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Chapter One  

INTRODUCTION: NUMBER SYSTEMS AND CONVERSION. 

1.1 Number systems and Conversion. 

 When we write decimal (base 10) numbers, we use a positional notation; 

each digit is multiplied by an appropriated power of 10 depending on its 

position in the number. For example: 

 (953.78)10=9x10
2
+5x10

1
+3x10

0
+7x10

-1
+8x10

-2
 

Similarly, for binary (base 2) numbers, each binary digit is multiplied by the 

appropriate power of two: 

 (1011.11)2=1x2
3
+0x2

2
+1x2

1
+1x2

2
+1x2

-1
+1x2

-2
 

         =8+0+2+1+1/2+1/4 

         =(11.75)10 

Note that the binary point separates the positive and negative powers of two 

just as the decimal point separates the positive and negative power of ten for 

decimal numbers. 

 Any positive integer R(R≥1) can be chosen as the radix or base of a 

number system. If the base is R then R digits ( 0,1,2,…,R-1 ) are used. For 

example, if R=8 , then the required digits are ( 0,1,2,3,4,5,6 and 7 ). A number 
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written in positional notation can be expanded in power series in R.  

For example : 

 N=(a4 a3 a2 a1 a0. a-1 a-2)R 

  = a4xR
4
+ a3xR

3
+ a2xR

2
+ a1xR

1
+ a0xR

0
+ a-1xR

-1
+ a-2xR

-2
 

where ai is the coefficient of R
i
 and 0≤ ai≤ R-1. If the arithmetic indicated 

in the power series expansion is done in base 10, then the result is the decimal 

equivalent of N.  

For example:(147.3)8=1x8
2
+ 4x8

1
+7x8

0
+3 x8

-1
 

   =64+32+7+3/8 

   =(103.375)10 

For bases grater than 10, more than 10 symbols are needed to represent the 

digits. In this case, letters are usually used to represent digits greater than 9. For 

example in hexadecimal (base 16),  A represent (10)10, B represent (11)10, C 

represent (12)10, D represent (13)10, E represent (14)10, and F represent (15)10.  

Thus, (A2F)16=10x16
2
+2x16

1
+15x16

0
 

   = 2560+32+15 

   =(2607)10 
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  Next, we will discuss conversion of a decimal integer to base R using the 

division method. 

Example : Convert (53)10 to binary. 

 2 53 

 2 26 rem.=1=a0 

 2 13 rem.=0=a1 

 2 6 rem.=1=a2   THUS (53)10=(110101)2 

 2 3 rem.=0=a3 

 2 1 rem.=1=a4 
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   0 rem.=1=a5 

Now, Conversion of a decimal fraction to base R can be done using successive 

multiplication by R. 

Example : Convert (.625)10 to binary. 

F=.625 F1=.250 F1=.500 

   X  2                X  2      X  2  THUS (.625)10=(.101)2 

    1.250            0.500     1.000  

   (a-1=1)    (a-2=0)    (a-3=1) 

This process does not always terminate, but if it does not terminate the result is 

a repeating fraction. 
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Example : Convert (.7)10 to binary. 

 .7 

  2 

   (1).4 

  2 

   (0).8 

  2 

   (1).6 

  2 

   (1).2 

  2 

(0).4  process start repeating here since .4 was previously  

   2  obtained above 

(0).8  (0.7)10=(0.1 0110 0110 0110 ….)2 
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 Conversion between two bases other than decimal can be done directly 

by using the procedures given; however, the arithmetic operations would have 

to be carried out using a base other than ten. It is generally easier to convert to 

decimal first and then the decimal to the new base. 

Example : Convert (231.3)4 to base 7. 

(231.3)4=2x16+3x4+1x1+3/4 

   =(45.75)10 

 

 7 45       .75 

 7 6 rem. 3        7 

    0 rem. 6            (5).25 

          7 

              (1).75  

           7 

  THUS (45.75)10=(63.5151..)7          (5).25 
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 Conversion from binary to octal (and conversely) can be done by 

inspection since each octal digit corresponds to exactly 3 binary digits (bits). 

Starting at the binary point, the bits are divided into groups of  3 and each 

group is replaced by an octal digit: 

 (11010111110.0011)2=011 010 111 110 . 001 100 

            3     2     7     6       1     4 

        =(3276.14)8 

Similarly, binary to hexadecimal conversion is accomplished by dividing the 

binary number into groups of 4 bits and replacing each group by a hexadecimal 

digit: 

 (1001101.010111)2=0100 1101 . 0101 1100 

        4       D         5      C 

    =(4D.5C)16 
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1.2 Binary Arithmetic. 

 Arithmetic operation in digital systems are usually done in binary 

because design of logic networks to perform binary arithmetic is much easier 

than for decimal. Binary arithmetic is carried out in much the same manner as 

decimal, except the addition and multiplication tables are much simpler. 

