters into string

characters:

The sequence \" inserts a double quote in a string:

Example

string txt = "We are the so-called \"Vikings\" from the
north.";

The sequence \' inserts a single quote in a string:

Example

string txt = "It\'s alright."; //output: It's alright

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email:waleed.kareem@uoanbar.edu.iq C# Strings

The sequence \\ inserts a single backslash in a string:

string txt = "The character \\ is called backslash.";

Other useful escape characters in C# are:

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad

Email:waleed.kareem@uoanbar.edu.iq C# Strings

Adding Numbers and Strings

If you add two numbers, the result will be a number:

Example

int x = 10;

int y = 20;

int z = x + y; // z will be 30 (an integer/number)

WARNING!

C# uses the + operator for both addition and concatenation.

Remember: Numbers are added. Strings are concatenated.

If you add two strings, the result will be a string concatenation:

Example

string x = "10";

string y = "20";

string z = x + y; // z will be 1020 (a string)

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Classes Lecture

C# Classes

C# OOP

What is OOP?

OOP stands for Object-Oriented Programming. Procedural programming is about writing

procedures or methods that perform operations on the data, while object-oriented

programming is about creating objects that contain both data and methods.

 Object-oriented programming has several advantages over procedural programming:

 OOP is faster and easier to execute

 OOP provides a clear structure for the programs

 OOP helps to keep the C# code DRY "Don't Repeat Yourself", and makes the

code easier to maintain, modify and debug

 OOP makes it possible to create full reusable applications with less code and

shorter development time

What are Classes and Objects?

 Classes and objects are the two main aspects of object-oriented programming.

 Look at the following illustration to see the difference between class and objects:

 So, a class is a template for objects, and an object is an instance of a class.

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Classes Lecture

 When the individual objects are created, they inherit all the variables and methods

from the class.

C# Classes and Objects

You learned from the previous chapter that C# is an object-oriented programming

language.

Everything in C# is associated with classes and objects, along with its attributes and

methods. For example: in real life, a car is an object. The car has attributes, such as

weight and color, and methods, such as drive and brake.

A Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the class keyword:

Create a class named "Car" with a variable color:

class Car

{

 string color = "red";

}

Create an Object

An object is created from a class. We have already created the class named Car, so now

we can use this to create objects.

To create an object of Car, specify the class name, followed by the object name, and use

the keyword new:

Example

Create an object called "myObj" and use it to print the value of color:

class Car

{

 string color = "red";

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Classes Lecture

 static void Main(string[] args)

 {

 Car myObj = new Car();

 Console.WriteLine(myObj.color);

 }

}

Note that we use the dot syntax (.) to access variables/fields inside a class (myObj.color).

Note that Data in class (represented by fields), and Behavior (represented by

methods/functions).

Multiple Objects

You can create multiple objects of one class:

Example

Create two objects of Car:

class Car

{

 string color = "red";

 static void Main(string[] args)

 {

 Car myObj1 = new Car();

 Car myObj2 = new Car();

 Console.WriteLine(myObj1.color);

 Console.WriteLine(myObj2.color);

 }

}

Using Multiple Classes

You can also create an object of a class and access it in another class. This is often used for

better organization of classes (one class has all the fields and methods, while the other class

holds the Main() method (code to be executed)).

 prog2.cs

 prog.cs

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Classes Lecture

prog2.cs

class Car

{

 public string color = "red";

}

prog.cs

class Program

{

 static void Main(string[] args)

 {

 Car myObj = new Car();

 Console.WriteLine(myObj.color);

 }

}

Did you notice the public keyword? It is called an access modifier, which specifies that

the color variable/field of Car is accessible for other classes as well, such as Program.

C# Class Members

Fields and methods inside classes are often referred to as "Class Members". Class

Members consist of two parts:

 Instance: accessible from an object.

 person person = new person();

 persone.Intorduce();

 Static: accessible from class.

 Console.WriteLine(“ “);

Example

Create a Car class with three class members: two fields and one method.

class MyClass
{
 // Class members
 string color = "red"; // field
 int maxSpeed = 200; // field
 public void fullThrottle() // method
 {
 Console.WriteLine("The car is going as fast as it can!");
 } }

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Classes Lecture

Fields

You learned that variables inside a class are called fields, and that you can access them

by creating an object of the class, and by using the dot syntax (.).

The following example will create an object of the Car class, with the name myObj.

