
University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 1‏2021/‏22/‏12‏

LOGIC DESIGN

Contents

Chapter One: INTRODUCTION

NUMBER SYSTEMS AND CONVERSION.

1.1 Number systems and Conversion.

1.2 Binary Arithmetic.

1.3 Binary codes.

Chapter Two: BOOLEAN ALGEBRA

2.1 Basic Gates and operations.

2.2 Boolean Expressions and Truth Tables.

2.3 Basic Theorems.

2.4 Exclusive OR and Equivalence Operations.

Chapter Three: WORD PROBLEMS

MINITERM AND MAXTERM EXPANSIONS.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 2‏2021/‏22/‏12‏

3.1 Combinational Network Design Using a Truth Table.

3.2 Minterm and Maxterm Expansions.

3.3 Incomletely Specified Function.

Chapter Four : SIMPLIFICATION METHODS

4.1 Minimum Forms of Logic Functions.

4.2 Two- and Three-Variable Karnaugh Maps.

4.3 Four-Variable Karnaugh Maps.

4.4 Five- and Six-Variable Karnaugh Maps.

4.5 Quine-McCluskey method.

Chapter Five: MULTIPLE-OUTPUT NETWORKS

5.1 Multi-Output NAND and NOR Networks.

5.2 Multiplexers.

5.3 Decoders.

5.4 Read-Only Memory.

5.5 Programmable Logic Arrays.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 3‏2021/‏22/‏12‏

Chapter Six: FLIP-FLOPS

6.1 The Set-Reset Flip-Flops.

6.2 The J-K Flip-Flops.

6.3 The Trigger Flip-Flops.

6.4 The Delay Flip-Flops.

6.5 Counters.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 4‏2021/‏22/‏12‏

Chapter One

INTRODUCTION: NUMBER SYSTEMS AND CONVERSION.

1.1 Number systems and Conversion.

 When we write decimal (base 10) numbers, we use a positional notation;

each digit is multiplied by an appropriated power of 10 depending on its

position in the number. For example:

 (953.78)10=9x10
2
+5x10

1
+3x10

0
+7x10

-1
+8x10

-2

Similarly, for binary (base 2) numbers, each binary digit is multiplied by the

appropriate power of two:

 (1011.11)2=1x2
3
+0x2

2
+1x2

1
+1x2

2
+1x2

-1
+1x2

-2

 =8+0+2+1+1/2+1/4

 =(11.75)10

Note that the binary point separates the positive and negative powers of two

just as the decimal point separates the positive and negative power of ten for

decimal numbers.

 Any positive integer R(R≥1) can be chosen as the radix or base of a

number system. If the base is R then R digits (0,1,2,…,R-1) are used. For

example, if R=8 , then the required digits are (0,1,2,3,4,5,6 and 7). A number

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 5‏2021/‏22/‏12‏

written in positional notation can be expanded in power series in R.

For example :

 N=(a4 a3 a2 a1 a0. a-1 a-2)R

 = a4xR
4
+ a3xR

3
+ a2xR

2
+ a1xR

1
+ a0xR

0
+ a-1xR

-1
+ a-2xR

-2

where ai is the coefficient of R
i
 and 0≤ ai≤ R-1. If the arithmetic indicated

in the power series expansion is done in base 10, then the result is the decimal

equivalent of N.

For example:(147.3)8=1x8
2
+ 4x8

1
+7x8

0
+3 x8

-1

 =64+32+7+3/8

 =(103.375)10

For bases grater than 10, more than 10 symbols are needed to represent the

digits. In this case, letters are usually used to represent digits greater than 9. For

example in hexadecimal (base 16), A represent (10)10, B represent (11)10, C

represent (12)10, D represent (13)10, E represent (14)10, and F represent (15)10.

Thus, (A2F)16=10x16
2
+2x16

1
+15x16

0

 = 2560+32+15

 =(2607)10

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 6‏2021/‏22/‏12‏

 Next, we will discuss conversion of a decimal integer to base R using the

division method.

Example : Convert (53)10 to binary.

 2 53

 2 26 rem.=1=a0

 2 13 rem.=0=a1

 2 6 rem.=1=a2 THUS (53)10=(110101)2

 2 3 rem.=0=a3

 2 1 rem.=1=a4

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 7‏2021/‏22/‏12‏

 0 rem.=1=a5

Now, Conversion of a decimal fraction to base R can be done using successive

multiplication by R.

Example : Convert (.625)10 to binary.

F=.625 F1=.250 F1=.500

 X 2 X 2 X 2 THUS (.625)10=(.101)2

 1.250 0.500 1.000

 (a-1=1) (a-2=0) (a-3=1)

This process does not always terminate, but if it does not terminate the result is

a repeating fraction.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 8‏2021/‏22/‏12‏

Example : Convert (.7)10 to binary.

