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Artificial Intelligence Lecture Notes 

By Belal Ismail Al-Khateeb 
 

 

* Definitions   

 

AI is the study of symbol systems for the purpose of understanding and 

implementing intelligent search. 

 

Also AI can be defined as “Design computer that thinks as people do“. 

 

 

“Weak AI” 

- Machines can possibly act intelligently. 

 

“Strong AI” 

- Machines can actually think intelligently. 

 

Most AI researchers take the weak hypothesis for granted, and don’t care about 

the strong AI hypothesis. 

 

* AI History   

 

Turing Test: 

 

• The test is conducted with two people and a machine. 

• One person plays the role of an interrogator and is in a separate room 

from the machine and the other person. 

• The interrogator only knows the person and machine as A and B. The 

interrogator does not know which the person is and which the machine is. 

• Using a teletype, the interrogator, can ask A and B any question he/she 

wishes. The aim of the interrogator is to determine which the person is 

and which the machine is. 

• The aim of the machine is to fool the interrogator into thinking that it is a 

person.  

• If the machine succeeds then we can conclude that machines can think. 

 

• Often “forget” the second person. 

• Informally, the test is whether the “machine” behaves like it is intelligent. 

• This is a test of behaviour. 

• It is does not ask “does the machine really think?”. 

• It is too culturally specific? 

• If B had never heard of “The X-Factor” then does it preclude 

intelligence?  

• What if B only speaks Italian? 

• It tests only behaviour not real intelligence? 
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* Search Techniques   

There are two types of searches, these are: 

1- Blind search 

- Depth First Search. 

- Breadth First Search. 

- Hybrid Search. 

2- Heuristic search 

- Hill Climbing. 

- Best First Search. 

- A algorithm. 

- A* algorithm. 

 

* Structures and Strategies for State Space Search    
To successfully design and implement search algorithms, a programmer must be 

able to analyze and predict their behavior. Questions that need to be answered 

include: 

 

- Is the problem solver guaranteed to find a solution? 

- Will the problem solver always terminate, or can it become caught in an 

infinite loop? 

- When a solution is found, it is guaranteed to be optimal? 

- What is the complexity of the search process in terms of time usage? Space 

usage? 

- How can the interpreter most effectively reduce search complexity? 

- How can an interpreter be designed to most effectively utilize a representation 

language? 

 

The theory of state space search is the primary tool for answering these questions. 

By representing a problem as a state space graph, the graph theory can be used to 

analyze the structure and complexity of both the problem and the procedures used to 

solve it. 

 

If a graph is used, the problem of cycles will occur so the best structure to represent a 

problem is a tree structure (there is a unique path between every two nodes), which 

can be defined as a tree with no cycles. It is important to distinguish between 

problems whose state space is a tree and those that may contain loops (graph). 

General graph search algorithms must detect and eliminate loops from potential 

solution paths, while tree searches may gain efficiency by eliminating this test and its 

overhead. So convert graph representation to a tree representation. To convert a graph 

to a tree, remove any nodes that may cause a cycle. 
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Example: convert a graph to a tree 
 

 

  

 

 

 

           

 

 

 

 

 

 

 

 

 

* Depth First Search Algorithm 
 

Initialize: open=[start]; closed=[ ]; parent[start]=null; found=no; 

While open<>[ ]  do 

     Begin 

- Remove the first state from left of open, call it X; 

- If  X is a goal then {found=yes; break} 

- Generate all possible children of x and put them in list L; 

- Put X on closed; 

- Eliminate from L any child already on closed; 

- Eliminate from open any child in L; 

- For each child y in L set parent[y]=X; 

- Add L to the left of open; 

    End. 

  If found =yes then 

      Generate and return the solution path. 

  Else 

        Output no solution. 
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Example: use depth first search to find the path between A and L for the following 

search space:  

 

                                                                               

                                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution: 
  Start=[A], goal=L. 

  

 Iteration #0: 

Open=[A], closed=[ ], parent[A]=null. 

 

Iteration #1: 

X=A, L=[B,C,D,E], closed=[A], Parent[B]=A, parent[C]=A, parent[D]=A, 

parent[E]=A. open=[B,C,D,E]. 

 

Iteration #2: 

X=B, L=[F,C], closed=[A,B], Parent[F]=B, parent[C]=B, open=[F,C,D,E]. 

 

Iteration #3: 

X=F, L=[I,J], closed=[A,B,F], Parent[I]=F, parent[J]=F, open=[I,J,C,D,E]. 

 

Iteration #4: 

X=I, L=[N], closed=[A,B,F,I], Parent[N]=I, open=[N,J,C,D,E]. 
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Iteration #5: 

X=N, L=[ ], closed=[A,B,F,I,N], open=[J,C,D,E]. 

 

Iteration #6: 

X=J, L=[ ], closed=[A,B,F,I,N,J], open=[C,D,E]. 

 

Iteration #7: 

X=C, L=[F,G,H], closed=[A,B,F,I,N,J,C], Parent[G]=C, parent[H]=C, 

open=[G,H,D,E]. 

 

Iteration #8: 

X=G, L=[K,L], closed=[A,B,F,I,N,J,C,G], Parent[K]=G, parent[L]=G, 

open=[K,L,H,D,E]. 

 

Iteration #9: 

X=K, L=[ ], closed=[A,B,F,I,N,J,C,G,K], open=[L,H,D,E]. 

 

Iteration #10: 

X=L  

Since L is a goal, stop and find path. 

 

Path: A         B         C          G        L 

 

 

* Breadth First Search Algorithm 
 

Initialize: open=[start]; closed=[ ]; parent[start]=null; found=no; 

While open<>[ ]  do 

     Begin 

- Remove the first state from left of open, call it X; 

- If  X is a goal then {found=yes; break} 

- Generate all possible children of x and put them in list L; 

- Put X on closed; 

- Eliminate from L any child already on closed; 

- Eliminate from L any child in open; 

- For each child y in L set parent[y]=X; 

- Add L to the right of open; 

    End. 

  If found =yes then 

      Generate and return the solution path. 

  Else 

        Output no solution. 

 

 

Example: use breadth first search to find the path between A and L for the              

search space in the previous example: 

 

Solution: 
Start=[A], goal=L. 
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Iteration #0: 

Open=[A], closed=[ ], parent[A]=null. 

 

Iteration #1: 

X=A, L=[B,C,D,E], closed=[A], Parent[B]=A, parent[C]=A, parent[D]=A, 

parent[E]=A, open=[B,C,D,E]. 

 

Iteration #2: 

X=B, L=[F,C], closed=[A,B], Parent[F]=B, open=[C,D,E,F]. 

 

Iteration #3: 

X=C, L=[F,G,H], closed=[A,B,C], Parent[G]=C, parent[H]=C, open=[D,E,F,G,H]. 

 

Iteration #4: 

X=D, L=[H], closed=[A,B,C,D], open=[E,F,G,H]. 

 

Iteration #5: 

X=E, L=[M,R], closed=[A,B,C,D,E], Parent[M]=E, parent[R]=E, open=[F,G,H,M,R]. 

 

Iteration #6: 

X=F, L=[I,J], closed=[A,B,C,D,E,F], Parent[I]=F, parent[J]=F, open=[G,H,M,R,I,J]. 

 

Iteration #7: 

X=G, L=[K,L], closed=[A,B,C,D,E,F,G], Parent[K]=G, parent[L]=G, 

open=[H,M,R,I,J,K,L]. 

 

Iteration #8: 

X=H, L=[M], closed=[A,B,C,D,E,F,G,H], open=[M,R,I,J,K,L]. 

 

Iteration #9: 

X=M, L=[ ], closed=[A,B,C,D,E,F,G,H,M], open=[R,I,J,K,L]. 

 

Iteration #10: 

X=R, L=[ ], closed=[A,B,C,D,E,F,G,H,M,R], open=[I,J,K,L]. 

 

Iteration #11: 

X=I, L=[N], closed=[A,B,C,D,E,F,G,H,M,R,I], Parent[N]=I, open=[J,K,L,N]. 

 

Iteration #12: 

X=J, L=[ ], closed=[A,B,C,D,E,F,G,H,M,R,I,J], open=[K,L,N]. 

 

Iteration #13: 

X=K, L=[ ], closed=[A,B,C,D,E,F,G,H,M,R,I,J,K], open=[L,N]. 

 

Iteration #14: 

X=L  

Since L is a goal, stop and find path. 

 

Path: A         C          G        L 
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* Hybrid Search Algorithm 
Apply depth first iteratively increasing the level of the state space by one until 

the goal is found or the whole space is searched with no success. 

 

When you reapply depth first, you start from the start state and ignore any 

information from previous runs.    

 

 

* Logic  
 

 

 

* Propositional Logic 
 

“Water is liquid”                         true. 

“Today is Monday”                     true. 

“It is raining now”                       true. 

 

* Connectives            

   
 

 

 

 

 

 

 

 

 

P Q PQ PQ P PQ 

T T T T F T 

T F F T F F 

F T F T T T 

F F F F T T 
 

 

 

 

- Sentences formed by these connectives are called well formed formulas (wff).    

- Brackets of the form (, ), [, ], {, } can be used to group symbols into sub 

expressions and thus control the order of evaluation, for example (PQ)=R 

and P(Q=R). 

 

 

* Common Identities in Propositional Logic 

 

1- (P)  P. 

2- (PQ)  (PQ). 

3- (PQ)  (PQ). 

4- (PQ)  (PQ). 

5- P(QR)  (PQ) (PR). 

AND  

OR  

NOT  

IMPLIES  

EQUAL = 

Predicate Logic 

Propositional Logic 
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6- P (QR)  (PQ)  (PR). 

7- PQ  QP. 

8- PQ  QP. 

9- (PQ ) R  P(Q R). 

10- (PQ ) R  P (Q R). 

11- PQ  PQ.    (important). 

 

* Predicate Logic 
 

predicate (arguments). 

 

 

 

 

 

 

 

Examples 

 
1- liquid (water). 

is (water, liquid). 

 

2- Today is Saturday  

day (Saturday). 

 

3- It is raining today. 

weather (today, rain). 

 

4- P1= “it rained on Saturday”. 

P2 = “ it rained on Sunday”. 

      P3=  “it rained on Monday”. 

P4 = “ it rained on Tuesday”. 

      P5=  “it rained on Wednesday”. 

P6 = “ it rained on Thursday”. 

P7 = “ it rained on Friday”. 

 

weather (X, rain). Where X  {Saturday, Sunday, ….., Friday). 

 

- Predicate logic allows us to deal with the components of a proposition. 

- Predicate logic allows the use of variables, which make the sentence more general.   

- The values the variable may assume have to be stated. 

 

 

 

* Quantifiers    
        

Examples 

 
X weather (X, rain)                true for all values of X. 

Relationship between objects. 

  

Property of an object or objects 

  For all 

  There exists 



 9 

X  weather (X,rain)                  true for some values of X 

 

 

* First Order Logic 
The quantifiers are on variables only.    
 

* Higher Order Logic 
The quantifiers may be on predicates.    
Example: X like  like(X,sports). 

 

* Definitions 
 

1- Constant: 

A constant refers to a specific object or to a property of an object. A constant 

starts with a lower case letter. 

       

2- Variable:  

A variable is used to refer to general cases of objects or properties. Variables 

start with upper case letter. 