 The addition table for binary numbers is 

  0 + 0 = 0 

  0 + 1 = 1 

1 + 0 = 1 

  1 + 1 = 0 and carry 1 to the next column 

Example : add (13)10 and (11)10 in binary. 

  (13)10= 1101 

  (11)10= 1011 

   11000=(24)10 

 The subtraction table for binary numbers is 

  0 - 0 = 0 
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  0 - 1 = 1 and borrow 1 from the next column 

1 - 0 = 1 

  1 - 1 = 0  

Borrowing 1 from a column is equivalent to subtracting 1 from that column. 

Example : sub (11)10 from (13)10 in binary. 

       1           ( Indicate a borrow from the 3
rd

 column) 

  (13)10= 1101 

  (11)10= 1011 

     0010=(2)10 

Example : sub (10000)2 and (11)2 in binary. 

  1111             ( Indicate a borrow ) 

  10000 

        11 

             1101 

Note how the borrow propagate from column to column in the second example. 
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 The multiplication table for binary numbers is 

  0 x 0 = 0 

  0 x 1 = 0 

1 x 0 = 0 

  1 x 1 = 1  

 

Example : multiply (13)10 from (11)10 in binary. 

  (13)10= 1101 

  (11)10= 1011 

     1101 

   1101 

          0000 

        1101 

      10001111 = (143)10                              

The division table for binary numbers is 
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  0  0 = undefined 

  0  1 = 0 

1  0 = infinite  

  1  1 = 1  

 

Example : divide (72)10 by (12)10 in binary. 

(72)10 =(1001000)2  

(12)10 =(1100)2  

  110 

 1100 1001000 

   1100 

   01100 

     1100 

   000000  
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1.3 Binary codes. 

 Although most large computers work internally with binary numbers, the 

input-output equipment generally uses decimal numbers. Since most logic 

circuits only accept two-valued signals, the decimal numbers must be coded in 

terms of binary signals.  

Decimal 

digit 

8-4-2-1 code 

(BCD) 

6-3-1-1 

code 

Excess-3 

code 

Gray code 

  0 0000 0000 0011 0000 

1 0001 0001 0100 0001 

2 0010 0011 0101 0011 

3 0011 0100 0110 0010 

4 0100 0101 0111 0110 

5 0101 0111 1000 0111 

6 0110 1000 1001 0101 

7 0111 1001 1010 0100 

8 1000 1011 1011 1100 

9 1001 1100 1100 1101 
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In the simplest form of binary code, referred to as binary-coded-decimal 

(BCD), each decimal digit is replaced by its binary equivalent. 

For example, 937.25 is represented by 

 9 3 7 . 2 5 

     (1001    0011    0111 .     0010   0101)BCD 

Note that the result is quite different than that obtained by converting the 

number as a whole into binary. 

 Table shown above shows several possible sets of binary codes for the 

ten decimal digits and many other possibilities exist. 

The excess-3 code is obtained from the 8-4-2-1 code by adding 3 (0011) 

to each of the code. To translate a decimal number to excess-3 coded form, 

each decimal digit is replaced by its corresponding code. Thus 937 expressed in 

excess-3 code is 1100 0110 1010. 

The table shows one example of a Gray code. A Gray code has the 

property that the codes for successive decimal digits differ in exactly one bit. 

For example, the cods for 6 and 7 differ only in the first bit. 

Many application of computers require processing of data which contains 

numbers, letters and other symbols such as punctuation marks. In order to 

transmit such alphanumeric data to or from a computer, or store it internally in 

a computer, each symbol must be represented by a binary code. One common 

alphanumeric code is the ASCII code (American Standard Code for 
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Information Interchange). This is a 7-bit code, so 2
7
 (128) different code 

combinations are available to represent letters, numbers and other symbols. 

Table below shows a portion of ASCII code; the word “Start” is represented in 

ASCII code as follows : 

1010011 1110100 1100001 1110010 1110100 

   S         t       a      r      t 

Table ASCII code 

Char

acter 

ASCII code 

A6A5A4A3A2A1A0 

Char

acter 

ASCII code 

A6A5A4A3A2A1A0 

Char

acter 

ASCII code 

A6A5A4A3A2A1A0 

Space 0 1 0 0 0 0 0 @ 1 0 0 0 0 0 0 ‘ 1 1 0 0 0 0 0 

! 0 1 0 0 0 0 1 A 1 0 0 0 0 0 1 a 1 1 0 0 0 0 1 

“ 0 1 0 0 0 1 0 B 1 0 0 0 0 1 0 b 1 1 0 0 0 1 0 

# 0 1 0 0 0 1 1 C 1 0 0 0 0 1 1 c 1 1 0 0 0 1 1 

$ 0 1 0 0 1 0 0 : :                 : : :                 : 