 .7

 2

 (1).4

 2

 (0).8

 2

 (1).6

 2

 (1).2

 2

(0).4 process start repeating here since .4 was previously

 2 obtained above

(0).8 (0.7)10=(0.1 0110 0110 0110 ….)2

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 9‏2021/‏22/‏12‏

 Conversion between two bases other than decimal can be done directly

by using the procedures given; however, the arithmetic operations would have

to be carried out using a base other than ten. It is generally easier to convert to

decimal first and then the decimal to the new base.

Example : Convert (231.3)4 to base 7.

(231.3)4=2x16+3x4+1x1+3/4

 =(45.75)10

 7 45 .75

 7 6 rem. 3 7

 0 rem. 6 (5).25

 7

 (1).75

 7

 THUS (45.75)10=(63.5151..)7 (5).25

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 11‏2021/‏22/‏12‏

 Conversion from binary to octal (and conversely) can be done by

inspection since each octal digit corresponds to exactly 3 binary digits (bits).

Starting at the binary point, the bits are divided into groups of 3 and each

group is replaced by an octal digit:

 (11010111110.0011)2=011 010 111 110 . 001 100

 3 2 7 6 1 4

 =(3276.14)8

Similarly, binary to hexadecimal conversion is accomplished by dividing the

binary number into groups of 4 bits and replacing each group by a hexadecimal

digit:

 (1001101.010111)2=0100 1101 . 0101 1100

 4 D 5 C

 =(4D.5C)16

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 11‏2021/‏22/‏12‏

1.2 Binary Arithmetic.

 Arithmetic operation in digital systems are usually done in binary

because design of logic networks to perform binary arithmetic is much easier

than for decimal. Binary arithmetic is carried out in much the same manner as

decimal, except the addition and multiplication tables are much simpler.

 The addition table for binary numbers is

 0 + 0 = 0

 0 + 1 = 1

1 + 0 = 1

 1 + 1 = 0 and carry 1 to the next column

Example : add (13)10 and (11)10 in binary.

 (13)10= 1101

 (11)10= 1011

 11000=(24)10

 The subtraction table for binary numbers is

 0 - 0 = 0

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 12‏2021/‏22/‏12‏

 0 - 1 = 1 and borrow 1 from the next column

1 - 0 = 1

 1 - 1 = 0

Borrowing 1 from a column is equivalent to subtracting 1 from that column.

Example : sub (11)10 from (13)10 in binary.

 1 (Indicate a borrow from the 3
rd

 column)

 (13)10= 1101

 (11)10= 1011

 0010=(2)10

Example : sub (10000)2 and (11)2 in binary.

 1111 (Indicate a borrow)

 10000

 11

 1101

Note how the borrow propagate from column to column in the second example.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 13‏2021/‏22/‏12‏

 The multiplication table for binary numbers is

 0 x 0 = 0

 0 x 1 = 0

1 x 0 = 0

 1 x 1 = 1

Example : multiply (13)10 from (11)10 in binary.

 (13)10= 1101

 (11)10= 1011

 1101

 1101

 0000

 1101

 10001111 = (143)10

The division table for binary numbers is

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 14‏2021/‏22/‏12‏

 0  0 = undefined

 0  1 = 0

1  0 = infinite

 1  1 = 1

Example : divide (72)10 by (12)10 in binary.

(72)10 =(1001000)2

(12)10 =(1100)2

 110

 1100 1001000

 1100

 01100

 1100

 000000

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 15‏2021/‏22/‏12‏

1.3 Binary codes.

 Although most large computers work internally with binary numbers, the

input-output equipment generally uses decimal numbers. Since most logic

circuits only accept two-valued signals, the decimal numbers must be coded in

terms of binary signals.

Decimal

digit

8-4-2-1 code

(BCD)

6-3-1-1

code

Excess-3

code

Gray code

 0 0000 0000 0011 0000

1 0001 0001 0100 0001

2 0010 0011 0101 0011

3 0011 0100 0110 0010

4 0100 0101 0111 0110

5 0101 0111 1000 0111

6 0110 1000 1001 0101

7 0111 1001 1010 0100

8 1000 1011 1011 1100

9 1001 1100 1100 1101

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 16‏2021/‏22/‏12‏

In the simplest form of binary code, referred to as binary-coded-decimal

(BCD), each decimal digit is replaced by its binary equivalent.

For example, 937.25 is represented by

 9 3 7 . 2 5

 (1001 0011 0111 . 0010 0101)BCD

Note that the result is quite different than that obtained by converting the

number as a whole into binary.

 Table shown above shows several possible sets of binary codes for the

ten decimal digits and many other possibilities exist.

The excess-3 code is obtained from the 8-4-2-1 code by adding 3 (0011)

to each of the code. To translate a decimal number to excess-3 coded form,

each decimal digit is replaced by its corresponding code. Thus 937 expressed in

excess-3 code is 1100 0110 1010.

The table shows one example of a Gray code. A Gray code has the

property that the codes for successive decimal digits differ in exactly one bit.

For example, the cods for 6 and 7 differ only in the first bit.