 

3- Function: 

A function name starts with a lower case letter. It has an associated number 

of arguments. Each argument can be either: constant, variable, or a function. 

 

Example: product (a, b) 

                     { return a*b;}       

       

4- Term: 

A term refers either to constant, variable, or a function. 

 

- The English alphabet and the digits 0, 1, 2, ……, 9 and the underscore “ _ “ 

are used to construct a term.     

 

 

 

 

5- Predicate: 

A predicate names a relationship between zero or more objects. It starts with 

a lower case letter and the name is constructed using the characters used for 

terms. 

 

6- Atomic Sentence: 

Is a predicate with arity n followed by n terms enclosed in parentheses and 

separated by commas, predicate logic sentences are delimited by the period 

character “.”. 

 

Examples: 

- like (X,Y). 

- X Y  like(X,Y). 
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- X Y  like(X,Y). 

   

Atomic sentence may be combined using the connectives (,,,,= ).  

 

        7- Literal: 

A literal is an atomic sentence or the negation of an atomic sentence. 

 

 8- Clause: 

A clause is one or more literals connected by the connectives (,,,,= ). 

 

A clause with one literal is called a unit clause.   

 

* Horn Clause 
A Horn clause has the following form: 

b1(X,Y)  b2(X,Y)  ……..  bn (X,Y)               a(X,Y). Where the literals a, b1,…, bn 

are all positive.    

The a (X,Y) is called the head of the clause and b1(X,Y)  ……..  bn (X,Y) is called 

the body of the clause. 

 

These are three cases to consider: 

 

1- The original clause has no head b1(X,Y)  b2(X,Y)  ……..  bn (X,Y). This 

represents a goal to be proved. 

2- The clause has no body: a (X,Y). This represents a fact. 

3- The clause has a body and a head: b1(X,Y) …..  bn (X,Y)               a(X,Y). 

In this case the clause is called a rule. 

 

A Horn clause may be written in the form: b1 (X,Y)  b2(X,Y)  ….  bn (X,Y) 

 a(X,Y). Thus a Horn can be defined as a clause with at most one positive literal. 

 

* Common Identities 
 

1-  X p (X)   X p (X). 

2-  X p (X)   X  p (X). 

3- X p (X)  Y p (Y). 

4- X p (X)  Y p (Y). 

5- X [p (X)  q(X)]  X p (X)  Y q(Y). 

6- X [p (X)  q(X)]  X p (X)  Y q(Y). 

 

Note that  X [p (X)   q(X)]  X p (X)  Y q(Y). 

 

* Examples: 

 
1- If it does not rain tomorrow, Zeki will go to the lake. 

  

Solution\      weather (tomorrow,rain)                go (Zeki,lake). 

 

2- All basketball players are tall. 
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Solution\    X tall (X).                                                       X {basketball player}. 

 X [basketball_player (X)               tall (X).    X {players}. 

 X [player (X)  play (X,basketball)           tall (X).  X  {all people}. 

 

 

 

3- Some students like artificial intelligence, where X  {set of  all things}. 

  

Solution\  X [student (X)  like (X,artificial_intelligence)]. 

 

4- Nobody like taxes. 

 

Solution\   X [like (X,taxes)]                                        X {set of  people}. 

                  X [person (X)  like (X,taxes)]                  X {set of all things}. 

 

 

 

* Unification 
 

Unification is the process of making two literals look alike.  

 

Assume that we have a set of literals to be unified: {L1, L2, L3, …., Lk}, we seek a 

substitution, such that: F= {(t1,v1), (t2,v2), ……, (tn,vn)} such that: 

L1F=L2F=……=Lkf. 

 

Example: 

 

1- Assume that L = p (X,Y,f(Y),b) 

                   F = {(a,X),(f(Z),Y)} 

                    LF = p (a,f(Z),f(f(Z)),b). 

 

2- L1 = father (X,Y). 

    L2 = father (X1,Y1). 

     F = {(X,X1),(Y,Y1)}. 

     L1F = father (X,Y). 

     L2F = father (X,Y). 

      

    Q = {(ali,X),(ahmed,Y),(ali,X1),(ahmed,Y1)}. 

     L1Q = father (ali,ahmed).  

     L2Q = father (ali,ahmed). 

     
    R = {(ali,X),(ali,X1),(Y,Y1)}. 

     L1R = father (ali,Y). 

     L2R = father (ali,Y). 

 

Let F be a substitution, then F is mgu (most general unifier) of s = {L1, L2, …., Lk} 

provided that for any other unifier Q of {L1, L2, ….., Lk} there exist a unifier R of 

{L1, L2, …., Lk} such that: Q(S) = R(F(S)). 
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Unification is done by replacing a variable by a term  (important). 

   

 * Procedure mgu 
          Begin  

- Generate the first disagreement set D. 

- Repeat 

              While (D is disagreement) do 

                      If non of the terms in D consists of a variable by itself then  

                         - stop and report failure becomes the set of literals can          

not be unified by any substitutions. 

                  Else 

                         - Convert variable into a term by adding a pair of the 

form (t,v) and simultaneously perform the substitution 

in the literals. 

                            If v is not in F as a second argument of a pair, then  

                               - add a pair (tp,vp) to F. 

                            Else 

                               - stop and report failure. 

                            End if 

                      End if 

                 End while 

                      - generate the next disagreement set D; 

      Until (no D remain) 

      Return (F). 

               End. 

 

Example:   

 

Let L1 = p (X,f(Y)). 

      L2 = p(a,f(g(Z))). 

Find the mgu. 

 

Solution\ 

                 F = {}. 

                 Step1: 

                       D = {X,a}. 

                       F = {(a,X)}. 

                       L1 = L1F = p(a,f(Y)). 

                       L2 = L2F = p(a,f(g(Z))). 

 

                 Step2: 

                       D = {f(Y),f(g(Z))}. 

                       F = {(a,X),(g(Z),Y)}. 

                       L1 = L1F = p(a,f(g(Z))). 

                       L2 = L2F = p(a,f(g(Z))). 

            Stop. 
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* Skolemization 

 
Skolemization is the process of replacing existentially quantifier () variables by a 

constant (skolen constant) or a function (skolen function) of universally quantified () 

variables under whose scope. 

 

Example: 

 

1- X father (X,ahmed)          X=ali 

     father (ali,ahmed). 

 

2- Y X father (X,Y) 

     Y father (f(Y),Y). 

      f (Y) is a skolen function. 

 

3-    X  Y p (X,Y).  Replace X by a constant Y p (a,Y).      

 

4- X  Y Z  W p (X,Y,Z,W). 

     X  Y W p (X,Y,f(X,Y),W). 

  

5- X  Y Z  W p (X,Y,Z,W). 

     X  Y p (X,Y,f(X,Y),g(X,Y)). 

 

 

* Clause Form 

 
Definition: A predicate logic expression WFF (Well Form Formula) is in clause form 

if it consists of a disjunction of literals only. 

P1  p2 ….. pn. 

P1  p2 ….. pn. 

(p1  p2)  q1        is not in clause form. 

 

Any WFF can be converted into normal clause form.  

 

 

 

Example: 

 

X  {[p(X)  q(X)]          [r(X,a)  Y (Z r(Y,Z)           s(X,Y))]}  X t(X). 

 

Solution: 

 

1- Eliminate              using the identity p           q   p  q. 

X  { [p(X)  q(X)]  [r(X,a)  Y ( Z r(Y,Z)  s(X,Y))]}  X t(X). 

 

2- Reduce the scope of negation. 

X  {[ p(X)   q(X)]  [r(X,a)  Y (Z  r(Y,Z)  s(X,Y))]}  X t(X). 
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3- Standarize variables, such that each quantifier assumes a different name for the 

variables. 

X  {[ p(X)   q(X)]  [r(X,a)  Y (Z  r(Y,Z)  s(X,Y))]}  W t(W). 

 

4- Move all quantifiers to the left keeping their order.    

X Y Z W {[ p(X)   q(X)]  [r(X,a)  ( r(Y,Z)  s(X,Y))]}  t(W). 

 

5- Skolemize  variables. 

X Z W {[ p(X)   q(X)]  [r(X,a)  ( r(f(X),Z)  s(X,f(X)))]}  t(W). 

 

6- Drop the  quantification. 

{[ p(X)   q(X)]  [r(X,a)  ( r(f(X),Z)  s(X,f(X)))]}  t(W). 

 

7- Convert into an expression, which consists of conjunctions of disjunctions. 

  {([ p(X)   q(X)]  r(X,a))  ([ p(X)   q(X)]  ( r(f(X),Z)  s(X,f(X)))} 

 t(W). 

 

{( p(X)   q(X)  r(X,a))  ( p(X)   q(X)   r(f(X),Z)  s(X,f(X))} 

t(W). 

 

( p(X)   q(X)  r(X,a)  t(W))  ( p(X)   q(X)   r(f(X),Z)  s(X,f(X)) 

t(W)). 

 

8- Regard each disjunction as a separate clause. 

 

i-  p(X)   q(X)  r(X,a)  t(W). 

ii-  p(X)   q(X)   r(f(X),Z)  s(X,f(X))  t(W). 

 
9- Rename variables such that each clause uses a different set of variables. 

  

i-   p(X1)   q(X1)  r(X1,a)  t(W1). 

ii-   p(X2)   q(X2)   r(f(X2),Z)  s(X2,f(X2))  t(W2). 

 

 

 

 

* Reasoning With Logic 
 

Definition: (sound inference rule): 

 

An inference rule is said to be sound when every logical expression X produced by 

the rule follows logically from the set S of clauses. 

 

Definition: (complete): 

 

An inference rule is complete if it is able to produce every expression that logically 

follows from S. 
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Inference Rules 

 

1- Modus-Ponens. 

2- Resolution. 

 

   

Modus Ponens 

 

If p            q 

   p true.       

                           

Conclusion: q is true. 

 

Example: “ if it is raining then the ground is wet”, and “it is raining” 

 

Conclusion: “the ground is wet”.     

 

Example: “ all men are mortal”, and “Socrates is a man” 

 

C1: X [man (X)            mortal(X)]. 

C2: man (“Socrates”). 

 

Since C1 is true for all X, so it is true when X=”Socrates”. 

man (“Socrates”)            mortal(“Socrates”). 

man (“Socrates”). 

 

Conclusion: “mortal (“Socrates”). 

 

Example:  

C1: p            q. 

C2: q  r            t. 

C3: p. 

C4: r.  

Is t true? 

 

p            q 

p is true. 

 

q is true. 

q  r            t  

q is true. 

r is true. 

 

Conclusion: t is true. 

 

 

* Resolution 
If C1 and C2 in normal form such that C1 contains a literal and C2 contains the 

negation of that literal. The result is a clause, which consist of the disjunction of all 
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literals in C1 and C2 , except the literal and its negation in the two clauses (P, P). The 

resulting clause is called resolvent. 

     
Example:  

 

C1: p  q  r  s 

C2: t  z  q   

 

p  r  s  t  z                   resolvent. 

 

 

Example:  

 

C1: p  q  

C2: p 

C3: q   

 

C4: C1 and C2: q 

C5: C4 and C3:    

 

If the               is appear in the result it mean that the contradiction in the terms (q,q). 

So to prove the goal, add the negation of the goal and then apply resolution and if     

appears then there is an error in the negation of the goal, which means the goal, is true 

and vice-versa. 

