
OPERATING SYSTEMS

Chapter 1
Introduction

What is an Operating System?

An operating system (OS) is a program that manages a computer’s
hardware.

It also provides a basis for application programs and acts as an
intermediary between the computer user and the computer hardware.

As a manager, the operating system has two basic functions:

OS oversees all hardware resources and allocates them to user and
applications as needed.

Performs many low-level tasks on behalf of users and application
programs

Operating Systems Types

• Mainframe OS

• Server OS

• Multiprocessor OS

• PC OS

• Embedded OS

• Real-Time OS

• Smart Card OS

The Modern Computer System

A computer system consists of hardware, system programs, and
application programs.

Computer System Components

1. Hardware – provides basic computing resources (CPU, memory, I/O
devices).

2. Operating system – controls and coordinates the use of the hardware
among the various application programs for the various users.

3. Applications programs – define the ways in which the system resources are
used to solve the computing problems of the users (compilers, database
systems, video games, business programs).

4. Users (people, machines, other computers).

Computer Hardware

Computer Hardware
• I/O devices and the CPU can execute concurrently

• A number of device controllers connected through a common bus that
provides access to shared memory

• Each device controller is in charge of a particular device type

• Each device controller has a local buffer

• CPU moves data from/to main memory to/from local buffers

• Device controller communicates with CPU by using an interrupt

Computer-System Operation
For a computer to start running—for instance, when it is powered up or

rebooted—it needs to have an initial program to run.

This initial program, or bootstrap program, is stored within the
computer hardware in read-only memory (ROM) or electrically
erasable programmable read-only memory (EEPROM), known by the
general term firmware.

It initializes all aspects of the system, from CPU registers to device
controllers to memory contents.

Computer-System Operation

The bootstrap program must locate the operating-system kernel
and load it into memory.

Once the kernel is loaded and executing, it can start providing
services to the system and its users.

Once this phase is complete, the system is fully booted, and the
system waits for some event to occur.

Interrupts
• If there are no processes to execute, no I/O devices to service, and no users to

whom to respond, an operating system will sit quietly, waiting for something
to happen.

• Events are almost always signaled by the occurrence of an interrupt or a trap.

• A trap (or an exception) is a software-generated interrupt caused either by an
error (for example, division by zero or invalid memory access) or by a
specific request from a user program that an operating-system service be
performed.

• The occurrence of an event is usually signaled by an interrupt from either
the hardware or the software.

• Hardware may trigger an interrupt at any time by sending a signal to the
CPU, usually by way of the system bus.

• Software may trigger an interrupt by executing a special operation called a
system call

Interrupts
When the CPU is interrupted, it stops what it is doing and immediately transfers

execution to a fixed location. The fixed location (interrupt vector) usually
contains the starting address where the service routine for the interrupt is
located.

The interrupt service routine executes; on completion, the CPU resumes the
interrupted computation.

Interrupt architecture must save the address of the interrupted Instruction.

Thus, the operating system is interrupt driven!

Storage Structure

• Main memory – only large storage media that the CPU can access directly. It is

Random access and volatile!

• Secondary storage – an extension of main memory that provides large

nonvolatile storage capacity.

• The disk surface is logically divided into tracks, which are subdivided into

sectors!

• The disk controller determines the logical interaction between the device and the

computer

OS Concepts

Process is a running program, for each process there is address space, which

is a list of memory locations. Also, associated with each process is a set of

resources.

Processes

A process tree. Process A created two child

processes, B and C. Process B created three child

processes, D, E, and F.

Address Space
• Each computer has RAM to store executing programs.

• In a very simple OS, only one program at a time is in memory.

• More sophisticated OS allows multiple programs to be in RAM,

RAM for Multiprogramming

A multiprogramming system with three jobs in memory.

Operating System Structure

Multiprogramming is needed for efficiency, Single user cannot keep CPU
and I/O devices busy at all times.

Multiprogramming organizes jobs (code and data) so the CPU always has
one to execute.

One job selected and run via job scheduling!

When it has to wait (for I/O for example), OS switches to another job.

Timesharing (multitasking) is a logical extension in which the CPU
switches jobs so frequently that users can interact with each job while

it is running, creating interactive computing.

Overview

Scheduling of this kind is a fundamental operating-system
function.

All computer resources are scheduled before use.

The CPU is, of course, one of the primary computer
resources. Thus, its scheduling is central to operating-
system design.

CPU Scheduling

CPU Scheduling
When more than one process runs on the system the OS decides how and

when a process will use the CPU. Hence, the name is also CPU

Scheduling. The OS:

•Allocates and deallocates processor to the processes.

•Keeps record of CPU status.

Certain algorithms used for CPU scheduling are as follows:

•First Come First Serve (FCFS)

•Shortest Job First (SJF)

•Round-Robin Scheduling

•Priority-based scheduling.

Scheduling Algorithms
1) First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first-
served (FCFS) scheduling algorithm.

With this scheme, the process that requests the CPU first is allocated
the CPU first.

The implementation of the FCFS policy is easily managed with a
FIFO queue. When a process enters the ready queue, its PCB is
linked onto the tail of the queue. When the CPU is free, it is
allocated to the process at the head of the queue. The running process
is then removed from the queue.

On the negative side, the average waiting time under the FCFS policy
is often quite long.