: :                 : Z 1 0 1 1 0 1 0 z 1 1 1 1 0 1 0 

0 0 1 1 0 0 0 0 [ 1 0 1 1 0 1 1 { 1 1 1 1 0 1 1 
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1 0 1 1 0 0 0 1 \ 1 0 1 1 1 0 0 | 1 1 1 1 1 0 0 

2 0 1 1 0 0 1 0 ] 1 0 1 1 1 0 1 } 1 1 1 1 1 0 1 

: :            : : :                 : : :                 : 

? 0 1 1 1 1 1 1 - 1 0 1 1 1 1 1 delete 1 1 1 1 1 1 1 

Problems : 

1.1 Convert to octal then to binary: 

a. (757.25)10 b. (123.17)10  c. (356.89)10  d. (1063.5)10 

1.2 Convert to octal and then to decimal: 

a.(10111011.1)2 b.(1101101.011)2 c.(10000011.11)2  

1.3 Add, subtract and multiply in binary: 

 a. 1111 and 1011 b. 1001001and 111010 c. 110100 and 11011 

1.4 Convert to base 5: (165.2)7 

 (do all of the arithmetic in decimal) 

1.5 a. Convert to hexadecimal: (701.12)10 
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      b. Convert to decimal: (ABC.D)16 

c. Device a scheme for converting hexadecimal directly to base 4 and       

convert the previous hexadecimal number to base 4. 
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Chapter Two  

BOOLEAN ALGEBRA 

2.1 Basic Gates and operations. 

The basic mathematics needed for the study of logic design of digital 

system is Boolean algebra. The basic operation of Boolean algebra are AND, 

OR and complement (or inversion). The complement of 0 is 1, and the 

complement of 1 is 0. Symbolically, we write X to denote the complementation 

of  X. we represent an inverter by: 

   X   X 

Where the circle at the output indicates inversion. Complementation is 

sometimes referred to as the Not operation since X=1 if X is not equal to 0 

The AND operation can be defined as follows: 

 0 . 0=0 ,  0 . 1=0 ,     1 . 0=0,   1 . 1=1 

where ”.” Denotes AND. If we write the Boolean expression F=A.B, then given 

values of A and B, we can determine F from the following table: 

A B F=A.B 

0 0 0 
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0 1 0 

1 0 0 

1 1 1 

A logic gate which performs the AND operation is represented by: 

 

 

The “.” symbol is frequently omitted in a Boolean expression, and we will 

usually write AB instead of A.B , the AND operation is also referred to as 

logical ( or Boolean ) multiplication. 

 The OR operation can be defined as follows: 

  0 + 0=0, 0 + 1=1, 1 + 0=1, 1 + 1=1 

where “+” denotes OR. If we write F=A+B, then given the values of A and B 

we can determine F from the following table: 

A B F=A.B 

0 0 0 

0 1 1 

F=A.B  A 
B 
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1 0 1 

1 1 1 

A logic gate which performs the OR operation is represented by: 

 

The OR operation also referred to as logical ( or Boolean) addition. 

A F=A+B 
B 
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2.2 Truth Tables 

The operation of the AND, OR, and NOT logic operators can be formally 

described by using a truth table as shown in Figure 2.5. A truth table is a two-

dimensional array where there is one column for each input and one column for 

each output (a circuit may have more than one output). Since we are dealing 

with binary values, each input can be either a 0 or a 1. We simply enumerate all 

possible combinations of 0’s and 1’s for all the inputs. 

Usually, we want to write these input values in the normal binary counting 

order. With two inputs, there are 2
2
  combinations giving us the four rows in the 

table. The values in the output column are determined from applying the 

corresponding input values to the functional operator.  

For the AND truth table in Figure 2.1 (a), F = 1 only when x and y are both 1, 

otherwise, F = 0. For the OR truth table (b), F = 1 when either x or y or both is 

a 1, otherwise F = 0. For the NOT truth table, the output F is just the inverted 

value of the input x. 

Figure 2.1. Truth tables for the three basic logical operators:                                                          

(a) AND; (b) OR; (c) NOT. 
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Using a truth table is one method to formally describe the operation of a circuit 

or function. The truth table for any given logic expression (no matter how 

complex it is) can always be derived. Examples on the use of truth tables to 

describe digital circuits are given in the following sections. Another method to 

formally describe the operation of a circuit is by using Boolean expressions or 

Boolean functions. 

2.3 Boolean Algebra 

George Boole, in 1854, developed a system of mathematical logic, which we 

now call Boolean algebra. Based on Boole’s idea, Claude Shannon, in 1938, 

showed that circuits built with binary switches can easily be described using 

Boolean algebra. The abstraction from switches being on and off to the use of 

Boolean algebra is as follows. 