  

* Steps of Inference Using Resolution 
1- put the axioms in clause normal form. 

2- add the negation of the goal to be proved in clause normal form to the set of 

axioms. 

3- produce a contradiction by generating the empty clause using resolution if no 

contradiction can be generated, the goal cannot be proved. 

4- the substitutions that are used to produce the empty clause represent the values of 

the variables for which the goal is true. 

 

 

 

 

Example: given the following: 

1- fido is a dog. 

2- all dogs are animals. 

3- all animals will die. 

Prove: “fido will die”. 

 

Solution: 

 

C1: dog (fido). 

C2: X1 [dog (X1)              animal (X1)]. 

C3: X2 [animal(X2)                     die (X2)]. 

C1': dog (fido). 

Empty Clause 
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C2':  dog (X1)  animal (X1). 

C3':  animal (X2)  die (X2). 

g':  die (fido). 

 

#1 

g':  die (fido).                              (fido,X2)     C4:  animal (fido). 

C3':  animal (X2)  die (X2).      

 

     

 #2 

C4:  animal (fido).                      (fido,X1)     C5:  dog (fido). 

C2':  dog (X1)  animal (X1).      

  

 

 

 #3 

C5:  dog (fido).                                                         Empty clause                                               

C1': dog (fido).      

  

Contradiction, which means goal, is true. 

 

 

Example:  

“ all people that are not poor and smart are happy. Those people that read are not 

stupid. Ali can read and is wealthy. Happy people have easy life”. 

 

Prove: can any one be found with easy life. 

 

Solution: 

 

C1: X1 [ poor (X1)  smart (X1)               happy(X1)]. 

C2: X2 [read (X2)              smart (X2)]. 

C3: read(ali)   poor (ali). 

C4: X3 [happy (X3)              easy_life (X3)]. 

Goal: Z easy_life(Z). 

 

C1': poor (X1)  smart (X1)  happy (X1). 

C2':  read (X2)  smart (X2). 

C31': read (ali). 

C32':  poor (ali). 

C4':  happy (X3)  easy_life (X3). 

g':  Z easy_life(Z)  Z  easy_life(Z)   easy_life(Z)  . 

 

 

#1 

g':  easy_life(Z).                                              (Z,X3)        C5:  happy (Z). 

C4':  happy (X3)  easy_life (X3).      
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 #2 

C5:  happy (Z).                                                              (Z,X1)     C6: poor (Z) smart (Z). 

C1': poor (X1)  smart (X1)  happy (X1).      

  

 

 #3 

C6: poor (Z) smart (Z).            (ali,Z)           C7: smart (ali).                                                  

C32':  poor (ali).      

  

 

 

 #4 

C7: smart (ali).                           (ali,X2)           C8: read (ali).                                                  

C2':  read (X2)  smart (X2). 

     

  

 

 #5 

C8: read (ali).                                                             Empty clause                                               

C31': read (ali).      

  

 

Contradiction, which means goal, is true. 

 

 

* Resolution Control Strategies 
 

1- Breadth First Strategy 

In this strategy, each clause in the base set (starting set of clauses) is compared 

for resolution with every other clause on the first round. On the second round, the new 

clauses produced on the first round plus all the clauses of the base set are compared 

for resolution. For the nth round all previously generated clauses are added to the base 

set and all clauses are compared for resolution. 

 

In this strategy, the number of clauses to be compared can become extremely 

large, since all early rounds are considered makes this approach inefficient for large 

problems. 

Example: consider the following clauses:  

 

C1: X1 [r (X1)              t(X1)]. 

C2: X2 [d (X2)              t(X2)]. 

C3: X3 [d (X3)  h (X3)]. 

 

Prove/ disprove the goal Z [h (Z)   r (Z)]. 

 

 

Solution: 

 

Convert to normal form: 
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C1':  r (X1)  t (X1). 

C2':  d (X2)   t (X1). 

C31': d (a). 

C32': h (a). 

 

Goal:  h (Z)  r (Z). 

 

Round 1 

 

1- resolves C1' and C2' 

C4:  r (X1)   d (X1).      {(X1,X2)} 

2- resolves C1' and goal 

C5: t (X1)   h (X1).          {(X1,Z)} 

3- resolves C2' and C31' 

C6:  t (a)                             {(a,X2)} 

4- resolves C32' and goal 

C7: r (a).                                {(a,Z)} 

 

Round 2 

 

5- resolves C1' and C6 

C8:  r (a).                            {(a,X1)} 

6- resolves C1' and C7 

C9: t (a).                                {(a,X1)} 

7- resolves C2' and C5 

C10:  d (X1)   h (X1).    {(X1,X2)} 

8- resolves C31' and C4 

C11:  r (a).                           {(a,X1)} 

9- resolves C32' and C5 

C12: t (a).                               {(a,X1)} 

10- resolves goal and C4 

C13:  d (X1)   h (X1).    {(X1,Z)} 

11- resolves C4 and C7 

C14:  d (a).                          {(a,X1)} 

12- resolves C5 and C6 

C15:  h (a).                          {(a,X1)} 

Round 3 

 

13- resolves C2' and C9 

C16:  d (a).                         {(a,X2)} 

14- resolves C2' and C12 

C17:  d (a).                         {(a,X2)} 

 

15- resolves C31' and C10 

C18:  h (a).                          {(a,X1)} 

16- resolves C31' and C13 

C19:  h (a).                           {(a,X1)} 

17- resolves C31' and C14 
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C20:               empty. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2- Set of Support Strategy 

For a set of input clauses S, we can specify a subset T of S called the set of 

support. The strategy requires that at least one of the resolvents in each resolution 

operation be in the set of support. This strategy is based on the principle that the 

negation of the goal is going to be responsible for generating empty clause. 

 

The set of support consists initially of the negation of the goal consequently any 

resolvent whose parent in the set of support become member of the set of support. 

This strategy is good for dealing with large number of clauses.      

 

Example: consider the following clauses:  

 

C1: X1 [r (X1)              t(X1)]. 

C2: X2 [d (X2)              t(X2)]. 

C3: X3 [d (X3)  h (X3)]. 

 

Prove/ disprove the goal Z [h (Z)   r (Z)]. 

 

 

Solution: Convert to normal form: 

 

C1':  r (X1)  t (X1). 

C2':  d (X2)   t (X1). 

C31': d (a). 

C32': h (a). 

Goal:  h (Z)  r (Z). 

S = { h (Z)  r (Z)}. 

 

1- resolves goal and C1'  

C4:  h (Z)   t (Z1).               {(Z,X1)} 

C1 C2 C32 

C4 

Goal 

C7 

C14 C31 
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     S = { h (Z)  r (Z), C4}. 

2- resolves C4 and C2' 

C5:  h (Z)   d (Z).             {(Z,X2)} 

     S = { h (Z)  r (Z), C4, C5}. 

3- resolves C5 and C31' 

C6:  h (a)                                {(a,Z)} 

     S = { h (Z)  r (Z), C4, C5, C6}. 

4- resolves C6 and C32'  

C7:               empty. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3- Unit Preference Strategy 

In this strategy, clauses are chosen for resolution, with as fewer literals as 

possible so that the empty clause can be produced with fewer number of resolutions. 

   

 

 

 

 

Example: consider the following clauses:  

 

C1: X1 [r (X1)              t(X1)]. 

C2: X2 [d (X2)              t(X2)]. 

C3: X3 [d (X3)  h (X3)]. 

 

Prove/ disprove the goal Z [h (Z)   r (Z)]. 

 

 

Solution: Convert to normal form: 

 

C1 

C4 

Goal 

C2 

C5 C32 

C6 
C32 
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C1':  r (X1)  t (X1). 

C2':  d (X2)   t (X1). 

C31': d (a). 

C32': h (a). 

Goal:  h (Z)  r (Z). 

 

1- resolves goal and C32'  

C4: r (a).                                   {(a,Z)} 

2- resolves C4 and C1' 

C5: t (a).                                   {(a,X1)} 

3- resolves C5 and C2' 

C6:  d (a)                                {(a,X2)} 

4- resolves C6 and C31'  

C7:               empty. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4- Linear Input Format Strategy 

In this strategy, the negated goal is resolved with one of the original input 

clauses. The resulting clause is resolved with one of the original clauses and so on 

until the empty clause is generated or there are no other resolutions. This strategy is 

not complete.  

 

Example: consider the following clauses:  

 

C1: X1 [r (X1)              t(X1)]. 

C2: X2 [d (X2)              t(X2)]. 

C3: X3 [d (X3)  h (X3)]. 

 

Prove/ disprove the goal Z [h (Z)   r (Z)]. 

 

C1 

C4 

Goal 

C2 

C5 C32 

C6 
C32 
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Solution: Convert to normal form: 

 

C1':  r (X1)  t (X1). 

C2':  d (X2)   t (X1). 

C31': d (a). 

C32': h (a). 

 

Goal:  h (Z)  r (Z). 

 

1- resolves goal and C32'  

C4: r (a).                                   {(a,Z)} 

2- resolves C4 and C1' 

C5: t (a).                                   {(a,X1)} 

3- resolves C5 and C2' 

C6:  d (a)                                {(a,X2)} 

4- resolves C6 and C31'  

C7:               empty. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Heuristics 
May be defined as the study of methods and rules of discovery and invention. 

 

In state space search heuristics are formalized as rules for choosing those 

branches in the state space that are most likely to lead to an acceptable solution. 

 

 AI problem solvers employ heuristic in two basic situations: 

 

1- A problem may not have an exact solution because of inherent 

ambiguities in the problem statement or available data. 

 

C1 

C4 

Goal 

C2 

C5 C32 

C6 
C32 



 24 

Example: 

In vision, vision scenes are often ambiguous allowing multiple 

interpretations of objects. Heuristics are used to select the most likely 

interpretation.  

     

2- A problem may have an exact solution. But the computational cost of 

finding it may be prohibitive. 

 

Example: bark of the cars. 

  

  

   

A heuristics can lead a search algorithm to a sub optimal solution or fail to find 

any solution at all. 

 

 

* Heuristic Algorithms: 
It is useful to think of heuristic algorithms as consisting of two parts: 

1- A heuristic measure function (is a measure to determine which path is the 

best). 

2- An algorithm that uses that the measure to search the state space.  
 

 

* Heuristic Functions: 
There are heuristics of a very general applicability and ones that represent 

specific knowledge that is relevent to the solution of  a particular problem. One 

example of a good general purpose heuristic is the algorithm (nearest neighbor 

algorithm), which works by selecting the locally superior alternative at each step. 

 

General purpose heuristics may be coupled with some special purpose heuristics 

so as to work well for the specific domain. 

 

A Heuristic function is a function that maps from a problem state description to 

measure of desirability usually represented as numbers. 

 

Sometimes a high value of the heuristic function indicates a relatively good 

position while at other times, a low value indicates an advantageous situation. 

 

The purpose of the heuristics functions is to guide the search process in the most 

profitable direction by suggesting, which path to follow first when more than one path 

is available. 

 

In general there is a trade off between the cost of evaluating a heuristic function 

and the savings in search time that the function provides. 

 

However, the most accurately the heuristic function estimated the true merits of 

each node in the tree or graph, the more direct will be the solution process. 
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Examples: 

1- 8-puzzle, the number of tiles that are in the place they belong to. 

2- traveling salesman, the sum of the distances. 