EX: Consider the following set of processes that arrive at time 0, with
the length of the CPU burst given in milliseconds:

Process Burst Time

P1 24

P2 3

P3 3

Processes Arrival
Time

Burst
Time

Complete time Turnaround
time

Waiting time

P1 0 24

P2 0 3

P3 0 3

24

P1 ` P2 P3

0 24 27 30

27

30

24

27

30

0

24

27

AV= 51/3=17

<P1, P2, P3>

EX: Consider the following set of processes that arrive at 0

times, with the length of the CPU burst given in

milliseconds:

Process Burst Time

P2 3

P3 3

P1 24

Processes Arrival
Time

Burst
Time

Complete time Turnaround
time

Waiting time

P2 0 3

P3 0 3

P1 0 24

3

P2 ` P3 P1

0 3 6 30

6

30

3

6

30

0

3

6

AV= 9/3=3

<P2, P3, P1>

EX: Consider the following set of processes that arrive at different
times, with the length of the CPU burst given in milliseconds:

Process Arrival time Burst Time

P1 3 3

P2 1 3

P3 5 24

Processes Arrival
Time

Burst
Time

Complete time Turnaround
time

Waiting time

P1 3 3

P2 1 3

P3 5 24

7

P2 ` P1 P3

1 4 7 31

4

31

4

3

26

1

0

2

AV= 3/3=1

<P2, P1, P3>

2) Shortest-Job-First Scheduling

This algorithm associates with each process the length of the process’s

next CPU burst. When the CPU is available, it is assigned to the

process that has the smallest next CPU burst. If the next CPU bursts

of two processes are the same, FCFS scheduling is used to break the

tie.

EX: Consider the following set of processes that arrive at 0 times,
with the length of the CPU burst given in milliseconds:

Process Arriverl time Burst Time

P1 0 6

P2 0 8

P3 0 7

P4 0 3

Processes Arrival
Time

Burst
Time

Complete time Turnaround
time

Waiting time

P1 0 6

P2 0 8

P3 0 7

P4 0 3

9

24

16

9

24

16

3

16

9

AV= 28/4=7

<P4, P1, P3, P2>

P4 P1 P3 P2

0 3 9 16 24

3 3 0

EX: Consider the following set of processes that arrive at different
times, with the length of the CPU burst given in milliseconds:

Process Arriverl time Burst Time

P1 0 6

P2 5 8

P3 4 7

P4 2 3

Processes Arrival
Time

Burst
Time

Complete time Turnaround
time

Waiting time

P1 0 6

P2 5 8

P3 4 7

P4 2 3

6

24

16

6

19

12

0

11

5

AV= 20/4=5

<P1, P4, P3, P2>

P1 P4 P3 P2

0 6 9 16 24

9 7 4

The SJF scheduling algorithm is provably optimal, in that it gives the

minimum average waiting time for a given set of processes. Moving a short

process before a long one decreases the waiting time of the short process

more than it increases the waiting time of the long process. Consequently,

the average waiting time decreases.

The real difficulty with the SJF algorithm is knowing the length of the next

CPU request. It cannot be implemented, there is no way to know the length

of the next CPU burst. One approach to this problem is to try to

approximate SJF scheduling.

3) Priority Scheduling

A priority is associated with each process, and the CPU is allocated to the process
with the highest priority. Equal-priority processes are scheduled in FCFS order.

Priority scheduling can be either preemptive or non-preemptive. When a process
arrives at the ready queue, its priority is compared with the priority of the
currently running process.

A preemptive priority scheduling algorithm will preempt the CPU if the priority of
the newly arrived process is higher than the priority of the currently running
process.

A non-preemptive priority scheduling algorithm will simply put the new process at
the head of the ready queue.

Example

Consider the following set of processes that arrive at time 0, with the length

of the. CPU-burst time given in milliseconds: If the processes arrive in the

order P1, · · ·, P4, schedule these processes using priority scheduling:

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 5 2

Processes Priority Arrival
Time

Burst
Time

Complete
time

Turnaround
time

Waiting time

P1 3 0 10

P2 1 0 1

P3 4 0 2

P4 2 0 5

16

1

18

16

1

18

6

0

16

AV= 23/4=5.75

<P2, P4, P1, P3>

P2 P4 P1 P3

0 1 6 16 18

6 6 1

Example

Consider the following set of processes that arrive at different time, with

the length of the. CPU-burst time given in milliseconds: If the processes

arrive in the order P1, · · ·, P4, schedule these processes using priority

scheduling:

Process Priority Arrival Time Burst Time

P1 7 2 10

P2 1 1 1

P3 11 4 2

P4 3 3 5

Process Priority Arrival
Time

Burst
Time

Complete
time

Turnaround
time

Waiting
time

P1 7 2 10

P2 1 1 1

P3 11 4 2

P4 3 3 5

12

2

19

10

1

15

0

0

13

AV= 22/4=5.5

<P2, P1, P4, P3>

P2 P1 P4 P3

1 2 12 17 19

17 14 9

A major problem with priority scheduling algorithms is
indefinite blocking, or starvation.

A process that is ready to run but waiting for the CPU can be
considered blocked. A priority scheduling algorithm can
leave some low priority processes waiting for a long time. In
a heavily loaded computer system, a steady stream of higher-
priority processes can prevent a low-priority process from
ever getting the CPU.

A solution to the problem of indefinite blocking of low-priority
processes is aging.

Aging involves gradually increasing the priority of processes
that wait in the system for a long time.

4) Round-Robin Scheduling
The round-robin (RR) scheduling algorithm is designed especially for

timesharing systems. It is similar to FCFS scheduling, but preemption is
added to enable the system to switch between processes. A small unit of time
called a time quantum or time slice, is defined.

Example

Consider the set of 3 processes that arrived at time 0 and burst time are given

below-If the CPU scheduling policy is Round Robin with time quantum = 4 unit,

calculate the average waiting time.
Process Burst Time

P1 24

P2 3

P3 3

Processes Arrival
Time

Burst
Time

Complete time Turnaround
time

Waiting time

P1 0 24

P2 0 3

P3 0 3

30

7

10

30

7

10

6

4

7

AV= 17/3=5.6

<P1, P2, P3>

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Example
Consider the set of 5 processes whose arrival time and burst time are given in

table below. If the CPU scheduling policy is Round Robin with time

quantum = 2 unit, calculate the average waiting time.