Then we print the value of the fields color and maxSpeed:

Example

class Car
{
 string color = "red";
 int maxSpeed = 200;

 static void Main(string[] args)
 {
 Car myObj = new Car();
 Console.WriteLine(myObj.color);
 Console.WriteLine(myObj.maxSpeed);
 }
}

 You can also leave the fields blank, and modify them when creating the object:

Example

class Car
{
 string color;

 int maxSpeed;

 static void Main(string[] args)
 {
 Car myObj = new Car();
 myObj.color = "red";
 myObj.maxSpeed = 200;
 Console.WriteLine(myObj.color);
 Console.WriteLine(myObj.maxSpeed);
 }
}

 This is especially useful when creating multiple objects of one class:

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Classes Lecture

Example

class Car
{
 string model;
 string color;
 int year;

 static void Main(string[] args)
 {
 Car Ford = new Car();
 Ford.model = "Mustang";
 Ford.color = "red";
 Ford.year = 1969;

 Car Opel = new Car();
 Opel.model = "Astra";
 Opel.color = "white";
 Opel.year = 2005;

 Console.WriteLine(Ford.model);
 Console.WriteLine(Opel.model);
 }
}

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Classes Lecture

C# Constructors

A constructor is a special method that is used to initialize objects. The advantage of a

constructor, is that it is called when an object of a class is created. It can be used to set

initial values for fields:

Example

Create a constructor:

// Create a Car class
class Car
{
 public string model; // Create a field

 // Create a class constructor for the Car class
 public Car() //without parameters
 {
 model = "Mustang"; // Set the initial value for model
 }

 static void Main(string[] args)
 {
 Car Ford = new Car(); // Create an object of the Car
Class (this will call the constructor)
 Console.WriteLine(Ford.model); // Print the value of
model
 }
}

// Outputs "Mustang"

Note that the constructor name must match the class name, and it cannot have a return

type (like void or int).

Also note that the constructor is called when the object is created.

All classes have constructors by default: if you do not create a class constructor yourself, C#

creates one for you. However, then you are not able to set initial values for fields.

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Classes Lecture

Constructor Parameters

 Constructors can also take parameters, which is used to initialize fields.

 The following example adds a string modelName parameter to the constructor.

Inside the constructor we set model to modelName (model=modelName). When

we call the constructor, we pass a parameter to the constructor ("Mustang"),

which will set the value of model to "Mustang":

Example

class Car
{
 public string model;

 // Create a class constructor with a parameter
 public Car(string modelName)
 {
 model = modelName;
 }

 static void Main(string[] args)
 {
 Car Ford = new Car("Mustang");
 Console.WriteLine(Ford.model);
 }
}
// Outputs "Mustang"

 You can have as many parameters as you want:

Example

class Car
{
 public string model;
 public string color;
 public int year;

 // Create a class constructor with multiple parameters
 public Car(string modelName, string modelColor, int
modelYear)

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Classes Lecture

 {
 model = modelName;
 color = modelColor;
 year = modelYear;
 }

 static void Main(string[] args)
 {
 Car Ford = new Car("Mustang", "Red", 1969);
 Console.WriteLine(Ford.color + " " + Ford.year + " " +
Ford.model);
 }
}
// Outputs Red 1969 Mustang

C# Access Modifiers

Access Modifiers By now, you are quite familiar with the public keyword that appears in

many of our examples:

public string color;

The public keyword is an access modifier, which is used to set the access level/visibility

for classes, fields, methods and properties.

 C# has the following access modifiers:

Modifier Description

public The code is accessible for all classes

private The code is only accessible within the same class

protected The code is accessible within the same class, or in a class that

is inherited from that class.

internal The code is only accessible within its own assembly, but not

from another assembly.

 For now, lets focus on public and private modifiers.

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Classes Lecture

Public Modifier

If you declare a field with a public access modifier, it is accessible for all classes.

Private Modifier

If you declare a field with a private access modifier, it can only be accessed within the

same class:

Example

class Car

{
 private string model = "Mustang";

 static void Main(string[] args)
 {
 Car myObj = new Car();
 Console.WriteLine(myObj.model);
 }
}

Note: By default, all members of a class are private if you don't specify an access modifier:

C# Properties (Get and Set)

Properties and Encapsulation

Before we start to explain properties, you should have a basic understanding of

"Encapsulation".

The meaning of Encapsulation, is to make sure that "sensitive" data is hidden from users. To

achieve this, you must:

 declare fields/variables as private

 provide public get and set methods, through properties, to access and update the

value of a private field

mailto:waleed.kareem@uoanbar.edu.iq

Introducer: waleed K. awad
Email: waleed.kareem@uoanbar.edu.iq C# Classes Lecture

Properties

You learned from the previous chapter that private variables can only be accessed within

the same class (an outside class has no access to it). However, sometimes we need to

access them - and it can be done with properties.

A property is like a combination of a variable and a method, and it has two methods:

a get and a set method:

Example

class Person
{
 private string name; // field
 public string Name // property
 {
 get { return name; }
 set { name = value; }
 }
}

class Program
{
 static void Main(string[] args)
 {
 Person myObj = new Person();
 myObj.Name = "Liam";
 Console.WriteLine(myObj.Name);
 }
}

Why Encapsulation?

 Better control of class members (reduce the possibility of yourself (or others) to

mess up the code)

 Fields can be made read-only (if you only use the get method), or write-only (if

you only use the set method)

 Flexible: the programmer can change one part of the code without affecting other

parts

 Increased security of data.

mailto:waleed.kareem@uoanbar.edu.iq