 

* Search Algorithms 
The strategy used for controlling a search is often critical in determining how 

effective the heuristics functions; here are some general-purpose control strategies: 

1- Generate and test. 

2- Hill climbing. 

3- Best first search. 

4- A* . 

 

* Hill Climbing: 
The strategy consists of the following steps: 

 

1- Generate a possible solution for some problems, (this means generating 

particular point in the problem space. For others, it means generating a path 

from a start state). See if it is a solution if so quit, else continue. 

 

2- From this solution apply a number of applicable rules to generate a new set 

of proposed solutions. 

 

3- For each statement of the set, do the following:- 

a- Send it to the test function, if it is a solution, quit. 

b- If not, see if it is closest to a solution of any of the elements tested so 

far. If it is, remember it, if it is not, forget it. 

4- Take the best element found above and uses it as the next proposed solution. 

 

5- Go back to step 2. 

 

To see how hill climbing works consider the following problem: 

 

Four cubes each of those sides is painted by one of 4 colors. A solution to the 

puzzle consists of an arrangement of the cubes in a row such that on all four sides of 

the row, one block face of each color is showing. 

 

To solve the problem, we first need to define a heuristic function that describes 

how close a particular configuration is to being a solution. One such solution is 

simply the sum of the number of different colors on each of the four sides. Next we 

need to define a set of rules that describe ways of transforming one configuration into 

another. One rule will suffice. It says simply pick a block and rotate it at 90º in any 

direction. 

 

The next step is to generate a starting state this can be done at random. Now hill 

climbing can begin. We could try all possible rotations of all four blocks and see 

which leads to the greatest improvement. Another strategy may be to try some of the 

possible moves. This can be done by picking one block and see if there is any way to 

rotate it to improve the situations. If there is, perform that rotation and continue. But 

what if more of the possible rotations produce desirable state.  
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* Hill Climbing Algorithm: 
    

Begin 

CS=start, found=false, Path=[] 

While (not found) do 

       Begin 

             Add CS to Path 

             If CS=goal then return (path)        

             Else generate all child states of CS  

                      Remove any child states of CS already on Path 

                      If CS has no remaining child states then return (fail) 

                      Else compute the heuristic value of all remaining child states 

                              Choose a child state with the best heuristic value call it B 

                              If B is not better than CS then return (fail) 

                              Else CS=B 

      End 

End 

 

 

Example: use hill climbing search to find the path between A and P for the  

following search space:  

 

                                                                               

                                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution: 

 

Iteration CS Path 

0 A [] 

1 C [A] 

2 H [A,C] 

3 P [A,C,H] 

4  [A,C,H,P] 

 

 

20A 

B15 
C12 D17 

F8 

P0 
O3 

E1 

L3 

G14 
H10 I12 

J11 

Q14 R13 
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With hill climbing can arrive at the following situations: 

 

1- a local maximum is a state that is better than all its neighbors but is not better 

than other states further away. At local maximum, all moves appear to made 

things worse. 

2- A plateau is a flat area of the search space in which a whole set of neighboring 

states have the same value on a plateau. it is not possible to determine the best 

direction in which to move by making local comparisons. 

3- A ridge is an area of the search space that is higher than surrounding areas but 

that cannot be traversed by single moves in any one direction. There are some 

ways of dealing with these problems. Although the methods are by no means 

guaranteed. 

 

 

The solution: 

 

1- Backtrack to some earlier node and try going in a different direction. This is 

reasonable if at that node there was another direction that looked as promising 

or almost as promising as one that was chosen. To adopt this strategy, 

maintain a list of paths almost taken and go back to one of them, if the path 

that was taken leads to a dead end. 

2- Make a big jump in one direction to try to get to a new section of the search 

space. This strategy may be used with plateau. If the only rules available 

describe single small steps apply them several times in the same direction. 

3- Apply two or more rules before doing the test. This corresponds to moving in 

several directions at once. This is a good strategy for dealing with ridges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Best First Search (BFS): 
In general, heuristic search requires a more informed algorithm this is provided 

by BFS.  

 

BFS uses lists to maintain states:  

 

1- Open: to keep track of the current scope of the search. 

2- Closed: to record states already visited. 
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An added step in the algorithm orders the states on open according to some heuristic 

estimated of their closeness to the goal. Thus each iteration of the loop considers the 

most promising state on the open list: 

 

The algorithm for BFS: 

 

Initialize: open=[start], closed=[], parent[s]=null. 

  While open <> [] do 

Begin 

Remove the next state form open, call it X. 

If X is a goal then return the solution path that led to X. 

Else  

Generate all possible children of X and put them in list L. 

For each child Y of X do 

Case 

       The child Y is not on open or closed: 

Begin 

Assign the child Y a heuristic value. 

Add the child Y to open. 

Set parent[Y]=X. 

End; 

  The child is already on open: 

Begin 

If the child was reached alone a shorter path than the 

state currently on open, then give the state on open 

this shorter value. 

End; 

The child already on closed: 

Begin  

If the child was reached alone a shorter path than the 

state currently on closed, then give the state on closed 

this shorter value and move this state from closed to 

open. 

End; 

End; {case} 

Put X on closed  

Reorder states on open according to heuristic value (best values first) 

End; {while} 

Return (failure) 

End. 

 

 Example: use best first search to find the path between A and P for the following 

search space: 
 

 

 

 

 

 

 

 

20A 

B2 
C4 D6 

F5 
E5 G4 

H3 I12 
J11 
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Solution: 
  Start=[A], goal=P. 

  

Iteration #0: 

open=[A], closed=[ ], parent[A]=null. 

 

Iteration #1: 

X=A, L=[B,C,D], open=[ B2,C4, ,D6], closed=[A]. 

parent[B]=A, parent[C]=A, parent[D]=A. 

 

Iteration #2: 

X=B, L=[E,F], open=[C4,E5,F5,D6], closed=[A,B]. 

parent[E]=B, parent[F]=B. 

 

Iteration #3: 

X=C, L=[G,H], open=[H3,G4,E5,F5,D6], closed=[A,B,C]. 

parent[G]=C, parent[H]=C. 

 

Iteration #4: 

X=H, L=[O,P], open=[O2,P3,G4,E5,F5,D6], closed=[A,B,C,H]. 

parent[O]=H, parent[P]=H. 

 

Iteration #5: 

X=O, L=[], open=[ P3,G4,E5,F5,D6], closed=[A,B,C,H,O]. 

 

Iteration #6: 

X=P=goal then stop 

 

 

Path: A         C         H        P 

 

* Implementing heuristic evaluation functions: 
Since heuristics are fallible, it is possible that a search algorithm can be misled 

down some path that fails to lead to a goal. To overcome this problem, if two states 

have the same or nearly the same heuristic evaluations, it is generally preferable to 

examine the state that is nearest to the root of the graph. 

 

This state will have greater probability of being on the shortest path to the goal. 

The distance from the starting state to its descendants can be measured by maintaining 

a depth count for each state. This count is (0) for the beginning state and is increment 
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by (1) for each level of the search. It records the actual number of moves that have 

been used to go from the starting state to each descendant. This can be added to the 

heuristic evaluation of each state to bias search in favor of states found shallower in 

the graph. 

 

This makes the evaluation function the sum of two components:  

F(n)=h(n) + g(n)   where: 

- g(n) measures the actual length of the path from any state n to the 

start state and  

- h(n) is the heuristic measure at state n. 

           

* Behavior of heuristic search: 
In some problems, the objective is not only to find the solution, but many 

require the algorithm to find the shortest path to the goal. This can be important when 

an application might have excessive cost for extra solution steps. Heuristics that find 

the shortest path to a goal whenever it exists are said to be admissible (definition 

of admissibility). In other applications a minimal path might not be as important as 

the overall problem efficiency. 

 

In what sense is one heuristic better than another? This is the informedness of 

heuristic. 

 

When a state is discovered using heuristic search is there any guarantee that the 

same state won’t be found later in the search at a cheaper cost (with a shorter path 

from the start state?) this is property of monotoncity. 

 

* Admissibility measures: 
An algorithm is admissible if it is guaranteed to find a minimal path to a 

solution whenever such a path exists. 

 

Breadth first search is an admissible search strategy, since it looks at every state 

at level n of the graph before considering any state at level n+1 so any goal nodes are 

found along the shortest possible path, however, it is often too inefficient for practical 

use. 

 

* Definitions: 
Consider the evaluation function f(n)=g(n)+h(n), where:  

- n is any state encountered in the search.  

- g(n) is the cost of n from the start state. 

- h(n) is the heuristic estimate of the cost of going from n to goal. 

If this evaluation function is used with the BFS algorithm, the result is called 

algorithm A. 

 

Define the function f*(n)=g*(n)+h*(n), where: 

 

- g*n) is the cost of the shortest path from the start node to node n. 

- h*(n) is the actual cost of the shortest path from n to the goal. 

 

It follows that f*(n) is the actual cost of the optimal path from a start node to a goal 

node that passes through n. 
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If BFS is used with the evaluation function f*, the resulting search strategy is 

admissible. For most real problems, f* does not exist. 

 

In algorithm A, g(n) is a reasonable estimate of g* but they may not be equal. 

g(n)>=g*(n). These are equal if the graph has discovered the optimal path to state n. 

 

Similarly if we replace h*(n) with h(n) which is a heuristic estimate, if algorithm A 

uses an evaluation function f in which h(n)<=h*(n) the resulted algorithm will be 

called A*.  

  

*Algorithm A: 
Begin   

Input the start node s and the goal node. 

Open=[s]; closed=[], g[s]=0; pred[s]=null. 

While open<>[] do  

    Begin 

Remove the first element form open, call it X. 

If X is a goal then return the solution path that led to X. 

Else  

Generate all possible children of X and put them in list L. 

For each child Y of X do 

Case 

       The child Y is not on open or closed: 

Begin 

g[Y]=g[X]+cost(X,Y). 

f[Y]=g[Y]+h[Y]. 

Set pred[Y]=X. 

Add the child Y to open. 

End; 

Else   

  The child Y in open or in close: 

Begin 

temp=f[Y]-g[Y]+g[X]+cost(X,Y). 

If temp<f[Y] then  

Begin 

g[Y]=g[X]+cost(X,Y). 

f[Y]=temp. 

pred[Y]=X. 

If Y is on close then insert Yin open and 

remove it from close 

End; 

End; 

End; {case} 

Put X on closed  

Reorder states on open according to heuristic value (best values first) 

End; {while} 

Return (failure) 

End. 
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Example: use A algorithm to find the path between A and K for the following 

search space 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution: 
  Start=[A], goal=K. 

  

 Iteration #0: 

Open=[A], closed=[ ], G[A]=0, pred[A]=null. 

 

Iteration #1: 

X=A, L=[B,C,D], G[B]=8, F[B]=28, pred[B]=A, G[C]=5 F[C]=30, pred[C]=A, 

G[D]=7, F[D]=34, pred[D]=A, closed=[A], open=[B28,C30,D34]. 

 

Iteration #2: 

X=B, L=[E,F], G[E]=23, F[E]=73, pred[E}=B, G[F]=26, F[F]=86, pred[F]=B, 

closed=[A,B], open=[C30,D34,E73,F86]. 

 

Iteration #3: 

X=C, L=[G,H,I], G[G]=12, F[G]=30, pred[G]=C, G[H]=33, F[H]=43, pred[H]=C, 

G[I]=17, F[I]=35, pred[I]=C, closed=[A,B,C], open=[G30,D34,I35,H43,E73,F86]. 