Many application of computers require processing of data which contains

numbers, letters and other symbols such as punctuation marks. In order to

transmit such alphanumeric data to or from a computer, or store it internally in

a computer, each symbol must be represented by a binary code. One common

alphanumeric code is the ASCII code (American Standard Code for

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 17‏2021/‏22/‏12‏

Information Interchange). This is a 7-bit code, so 2
7
 (128) different code

combinations are available to represent letters, numbers and other symbols.

Table below shows a portion of ASCII code; the word “Start” is represented in

ASCII code as follows :

1010011 1110100 1100001 1110010 1110100

 S t a r t

Table ASCII code

Char

acter

ASCII code

A6A5A4A3A2A1A0

Char

acter

ASCII code

A6A5A4A3A2A1A0

Char

acter

ASCII code

A6A5A4A3A2A1A0

Space 0 1 0 0 0 0 0 @ 1 0 0 0 0 0 0 ‘ 1 1 0 0 0 0 0

! 0 1 0 0 0 0 1 A 1 0 0 0 0 0 1 a 1 1 0 0 0 0 1

“ 0 1 0 0 0 1 0 B 1 0 0 0 0 1 0 b 1 1 0 0 0 1 0

0 1 0 0 0 1 1 C 1 0 0 0 0 1 1 c 1 1 0 0 0 1 1

$ 0 1 0 0 1 0 0 : : : : : :

: : : Z 1 0 1 1 0 1 0 z 1 1 1 1 0 1 0

0 0 1 1 0 0 0 0 [1 0 1 1 0 1 1 { 1 1 1 1 0 1 1

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 18‏2021/‏22/‏12‏

1 0 1 1 0 0 0 1 \ 1 0 1 1 1 0 0 | 1 1 1 1 1 0 0

2 0 1 1 0 0 1 0] 1 0 1 1 1 0 1 } 1 1 1 1 1 0 1

: : : : : : : : :

? 0 1 1 1 1 1 1 - 1 0 1 1 1 1 1 delete 1 1 1 1 1 1 1

Problems :

1.1 Convert to octal then to binary:

a. (757.25)10 b. (123.17)10 c. (356.89)10 d. (1063.5)10

1.2 Convert to octal and then to decimal:

a.(10111011.1)2 b.(1101101.011)2 c.(10000011.11)2

1.3 Add, subtract and multiply in binary:

 a. 1111 and 1011 b. 1001001and 111010 c. 110100 and 11011

1.4 Convert to base 5: (165.2)7

 (do all of the arithmetic in decimal)

1.5 a. Convert to hexadecimal: (701.12)10

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 19‏2021/‏22/‏12‏

 b. Convert to decimal: (ABC.D)16

c. Device a scheme for converting hexadecimal directly to base 4 and

convert the previous hexadecimal number to base 4.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 21‏2021/‏22/‏12‏

Chapter Two

BOOLEAN ALGEBRA

2.1 Basic Gates and operations.

The basic mathematics needed for the study of logic design of digital

system is Boolean algebra. The basic operation of Boolean algebra are AND,

OR and complement (or inversion). The complement of 0 is 1, and the

complement of 1 is 0. Symbolically, we write X to denote the complementation

of X. we represent an inverter by:

 X X

Where the circle at the output indicates inversion. Complementation is

sometimes referred to as the Not operation since X=1 if X is not equal to 0

The AND operation can be defined as follows:

 0 . 0=0 , 0 . 1=0 , 1 . 0=0, 1 . 1=1

where ”.” Denotes AND. If we write the Boolean expression F=A.B, then given

values of A and B, we can determine F from the following table:

A B F=A.B

0 0 0

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 21‏2021/‏22/‏12‏

0 1 0

1 0 0

1 1 1

A logic gate which performs the AND operation is represented by:

The “.” symbol is frequently omitted in a Boolean expression, and we will

usually write AB instead of A.B , the AND operation is also referred to as

logical (or Boolean) multiplication.

 The OR operation can be defined as follows:

 0 + 0=0, 0 + 1=1, 1 + 0=1, 1 + 1=1

where “+” denotes OR. If we write F=A+B, then given the values of A and B

we can determine F from the following table:

A B F=A.B

0 0 0

0 1 1

F=A.B A
B

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 22‏2021/‏22/‏12‏

1 0 1

1 1 1

A logic gate which performs the OR operation is represented by:

The OR operation also referred to as logical (or Boolean) addition.

A F=A+B
B

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 23‏2021/‏22/‏12‏

2.2 Truth Tables

The operation of the AND, OR, and NOT logic operators can be formally

described by using a truth table as shown in Figure 2.5. A truth table is a two-

dimensional array where there is one column for each input and one column for

each output (a circuit may have more than one output). Since we are dealing

with binary values, each input can be either a 0 or a 1. We simply enumerate all

possible combinations of 0’s and 1’s for all the inputs.

Usually, we want to write these input values in the normal binary counting

order. With two inputs, there are 2
2
 combinations giving us the four rows in the

table. The values in the output column are determined from applying the

corresponding input values to the functional operator.