Process Arrival time Burst time

P1 0 5

P2 1 3

P3 2 1

P4 3 2

P5 4 3

Processes Arrival
Time

Burst
Time

Complete
time

Turnaround
time

Waiting time

P1 0 5

P2 1 3

P3 2 1

P4 3 2

P5 4 3

AV= 27/5=5.4

<P1, P2, P3,P3,P4,P5,P1,P2,P5,P1 >

P1 P2 P3 P4 P5 P1 P2 P5 P1

0 2 4 5 7 9 11 12 13 14

14

12

7

143

11

3

9

8

2

/
1/
0/
0/
1/

1

0

/
/

/ 0

0/

5

13

4

9

2

6

Example
Consider the set of 5 processes whose arrival time and burst time are given in

table below. If the CPU scheduling policy is Round Robin with time quantum

= 4 unit, calculate the average waiting time.

Process Arrival time Burst time

P1 0 4

P2 5 5

P3 2 2

P4 3 1

P5 4 6

Processes Arrival
Time

Burst
Time

Complete
time

Turnaround
time

Waiting
time

P1 0 4

P2 5 5

P3 2 2

P4 3 1

P5 4 6

AV=

18/5=3.6

P1 P3 P4 P5 P2 P5 P2

0 4 6 7 11 15 17

18

4

18

7

4

13

4

6

2

/
1/
0/
0/
2/

0/

/ 0

0

6

17

4

13

3

7

0

Preemptive Scheduling
CPU-scheduling decisions may take place under the following four

conditions:

1. When a process switches from the running state to the waiting state
(for example, as the result of an I/O request).

2. When a process switches from the running state to the ready state
(for example, when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for
example, at completion of I/O)

4. When a process terminates.

When scheduling takes place only under conditions 1 and 4, we say
that the scheduling scheme is nonpreemptive. Otherwise, it is
preemptive.

Under nonpreemptive scheduling, once the CPU has been allocated to
a process, the process keeps the CPU until it releases the CPU either
by terminating or by switching to the waiting state.

Example

Consider the set of 5 processes whose arrival time and burst time are given
below- If the CPU scheduling policy is SJF preemptive, calculate the average
waiting time and average turn around time.

Process Arrival time Burst time

P1 3 1

P2 1 4

P3 4 2

P4 0 6

P5 2 3

Processes Arrival
Time

Burst
Time

Complete
time

Turnaround
time

Waiting
time

P1 3 1

P2 1 4

P3 4 2

P4 0 6

P5 2 3

AV= 19/5=3.8

P4 P2 P1 P2 P3 P5 P4

0 1 3 4 6 8 11 16

4

6

16

1

5

4

1

2

/
2/
0/
5/
0/

0/

/ 0

0

8

11

16

9

10

6

0

Example

Consider the set of 6 processes whose arrival time and burst time are
given below- If the CPU scheduling policy is preemptive SJF,
calculate the average waiting time and average turn around time.

Process Arrival time Burst time

P1 0 7

P2 1 5

P3 2 3

P4 3 1

P5 4 2

P6 5 1

Processes Arrival
Time

Burst
Time

Complete
time

Turnaround
time

Waiting time

P1 0 7

P2 1 5

P3 2 3

P4 3 1

P5 4 2

P6 5 1

P1 P2 P3 P4 P3 P6 P5 P2 P1

0 1 2 3 4 6 7 9 13 19

19

13

4

19

12

4

7

1

/
4/

/
0/
0/

0

6

6

9

1

5

0

3

12

AV= 24/6=4

7 2 1

/
02

/ 0

/

/ 0

Example
Consider the following set of processes that arrive at different time with the
length of the CPU burst given in milliseconds: Count the average waiting
time under the Preemptive SJF policy

.

.

.

Process ID Arrival time Burst time

P1 0 20

P2 15 25

P3 30 10

P4 45 15

Processes Arrival
Time

Burst
Time

Complete
time

Turnaround
time

Waiting time

P1 0 20

P2 15 25

P3 30 10

P4 45 15

P1 P2 P3 P2 P4

0 20 30 40 55 70

20

55

70

20

40

10

15

0

/
15/

0/

/

0/

0

0

40

25 10

0

AV= 25/4= 6.2

Example
Consider the following set of processes that arrive at different time with the
length of the CPU burst given in milliseconds: Count the average waiting
time under the Preemptive Priority policy

.

Process Arrival time Burst time

P1 0 8

P2 1 2

P3 2 4

P4 3 1

P5 4 6

P6 6 5

P7 10 1

Processes Priority Arrival
Time

Burst
Time

Complet
e time

Turnaroun
d time

Waitin
g time

P1 3 0 8 15 15 7

P2 4 1 2 17 16 14

P3 4 3 4 21 18 14

P4 5 4 1 22 18 17

P5 2 5 6 12 7 1

P6 6 6 5 27 21 16

P7 1 10 1 11 1 0

P1 P5 P7 P5 P1 P2 P3 P4 P6

0 5 10 11 12 15 17 21 22 27

3

0

/

/
/

1/

/

0

0

0

AV= 69/7=9.8

/
/ 0

0/

0/

Example
Consider the following set of processes that arrive at different time with the
length of the CPU burst given in milliseconds: Count the average waiting time
under the Preemptive SJF policy

.