 

Iteration #4: 

X=G, L=[H], temp=37, G[H]=27, F[H]=37, pred[H]=G, closed=[A,B,C,G], 

open=[D34,I35,H37,E73,F86]. 

 

Iteration #5: 

X=D, L=[I], temp=32, G[I]=14, F[I]=32, pred[I]=D, closed=[A,B,C,G,D], 

open=[I32,H37,E73,F86]. 

4 7 

7 

5 

7 
8 

18 15 

15 18 

12 

28 

7 

40A 

B20 
C25 D27 

F60 

K0 J12 

E50 G18 

H10 

I18 
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Iteration #6: 

X=I, L=[H], temp=42, closed=[A,B,C,G,D,I], open=[H37,E73,F86]. 

 

Iteration #7: 

X=H, L=[J,K], G[J]=34, F[J]=46, pred[J]=H, G[K]=31, F[K]=31, pred[K]=H, 

closed=[A,B,C,G,D,I,H], open=[K31,J46]. 

 

Iteration #8: 

X=K  

Since K is a goal, stop and find path. 

 

Path: A         C          G        H          K 
 

 

All A* algorithms are admissable: This theorm says that any A* algorithm (i.e 

that uses a heuristic h(n) such that h(n)≤h*(n) for all n), is guaranteed to find the 

minimal path from n to the goal, if such a path exists, Breadth first search may be 

characterized as an A* algorithm in which f(n)= g(n)+0. (i.e h(n) =zero).  

 

In the 8-puzzle, the heuristic h(n) used of counting the number of  tiles out of 

place is counting less than or equal to the actual number of moves required to move 

them to their goal position. Hence this heuristic is admissable and guarantees the 

optimal or shortest path solution.  

 

* Monotonucity 
The definition of the A* algorithm did not require that g(n)=g*(n), this means 

that admissable heuristics may initially reach non-goal states along a suboptimal path.  

 

As long as the algorithm eventually finds an optimal path to all states on the 

path to the goal. A heuristic function h is monotonic if:- 

 

1- for all states ni and nj, where nj is a descendant of ni:-  

h(ni) – h(nj) ≤ cost(ni,nj), where cost (ni,nj) is the actual cost (in number of 

moves) of going from state ni to state nj. 

  

2- The heuristic evaluation of the goal state is zero , h(goal)=0 

 

This is to describe the monotone property that is to say that the heuristic is 

everywhere admissable reaching each state along the shortest path from its ancestors. 

If the graph search algorithm for BFS is used with a monotonic heuristic, an important 

step may be omitted, since the heuristic finds the shortest path to any state the first 

time it is discovered, when a state is rediscoverd, it is not necessary to check if the 

new path is shorter. 

 

If we consider a path in the space as a sequence of states S1,S2,…,Sg, where S1 

is the start state and Sg is the goal state. Then :-  

 

 

Any monotonic heuristic is admissible. This can be shown as follows:- 
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S1 to S2    h(S1)-h(S2) ≤ cost (S1,S2) 

S2 to S3    h(S2)-h(S3) ≤ cost (S2,S3) 

S3 to S4    h(S3)-h(S4) ≤ cost (S3,S4) 

. 

. 

. 

Sg-1 to Sg h(Sg-1)-h(Sg) ≤ cost (Sg-1,Sg) 

 

Summing up each column and using the monotone property h(Sg)=0,  path from S1 to 

Sg, h(S1) ≤ cost(S1,Sg). 

 

This means that monotone heuristic h is  A*  and admissable. 

 

*Informedness   
 For two A* heuristics h1 and h2 if h1(n)≤h2(n), for all states n in the search        

space, heuristic h2  is said to be more unformed than h1. 

 

In the 8-puzzle, Breadth first search is equivalent to the A* algorithm with 

heuristic h, such  that  h1(x)=0, for all states x. 

 

This is trivially less than h*. Also h2, the number of tiles out of place with 

respect to the goal state is alower bound for h*. In this case:- 

                        h1 ≤ h2 ≤ h* 

 

It follows that the number of tiles out of place heuristic is more informed than 

Breadth first search, both h1 and h2 find the optimal path, but h2 evalutes many fewer 

states. 

 

Similary we can argue that the heuristic that calculates the sum of direct 

distances by which all the tiles are out of place is gain more informed  than that of the 

number of tiles out of place. 

 

This can visualize a sequence of search spaces, each smaller than the previous 

one. Converging on the optimal path solution. 

 

If aheuristic h2 is more informed than h1 then the set of states examined by h2 is 

a subset of those expanded by h1 , however one must be careful that the computations 

necessary to employ the more informed heuristic are not so inefficient as the offset the 

gains from reducing the number of states searched. 

 

Search in games  

*The minimax procedure:- 
Games are an important application area for heuristic algorithms. Two person 

games are more complicated than simple puzzles  

(i.e. the existance of unpredictable opponent). 

 

ex.  nim game  

 

 
7 

6-1 
5-2 4-3 

4-2-1 5-1-1 3-3-1 3-2-2 

min 

max 

min 
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To play nim, a number of matches are placed on a table. At each move, the 

player must divide a pile of matches into two non-empty piles with different number 

of matches in each pile. The first player who can no longer make a move losses the 

game. 

 

Each level in the search space is labelled according to whose move it is at the 

point in the game, (i.e  min or max). Each leaf node is given a value of (0) or (1) 

depending on wether it is a win for max or for min. Minimax propagates these values 

up the graph through successive parent nodes according to the rule:- 

 

        - If the parent state is a max node, give it the maximum value among its children. 

-  If the parent state is a min  node, give it the minimum value among its 

children. 

  

The value that is assigned to each state indicates the value of the best state that 

player can hope to achieve. 

 

The values of the leaf nodes are propagated up the graph using minimax. 

 

Minimax search procedure is a depth first, depth limited search procedure, in 

applying minimax to more complicated games, it is seldom possible to expand the 

state space graph out to the leaf nodes, instead the state space is searched to a 

predefined number of levels as determined by available resources of time and money. 

 

This strategy  is called an n-move look ahead, where n is the number of levels 

explored, since the leaves of this subgraph are not  final states of the game, it is not 

possible to give them values that reflect a win or a loss instead each node is given a 

value according to some heuristic evaluation function.The value that is propagated 

back to the root node is not an indication of whether or not a win can be achieved but 
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is simply the heuristic value of the best state that can be reached in n moves from this 

start node . 

 

Game graphs are searched by level or ply. Each move by a player define a new     

ply of the graph. Game-playing programs typically look ahead a fixed ply depth. 

 

The states on that ply are measured heuristically and the values are propagated 

back up the graph using minimax. The search algorithm then uses these derived 

values to select among possible next moves . 

 

In  the example opposite, since our goal is to maximize the value of the heuristic 

function, we choose to move to B. Hence A’s value is 8 since we can move to 

aposition  with avalue of  8. 

 

 

 

 

 

 

 

If we stop at two-ply look ahead, we have now the situation opposite. Taking 

into account that the opponent gets to choose which of the successor moves will be 

made, and this which terminal value should be backed up to the next level. Suppose 

we make move B. The opponent’s goal is to minimize the value of the evalution 

function and hence is expected to choose move F. This means that we will end up in a 

very bad position (-6) even through there is position E (9) which is very good. Once 

the values from the second ply are backed up, it is clear that the correct move for us at 

the first  level is C. This process can be reapeted for as many ply as time allows, and 

the more accurate evaluations that are produced can be used to choose the correct 

move at the top level. This alternation of maxmizing and minimizing at alternate ply 

corrospondes to the opposing strategies of the two players and gives this method its 

name minimax . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 * Minimax  Procedure  
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   The recursive procedure for the minimax operation is assumed to return two 

results. 

▪ The backed up value of the path it chooses (value). 

▪ The path it self. 

It is called to compute the best move from the current  position (CURRENT) and 

takes two arguments: a position and current depth of the search, (e.x. minimax 

(CURRENT,0)). 

 

1- If the node is on the final level explored (i.e search should be stopped at the 

current level) then the value of this mode is that determined by the static 

evaluation function and  the path is nil. 

 

2- Otherwise generate one more ply of the tree and return a list of nodes 

(successors) representing the moves that could be mode starting in the current 

node. 

 

3- If no successors, then there are no moves to be made, then do the same as if 

the node is on the final level to be explored . 

 

4- If successors, then examine each element and keep track of the best one. This 

is done as follows:- 

 

5- Initilize BS ( best score) to the minimum value that the static function can 

return it will be updated to reflect the best score that can be achieved by an 

element of the successors. 

 

6- For each element of the successors (to be called succ) do the following:- 

 

a- Set result-succ to minimax (succ,depth+1). This recursive call to 

minimax will actually do the exploration of succ. 

 

b- Set new value to minus value (result succ). This will cause it to reflect 

the merits of the position from the opposite side from that of the next 

lower level. 

 

c- If new value > BS, then we have found a successor that is better than any 

that have benn examined so far. record this by: 

 

 

1- Set BS to new value.  

2- The best known path is now from current to succ, and then on 

the appropriate path from succ as determined by the recursive 

call to minimax, so set the best path to the result of appending 

succ to path. (Result succ).  

 

After all successors have been examined, the value of node=BS  

 

*Alpha – Beta cutoff  
The minimax procedure is a depth first process, it requires a two pass analysis 

of the search space (the first to descend down to the ply depth and then apply the 
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heuristic, the second to propagate values back up the tree, minimax follows all 

branches in the space including many that could be ignored or pruned by a more 

intelligent algorithm. 

 

 

 

 

 

 

 

 

 

 

 

In the example above, A is guaranteed a score of (3) or greater if we move to B, 

any move that produces ascore of less than 3 is worse than the move B, after 

examining node F, we know that the opponent is guaranteed a score of (-5) or less at 

C, so after examining only F we are sure that a move to C is worse regaredless of the 

score of node G, thus we need not explore node G at all.However cutting out one node 

may not appear effective but the process can be cost – effective. 

 

If we were to eliminate not a single node but an entire tree three ply deep. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the figure above, the entire tree headed by B is searched and hence can 

expect a score of at least 3. At  A, when this alpha value is passed to F, it will enable 

us to skip the exploration of L. This is because after K is examined, I is guaranteed a 

maximum score of 0 (i.e F is guaranteed aminimum score of 0). But this is less than 

alphas value of 3, so no more branches of I need to be considerd on examining J, F is 

assigned a value of 5. This value becomes the value of  ß at node C. 

  

The idea of alph-beta search is simple, rather than searching the entire space, 

alph- beta proceeeds in a depth first fashion, first descent to full ply depth and apply 

the heuristic evalution function to a state and all its siblings. Suppose these are min 

nodes, the maximum of these min values is then backed up to the parent (a maximum 
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node). This value is then offered to the grandparent of these mins as a potential ß 

cutoff. 

  

Next the algorithm descends to other grand children and terminates exploration 

of their parent if any of their values is equal or larger than this beta value. 

 

Similar procedure may be described for α-pruning: 

 

Two rules for terminating search on alpha-beta values: 

1- Search can be stopped below any min node having a beta value less than or 

equal to the alpha value of any of its max ancesstors. 

2- Search can be stopped below any max node having an alpha value greater or 

equal to the beta value of any of its min node ancesstors. 