For the AND truth table in Figure 2.1 (a), F = 1 only when x and y are both 1,

otherwise, F = 0. For the OR truth table (b), F = 1 when either x or y or both is

a 1, otherwise F = 0. For the NOT truth table, the output F is just the inverted

value of the input x.

Figure 2.1. Truth tables for the three basic logical operators:

(a) AND; (b) OR; (c) NOT.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 24‏2021/‏22/‏12‏

Using a truth table is one method to formally describe the operation of a circuit

or function. The truth table for any given logic expression (no matter how

complex it is) can always be derived. Examples on the use of truth tables to

describe digital circuits are given in the following sections. Another method to

formally describe the operation of a circuit is by using Boolean expressions or

Boolean functions.

2.3 Boolean Algebra

George Boole, in 1854, developed a system of mathematical logic, which we

now call Boolean algebra. Based on Boole’s idea, Claude Shannon, in 1938,

showed that circuits built with binary switches can easily be described using

Boolean algebra. The abstraction from switches being on and off to the use of

Boolean algebra is as follows.

Let B = {0, 1} be the Boolean algebra whose elements are one of the two

values, 0 and 1. We define the operations AND (.), OR (+), and NOT (') for the

elements of B by the axioms in Figure 2.2 (a). These axioms are simply the

definitions for the AND, OR, and NOT operators.

2.4 Duality Principle

Notice in Figure 2.2 that we have listed the axioms and theorems in pairs.

Specifically, we define the dual of a logic expression as one that is obtained by

changing all + operators with . operators, and vice versa, and by changing all

0’s with 1’s, and vice versa. For example, the dual of the logic expression

(x.y'.z) + (x.y.z') + (y.z) is (x'+y+z') .(x'+y'+z) .(y'+z')

The duality principle states that if a Boolean expression is true , then its

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 25‏2021/‏22/‏12‏

dual is also true. Be careful in that it does not say that a Boolean expression is

equivalent to its dual. For example , Theorem 5a in Figure 2.2 says that x . 0 =

0 is true , thus by the duality principle , its dual , x + 1 = 1 is also true.

However, x . 0 = 0 is not equal to x + 1 = 1, since 0 is definitely not equal to

1.We will see in later sections that the duality principle is used extensively in

digital logic design. Whereas an expression might be complex to implement, its

dual might be simpler. In this case, implementing its dual and converting it

back to the original expression will result in a smaller circuit.

2.5 Boolean Function and the Inverse

As we have seen, any digital circuit can be described by a logical

expression, also known as a Boolean function.

Any Boolean functions can be formed from binary variables and the Boolean

operators . , +, and ' (for AND, OR, and NOT respectively). For example, the

following Boolean function uses the three variables or literals x, y, and z. It has

three AND terms (also referred to as product terms), and these AND terms

are ORed (summed) together. The first two AND terms contain all three

variables each, while the last AND term contains only two variables. By

definition, an AND (or product) term is either a single variable, or two or more

variables ANDed together. Quite often, we refer to functions that are in this

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 26‏2021/‏22/‏12‏

format as a sum-of-products or OR-of-ANDs.

 The value of a function evaluates to either a 0 or a 1 depending on the

given set of values for the variables. For example, the function above evaluates

to a 1 when any one of the three AND terms evaluate to a 1, since 1 OR x is 1.

The first AND term, xy'z, equals to a 1 if

x = 1, y = 0, and z = 1

because if we substitute these values for x, y, and z into the first AND term xy'z,

we get a 1 Similarly, the second AND term, xyz', equals to 1 if

 x = 1, y = 1, and z = 0

The last AND term, yz, has only two variables. What this means is that the

value of this term is not dependent on the missing variable x. In other words x

can be either a 0 or a 1, but as long as y = 1 and z = 1, this term will equal to a

1.

Thus, we can summarize by saying that F evaluates to a 1 if

x = 1 , y = 0, and z = 1

or x = 1 , y = 1, and z = 0

or x = 0 , y = 1, and z = 1

or x = 1 , y = 1, and z = 1 Otherwise, F evaluates to a 0.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 27‏2021/‏22/‏12‏

 It is often more convenient to summarize the above verbal description of

a function with a truth table as shown in Figure 2.7 under the column labeled F.

Notice that the four rows in the table where F = 1 match the four cases in the

description above.

Figure 2.3. Truth table for the function F = xy'z + xyz' + yz

The inverse of a function, denoted by F', can be easily obtained from the truth

table for F by simply changing all the 0’s to 1’s and 1’s to 0’s as shown in the

truth table in Figure 2.7 under the column labeled F'. Therefore, we can write

the Boolean function for F' in the sum-of-products format, where the AND

terms are obtained from those rows where F' = 1. Thus, we get

F' = x'y'z' + x'y'z + x'yz' + xy'z'

To deduce F' algebraically from F requires the use of DeMorgan’s Theorem (

Theorem 15a) twice . For example , using the same function F = xy'z + xyz' +

yz we obtain F' as follows

F' = (xy'z + xyz' + yz)'

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 28‏2021/‏22/‏12‏

 = (xy'z)' . (xyz')' . (yz)'

 = (x'+y+z') . (x'+y'+z) . (y'+z')

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 29‏2021/‏22/‏12‏

There are three things to notice about this equation for F'. First, F' is just the

dual of F as defined in Section 2.5.2. Second, instead of being in a sum-of-

products format, it is in a product-of-sums (and-of-ors) format where three

OR terms (also referred to as sum terms) are ANDed together. Third, from the

same original function F, we obtained two different equations for F'.