.
Process Arrival time Burst time

P1 0 9

P2 1 4

P3 2 9

Processes Arrival
Time

Burst
Time

Complete
time

Turnaround
time

Waiting time

P1 0 9

P2 1 4

P3 2 9

P1 P2 P1 P3

0 1 5 13 22

13

5

13

4

20

0

11

/ 8

22

4

AV= 15/3=5

/ 0

/ 0

0/

Example
Consider the following set of processes that arrive at different times, with the
length of the CPU burst given in milliseconds: Count the average waiting time
using SJF scheduling.

Process ID Arrival Time Burst Time
P1 15 2

P2 13 8

P3 0 9

P4 1 2

Processes Arrival

Time

Burst

Time

Complete

time

Turnaround

time

Waiting

time

P0 15 2 23 8 6

P1 13 8 21 8 0

P2 0 9 9 9 0

P3 1 2 11 10 8

AV= 14/4=3.5

P2 P3 P1 P0

0 9 11 13 21 23

Example (Interrupts)
Count the average waiting time (A.W.T) for executing the following
processes using:

Round Robin (RR) scheduling when the time quantum is 5 and an interrupt
is occurred at time 6 for 3 milliseconds.

Process ID Arrival Time Burst Time
P1 2 5

P2 3 13

P3 0 8

P4 5 4

Processes Arrival

Time

Burst

Time

Complete

time

Turnaround

time

Waiting

time

P1 2 5 13 11 6

P2 3 13 33 30 17

P3 0 8 25 25 17

P4 5 4 22 17 14

4

8

/

/
3

AV= 54/4=13.5

0/
/

/ 0/

/ 0

P3 P1 P1 P2 P4 P3 P2

0 5 6 9 13 18 22 25 33

0

Enhancing performance of OS

Caching, Buffering, and Spooling

Differences between Caching, Buffering and Spooling:
Spooling :

• It’s a process of placing data in a temporary working area for another program

to process. E.g.: Print spooling and Mail spools etc.

• When there is a resource (like a printer) to be accessed by two or more

processes(or devices), there spooling comes in handy to schedule the tasks.

Data from each process is put on the spool (print queue) and processed in

FIFO(first in first out) manner.

• After writing the data on the spool, the process can perform other tasks. And

printing process operates separately.

• Without spooling, the process would be tied up until the printing is finished.

Buffering :
• Preloading data into a reserved area of memory (the buffer).

• It temporarily stores input or output data in an attempt to better match the
speeds of two devices such as a fast CPU and a slow disk drive.

• The buffer may be used in between when moving data between two processes
within a computer. Data is stored in a buffer as it is retrieved from one
process or just before being sent to another process.

Caching :

• Caching transparently stores data in the component called Cache, so that
future request for that data can be served faster.

• A special high-speed storage mechanism. It can be either a reserved section of
main memory or an independent high-speed storage device.

• The data that is stored within a cache might be values that have been
computed earlier or duplicates of original values that are stored elsewhere.

• E.g: Memory Caching, Disk Caching, Web Caching(used in browser),
Database Caching etc.

OS Operation and Functions

Process Management

• A program is an inactive entity, like the contents of a file
stored on disk, whereas a process is an active entity.

• A process needs certain resources—including CPU time,
memory, files, and I/O devices—to complete its task.

• The operating system is responsible for the following activities in
connection with process management:

1.Scheduling processes and threads on the CPUs

2.Creating and deleting both user and system processes

3.Suspending and resuming processes

4.Providing mechanisms for process organization

5.Providing mechanisms for process communication

Memory Management

• The operating system is responsible for the following activities in
connection with memory management:

1.Keeping track of which parts of memory are currently being used and who
is using them

2.Deciding which processes (or parts of processes) and data to move into and
out of memory

3. Allocating and deallocating memory space as needed

File-System Management
The operating system is responsible for the following activities in

connection with file management:

1.Creating and deleting files

2.Creating and deleting directories to organize files

3.Supporting primitives for manipulating files and directories

4.Mapping files onto secondary storage

5.Backing up files on stable (nonvolatile) storage media

Mass-Storage Management

The operating system is responsible for the following activities in
connection with disk management:

1. Free-space management

2. Storage allocation

3. Disk scheduling

I/O Systems
The OS I/O subsystem consists of several components:

1.A memory-management component that includes buffering, caching, and
spooling

2.A general device-driver interface

3.Drivers for specific hardware devices

Protection and Security

If a computer system has multiple users and allows the parallel
execution of multiple processes, then access to data must be
regulated (controlled).

For that purpose, mechanisms ensure that files, memory segments,
CPU, and other resources can be operated on by only those
processes that have gained proper authorization from the operating
system.

• Protection is any mechanism for controlling the access of
processes or users to the resources.

• A protection- oriented system provides a means to
distinguish between authorized and unauthorized usage.

• Security is used to defend a system from external and
internal attacks.

• Such attacks spread across a huge range and include viruses
and worms, denial-of service attacks.

Deadlocks

DEADLOCK

Deadlock is a situation in OS where a set of processes are

blocked because of multi processes compete for a limit

number of resources.

A process request the resources, the resources are not

available at that time, so the process enter into the waiting

state. The requesting resources are held by another waiting

process, both are in waiting state, this situation is called a

deadlock.

1. Mutual exclusion only one process at a time can use the resource2. Hold and wait. A process must be holding at least one resource and

waiting for other processes.
3. No preemption. Resources cannot be preempted4. Circular wait all the process are waiting

A deadlock situation can arise if the following four conditions hold at the
same time in a system:

1. Mutual exclusion. At least one resource must be held in a non-sharable mode; that is, only
one process at a time can use the resource. If another process requests that resource, the
requesting process must be delayed until the resource has been released.

2. Hold and wait. A process must be holding at least one resource and waiting to get
additional resources that are currently being held by other processes.

3. No preemption. Resources cannot be preempted; that is, a resource can be released only

voluntarily by the process holding it, after that process has completed its task.