 

Note: if the maximizing node is not at the top of the tree, one must also consider the 

alpha value that has passed down from a higher node. Thus at a maximizing level, α 
should be set to either the value it had at the next highest maximizing level or the best 

value found at this level whichever is greater. The corresponding statement can be 

made about β. 

 

The effectiveness of the α-β procedure depends greatly on the order in which 

paths are examined. If the worst paths are examined first, then no cutoffs at all will 

occur. 

 

The idea behined the α-β procedure can be extended to cutoff additional paths 

that appear to be at best only slight improvements over paths that have already been 

explored. The idea is to devote more time exploring other parts of the tree where there 

may be more gain. 

 

*Other refinements: 
These are often modifications to the minimax procedure that can also improve 

its performance: - 

 

1- One of the factors that should sometimes be considering in determining when 

to stop going deeper in the search tree is wether or not the situation is relatively 

stable. 
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when node B in fig (1) is expanded one more level as in fig (2) the estimate of the 

worth of B changed greatly, if we stop exploring the tree at this level the value (-4) is 

assingned to B and we will therefore decide that B is not a good move, hence to make 

sure of the choice of move, we should continue the search until no such drastic change 

occures from one level to the next. 

 

2- Secondary search. Another way that the accuracy of the minimax procedure 

can be improved is to double check a chosen move to make sure that there is 

not a hidden pitfall a few moves farther away. It is not very expensive to search 

the single chosen branch an additional level or two to make sure that it still 

looks good. 

 

3- Using book moves  

For some games like in chess, openning sequences and end game 

sequences are highly stylized. In these situations the performance of a program 

can often be considerably enhanced if it is provided with a list of moves 

(called book moves) that should be made. The use of book moves in the 

openning end game sequences combined with the use of minimax procedure 

for the midgame provides a good example of the way that knowledge and 

search can be combined to produce more effective results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expert Systems 

Expert system breakthrough began in the late 1970’s on the bases of the success 

of a few programs that performed specific tasks almost as well as human expert. 

An expert system refers to a computer system, which exhibits the human 

expert’s intelligence, handles real world problems requiring the expert’s involvement, 

uses a computer model of expert knowledge and expert reasoning and is compatible 

with or even superior to a human expert in performance. 
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The expert system relies on a body of knowledge to perform somewhat difficult 

task usually performed by a human expert.  

An expert system deals successfully with problems for which clear algorithmic 

solutions do not exist. 

Expert systems are practical programs that use heuristic strategies to solve 

specific classes of problems. 

Many expert systems serve the role of an expert advisor to help experts solve 

problems by providing them with useful advice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Most expert systems are composed 

of four parts: 

 

1- The knowledge base which contains the necessary long term memory of facts, 

structures and rules that represent the knowledge about the domain of the 

expertise. 

2- The inference engine which controls the reasoning process of the system, it 

uses the expert knowledge to solve the problem. 

3- A user interface in the form of a communication facility that allows users to 

query the system, supply information and receive advice. 
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SHELL 

Main components of any expert system. 

 



 42 

4- The explanation facility, which provides explanation to justify the expert 

systems recommendations or decisions. Here it helps the end user to feel more 

assured about the actions and enables the developer to follow through the 

operation of the system. 

 

 

General characteristics of expert systems: 

 
Expert systems generally have the following characteristics:- 

 

1- They allow easy modification of the knowledge base (both in adding and 

deleting skills or facts). 

2- Reason heuristically using often-imperfect knowledge to obtain useful 

problem solutions. 

3- Support inspection of their reasoning processes both in presenting 

intermediate steps and in answering questions about the solutions. 

4- Conduct a dialogue with human specialists in a language that is natural to 

them (i.e. expert systems are frequently interactive and use human-oriented 

dialogue). The appearance of the intelligence is enhanced to the extent that the 

program can accept free form input in simple sentences and can state its 

conclusions in the same way. Such a system is said to have a natural language 

interface. 

5- Capability of dealing with uncertainty rather than only clear facts and 

information. 

6- Knowledge base and inference engine constitute separate parts of the system. 

7- Most expert systems have been written for relatively specialized expert level 

domains. 

8- Generally expert systems use rule-based architecture for automated reasoning. 

The mechanisms used by most expert systems are built on rule-based 

architecture. This is because rules are easy to understand and constitute a basic 

construct in logic programming. 

 

 

One of the design principles of rule-based expert systems is that the knowledge 

base is kept separate from the inference engine. This is because: 

 

1- The separation of the knowledge base and the inference engine makes it 

possible to represent knowledge in a more natural fashion (if …. Then….) 

than a program, which embeds this knowledge in a lower level computer 

code. 

2- The separation of the knowledge and control a long with the modularity 

provided by the rules and other structures, allows changes to be made in the 

knowledge base without affecting other parts of the program.  

3- It allows the same control and interface software to be used in a variety of 

systems (the expert system SHELL). The expert system shell has all 
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components of the expert system except that knowledge base and the case-

specific data contain no information. Programmers can use empty shell and 

create a new knowledge base appropriate to another application. 

4- This modularity allows the experimentation with alternative control 

regimes for the same rule-base. 

 

Categories of  Expert System 

Expert systems have been used successfully in diverse problem domains and 

may be classified according to type of tasks for which they have been constructed. 

The basic activities of the expert system can be grouped into the categories shown in 

the following table.  

 

Category Problem Addressed 

Interpretation Inferring situation descriptions from sensor data   

Prediction Inferring likely consequences of given situations 

Diagnosis Inferring system malfunctions from observables   

Design  Configuring objects under constraints   

Planning Designing actions 

Monitoring Comparing observations to expected outcomes 

Debugging Prescribing remedies for malfunctions 

Repair Executing plans to administer prescribed remedies  

Instruction Diagnosing, debugging, and repairing student behavior  

Control Governing overall system behavior 

 

 

The inference process 

To be useful, inference must be controlled. Inference begins with a well-

defined goal, thus reasoning must be goal-directed in some way. Inference 

may be viewed in terms of a tree of possibilities, which provides a 

diagrammatic way of representing the structure of knowledge. 

With rule-based systems, each rule consists of a premise and a conclusion. 

Hence, can construct an AND/OR tree whose nodes are the clauses used in the rule 

and whose branches are arrows connecting the clauses, where :- 

- Clauses joined by an AND connective form an AND node. 

- Clauses joined by an Or connective form an OR node. 

The root of the tree is top-level goal to be proved. To prove the goal, we have to 

traverse part of the tree, as is the case. The parts of the tree that we traverse to prove 

the goal is called the PROOF path. The proof path it self is a sub tree, which is called 

the INFERENCE TREE. 

Different methods of inference traverse the tree in different order :- 
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- In backward chaining, we start at the root of the tree and follow the 

branches, toward the leaves until we find facts in the fact base. 

- In forward chaining, we start from the leaves and work our way toward 

the root until we find a chain of branches that leads to the goal.  

Example  

1- if  A and B then C 

2- if C or D then E. 

 

The inference tree is:- 

 

 

           

 

The inference tree consists of each rule represented as a conclusion with the 

relevant premises nested beneath the conclusion. Node C is a conclusion in the first 

rule and a premise in the second rule.  

 

Rule-Based Expert System 

Control Structures  

Define the way and order in which facts, rules and parts of rules are used. 

The choice of a control structure can enormously affect the success and 

efficiency of a rule-based expert system. Rule based expert systems typically 

need large number of rules about a problem domain in order to approach skilled 

human performance. Hence the choice of control structure is important in such 

system. 

 

Control structures may be divided into the following types:- 

1- Forward chaining. 

2- Backward chaining. 

3- Hybrid control structure. 

 

E 

D C 

A B 
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Backward Chaining 
In a backward chaining the system is provided with a specific goal to prove. To 

prove a goal, backward chaining begins with and focuses on the conclusions of rules. 

The prolog interpreter follows the backward chaining mechanism or goal-directed 

reasoning. 

It gives the goal order top priority and then treats rules and facts order of equal 

importance after that if alternative conclusions are possible, backward chaining can 

try to prove the first, then try to prove the second, if the first fails and so on. 

Backward chaining is a good control structure when there are many more facts 

than final conclusions or goals. 

 

Example: 

   Consider the following rules: 

R1:  goal1:-fact1. 

R2:  goal1:-a,b. 

R3:  goal2(X):-c(X). 

R4:  a:-not (d). 

R5:  b:-d. 

R6:  b:-e. 

R7:  c(2):-not (e). 

R8:  d:-fact2,fact3. 

R9:  e:-fact2,fact4. 

 

Suppose the goals are goal1 and goal2(X) and the facts are fact2 and fact3. 

 

Solution      

The rules will be tried in the following order:- 

1- R1: fails because fact1 is not true. 

2- R2: invokes R4. 

3- R4: invokes R8. 

4- R8: succeeds, hence R4 fails. 

5- R3: invokes R7. 

6- R7: invokes R9. 

7- R9: fails.  Hence R3 succeeds with X=2, i.e. goal2(2) succeeds. 

There are some enhancement of backward chaining that can often improve 

efficiency, these include:- 

1- Cache or enter as facts some or all of the conclusions reached. For instance, once 

we prove conclusion (b) with the preceding rules we could add b as a fact to the 

database, it should be put in front of rules that can prove it, so a subsequent query 

will find it before the rules. 

2- Ask for facts as needed (virtual facts). 
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Implementation of Backward Chaining 
The goal of most expert systems is to reach a diagnosis, assume that this is 

obtained in prolog style by typing the query diagnosis(X), where X describes a 

diagnosis. 

Example: diagnosis(“fuse blown”):-nosie(“pop”). 

One problem is that rules require advance entry of facts (often many facts). 

Hence can use method of facts demanded when needed. Define a predicate (ask) as a 

way to get facts. This predicate has two arguments. The first is a question text to be 

typed out on the screen and the second argument can be a variable to be bound to the 

answer.   

Ask(Q,A):-write(Q), write(“?”), readln(A), assert(asked(Q,A)). 

 

In large rule based expert systems, two important coding techniques are used:- 

1- Coding of input (answers). 

2- Coding of output (questions and diagnosis). 

 

Input coding groups user answers into categories. An important case is questions with 

“yes” or “no” answers, can define two new predicates: affirmative and negative for 

+ve or –ve answers respectively. 

 

affirmative(“yes”). negative(“no”) 

affirmative(“y”). negative(“n”) 

affirmative(“right”). negative(“not”) 

affirmative(“ok”). negative(“impossible”) 

 

Can also define a predicate:  

ask_if(Q):- ask(Q,A), positive_answer(Q,A). 

positive_answer(Q,A):- affirmative(A). 

positive_answer(Qcode,A):- not (negative(A)), not (affirmative(A)), 
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                                            write(“please answer yes or no”), readln(A2),        

retract(asked(Qcode,A)), 

assert(asked(Qcode,A2)),affirmative(A2). 

Ask_if_not(Q):-not(ask_if(Q)). 

  

The predicate (ask_if) will succeed  if the question is answered affirmatively. 

 

Users may not always understand a question, can let them type (?) and give them 

some explanatory text and then give them another chance to answer:- 

ask(Q,A):- asked(Q,A). 

ask(Q,A):- not (asked(Q,A)), write(Q), write(“?”), readln(A2), ask2(Q,A2,A). 

ask2(Q,”?”,A):- explain(Q), ask(Q,A). 

ask2(Q,A,A):- not(A=”?”), assert(asked(Q,A)). 