From the truth table, we obtained

F' = x'y'z' + x'y'z + x'yz' + xy'z'

and from applying DeMorgan’s theorem to F, we obtained

F' = (x'+y+z') . (x'+y'+z) . (y'+z')

Hence, we must conclude that these two expressions, where one is in the sum-

of-products format, and the other is in the product-of-sums format, are

equivalent. In general, all functions can be expressed in either the sum-of

products or product-of-sums format.

Thus , we should also be able to express the same function F = xy'z +

xyz' + yz in the product-of-sums format. We can derive it using one of two

methods. For method one, we can start with F' and apply DeMorgan’s Theorem

to it just like how we obtained F' from F.

F = F' '

 = (x'y'z' + x'y'z + x'yz' + xy'z')'

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 31‏2021/‏22/‏12‏

 = (x'y'z')' . (x'y'z)' . (x'yz')' . (xy'z')'

 = (x+y+z) . (x+y+z') . (x+y'+z) . (x'+y+z)

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 31‏2021/‏22/‏12‏

For the second method, we start with the original F and convert it to the

product-of-sums format using the Boolean theorems.

F = xy'z + xyz' + yz

 = (x+x+y) .(x+x+z) .(x+y+y) .(x+y+z) .(x+z'+y) .(x+z'+z) . step 1

(y'+x+y).(y'+x+z).(y'+y+y).(y'+y+z).(y'+z'+y).(y'+z'+z).

(z+x+y) .(z+x+z).(z+y+y) .(z+y+z).(z+z'+y).(z+z'+z)

 =(x+y).(x+z).(x+y).(x+y+z).(x+z'+y).(y'+x+z).(z+x+y).(z+x).

(z+y).(z+y) step 2

 =(x+y) .(x+z).(x+y+z) .(x+y+z') .(x+y'+z) .(z+y) step 3

 =(x+y+zz').(x+yy'+z).(x+y+z).(x+y+z').(x+y'+z).(xx'+y+z) step 4

 =(x+y+z).(x+y+z').(x+y+z).(x+y'+z).(x+y+z).(x+y+z').(x+y'+z).

(x+y+z) .(x'+y+z) step 5

 =(x+y+z).(x+y+z') .(x+y'+z) .(x'+y+z)

In the first step, we apply Theorem 12b (Distributive) to get every possible

combination of sum terms. For example, the first sum term (x+x+y) is obtained

from getting the first x from xy'z, the second x from xyz', and the y from yz. The

second sum term (x+x+z) is obtained from getting the first x from xy'z, the

second x from xyz', and the z from yz. This is repeated for all combinations. In

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 32‏2021/‏22/‏12‏

this step, the sum terms, such as (x+z'+z), where it contains variables of the

form v + v' can be eliminated since v + v' = 1, and 1 .x = x.

In the second and third steps, duplicate variables and terms are eliminated. For

example, the term (x+x+y) is equal to just (x+y+y), which is just (x+y). The

term (x+z'+z) is equal to (x+1), which is equal to just 1, and therefore, can be

eliminated completely from the expression.

In the fourth step, every sum term with a missing variable will have that

variable added back in by using Theorems 6b and 9a, which says that x + 0 = x

and yy' = 0, therefore, x + yy' = x.

Step five uses the Distributive Theorem, and the resulting duplicate terms are

again eliminated to give us the format that we want.

Functions that are in the product-of-sums format (such as the one shown below)

are more difficult to deduce when they evaluate to a 1. For example, using

F' = (x'+y+z') .(x'+y'+z) .(y'+z')

F' evaluates to a 1 when all three terms evaluate to a 1. For the first term to

evaluate to a 1, x can be 0, or y can be 1, or z can be 0. For the second term to

evaluate to a 1, x can be 0, or y can be 0, or z can be 1. Finally, for the last term,

y can be 0, or z can be 0, or x can be either a 0 or a 1. As a result, we end up

with many more combinations to consider, even though many of the

combinations are duplicates.

However, it is easier to determine when a product-of-sums format expression

evaluates to a 0. For example, using the same expression

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 33‏2021/‏22/‏12‏

F' = (x'+y+z') .(x'+y'+z) .(y'+z')

F' evaluates to 0 when any one of the three OR terms is 0, since 0 AND x is 0;

and this happens when

 x = 1, y = 0, and z = 1 for the first OR term,

Or x = 1, y = 1, and z = 0 for the second OR term,

Or y = 1, z = 1, and x can be either 0 or 1 for the last or term.