4. Circular wait. all the processes are waiting

A set {P0, P1, ..., Pn} of waiting processes must exist such that P0 is waiting for a resource

held by P1, P1 is waiting for a resource held by P2, ..., Pn−1 is waiting for a resource held by

Pn, and Pn is waiting for a resource held by P0.

Resource-Allocation Graph
Resource allocation Graph (RAG) used for discovering system's

status, is there any deadlock or not.

RAG components:

(P) Process

(R) Resource

Instance (Copies)

(E) Request and Allocate arrows

P

Q1. How many Resources?

Ans. R1,R2,R3,R4

Q.2 How many processes?

Ans. P1,P2,P3

Q.3 How many instances?

Ans. 7 instances

Q4. Which instances are free? And which are allocated?

Ans. all instances of R1,R2,R3 are allocated, instances of R4 are free

Q5.Is there any cycle?

Cycle=<P1 R1 P2 R3 P3 R2 P1>

)Start and stop at the same point by following one direction)

Q6.Is there any Deadlock?

Ans. YES

R1 R3

P1 P2 P3

R4 R2

H.W

Q1. How many Resources?

Q.2 How many processes?

Q.3 How many instances?

Q4. Which instances are free? And which are allocated?

Q5.Is there any cycle?

Q6.Is there any Deadlock?

• Answer the followings:

For a system with the following set of processes and resources information:

P={P1,P2,P3} R={A,B,C.D}

E={P1 A, A P2, P2 C,C P1}

Resource instances:

2 instance of resource type A

2 instance of resource type B.

2 instance of resource type C.

2 instance of resource type D.

Draw the resource allocation graph for the system to show the state of the
system safe or unsafe

Methods for Handling Deadlocks

1. Ensure that the system will never enter a deadlock state:

Prevent deadlocks

Avoid deadlocks

2. We can allow the system to enter a deadlocked state, detect it, and

recover (kill the process).

3. We can ignore the problem altogether and pretend that deadlocks

never occur in the system.

Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions must
hold. By ensuring that at least one of these conditions cannot hold,
we can prevent the occurrence of a deadlock.

Mutual Exclusion: The mutual exclusion condition must hold. That
is, at least one resource must be non sharable. Sharable resources, do
not require mutually exclusive access and thus cannot be involved in
a deadlock. Read-only files are a good example of a sharable
resource.

Hold and Wait: To ensure that the hold-and-wait condition never occurs in the
system, we must guarantee that, whenever a process requests a resource, it
does not hold any other resources. One protocol that we can use requires each
process to request and be allocated all its resources before it begins execution.

No Preemption: The third necessary condition for deadlocks is that there be
no preemption of resources that have already been allocated. To ensure that
this condition does not hold, we can use the following protocol.

If a process is holding some resources and requests another resource It must
release the holding resources . The preempted resources are added to the list
of resources for which the process is waiting. The process will be restarted
only when it can regain its old resources, as well as the new ones that it is
requesting.

Circular Wait: The another condition for deadlocks is the circular-
wait condition. One way to ensure that this condition never holds is
to arrange a total ordering of all resource types and to require that
each process requests resources in an increasing order of counting.

Deadlock Avoidance (Banker's Algorithm)
Data Structures for the Banker's Algorithm
There are four types of data structures used to implement Banker’s algorithm:

Let n = number of processes, and m = number of resources types.

 Available: Vector of length m. If available [j] = k; there are k instances of resource type R; available

 Max: n x m matrix. If Max [i, j] = k, then process Pi may request at most k instances of resource
type Rj

 Allocation: n x m matrix. If Allocation[i, j] = k then Pi is currently allocated k instances of Rj

 Need n x m matrix If Need[i,j] = k, then Pi may need k more instances of R to complete its task

Need [i, j] = Max[i, j] - Allocation [i,j]

• Banker’s algorithm comprises of two algorithms:

• Safety algorithm

• Resource request algorithm

Example of Banker's Algorithm

• 5 processes P0 through P4

• 3 resource types: A (10 instances), B (5 instances), and C (7 instances)

• Snapshot at time T0:
Allccation Max Available

ABC A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Need = Max -Allocation

1 2 2

6 0 0

0 1 1

Need

4 3 1

7 4 3

Need
A B C

7 4 3

1 2 2

6 0 0

0 1 1

4 3 1

Available
A B C

3 3 2

Check whether the system works in the safe state or not?

The system is in a safe state with the sequence (P1, P3, P4, P0, P2)

P0

P1

P2

P3

P4

+ 2 0 0

+ 2 1 1

5 3 2

7 4 3
+ 0 0 2

7 4 5
+ 0 1 0

7 5 5
+ 3 0 2
10 5 7

Example of Banker's Algorithm

H.W
Consider the following snapshot of a system:

Use the banker’s algorithm to answer the following questions:

1. What is the content of the matrix Need?

2. Is the system in a safe state?

Allocation Max Available Need

A B C D A B C D A B C D A B C D

P0 2 0 0 1 4 2 1 1 3 3 2 1

P1 3 1 2 1 5 2 5 2

P2 2 1 0 3 2 3 1 6

P3 1 3 1 2 1 4 2 4

P4 1 4 3 2 3 6 6 5

Need = Max –Allocation

Allocation Available

A B C D A B C D

P0 3 3 2 1

P1 3 1 2 1

P2 2 1 0 3

P3 1 3 1 2

P4 1 4 3 2

Need

2 2 1

2 1 3

0 1 1 2

A B C D

0 2 1 3

2 2 3 3

0

15 3 2 2

6 6 3 4
+ 1 4 3 2

7 10 6 6
+ 3 1 2 1

10 11 8 7
+ 2 1 0 3

12 12 8 10

The system is in a safe state with the sequence (P0, P3, P4, P1, P2)

Max

A B C D

4 2 1 1

5 2 5 2

2 3 1 6

1 4 2 4

3 6 6 5

2 0 0 12 0 0 1

1 3 1 2

Safety Algorithm

• 1. Let Work and Finish be vectors of length m and n, respectively.