 

Where explain is some explanatory text. 

Output coding  

1- Can code questions so we need not repeat their text at each mention in the rules. 

This makes rules easier to read and help prevent mistakes. Hence may use a 

predicate “question_code” of two arguments (a code word and a text string for the 

question). 

 

Example : 

    diagnosis (“fuse blown”):- ask_if(“device dead”), ask_if (“lights out”). 

    question_code(“device dead”, “does the devise refuse to do anything”). 

    question_code(“lights out”, “do all lights in the house seem to be off”). 

To handle this, must redefine ask: 

ask(Qcode,A):- asked(Qcode,A). 

ask(Qcode,A):- not(asked(Qcode,A)), question_code(Qcode,Q), write(Q), write(“?”), 

readln(A2), ask2(Q,Qcode,A2,A). 
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ask2(Q,Qcode,”?”,A):- explain(Qcode), ask(Qcode,A). 

ask2(Q,Qcode,A,A):- not(A=”?”), assert(asked(Qcode,A)). 

 

2- Can handle a class of related questions together by giving arguments to output 

codes as in hear(X) to represents a question about hearing a sound X and writing 

a question code rule instead of a fact. 

           Example: question_code(hear(X),X):- write(“did you hear a sound like a”),      

write(X). 

3- Can also code diagnosis which helps when diagnose are provable in many 

different ways. Diagnosis coding request a new top-level predicate that users may 

query instead of diagnosis. 

coded_diagnosis(D):- diagnosis(X), diagnosis_code(X,D). 

 

Forward Chaining 
Often rule-based systems work from just a few facts, but are capable of reaching 

many possible conclusions. Examples are those expert systems that identify an object 

from a description of what you see at a distance or diagnosis systems that tell you 

what to do when the car breaks down from a description of what isn’t working.   

 

Forward Chaining Algorithm 
1- Mark all facts as unused and get a fresh copy of rules. 

2- Until no more unused facts remain, pick the first listed one call it F, pursue it:- 

a- For each rule R (in order) that can match F with a predicate 

expression on its right side, ignoring appearances of F in NOTs:- 

i- Create a new rule just like R except with the 

expression matching F removed, if variables had to be 

bound to make the match, substitute these bindings 

for variables in the rules. 

ii- If you have now removed all of the right side of rule 

R, you have proved a fact, the current left side. Enter 

that left side into the list of facts and mark it 

“unused”. The focus of attention here puts the new 

facts in front of other unused facts. Eliminate from 

further consideration, all rules whose left sides are 

equivalent to the fact just proved. 

iii- Otherwise, if there is still some right side remaining, 

put the new simplified rule in front of the old rule, 

with one exception: if the fact can match other 

expressions in the same rule, put the new rule after the 

old rule. Cross out the old rule, if it is now redundant. 

It is redundant if the old rule always succeeds 

whenever the new rule succeeds, which is true in the 
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case where no variables were bound to make the 

match. 

b- Mark F as used.         

3- For each NOT expression in rules whose argument does not match any used 

fact, add it to the fact list, mark it as unused and redo step 2. Consider the 

expressions in rule order. 

 

Example  

 

R1: goal1:- fact1. 

R2: goal1:- a,b. 

R3: goal2(X):- c(X). 

R4: a:- not(d). 

R5: b:- d. 

R6: b:- e. 

R7: c(2):- not(e). 

R8: d:- fact2,fact3. 

R9: e:- fact2,fact4. 

 

Given facts: fact2 and fact3   

Solution 

1- Start with fact2, matching expressions in R8 and R9. This gives new rules (R10 

placed before R8 and R11 placed before R9):- 

 

The set of the new rules becomes: 

 R1: goal1:- fact1. 

 R2: goal1:- a,b. 

 R3: goal2(X):- c(X). 

 R4: a:- not(d). 

 R5: b:- d. 

 R6: b:- e. 

R7: c(2):- not(e). 

R10: d:- fact3. 

R11: e:- fact4. 

 

2- Takes fact3, R10 succeeds and a new fact d is proved. The set of new rules 

becomes: 

 R1: goal1:- fact1. 

 R2: goal1:- a,b. 

 R3: goal2(X):- c(X). 

 R4: a:- not(d). 

 R5: b:- d. 

 R6: b:- e. 

 R7: c(2):- not(e). 

 R11: e:- fact4. 

      

3- Fact d is used next, R5 now succeeds and give a new fact b, R5 and R6 are 

removed. The set of new rules becomes: 

 R1: goal1:- fact1. 

 R2: goal1:- a,b. 
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 R3: goal2(X):- c(X). 

 R4: a:- not(d). 

 R7: c(2):- not(e). 

 R11: e:- fact4. 

4- Fact b matches something in R2 giving:-  

  R12: goal1:-a. , rule R2 can be eliminated. The current set of rules:- 

 R1: goal1:- fact1. 

 R12: goal1:- a. 

 R3: goal2(X):- c(X). 

 R4: a:- not(d). 

 R7: c(2):- not(e). 

          R11: e:- fact4. 

5- Hence no more facts to pursue, takes the rules with NOTs. 

6-  Fact d is true, so R4 can never succeed. But fact e has not been proved. Hence 

add not(e) to the list of facts. 

7- This matches the right side of R7, hence c(2) is a fact too. Eliminate R7, The 

current set of rules:- 

 R1: goal1:- fact1. 

 R12: goal1:- a. 

 R3: goal2(X):- c(X). 

 R4: a:- not(d). 

 R11: e:- fact4. 

8- 8- This matches the only expression on the right side of R3 when X=2 and 

hence goal2(2) is a fact, we can’t eliminate R3 now because a variable had to be 

bound to make the match. The current set of rules:- 

 R1: goal1:- fact1. 

 R12: goal1:- a. 

 R3: goal2(X):- c(X). 

 R4: a:- not(d). 

 R11: e:- fact4. 
 

  Example  

R1: top(X,Y,Z):- side(Z,W,Y,X). 

R2: side(A,B,7,D):- data(A,0,B),data(A,D,1). 

 

Facts: data(3,0,1),data(3,2,1). 

 

Solution 

 

Cycle1: use fact data(3,0,1) 

R1: top(X,Y,Z):- side(Z,W,Y,X). 

R2: side(A,B,7,D):- data(A,0,B),data(A,D,1). 

R3: side(3,1,7,D):- data(3,D,1). 

 

Obtain fact side(3,1,7,0). 

 

Cycle2: use fact side(3,1,7,0) 

R1: top(X,Y,Z):- side(Z,W,Y,X). 

R2: side(A,B,7,D):- data(A,0,B),data(A,D,1). 

R3: side(3,1,7,D):- data(3,D,1). 
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Obtain fact top(0,7,3). 

 

Cycle3: use fact top(0,7,3) 

No change 

 

Cycle4: use fact data(3,2,1) 

R1: top(X,Y,Z):- side(Z,W,Y,X). 

R2: side(A,B,7,D):- data(A,0,B),data(A,D,1). 

R4: side(3,B,7,2):- data(3,0,B). 

R3: side(3,1,7,D):- data(3,D,1). 

 

Obtain fact side(3,1,7,2). 

 

Cycle5: use fact side(3,1,7,2) 

R1: top(X,Y,Z):- side(Z,W,Y,X). 

R2: side(A,B,7,D):- data(A,0,B),data(A,D,1). 

R4: side(3,B,7,2):- data(3,0,B). 

R3: side(3,1,7,D):- data(3,D,1). 

 

Obtain fact top(2,7,3). 

 

Cycle6: use fact top(2,7,3) 

No change, and stop. 

 

Example: consider the following rules:- 

R1: a:- v,t. 

R2: a:- b,u,not(t). 

R3: m(X):- n(X),b. 

R4: b:-c. 

R5:- t:- r,s. 

R6: u:- v,r. 

Facts: r,v,c,n(12). 

 

Solution 

 

Cycle1: use fact r 

R1: a:- v,t. 

R2: a:- b,u,not(t). 

R3: m(X):- n(X),b. 

R4: b:-c. 

R7:- t:- s. 

R8: u:- v. 

 

Remove R5 and R6. 

Remaining facts: v,c,n(12). 

 

Cycle2: use fact v 

R9: a:- t. 

R2: a:- b,u,not(t). 
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R3: m(X):- n(X),b. 

R4: b:-c. 

R7:- t:- s. 

 

Remove R1 and R8 and obtain fact u 

Remaining facts: u,c,n(12). 

 

Cycle3: use fact u 

R9: a:- t. 

R10: a:- b,not(t). 

R3: m(X):- n(X),b. 

R4: b:-c. 

R7:- t:- s. 

 

Remove R2 

Remaining facts: c,n(12). 

 

Cycle4: use fact c 

R9: a:- t. 

R10: a:- b,not(t). 

R3: m(X):- n(X),b. 

R7:- t:- s. 

 

Remove R4 and obtain b as a fact 

Remaining facts: b,n(12). 

 

Cycle5: use fact b 

R9: a:- t. 

R11: a:- not(t). 

R12: m(X):- n(X). 

R7:- t:- s. 

 

Remove R10 and R3. 

Remaining facts: n(12). 

 

Cycle6: use fact c(12) 

R9: a:- t. 

R11: a:- not(t). 

R12: m(X):- n(X). 

R7:- t:- s. 

 

Obtain fact m(12) 

Remaining facts: m(12). 

Cycle7: use fact m(12) 

No change. 

 

Now consider not 

Since t is not a fact then obtain a new fact not(t). 

 

Cycle8: use fact not(t) 
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R12: m(X):- n(X). 

R7:- t:- s. 

 

Remove R9 and R11 and obtain a as a new fact 

Remaining facts: a. 

 

Cycle9: use fact a 

  No change, and stop. 
 

Implementing Forward Chaining  

1- Since pure forward chaining repeatedly finds and crosses out expressions on 

the right sides of rules, it would help to express the rule right side as a list and 

hence make use of “member” and “delete” list processing predicates to rewrite 

rules. Can do this by making rules a kind of a fact and defining a predicate say 

“rule” with two arguments:- 

- The first argument is the left side (conclusion) of the original rule. 

- The second argument is a list of predicate expressions on the right side 

of the rule. 

 

Example:  

a:- b.                                    becomes  rule(a,[b]).  

c:- d,e,f.                               becomes  rule(c,[d,e,f]).        

g(X):- h(X,Y),not(f(Y))     becomes  rule(g(X),[h(X,Y),not(f(Y))]).  
 

2- Forward chaining requires that facts are identified and be distinguished from 

rules. This may be realized by making each fact an argument to a predicate 

“fact” (with a single argument). 

To implement focus of attention forward chaining and prevent fact reuse, can 

delete facts once considered by the system and copy them into a predicate “usedfact” 

with one argument. 

 

3- To make every fact F and find the rules whose right sides can match it so as to 

derive new rules and possibly facts, the goal of the programming may be 

written as:- 

 

Forward:- done. 

Forward:-fact(F),not(pursuit(F)),assertz(usedfact(F)), 

retract(fact(F)),forward. 

 

To make sure that all possible conclusions are reached such that forward 

chaining continues until there are no more facts:- 

done:- not(fact(F)). 

 

The pursuit predicate can cycle through the rules:- 
  

pursuit(F):- rule(L,R),rule_pursuit(F,L,R),fail.    