Similarly, for a sum-of-products format expression, it is easy to evaluate when

it is a 1, but difficult to evaluate when it is a 0.

These four conditions in which F' evaluates to a 0 match exactly those rows in

the table shown in Figure 2.7 where F' = 0.

Therefore, we see that in general, the unique algebraic expression for any

Boolean function can be specified by either (1) selecting the rows from the

truth table where the function is a 1 and use the sum-of-products format, or (2)

selecting the rows from the truth table where the function is a 0 and use the

product-of-sums format. Whatever format we decide to use, the one thing to

remember is that we are always interested in only when the function (or its

inverse) is equal to a 1 .

Figure 2.8 summarizes these two formats for the function F = xy'z + xyz' + yz

and its inverse. Notice that the sum-of-products format for F is the dual (i.e. by

applying the duality principle) of the product-of-sums format for F'. Similarly,

the product-of-sums format for F is the dual of the sum-of-products format for

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 34‏2021/‏22/‏12‏

F'.

Figure 2.4. Relationships between the function F = xy'z + xyz' + yz and its

inverse, and the sum-of-products and product-of-sums formats.

2.6 Minterms and Maxterms

As you recall, a product term is a term with either a single variable, or two or

more variables ANDed together, and a sum term is a term with either a single

variable, or two or more variables ORed together. To differentiate between a

term that contains any number of variables with a term that contains all the

variables used in the function, we use the words minterm and maxterm.

2.6.1 Minterms

A minterm is a product term that contains all the variables used in a function.

For a function with n variables, the notation mi where 0< i < 2n, is used to

denote the minterm whose index i is the binary value of the n variables such

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 35‏2021/‏22/‏12‏

that the variable is complemented if the value assigned to it is a 0, and

uncomplemented if it is a 1.

For example, for a function with three variables x, y, and z, the notation M3 is

used to represent the term in which the values for the variables xyz are 011 (for

the subscript 3). Since we want to complement the variable whose value is a 0,

and uncomplement it if it is a 1. Hence M3 is for the minterm x'yz. Figure 2.9

(a) shows the eight minterms and their notations for n = 3 using the three

variables x, y, and z.

When specifying a function, we usually start with product terms that contain all

the variables used in the function. In other words, we want the sum of

minterms, and more specifically the sum of the one-minterms, that is the

minterms for which the function is a 1 (as opposed to the zero-minterms, that is

the minterms for which the function is a 0). We use the notation 1-minterm to

denote one-minterm, and 0-minterm to denote zero-minterm.

Figure 2.5. (a) Minterms for three variables. (b) Maxterms for three variables.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 36‏2021/‏22/‏12‏

The function from the previous section

F = xy'z + xyz' + yz

 = x'yz + xy'z + xyz' + xyz

and repeated in the following truth table has the 1-minterms M3, m5, m6, and

m7.

Thus, a shorthand notation for the function is

F(x, y, z) = M3 + m5 + m6 + m7

By just using the minterm notations, we do not know how many variables are in

the original function.

Consequently, we need to explicitly specify the variables used by the function

as in F(x, y, z). We can further simplify the notation by using the standard

algebraic symbol  for summation. Therefore, we have

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 37‏2021/‏22/‏12‏

F(x, y, z) = (3, 5, 6, 7)

These are just different ways of expressing the same function. Since a function

is obtained from the sum of the 1-minterms, the inverse of the function,

therefore, must be the sum of the 0-minterms. This can be easily obtained by

replacing the set of indices with those that were excluded from the original set.

Example 2.5: Given the Boolean function F(x, y, z) = y + x'z, use Boolean

algebra to convert the function to the sum-of-minterms format.

Solution:

This function has three variables. In a sum-of-minterms format, all product

terms must have all variables. To do so, we need to expand each product term

by ANDing it with (v + v') for every missing variable v in that term. Since (v +

v') = 1, therefore, ANDing a product term with (v + v') does not change the

value of the term.

F = y + x'z

 = y(x+x')(z+z') + x'z(y+y')

expand 1
st
 term by ANDing it with (x+x')(z+z'),and 2

nd
 term with (y+y')

 = xyz + xyz' + x'yz + x'yz' + x'yz + x'y'z

 = m7 + m6 + M3 + m2 + m1

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 38‏2021/‏22/‏12‏

 = (1, 2, 3, 6, 7) sum of 1-minterms

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 39‏2021/‏22/‏12‏

Example 2.6: Given the Boolean function F(x, y, z) = y + x'z, use Boolean

algebra to convert the inverse of the function to the sum-of-minterms format.