Let B = {0, 1} be the Boolean algebra whose elements are one of the two 

values, 0 and 1. We define the operations AND (.), OR (+), and NOT (' ) for the 

elements of B by the axioms in Figure 2.2 (a). These axioms are simply the 

definitions for the AND, OR, and NOT operators. 

2.4  Duality Principle 

Notice in Figure 2.2 that we have listed the axioms and theorems in pairs. 

Specifically, we define the dual of a logic expression as one that is obtained by 

changing all + operators with . operators, and vice versa, and by changing all 

0’s with 1’s, and vice versa. For example, the dual of the logic expression 

(x.y'.z) + (x.y.z' ) + (y.z) is (x'+y+z' ) .(x'+y'+z) .(y'+z' ) 

The duality principle states that if a Boolean expression is true , then its 
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dual is also true. Be careful in that it does not say that a Boolean expression is 

equivalent to its dual. For example , Theorem 5a in Figure 2.2 says that  x . 0 = 

0 is true , thus by the duality principle , its dual , x + 1 = 1 is also true. 

However, x . 0 = 0 is not equal to x + 1 = 1, since 0 is definitely not equal to 

1.We will see in later sections that the duality principle is used extensively in 

digital logic design. Whereas an expression might be complex to implement, its 

dual might be simpler. In this case, implementing its dual and converting it 

back to the original expression will result in a smaller circuit. 

2.5 Boolean Function and the Inverse 

As we have seen, any digital circuit can be described by a logical 

expression, also known as a Boolean function.  

Any Boolean functions can be formed from binary variables and the Boolean 

operators . , +, and ' (for AND, OR, and NOT respectively). For example, the 

following Boolean function uses the three variables or literals x, y, and z. It has 

three AND terms (also referred to as product terms), and these AND terms 

are ORed (summed) together. The first two AND terms contain all three 

variables each, while the last AND term contains only two variables. By 

definition, an AND (or product) term is either a single variable, or two or more 

variables ANDed together. Quite often, we refer to functions that are in this 
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format as a sum-of-products or OR-of-ANDs.  

 The value of a function evaluates to either a 0 or a 1 depending on the 

given set of values for the variables. For example, the function above evaluates 

to a 1 when any one of the three AND terms evaluate to a 1, since 1 OR x is 1. 

The first AND term, xy'z, equals to a 1 if  

x = 1, y = 0, and  z = 1  

because if we substitute these values for x, y, and z into the first AND term xy'z, 

we get a 1 Similarly, the second AND term, xyz', equals to 1 if 

 x = 1, y = 1, and z = 0 

The last AND term, yz, has only two variables. What this means is that the 

value of this term is not dependent on the missing variable x. In other words x 

can be either a 0 or a 1, but as long as y = 1 and z = 1, this term will equal to a 

1. 

Thus, we can summarize by saying that F evaluates to a 1 if   

x = 1 ,  y = 0, and z = 1  

or  x = 1 ,  y = 1, and z = 0  

or  x = 0 , y = 1, and z = 1 

or  x = 1 , y = 1, and z = 1  Otherwise, F evaluates to a 0. 
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 It is often more convenient to summarize the above verbal description of 

a function with a truth table as shown in Figure 2.7 under the column labeled F. 

Notice that the four rows in the table where F = 1 match the four cases in the 

description above. 

Figure 2.3. Truth table for the function F = xy'z + xyz' + yz 

The inverse of a function, denoted by F', can be easily obtained from the truth 

table for F by simply changing all the 0’s to 1’s and 1’s to 0’s as shown in the 

truth table in Figure 2.7 under the column labeled F'. Therefore, we can write 

the Boolean function for F' in the sum-of-products format, where the AND 

terms are obtained from those rows where F' = 1. Thus, we get 

F' = x'y'z' + x'y'z + x'yz' + xy'z' 

To deduce F' algebraically from F requires the use of DeMorgan’s Theorem ( 

Theorem 15a ) twice . For example , using the same function  F = xy'z + xyz' + 

yz we obtain F' as follows  

F' = (xy'z + xyz' + yz)' 
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    = (xy'z)' . (xyz')' . (yz)' 

    = (x'+y+z' ) . (x'+y'+z) . (y'+z' ) 
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There are three things to notice about this equation for F'. First, F' is just the 

dual of F as defined in Section 2.5.2. Second, instead of being in a sum-of-

products format, it is in a product-of-sums (and-of-ors) format where three 

OR terms (also referred to as sum terms) are ANDed together. Third, from the 

same original function F, we obtained two different equations for F'.  

From the truth table, we obtained 

F' = x'y'z' + x'y'z + x'yz' + xy'z' 

and from applying DeMorgan’s theorem to F, we obtained 

F' = (x'+y+z' ) . (x'+y'+z) . (y'+z' ) 

Hence, we must conclude that these two expressions, where one is in the sum-

of-products format, and the other is in the product-of-sums format, are 

equivalent. In general, all functions can be expressed in either the sum-of 

products or product-of-sums format. 