Initialize:

Work = Available

Finish [i] = false for i = 0, 1, ..., n- 1

2. Find an i such that both:

(a) Finish [i] = false

(b) Need i < Work

If no such i exists, go to step 4

3. Work = Work + Allocation,

Finish[i] = true

go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi

Request, = request vector for process Pi , If Request, [j] = k then

process Pi , wants k instances of resource type Rj,

1. If Requesti , ≤ Needi , go to step 2. Otherwise, raise error condition,

since process has exceeded its maximum claim

2. If Requesti , ≤ Available, go to step 3. Otherwise Pi , must wait,

since resources are not available

3. Pretend to allocate requested resources to Pi , by modifying the

state as follows:

Available = Available – Requesti ;

Allocationi = Allocationi , + Requesti ;

Needi = Needi - Requesti ;

If safe the resources are allocated to Pi

If unsafe Pi , must wait, and the old resource-allocation state

is restored

Example Resource-Request of Banker's Algorithm

5 processes P0 through P4
3 resource types: A (10 instances), B (5 instances), and C (7 instances)
Snapshot at time T0:

Use the banker’s algorithm to answer the following questions:
1. What is the content of the matrix Need?
2. Is the system in a safe state?
3. Can request for (1,0,2) by P1 granted, Is the system in a safe state?

Answer

1. What is the content of the matrix Need?

Process Allccation Max Available

ABC A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Need = Max -Allocation

1 2 2

6 0 0

0 1 1

Need

4 3 1

7 4 3

Need
A B C

7 4 3

1 2 2

6 0 0

0 1 1

4 3 1

Available
A B C

3 3 2

2. Check the system works with the safe state or not?

The system is in a safe state with the sequence (P1, P3, P4, P0, P2)

P0

P1

P2

P3

P4

+ 2 0 0

+ 2 1 1

5 3 2

7 4 3
+ 0 0 2

7 4 5
+ 0 1 0

7 5 5
+ 3 0 2
10 5 7

Example of Banker's Algorithm

Process

Process Allccation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

3 3 2 - 1 0 2 = 2 3 0

2 0 0 + 1 0 2 = 3 0 2

1 2 2 - 1 0 2 = 0 2 0

Need
A B C

1 2 2

6 0 0

0 1 1

4 3 1

7 4 32 3 0

3 0 2 0 2 0

3. Can request for (1,0,2) by P1 granted ?

Request ≤ Need, (1,0,2) ≤ (1,2,2), which is true

Request ≤ Available, (1,0,2) ≤ (3,3,2), which is true.

Need
A B C

7 4 3

0 2 0

6 0 0

0 1 1

4 3 1

Available
A B C

2 3 0

Check the system works with the safe state or not?

P0

P1

P2

P3

P4

+ 3 0 2

+ 2 1 1

5 3 2

7 4 3
+ 0 0 2

7 4 5

Allccation
A B C

3 0 2
2 1 1
0 0 2

0 1 0

3 0 2

+ 0 1 0
7 5 5

+ 3 0 2
10 5 7

The system is in a safe state with the sequence (P1, P3, P4, P0, P2)

Process

Use the banker’s algorithm to answer the following questions:
1. What is the content of the matrix Need?
2. Is the system in a safe state?
3. Can request for (4,3,2) by P1 granted ?
4. Can request for (3,3,0) by P4 granted ?
5. Can request for (0,2,0) by P0 granted ?

Consider the following snapshot of a system:

Process Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Example 2- Resource-Request of Banker's Algorithm

1. What is the content of the matrix Need?

Process Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Need

A B C

1 2 2

6 0 0

0 1 1

4 3 1

7 4 3

Available
A B C

3 3 2

2. Is the system in a safe state?

The system is in a safe state with the sequence (P1, P3, P4, P0, P2)

P0

P1

P2

P3

P4

+ 2 0 0

+ 2 1 1

5 3 2

7 4 3
+ 0 0 2

7 4 5
+ 0 1 0

7 5 5
+ 3 0 2
10 5 7

Need

A B C

1 2 2

6 0 0

0 1 1

4 3 1

7 4 3

Process

3. Can request for (4,3,2) by P1 granted

Process Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Request ≤ Available

4 3 2 ≤ 3 3 2 the system must wait, since Available ≤ Request

Request ≤ Need

4 3 2 ≤ 1 2 2

Need

A B C

1 2 2

6 0 0

0 1 1

4 3 1

7 4 3

4. Can request for (3,3,0) by P4 granted

Process Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Request ≤ Available

3 3 0 ≤ 3 3 2

Available = Available - Request

3 3 2 - 3 3 0 = 0 0 2

Allocation = Allocation + Request

0 0 2 + 3 3 0 = 3 3 2

Request ≤ Need

3 3 0 ≤ 4 3 1

Need = Need - Request

4 3 1 - 3 3 0 = 1 0 1

Need

A B C

1 2 2

6 0 0

0 1 1

4 3 1

7 4 3

Available
A B C

0 0 2

Is the system in a safe state?