Solution:

F' = (y + x'z)' inverse

 = y' .(x'z)' use DeMorgan

 = y' .(x+z') use DeMorgan

 = y'x + y'z' use Distributive Theorem to change to SoP

 = y'x(z+z') + y'z' (x+x')

 expand 1st term by ANDing it with (z+z'), and 2nd term with (x+x')

 = xy'z + xy'z' + xy'z' + x'y'z'

 = m5 + m4 + m0

 = (0, 4, 5) sum of 0-minterms 

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 41‏2021/‏22/‏12‏

2.6.2 Maxterms

Analogous to a minterm, a maxterm is a sum term that contains all the

variables used in the function. For a function with n variables, the notation Mi

where 0 ≤ i ≤ 2n, is used to denote the maxterm whose index i is the binary

value of the n variables such that the variable is complemented if the value

assigned to it is a 1, and uncomplemented if it is a 0.

For example, for a function with three variables x, y, and z, the notation M3 is

used to represent the term in which the values for the variables xyz are 011. For

maxterms, we want to complement the variable whose value is a 1, and

uncomplement it if it is a 0. Hence M3 is for the maxterm x + y' + z'.

Figure 2.9 (b) shows the eight maxterms and their notations for n = 3 using the

three variables x, y, and z. We have seen that a function can also be specified as

a product of sums, or more specifically, a product of 0- maxterms, that is, the

maxterms for which the function is a 0. Just like the minterms, we use the

notation 1-maxterm to denote one-maxterm, and 0-maxterm to denote zero-

maxterm. Thus, the function

F(x, y, z) = xy'z + xyz' + yz

 = (x + y + z) .(x + y + z') .(x + y' + z) .(x' + y + z)

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 41‏2021/‏22/‏12‏

which is shown in the following table can be specified as the product of the 0-

maxterms M0, M1, M2, and M4. The shorthand notation for the function is

F(x, y, z) = M0 .M1 .M2 .M4 Again, by using the standard algebraic symbol for

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 42‏2021/‏22/‏12‏

product, the notation is further simplified to F(x, y, z) = (0, 1, 2, 4) The

following summarizes these relationships for the functionF = xy'z + xyz' + yz

and its inverse. Comparing these equations with those in Figure 2.8, we see that

they are identical.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 43‏2021/‏22/‏12‏

Example 2.7: Given the Boolean function F(x, y, z) = y + x'z, use Boolean

algebra to convert the function to the product-of-maxterms format.

Solution:

To change a sum term to a maxterm, we expand each term by ORing it with

(vv') for every missing variable v in that term. Since (vv') = 0, therefore,

ORing a sum term with (vv') does not change the value of the term.

F = y + x'z

 = y + (x'z)

 =(y+x')(y+z) use Distributive Theorem to change to product of sum format

 =(y+x'+zz')(y+z+xx') expand1
st
 term by Oring it with zz',and 2

nd
 with xx'

 =(x' +y+z) (x' +y+z') (x+y+z) (x' +y+z)

 = M4. M5 . M0 = (0, 4, 5) product of 0-maxterms 

Example 2.8: Given the Boolean function F(x, y, z) = y + x'z, use Boolean

algebra to convert the inverse of the function to the product-of-maxterms

format.

Solution:

F' = (y + x' z)' inverse

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 44‏2021/‏22/‏12‏

 = y' .(x' z)' use DeMorgan

 = y' .(x+z') use DeMorgan

 =(y'+xx'+zz').(x+z'+yy') expand 1
st
 term by ORing with xx' +zz', and 2

nd
 term with yy'

 = (x+y' +z) (x+y' +z') (x' +y' +z) (x' +y' +z') (x+y+z') (x+y' +z')

 = M2 .M3 .M6 .M7 .M1

 = (1, 2, 3, 6, 7) product of 1-maxterms 

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 45‏2021/‏22/‏12‏

2.7 Canonical, Standard, and non-Standard Forms

Any Boolean function that is expressed as a sum of minterms, or as a product

of maxterms is said to be in its canonical form. For example, the following

two expressions are in their canonical forms

F = x' y z + x y' z + x y z' + x y z

F' = (x+y'+z') .(x'+y+z') .(x'+y'+z) .(x'+y'+z')

As noted from the previous section, to convert a Boolean function from one

canonical form to its other equivalent canonical form, simply interchange the

symbols . with +, and list the index numbers that were excluded from the

original form.

For example, the following two expressions are equivalent

F1(x, y, z) =  (3, 5, 6, 7)

F2(x, y, z) = (0, 1, 2, 4)

To convert a Boolean function from one canonical form to its dual (inverse),

simply interchange the symbols  with , and list the same index numbers

from the original form. For example, the following two expressions are duals

F1(x, y, z) =  (3, 5, 6, 7)

F2(x, y, z) = (3, 5, 6, 7)

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 46‏2021/‏22/‏12‏

A Boolean function is said to be in a standard form if a sum-of-products

expression or a product-of-sums expression has at least one term that is not a

minterm or a maxterms respectively. In other words, at least one term in the

expression is missing at least one variable. For example, the following

expression is in a standard form because the last term is missing the variable x.

F = xy'z + xyz' + yz

Sometimes, common variables in a standard form expression can be factored

out. The resulting expression is no longer in a sum-of-products or product-of-

sums format. These expressions are in a non-standard form. For example,

starting with the previous expression, if we factor out the common variable x

from the first two terms, we get the following expression, which is in a non-

standard form.