Thus , we should also be able to express the same function F = xy'z + 

xyz' + yz in the product-of-sums format. We can derive it using one of two 

methods. For method one, we can start with F' and apply DeMorgan’s Theorem 

to it just like how we obtained F' from F. 

F = F' ' 

    = (x'y'z' + x'y'z + x'yz' + xy'z' )' 
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    = (x'y'z' )' . (x'y'z)' . (x'yz' )' . (xy'z' )' 

    = (x+y+z) . (x+y+z' ) . (x+y'+z) . (x'+y+z) 



University of Anbar                                                          Logic Design 

College of Computer Science                                                  Department of Information System 

and Information Technology                                                  Muntaser Abdulwahed Salman 

 31‏2021/‏22/‏12‏

For the second method, we start with the original F and convert it to the 

product-of-sums format using the Boolean theorems. 

F = xy'z + xyz' + yz 

    = (x+x+y) .(x+x+z) .(x+y+y) .(x+y+z) .(x+z'+y) .(x+z'+z) .              step 1 

(y'+x+y).(y'+x+z).(y'+y+y).(y'+y+z).(y'+z'+y).(y'+z'+z).                                                                                                                                                                                

(z+x+y) .(z+x+z).(z+y+y) .(z+y+z).(z+z'+y).(z+z'+z) 

    =(x+y).(x+z).(x+y).(x+y+z).(x+z'+y).(y'+x+z).(z+x+y).(z+x). 

(z+y).(z+y)               step 2 

    =(x+y) .(x+z).(x+y+z) .(x+y+z' ) .(x+y'+z) .(z+y)                step 3 

    =(x+y+zz').(x+yy'+z).(x+y+z).(x+y+z').(x+y'+z).(xx'+y+z)              step 4 

    =(x+y+z).(x+y+z').(x+y+z).(x+y'+z).(x+y+z).(x+y+z').(x+y'+z).

(x+y+z) .(x'+y+z)              step 5 

    =(x+y+z).(x+y+z' ) .(x+y'+z) .(x'+y+z) 

In the first step, we apply Theorem 12b (Distributive) to get every possible 

combination of sum terms. For example, the first sum term (x+x+y) is obtained 

from getting the first x from xy'z, the second x from xyz', and the y from yz. The 

second sum term (x+x+z) is obtained from getting the first x from xy'z, the 

second x from xyz', and the z from yz. This is repeated for all combinations. In 
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this step, the sum terms, such as (x+z'+z), where it contains variables of the 

form v + v' can be eliminated since v + v' = 1, and 1 .x = x. 

In the second and third steps, duplicate variables and terms are eliminated. For 

example, the term (x+x+y) is equal to just (x+y+y), which is just (x+y). The 

term (x+z'+z) is equal to (x+1), which is equal to just 1, and therefore, can be 

eliminated completely from the expression. 

In the fourth step, every sum term with a missing variable will have that 

variable added back in by using Theorems 6b and 9a, which says that x + 0 = x 

and yy' = 0, therefore, x + yy' = x. 

Step five uses the Distributive Theorem, and the resulting duplicate terms are 

again eliminated to give us the format that we want. 

Functions that are in the product-of-sums format (such as the one shown below) 

are more difficult to deduce when they evaluate to a 1. For example, using 

F' = (x'+y+z' ) .(x'+y'+z) .(y'+z' ) 

F' evaluates to a 1 when all three terms evaluate to a 1. For the first term to 

evaluate to a 1, x can be 0, or y can be 1, or z can be 0. For the second term to 

evaluate to a 1, x can be 0, or y can be 0, or z can be 1. Finally, for the last term, 

y can be 0, or z can be 0, or x can be either a 0 or a 1. As a result, we end up 

with many more combinations to consider, even though many of the 

combinations are duplicates. 

However, it is easier to determine when a product-of-sums format expression 

evaluates to a 0. For example, using the same expression 
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F' = (x'+y+z' ) .(x'+y'+z) .(y'+z' ) 

F' evaluates to 0 when any one of the three OR terms is 0, since 0 AND x is 0; 

and this happens when  

     x = 1, y = 0, and z = 1 for the first OR term, 

Or x = 1, y = 1, and z = 0 for the second OR term, 

Or y = 1, z = 1, and x can be either 0 or 1 for the last or term. 

Similarly, for a sum-of-products format expression, it is easy to evaluate when 

it is a 1, but difficult to evaluate when it is a 0. 

These four conditions in which F' evaluates to a 0 match exactly those rows in 

the table shown in Figure 2.7 where F' = 0.  