The system is in a safe state with the sequence (P1, P3, P4, P0, P2)

P0

P1

P2

P3

P4

+ 2 0 0

+ 2 1 1

5 3 2

7 4 3
+ 0 0 2

7 4 5
+ 0 1 0

7 5 5
+ 3 0 2
10 5 7

Need

A B C

1 2 2

6 0 0

0 1 1

4 3 1

7 4 3

Allocation

A B C

2 0 0

3 0 2

2 1 1

0 0 2

0 1 0

Process

5. Can request for (0,2,0) by P0 granted ?
Process Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 2 2

P4 4 3 3

Need

A B C

1 2 2

6 0 0

0 1 1

4 3 1

7 4 3

2 1 1

Request ≤ Available

0 2 0 ≤ 3 3 2

Available = Available - Request

3 3 2 - 0 2 0 = 3 1 2

Allocation = Allocation + Request

0 1 0 + 0 2 0 = 0 3 0

Request ≤ Need

0 2 0 ≤ 7 4 3

Need = Need - Request

7 4 3 - 0 2 0 = 7 2 3

3 3 2

0 0 2

Available
A B C

3 1 2

Is the system in a safe state?

The system is in a safe state with the sequence (P3, P1, P2, P4, P0)

P0

P1

P2

P3

P4

+ 2 1 1

+ 2 0 0

5 2 3

7 2 3
+ 3 0 2
10 2 5

+ 0 0 2
10 2 7

+ 0 3 0
10 5 7

Need

A B C

1 2 2

6 0 0

0 1 1

4 3 1

7 2 3

Allocation

A B C

2 0 0

3 0 2

2 1 1

0 0 2

0 3 0

Process

Consider the following snapshot of a system: Use the banker’s algorithm to

answer the following questions:

1. What is the content of the matrix Need?

2. Is the system in a safe state?

3. Can request for (3,3,2) by P4 granted ?

4. Can request for (0,2,0) by P0 granted ?

Process Allocation Max Available

A B C A B C A B C

P0 1 3 0 6 3 0 0 1 2

P1 2 1 1 4 3 1

P2 5 1 2 7 1 2

P3 2 2 1 3 2 1

P4 0 2 2 1 3 3

2. The system NOT in a safe state

Need

A B C

2 2 0

2 0 0

1 0 0

1 1 1

5 0 0

Answer

1. What is the content of the matrix Need?

Process Allocation Available

A B C A B C

P0 1 3 0 0 1 2

P1 2 1 1

P2 5 1 2

P3 2 2 1

P4 0 2 2

Process
Max Allocation Available

A B C A B C A B C

P1
P2
P3
P4

8
4
1
7

2
8
7
0

3
5
1
4

3
3
0
0

1
8
6
0

0
4
0
4

2 1 2

Use the banker’s algorithm to answer the following questions:

1. What is the content of the matrix Need?

2. Is the system in a safe state?

3. Can request for (3,2,1) by P2 be granted?

Available
A B C

2 1 2

The system is in a safe state with the sequence (P2, P3, P1, P4)

P1

P2

P3

P4

+ 3 8 4

+ 0 6 0

5 9 6

5 15 6
+ 3 1 0

8 16 6
+ 0 0 4

8 16 10

Need

A B C

1 0 1

1 1 1

7 0 0

5 1 3

Allocation

A B C

3 8 4

0 6 0

0 0 4

3 1 0

3. Can request for (3,2,1) by P2 be granted?

Request ≤ Need

3 2 1 ≤ 1 0 1 the system raise an error, since Need ≤ Request

Memory
Management

Address Binding

Usually, a program resides on a disk as a binary executable
file. To be executed, the program must be brought into
memory and placed within a process.

Depending on the memory management in use, the process
may be moved between disk and memory during its
execution.

The processes on the disk that are waiting to be brought into
memory for execution form the input queue.

0 operating

system

process

process

420000 process

880000

300000

120000

256000

300000

base

limit

1024000

 A pair of base and limit registers define the logical address space.

 CPU must check every memory access generated in user mode to

be sure it is between base and limit for that use

Base and Limit Registers

Logical Versus Physical Address Space

An address generated by the CPU is commonly referred to as a
logical address,

An address seen by the memory unit that referred to as a
physical address.

The set of all logical addresses generated by a program is a
logical (virtual) address space. The set of all physical
addresses corresponding to these logical addresses is a physical
address space. Thus, in the execution-time address-binding
scheme, the logical and physical address spaces differ.

The mapping from virtual to physical addresses is done by a hardware
device called the memory-management unit (MMU).

The base register is called a relocation register. The value in the
relocation register is added to every address generated by a user
process at the time the address is sent to memory (see Figure 8.4).

The user program never sees the real physical addresses.

Quiz
Calculate the physical address if the logical address
is 375 and the relocation address (MMU) is 15000.

What are the differences between the Logical
addresses and Physical addresses in the Operating
System?

Processes Memory

100

500

200

300

600

Assignment

let us assume the jobs and the memory requirements as the following:

Job1 90k

Job2 20k

Job3 50k

Job4 10k

The free pace memory allocation blocks be:

Block1 50k

Block2 100k

Block3 90k

Block4 200k

Block5 50k

How would First Fit, Best Fit, and Worst Fit algorithms place processes?

Quiz

Regarding to the memory management. Given five memory partitions of 100Kb,

500Kb, 200Kb, 300Kb, 600Kb (in order), how would the first-fit, best-fit, and

worst-fit algorithms place processes of 210 Kb, 400 Kb, 100 Kb, and 420 Kb (in

order)? Which algorithm makes the most efficient use of memory?

Dynamic Loading

The size of a process is limited to the size of physical memory. To
obtain better memory-space utilization, we can use dynamic
loading.

With dynamic loading, a routine is not loaded until it is called. All
routines are kept on disk in a relocatable load format. The main
program is loaded into memory and is executed. When a routine
needs to call another routine, the calling routine first checks to see
whether the other routine has been loaded. If it has not, the
relocatable linking loader is called to load the desired routine into
memory and to update the program’s address tables to reflect this
change.