F = x(y'z + yz') + yz

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 47‏2021/‏22/‏12‏

Example 3.1

Consider the combinational circuit below,

Starting from the primary inputs x, y, and z, we annotate the outputs of each

logic gate with the resulting logical expression. Hence, we obtain the annotated

circuit below

The output of the circuit is the final function f = x' (xy' + (y (+) z)).

3.2 Minimization of Combinational Circuits

When constructing digital circuits, in addition to obtaining a functionally

correct circuit, we like to optimize it in terms of circuit size, speed, and power

consumption. In this section, we will focus on the reduction of circuit size.

Usually, by reducing the circuit size, we will also improve on speed and power

consumption. We have seen in the previous sections that any combinational

circuit can be represented using a Boolean function. The size of the circuit is

directly proportional to the size or complexity of the functional expression. In

fact, it is a one-to-one correspondence between the functional expression and

the circuit size. In Section 2.5.1, we saw how we can transform a Boolean

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 48‏2021/‏22/‏12‏

function to another equivalent function by using the Boolean algebra theorems.

If the resulting function is simpler than the original, then we want to implement

the circuit based on the simpler function, since that will give us a smaller circuit

size.

Using Boolean algebra to transform a function to one that is simpler is not an

easy task, especially for the computer. There is no formula that says which is

the next theorem to use. Luckily, there are easier methods for reducing Boolean

functions. The Karnaugh map method is an easy way for reducing an equation

manually, and is discussed in Section 3.4.1. The Quine-McCluskey or

tabulation method for reducing an equation is ideal for programming the

computer, and is discussed in Section 3.4.3.

3.4.1 Karnaugh Maps

To minimize a Boolean equation in the sum-of-products form, we need to

reduce the number of product terms by applying the combining Boolean

Theorem (Theorem 14) from Section 2.5.1. In so doing, we will also have

reduced the number of variables used in the product terms. For example, given

the following 3-variable function F = xy'z' + xyz' we can reduce it to

F = xz' (y' + y)= xz' 1= xz'

In other words, two product terms that differ by only one variable whose value

is a 0 (primed) in one term, and a 1 (unprimed) in the other term, can be

combined together to form just one term with that variable omitted as shown in

the example above. Thus, we have reduced the number of product terms and the

resulting product term has one less variable. By reducing the number of product

terms, we reduce the number of OR operators required, and by reducing the

number of variables in a product term, we reduce the number of AND operators

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 49‏2021/‏22/‏12‏

required. Looking at a logic function’s truth table, it is sometimes difficult to

see how the product terms can be combined and minimized. A Karnaugh map,

or K-map for short, provides a simple and straightforward procedure for

combining these product terms. A K-map is just a graphical representation of a

logic function’s truth table where the minterms are grouped in such a way that

it allows one to easily see which of the minterms can be combined. It is a 2-

dimensional array of squares, each of which represents one minterm in the

Boolean function. Thus, the map for an n-variable function is an array with 2n

squares.

Figure 3.5 shows the K-maps for functions with 2, 3, 4, and 5 variables. Notice

the labeling of the columns and rows are such that any two adjacent columns or

rows differ in only one bit change. This condition is required because we want

minterms in adjacent squares to differ in the value of only one variable or one

bit, and so these minterms can be combined together. This is why the labeling

for the third and fourth columns, and the third and fourth rows are always

interchanged. When we read K-maps, we need to visualize it as such that the

two end columns or rows wrap around so that the first and last columns, and the

first and last rows are really adjacent to each other because they differ in only

one bit also.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 51‏2021/‏22/‏12‏

In Figure 3.5, the K-map squares are annotated with its minterm and its

minterm number for easy reference only. For example, in Figure 3.5 (a) for a 2-

variable K-map, the entry in the first row and second column is labeled x'y, and

annotated with the number 1. This is because the first row is when the variable

x is a 0, and the second column is when the variable y is a 1. Since for

minterms, we need to prime a variable whose value is a 0, and not prime it if its

value is a 1, therefore, this entry represents the minterm x'y, which is minterm

number 1.

Figure 3.5. Karnaugh maps for:

(a) 2 variables; (b) 3 variables; (c) 4 variables; (d) 5 variables.

Be careful that if we label the rows and columns differently, the minterms and

the minterm numbers will be in different locations. When we are actually using

K-maps to minimize an equation, we will not write these in the squares.

Instead, we will be putting 0’s and 1’s in the squares.

University of Anbar Logic Design

College of Computer Science Department of Information System

and Information Technology Muntaser Abdulwahed Salman

 51‏2021/‏22/‏12‏

Given a Boolean function, we set the value for each K-map square to either a 0

or a 1 depending on whether that minterm for the function is a 0-minterm or a

1-minterm respectively. However, since we are only interested in the 1-

minterms for a function, the 0’s are sometimes not written in the 0-minterm

squares.