 

Hence the revised code:- 

 

Forward:- done. 
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Forward:- fact(F),not (pursuit(F)),assertz(usedfact(F)), 

retract(fact(F)),forward.       

pursuit(F):- rule(L,R),rule_pursuit(F,L,R),fail. 

rule_pursuit(F,L,R):- member(F,R),delete(F,R,Rnew),retract(rule(L,R)), 

new_rule(L,Rnew). 

new_rule(L,[]):- not(fact(L)),asserta(fact(L)). 

new-rule(L,R):- not(R=[]),asserta(rule(L,R)). 

 

Note: The above solution assumes that rules do not contain NOTS. 

 

Hybrid Control Structure 

These are hybrids of forward and backward chaining. The most common is the 

rule cycle hybrid. 

 

Rule Cycle Hybrid 

1- Cycle through the rules repeatedly until no new facts are found, on a cycle, 

ignoring rules with NOTS:- 

  For each cycle, consider the rules in order:- 

For each rule R, treat its right side as a query about the facts (without 

using any other rules via backward chaining), if R succeeds, add its left 

side (with substitution bindings made) as a fact at the front of the list of 

facts. And then eliminate from further consideration all rules whose 

left sides are equivalent to this new fact, if the rule left side has 

variables, do this for every possible way of binding those variables.         

2- Repeat the previous step with all the original rules, taking also the NOT whose 

arguments are not facts. 

 

Example  

 

R1: goal1:- fact1. 

R2: goal1:- a,b. 

R3: goal2(X):- c(X). 

R4: a:- not(d). 

R5: b:- d. 

R6: b:- e. 

R7: c(2):- not(e). 

R8: d:- fact2,fact3. 

R9: e:- fact2,fact4. 

Given facts: fact2 and fact3. 
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Solution   

Cycle1: Rules R1,R2,R3,R5,and R6 are tried none succeed. R4 and R7 have NOTs. 

R8 is executed, fact d is obtained as a fact and hence asserted, R8 is 

removed, R9 fails. 

Cycle2: R5 is executed, fact b is asserted. Both R5 and R6 are eliminated. Now the 

new rules are: 

R1: goal1:- fact1. 

R2: goal1:- a,b. 

R3: goal2(X):- c(X). 

R4: a:- not(d). 

R7: c(2):- not(e). 

R9: e:- fact2,fact4. 

 

 Cycle3: No rule is executed. 

 Next consider all rules including NOTs. 

 Cycle4: R7 is executed (e is not a fact), R4 fails because d is a fact. Now as a result 

of R7, c(2) is a fact, eliminate R7. 

 Cycle5: R3 is executed with X=2 and goal2(2) must be a fact, R3 not eliminated 

because goal2(2) is more specific than goal2(X).  

Can stop now if we want to reach a goal.   

 

Note: This algorithm will only work with restriction that no not(P) occurs in the right side of a rule 

before a rule having P as its left side.  

 

Partitioned Control Structure 

In large expert systems (where there are thousand or more rules), rules can 

interrelate in many ways, so a good practice is to divide rules into groups, modules, 

partitions for which members of each group have minimal interactions with members 

of other groups. 

Each group may be considered as a separate rule-based expert system that may 

call another. This idea is called partitioning or context limiting control structure. To 

implement such control structure we normally use one other partition of rules, a 

“startup” partition to look at key evidence and decide on the partition most relevant to 

the problem. Also partitions can choose to transfer control to other partitions, if say 

none of their rules succeed. 
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A good example is the diagnosis of malfunctioning car: electrical problems, 

transmission, fuel system, car body,…. 

 

Meta Rules 

Specification of control may be itself implemented by a rule-based system. Meta 

rules are just rules whose domain of knowledge is the operation of another rule-based 

system. They are a kind of heuristics. An example is rules to load partitions, also rules 

for rule ordering. Meta rules are in fact rules that treat other rules as data usually by 

choosing the one to use next. 

Example: prefer(L1,R1,L2,R2):-length(R1,Len1),length(R2,Len2),Len1<Len2. 

This rule says that a rule with shorter right side is preferred. 

Meta rules permit flexible control adjustable to the processing control and hence 

enhance general-purpose control structures. This means that Meta rule 

implementation is different for backward, hybrid and forward chaining. 

The big advantage of Meta rules is their flexibility and modifiability, which 

allows precise control of a rule-based system.   

Decision Lattices 

Choosing a good sequence for rules can be important and hard. However 

computers use storage structures besides sequences. Rules can be organized in a 

hierarchy that is called decision lattice. Therefore decision lattices do a restricted but 

very efficient kind of reasoning (a kind of classification). Decision lattices are useful 

for simple expert systems. Consider the expert system to diagnose the malfunction of 

an appliance. 
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Decision lattices have several advantages: 

1- Implementation is easy, can use pointers to indicate where to go next. 

2- They can easily support portioning of expert systems. 

3- They need not explicitly pose questions but can examine buffer contains. 

 

However decision lattices have disadvantages:- 

1- They can’t reason efficiently because they don’t permit backtracking or use of 

variables. 

2-  They are difficult to modify and debug since later questions assume certain 

results to earlier questions. 

3- They may be hard to build because at each point, you must try to determine 

the best question to ask   

 

Steps to Build Decision Lattices 

1- For every top-level rule, repeatedly substitute in the definitions for all 

intermediate predicates on its right side until no more remains, if there is more 

than one rule proving an intermediate predicate, make multiple versions of the 

rule, one for each possibility. 
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2- Examine the right sides of the new rules pick a predicate expression that 

appears unnegated in some rules and negated in approximately equal number 

(the more rules it appears in the better and the more even. The spilt the better). 

Call this the partitioning predicate expression and have the first question to the 

user to ask about it. Create branches from the starting node to new nodes; one 

corresponding to each possible answer. Partition the rules into groups 

corresponding to the answers and associate each group with one node (copies 

of rules not mentioning the predicate expression should be put into every 

group. Remove all occurrences of the expression and its negation from rules. 

Within each rule group, apply this step recursively choosing a predicate that 

partitions the remaining rules in the group best. Repeat this until no more 

partitioning is possible. 

 

Example 

r:- a,d,not(e).         

s:- not(a),not(c),q. 

t:- not(a),p. 

u:- a,d,e. 

u:- a,q. 

v:- not(a),not(b),c. 

p:- b,c. 

p:- not(c),d. 

q:- not(d). 

 

 

 

Solution 

After step1: 

r:- a,d,not(e).         

s:- not(a),not(c),not(d). 
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t:- not(a),b,c. 

t:- not(a),not(c),d. 

u:- a,d,e. 

u:- a,not(d). 

v:- not(a),not(b),c. 

 

After step2: 

r:- a,d,not(e).             s:- not(a),not(c),not(d). 

u:- a,d,e.                    t:- not(a),b,c. 

u:- a,not(d).               t:- not(a),not(c),d.  

                                  v:- not(a),not(b),c. 

The first set will be used whenever the fact ‘a’ is true and the second will be 

used whenever the fact ‘a’ is false. In the first group ‘d’ appears in all rules, so it can 

be used as the partitioning expression, similarly ‘c’ can partition the second group. 

This gives four rule groups or sub databases. 

   

r:- not(e).                    a,d  rule database 

u:- e.                            

 

u. } a,not(d) rule database. 

             

t:- b. 

v:- not(b).                     not(a),c  rule database.  

 

s:- not(d). 

t:-d.                          not(a),not(c) rule database. 

 

Three groups have two rules and hence can be portioned further to give a 

unique answer. 

 

Implementation 
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To implement a decision lattice: 

1- Give code names to every node in the decision lattice, including the starting 

nodes. 

2- Define a successor predicate of two arguments that gives conditions for one 

node to be followed by another node. 

Example 

successor(N1,N2):- ask_if(“a”). 

successor(N1,N3):- ask_if_not(“a”). 

3- Define a diagnosis predicate as follows:- 

 diagnosis(N,N):- not(successor(N,_)). 

 diagnosis(D,Start):- successor(Start,X),diagnosis(D,X). 

 

Uncertainty 

Probability is used to model degrees of uncertainty in the world. A probability is 

the fraction of the time we expect something will be true. Rules in rule bases systems 

can be:- 

1- Absolute, when things are absolutely true on the right side of a rule then the 

conclusion on the left side is absolutely true. 

2-  Can be uncertain or probabilistic: inference and facts can be some degree 

uncertain, this is particularly true when facts represent evidence and rules 

represent hypotheses explaining the evidence. Examples are the diagnosis 

rules for a car repair system. 

Usually probability is added as a last argument in a prolog fact. An example: 

battery(“dead”,0.03). 

Which implies that a battery in a randomly picked car is dead 3% of the time. 

Rules may be modified in a similar way: 

 battery(“dead”,0.3):-ignition(“won’t start”,1.0). 

Which says that 20% of the time when the car won’t start it is true the battery is dead. 
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Probability Issues 

1- OR Combination Issue 

Different rules of inference may be written of the same fact from different 

sources of evidence, each with its own probability. So if 50% of the time when the 

radio won’t start, the battery is dead:  battery(“dead”,0.5):- radio(“won’t play”,1.0).  

Hence the reason about whether the battery is dead, we should gather all the 

relevant rules and facts. Then somehow, must combine the probabilities from facts 

and successful rules to get accumulative property that the battery is dead. This is 

called the OR combination. 

2- Rule Fact Combination Issue 

Rules can be uncertain for a different reason than facts, in the preceding 

example, for the likely hood that the battery is dead when ignition won’t start (which 

would be true if the engine is flooded). Then the probability that the battery is dead is 

less than the rule probability 0.2, because of the probability of the rule right side (i.e. 

the fact or evidence). Hence the probability of the rule as a whole must be combined 

with the probabilities of the facts on the right side. This is called rule probability with 

evidence probability combination issue. 

 

3- AND Combination Issue 

  Rules can have several predicate expressions on their right sides and if each 

has a probability, we must somehow, combine these probabilities to get a total 

probability for the right side. 

Combine Evidence 

Assuming statistical independence: 

This is assuming that different probabilities are probabilistically independent, 

i.e. occurrence of one kind of event does not make another kind any more or less 

likely. For example: 

1- If a quarterly report on economic indicators says that interest rates will go up 

this year, then the stock market index will go down tomorrow with 

probability 0.7. 

2- If the stock market index has gone up for three straight day, it will go down 

tomorrow with probability 0.4. 
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AND Combination 

In general, if events A,B,C,…. are independent, then:- 

P[A and B and C,and …]=P(A)*P(B)*P(C)*…… where P(A)= probability of A. 

 

Example  

Suppose we have the following rules, facts:- 

F=a,b,c. 

Given that P(a)=0.7, P(b)=1, P(c)=0.95 and rule probability=0.8. then the total 

probability of F=0.7*1*0.95*0.8=0.532. 

 

OR Combination 

P[A or B or C,or …]=1-[(1-P(A))*(1-P(B))*(1-P(C))*……  

Example  

Suppose we have the following rules, facts:- 

F=a or b or c. 

Given that P(a)=0.7, P(b)=1, P(c)=0.95 and rule probability=0.8. then the total 

probability of F=1-[(1-0.7)*(1-1)*(1-0.95)*(1-0.8) 

                         =1-[0.3*0*0.05*0.2] 

                         =1-0=1    

 

 