Contiguous Memory Allocation

In contiguous memory allocation, each process is contained in a single section
of memory that is contiguous to the section containing the next process.

One of the simplest methods for allocating memory is to divide memory into
several fixed-sized partitions.

Each partition may contain exactly one process. Thus, the degree of
multiprogramming is bound by the number of partitions. In this multiple
partition method, when a partition is free, a process is selected from the input
queue and is loaded into the free partition. When the process terminates, the
partition becomes available for another process.

Another allocation method is the variable-partition scheme. OS keeps a table
indicating which parts of memory are available and which are occupied.

Initially, all memory is available for user processes and is considered one large
block of available memory.

The problem of Contiguous Memory Allocation: Fragmentation

As processes are loaded and removed from memory, the free
memory space is broken into little pieces.

External Fragmentation exists when there is enough total
memory space to satisfy a request but the available spaces are
not contiguous: storage is fragmented into a large number of
small holes. This fragmentation problem can be severe. In the
worst case, we could have a block of free (or wasted) memory
between every two processes. If all these small pieces of
memory were in one big free block instead, we might be able
to run several more processes.

Internal Fragmentation - allocated memory may be slightly
larger than requested memory; this size difference is memory
internal to a partition, but not being used.

Fragmen1

P1

Fragmen2

P2

Fragmen3

P3

Int. Fragmen1

p1

Int. Fragmen2

p2

Int. Fragmen3

P3

Reduce external fragmentation by compaction.

Compaction is a method for removing external fragmentation. External

fragmentation may be decreased when dynamic partitioning is used for

memory allocation by combining all free memory into a single large block.

The larger memory block is used to allocate space based on the requirements of

the new processes. This method is also known as defragmentation.

Fragmentation (Cont.)

Segmentation
• Segmentation is a memory management technique to avoid external fragmentation. In

Segmentation, a process is divided into multiple segments. The size of each segment is not

necessarily the same which is different from paging. The module contained in a segment

decides the size of the segment.

Each segment has a:

• Segment Number(s) - It is the number of bits required to represent a Segment. It is used as
an index in the Segment Table.

• Segment Offset(d) - It is the number of bits required to represent the size of a Segment.

• The details about each segment are stored in a table called a segment table. It helps in the
mapping of the two-dimensional logical addresses to the physical addresses.

There are two entries in the Segment Table.

• Base Address - It is the starting physical address of the particular segment inside the main
memory.

• Limit - It denotes the size of a particular segment.

Segmentation (Cont…)

Segment Number from the Segment Table gives the base address of a Segment

in the main memory and Segment Offset gives the size of that Segment.

These two together give the Physical Address of a Segment in the memory.

If Offset(d)<Limit then the segment is fetched from the memory else there is an

error.

Paging

• Paging is another memory-management technique in which the system
stores and retrieves data from secondary storage. Paging avoids external
fragmentation

• Paging helps in retrieving the processes from the secondary memory in the
form of pages. In paging, processes are divided into equal parts called
pages, and main memory is also divided into equal parts and each part is
called a frame.

• Each page gets stored in one of the frames of the main memory whenever
required. So, the size of a frame is equal to the size of a page. Pages of a
process can be stored in the non-contagious locations in the main memory.

• The Page Table contains the base address of each page inside the Physical
Memory. It is then combined with Page Offset to get the actual address of
the required data in the main memory.

Virtual Memory
A virtual memory system attempts to optimize the use of the main

memory (the higher speed portion) with the hard disk (the lower
speed portion). In effect, virtual memory is a technique for using the
secondary storage to extend the limited size of the physical memory
beyond its actual physical size.

It is usually the case that the available physical memory space will not
be enough to host all the parts of a given active program. Those parts
of the program that are currently active are brought to the main
memory while those parts that are not active will be stored on the
magnetic disk.

136

If the segment of the program requested by the processor is not in the
main memory at the time of the request, then such segment will have to
be brought from the disk to the main memory.

Movement of data between the disk and the main memory takes the form
of pages. A page is a collection of memory words, which can be moved
from the disk to the RAM when the processor requests accessing a
word on that page.

A page fault occurs when the page required by the processor does not
exist in the RAM and has to be brought from the disk.

137

Virtual Memory….

Replacement Algorithms (Policies)

When a processor needs a page, not in memory, the operating system must
decide which resident page is to be replaced by the requested page. The
technique used in the virtual memory that makes this decision is called
the replacement policy.

There exists a number of possible replacement mechanisms:

138

Page 1

Page 0

Page 3

Page 2

CPU
Page 5

Hard

Memory

Request
page

• Random Replacement According to this replacement policy, a page is
selected randomly for replacement.

• First-In-First-Out (FIFO) Replacement According to this replacement
policy, the page that was loaded before all the others in the main memory
is selected for replacement.

• Least Recently Used (LRU) Replacement According to this technique,
page replacement is based on the pattern of usage of a given page residing
in the main memory regardless of the time spent in the main memory. The
page that has not been referenced for the longest time while residing in
the main memory is selected for replacement.

139

Replacement Algorithms (Policies)

Quiz:

Consider the following page reference using four frames

that are initially empty. Find the page faults using FIFO

algorithm, where the page reference sequence:

7, 0, 1, 7, 0, 3, 0, 4, 4, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1?

Q1. Consider the following page reference sequence:

1, 2, 1, 3, 5, 4, 1, 2, 5, 4, 1, 5, 2, 5, 3

How many page faults would occur for the FIFO replacement algorithms,

assuming there are four available frames? Remember all frames are initially

empty.

Q2. What are the differences between paging and Segmentation?

Q3. What is the difference between internal and external fragmentation,

paging, and Segmentation?

Assignment