Therefore, we see that in general, the unique algebraic expression for any 

Boolean function can be specified by either (1) selecting the rows from the 

truth table where the function is a 1 and use the sum-of-products format, or (2) 

selecting the rows from the truth table where the function is a 0 and use the 

product-of-sums format. Whatever format we decide to use, the one thing to 

remember is that we are always interested in only when the function ( or its 

inverse ) is equal to a 1 . 

Figure 2.8  summarizes these two formats for the function F = xy'z + xyz' + yz 

and its inverse. Notice that the sum-of-products format for F is the dual (i.e. by 

applying the duality principle) of the product-of-sums format for F'. Similarly, 

the product-of-sums format for F is the dual of the sum-of-products format for 
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F'.  

 

Figure 2.4. Relationships between the function F = xy'z + xyz' + yz and its 

inverse, and the sum-of-products and product-of-sums formats. 

2.6 Minterms and Maxterms 

As you recall, a product term is a term with either a single variable, or two or 

more variables ANDed together, and a sum term is a term with either a single 

variable, or two or more variables ORed together. To differentiate between a 

term that contains any number of variables with a term that contains all the 

variables used in the function, we use the words minterm and maxterm. 

2.6.1 Minterms 

A minterm is a product term that contains all the variables used in a function. 

For a function with n variables, the notation mi where 0< i < 2n, is used to 

denote the minterm whose index i is the binary value of the n variables such 
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that the variable is complemented if the value assigned to it is a 0, and 

uncomplemented if it is a 1. 

For example, for a function with three variables x, y, and z, the notation M3 is 

used to represent the term in which the values for the variables xyz are 011 (for 

the subscript 3). Since we want to complement the variable whose value is a 0, 

and uncomplement it if it is a 1. Hence M3 is for the minterm x'yz. Figure 2.9 

(a) shows the eight minterms and their notations for n = 3 using the three 

variables x, y, and z. 

When specifying a function, we usually start with product terms that contain all 

the variables used in the function. In other words, we want the sum of 

minterms, and more specifically the sum of the one-minterms, that is the 

minterms for which the function is a 1 (as opposed to the zero-minterms, that is 

the minterms for which the function is a 0). We use the notation 1-minterm to 

denote one-minterm, and 0-minterm to denote zero-minterm.  

Figure 2.5. (a) Minterms for three variables. (b) Maxterms for three variables. 
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The function from the previous section 

F = xy'z + xyz' + yz 

   = x'yz + xy'z + xyz' + xyz 

and repeated in the following truth table has the 1-minterms M3, m5, m6, and 

m7. 

Thus, a shorthand notation for the function is  

F(x, y, z) = M3 + m5 + m6 + m7 

By just using the minterm notations, we do not know how many variables are in 

the original function. 

Consequently, we need to explicitly specify the variables used by the function 

as in F(x, y, z). We can further simplify the notation by using the standard 

algebraic symbol  for summation. Therefore, we have 
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F(x, y, z) = (3, 5, 6, 7) 

These are just different ways of expressing the same function. Since a function 

is obtained from the sum of the 1-minterms, the inverse of the function, 

therefore, must be the sum of the 0-minterms. This can be easily obtained by 

replacing the set of indices with those that were excluded from the original set. 

 

Example 2.5: Given the Boolean function F(x, y, z) = y + x'z, use Boolean 

algebra to convert the function to the sum-of-minterms format. 

Solution: 

This function has three variables. In a sum-of-minterms format, all product 

terms must have all variables. To do so, we need to expand each product term 

by ANDing it with (v + v' ) for every missing variable v in that term. Since (v + 

v' ) = 1, therefore, ANDing a product term with (v + v' ) does not change the 

value of the term. 

F = y + x'z 

   = y(x+x' )(z+z' ) + x'z(y+y' )  

expand 1
st
 term by ANDing it with (x+x')(z+z' ),and 2

nd
 term with (y+y') 

   = xyz + xyz' + x'yz + x'yz' + x'yz + x'y'z 

   = m7 + m6 + M3 + m2 + m1 
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   = (1, 2, 3, 6, 7)  sum of 1-minterms
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Example 2.6: Given the Boolean function F(x, y, z) = y + x'z, use Boolean 

algebra to convert the inverse of the function to the sum-of-minterms format. 

Solution: 

F' = (y + x'z)'   inverse 

    = y' .(x'z)'   use DeMorgan 

    = y' .(x+z' )   use DeMorgan 

    = y'x + y'z'   use Distributive Theorem to change to SoP 

    = y'x(z+z' ) + y'z' (x+x' ) 

 expand 1st term by ANDing it with (z+z' ), and 2nd term with (x+x' ) 

    = xy'z + xy'z' + xy'z' + x'y'z' 

    = m5 + m4 + m0 

    = (0, 4, 5) sum of 0-minterms 
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2.6.2 Maxterms 

Analogous to a minterm, a maxterm is a sum term that contains all the 

variables used in the function. For a function with n variables, the notation Mi 

where 0 ≤ i ≤ 2n, is used to denote the maxterm whose index i is the binary 

value of the n variables such that the variable is complemented if the value 

assigned to it is a 1, and uncomplemented if it is a 0. 

For example, for a function with three variables x, y, and z, the notation M3 is 

used to represent the term in which the values for the variables xyz are 011. For 

maxterms, we want to complement the variable whose value is a 1, and 

uncomplement it if it is a 0. Hence M3 is for the maxterm x + y' + z'.  

Figure 2.9 (b) shows the eight maxterms and their notations for n = 3 using the 

three variables x, y, and z. We have seen that a function can also be specified as 

a product of sums, or more specifically, a product of 0- maxterms, that is, the 

maxterms for which the function is a 0. Just like the minterms, we use the 

notation 1-maxterm to denote one-maxterm, and 0-maxterm to denote zero-

maxterm. Thus, the function  

F(x, y, z) = xy'z + xyz' + yz 

     = (x + y + z) .(x + y + z') .(x + y' + z) .(x' + y + z) 
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which is shown in the following table can be specified as the product of the 0-

maxterms M0, M1, M2, and M4. The shorthand notation for the function is  

F(x, y, z) = M0 .M1 .M2 .M4 Again, by using the standard algebraic symbol for 
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product, the notation is further simplified to F(x, y, z) = (0, 1, 2, 4) The  

 

following summarizes these relationships for the functionF = xy'z + xyz' + yz 

and its inverse. Comparing these equations with those in Figure 2.8, we see that 

they are identical.  
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Example 2.7: Given the Boolean function F(x, y, z) = y + x'z, use Boolean 

algebra to convert the function to the product-of-maxterms format. 

Solution: 

To change a sum term to a maxterm, we expand each term by ORing it with 

(vv' ) for every missing variable v in that term. Since (vv' ) = 0, therefore, 

ORing a sum term with (vv' ) does not change the value of the term.  

F = y + x'z 

    = y + (x'z) 

    =(y+x')(y+z)         use Distributive Theorem to change to product of sum format 

    =(y+x'+zz')(y+z+xx')     expand1
st
 term by Oring it with zz',and 2

nd
 with xx' 

    =(x' +y+z) (x' +y+z' ) (x+y+z) (x' +y+z) 

    = M4. M5 . M0   = (0, 4, 5) product of 0-maxterms 

Example 2.8: Given the Boolean function F(x, y, z) = y + x'z, use Boolean 

algebra to convert the inverse of the function to the product-of-maxterms 

format. 

Solution: 

F' = (y + x' z)'  inverse 
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    = y' .(x' z)'  use DeMorgan 

    = y' .(x+z' )  use DeMorgan 

    =(y'+xx'+zz').(x+z'+yy') expand 1
st
 term by ORing with xx' +zz', and 2

nd
 term with yy' 

   = (x+y' +z) (x+y' +z' ) (x' +y' +z) (x' +y' +z' ) (x+y+z' ) (x+y' +z' ) 

   = M2 .M3 .M6 .M7 .M1 

   = (1, 2, 3, 6, 7) product of 1-maxterms 
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2.7 Canonical, Standard, and non-Standard Forms 

Any Boolean function that is expressed as a sum of minterms, or as a product 

of maxterms is said to be in its canonical form. For example, the following 

two expressions are in their canonical forms 

F = x' y z + x y' z + x y z' + x y z 

F' = (x+y'+z' ) .(x'+y+z' ) .(x'+y'+z) .(x'+y'+z' ) 

As noted from the previous section, to convert a Boolean function from one 

canonical form to its other equivalent canonical form, simply interchange the 

symbols . with +, and list the index numbers that were excluded from the 

original form.  

For example, the following two expressions are equivalent  

F1(x, y, z) =  (3, 5, 6, 7) 

F2(x, y, z) = (0, 1, 2, 4) 

To convert a Boolean function from one canonical form to its dual (inverse), 

simply interchange the symbols  with , and list the same index numbers 

from the original form. For example, the following two expressions are duals 

F1(x, y, z) =  (3, 5, 6, 7) 

F2(x, y, z) = (3, 5, 6, 7) 
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A Boolean function is said to be in a standard form if a sum-of-products 

expression or a product-of-sums expression has at least one term that is not a 

minterm or a maxterms respectively. In other words, at least one term in the 

expression is missing at least one variable. For example, the following 

expression is in a standard form because the last term is missing the variable x. 

F = xy'z + xyz' + yz 

 

Sometimes, common variables in a standard form expression can be factored 

out. The resulting expression is no longer in a sum-of-products or product-of-

sums format. These expressions are in a non-standard form. For example, 

starting with the previous expression, if we factor out the common variable x 

from the first two terms, we get the following expression, which is in a non-

standard form. 

F = x(y'z + yz') + yz 
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Example 3.1 

Consider the combinational circuit below, 

Starting from the primary inputs x, y, and z, we annotate the outputs of each 

logic gate with the resulting logical expression. Hence, we obtain the annotated 

circuit below 

The output of the circuit is the final function f = x' (xy' + (y (+) z)). 

3.2 Minimization of Combinational Circuits 

When constructing digital circuits, in addition to obtaining a functionally 

correct circuit, we like to optimize it in terms of circuit size, speed, and power 

consumption. In this section, we will focus on the reduction of circuit size. 

Usually, by reducing the circuit size, we will also improve on speed and power 

consumption. We have seen in the previous sections that any combinational 

circuit can be represented using a Boolean function. The size of the circuit is 

directly proportional to the size or complexity of the functional expression. In 

fact, it is a one-to-one correspondence between the functional expression and 

the circuit size. In Section 2.5.1, we saw how we can transform a Boolean 
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function to another equivalent function by using the Boolean algebra theorems. 

If the resulting function is simpler than the original, then we want to implement 

the circuit based on the simpler function, since that will give us a smaller circuit 

size. 

Using Boolean algebra to transform a function to one that is simpler is not an 

easy task, especially for the computer. There is no formula that says which is 

the next theorem to use. Luckily, there are easier methods for reducing Boolean 

functions. The Karnaugh map method is an easy way for reducing an equation 

manually, and is discussed in Section 3.4.1. The Quine-McCluskey or 

tabulation method for reducing an equation is ideal for programming the 

computer, and is discussed in Section 3.4.3. 

3.4.1 Karnaugh Maps 

To minimize a Boolean equation in the sum-of-products form, we need to 

reduce the number of product terms by applying the combining Boolean 

Theorem (Theorem 14) from Section 2.5.1. In so doing, we will also have 

reduced the number of variables used in the product terms. For example, given 

the following 3-variable function  F = xy'z' + xyz' we can reduce it to 

F = xz' (y' + y)= xz' 1= xz' 

In other words, two product terms that differ by only one variable whose value 

is a 0 (primed) in one term, and a 1 (unprimed) in the other term, can be 

combined together to form just one term with that variable omitted as shown in 

the example above. Thus, we have reduced the number of product terms and the 

resulting product term has one less variable. By reducing the number of product 

terms, we reduce the number of OR operators required, and by reducing the 

number of variables in a product term, we reduce the number of AND operators 
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required. Looking at a logic function’s truth table, it is sometimes difficult to 

see how the product terms can be combined and minimized. A Karnaugh map, 

or K-map for short, provides a simple and straightforward procedure for 

combining these product terms. A K-map is just a graphical representation of a 

logic function’s truth table where the minterms are grouped in such a way that 

it allows one to easily see which of the minterms can be combined. It is a 2-

dimensional array of squares, each of which represents one minterm in the 

Boolean function. Thus, the map for an n-variable function is an array with 2n 

squares. 

Figure 3.5 shows the K-maps for functions with 2, 3, 4, and 5 variables. Notice 

the labeling of the columns and rows are such that any two adjacent columns or 

rows differ in only one bit change. This condition is required because we want 

minterms in adjacent squares to differ in the value of only one variable or one 

bit, and so these minterms can be combined together. This is why the labeling 

for the third and fourth columns, and the third and fourth rows are always 

interchanged. When we read K-maps, we need to visualize it as such that the 

two end columns or rows wrap around so that the first and last columns, and the 

first and last rows are really adjacent to each other because they differ in only 

one bit also. 
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In Figure 3.5, the K-map squares are annotated with its minterm and its 

minterm number for easy reference only. For example, in Figure 3.5 (a) for a 2-

variable K-map, the entry in the first row and second column is labeled x'y, and 

annotated with the number 1. This is because the first row is when the variable 

x is a 0, and the second column is when the variable y is a 1. Since for 

minterms, we need to prime a variable whose value is a 0, and not prime it if its 

value is a 1, therefore, this entry represents the minterm x'y, which is minterm 

number 1.  

 

 

Figure 3.5. Karnaugh maps for: 

(a) 2 variables; (b) 3 variables; (c) 4 variables; (d) 5 variables. 

Be careful that if we label the rows and columns differently, the minterms and 

the minterm numbers will be in different locations. When we are actually using 

K-maps to minimize an equation, we will not write these in the squares. 

Instead, we will be putting 0’s and 1’s in the squares. 
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Given a Boolean function, we set the value for each K-map square to either a 0 

or a 1 depending on whether that minterm for the function is a 0-minterm or a 

1-minterm respectively. However, since we are only interested in the 1-

minterms for a function, the 0’s are sometimes not written in the 0-minterm 

squares. 


