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> Lety = f(x)
Differentiate both the sides w.r.ito x

= %=r’=f'(x)

Differentiate again both the sides w.r.to x

dz}r n rr
2o =Y =)

Continuing this process we can find n‘" order derivative of the given function.

d™y
prh y™ = fM(x)
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An eqn. which involves differential co-efficient is called a

» Differential Equation

Differential Equation.

a?y 24y —
eg.atx —+y=0

as:

s d 82u_8v_0
2222 _3y=5x or? ot
dx dx 82 82
_ Y24 Y24
xdy +(x—y)dx =0 -+ > =u
yn!_yzz ax ay

Types of Differential Equations

» Ordinary differential Equation
An egn. which involves function of single variable and ordinary
derivatives of that function then it is called an Ordinary

Differential Equation.
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An eqgn. which involves function of two or more variables and

» Partial Differential Equation

partial derivatives of that function then it is called a Partial
Differential Equation.

dy oy _
e.g.ax+ Fye 0

Order of DE

» Order of DE
The order of highest derivative which appeared in a differential

equation is “Order of D.E".

dy\? , d
e.g. (d—i) +d—i + 5y = 0 has order 1.
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» Degree of DE
When a D.E. is in a polynomial form of derivatives, the highest
power of highest order derivative occurring in D.E. is called a

“Degree of D.E.".

2
e.g. (%) +g+ 5y = 0 has degree 2.

Solution:

1
Ly _ [y +(2YT
Here’dx‘ _[y+(dx)]

Taking Fourth power both the sides,

dz}-' 4 dy 2
(3 (2

In above differential equation the order of highest derivative is 2

Now, DE is in polynomial form and highest power of the highest derivative is 4

Therefore, Order is 2 and Degree is 4.



| Lecturer Dr. Makarim ALTURKY

. dzy\’ (]
Ex 3 Find order and degreeof |—= | =[x +sin|— || .
dx? dx

Solution:

Herae,(g)3 = Ix + sin (g)r

In above differential equation the order of highest derivat
2 but the DE is not in polynomial form. So, degree of the given

undefined.

Therefore, Order is 2 and degree is undefined.

Types of solution

# General solution
A solution of a differential equation in which the number of
arbitrary constants is equal to the order of the differential
equation, is called the General solution or complete integral or
complete primitive.
# Particular solution
The solution obtained from the general solution by giving a particular

value to the arbitrary constants is called a particular solution.

Exercises: Find order and degree of the following D.E

dzy dYT 3 4
=2l — | =8y’ =x
dx’ (dx 4

yo —yr=2
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Linear and Nonlinear DE

A differential equation is called “LINEAR DIFFERENTIAL
EQUATION" if the dependent variable and every derivatives in
the equation occurs in the first degree only and they should not
be multiplied together. Otherwise it is known as “NONLINEAR
DIFFERENTIAL EQUATION"

dy = x29y -
e.g — = ( is linear.
8 132 + o +y=0is
d2y+ydy+ = 0 is non-linear.
=T ty=0i inear.

Types of First Order and First Degree DE

v’ Variable Separable Equation

v Homogeneous Differential Equation

v’ Linear(Leibnitz’s) Differential Equation
v' Bernoulli’s Equation

v Exact Differential Equation

Exercises: which of the following D.E is linear and non-
linear.



3y® —29p"'45x7 y'+7y = x —3e?”

2
(x+1)2 ‘; y—3(x+1)%+2y=3
X X

2
(v —x)dx+xdy =0
3yw"+5y'+7xy =0

3 2
»Z f—:{d—yj 42y =4
dx dx

Examples:
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y =Acosx + Bsinx

(1)

Show that the above equation is a solution of the following DE

y'+y=20
Solutions:
y' = —Asinx + Bcosx
y"" = —Acosx — Bsinx

Insert (1) and (4) into (2)

(2)

(3)
(4)

= —Acosx —Bsinx + Acosx + Bsinx

=0

10
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Form a suitable DE usingy = Acosx + Bsinx
Solutions:
y' = —Asinx + B cosx
y'" = —Acosx — Bsinx
= —(Acosx + Bsinx)

d?y
y'=—-y => ﬁ+y=0

EXERCISE:
Show that y = A cos(In x) + B sin(In x) is the solution of the
d%y

. 2d%y dy _
following DE x T2 + X +y=0

Variable Separable Method

If a differential equation of type Z—i’ = f(x,y) can be converted into
M(x)dx = N(y)dy, then it is known as a Variable Separable Equation.

The general solution of a Variable Separable Equation is

fM(x)dx = fN(y)dy+ c

Where, c is an arbitrary constant.
» Note:

For convenience, the arbitrary constant can be chosen in any suitable

form.e. g. logc,tan™! ¢, e€,sinc,etc.

11
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Solution:

Here, 9yy' +4x =0

=9 dy_ 4
}’a— x
= 9ydy = —4x dx

Integrate both the sides,

:9[ydy= —4J.xdx

2 2
= 9y? = —4x? + 2¢’

=9y2+4x2=¢ (v c=2c")

12
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Ex.3 Solvexy' '+ y =0;y(2) = -2

Solution: Here,xy'+y =10

dy
=>x5+y—[]
=>xdy =-ydx
=:~1d = ld

y T

Integrate both the sides,

=logy = —logx +logc

= logxy =logc > Xy=CcC

Now, y(2) = -2

Here,

xXy=c

= (2)(-2)=c
=>—4=c

Therefore, the solution is

xy =—4

= logy +logx =logc

13
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dy
Ex.8 Solvexya= 1+x+y+xy.
Solution:
Here,xy':—i=1+x+y+xy
dy
::»xya—1+x+y(1+x)

dy
= xya =(14+x)(1+y)

1+x
= dx

1
dy = [;+ 1] dx

' 1
= - }'I dy=[;+1]dx

1
= 1__y dy = L+1]dx

Integrate both the sides,

”1__@ [[+1]

—log(1+y) =logx+x+logc

14
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Exercise

1) Solve the following equations

dy
a.xdx—coty
d
b. & —_

" dx x(x+1)

. 2+ (1+y?) =0, y0)=0

) d. JxyZ=Va—x

Show that the DE % = (x + y)? can be reduced to a separable

equation by using substitution z = x + y. Then obtain the solution

for the original DE.

3)
Solve the initial value problem
dy ycosx

Reducible to variable separable Eq.

» If a differential equation of type g = f(x,y) can be converted
. dy v . . .
into —==¢ (;) then it can be converted into variable separable

- iney = pr & = x &
equation by takingy = vx & X TV

Definition (Homogeneous function of degree n)
A function F(z,y) 15 called homogeneous of degree nif F(Az, hy) = A"F{z,y).
For a polynomial, homogeneous says that all of the terms have the same degree,

15
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It F 1s homogeneous of degree (), then F is a function of y/x.

Ex.13 Solve d—=—+t n(y)

dx x
Solution:
dy
Here, — i + tan( ) (1)
Let,x =v
X

Differentiate above equation both the sides, w.r.to x

dy
x__
ﬁdxiy_@

x?2  dx
dy _L,dv
xdx = dx

Dividing above equation both the sides by x

dy vy dv
dx x dx

Therefore, by eq. (1)

g=;+t n('v) = ———=t n(y)
dv
ﬁxa =tanv

16
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1 1
= ——dv =—dx
tanv X

Integrate both the sides,

1 1

=>I dv=f—dx
tanv x
1

= Imtvdv= j;dx

= logsinv = logx + logc

. .Y
=Ssinv = Xxc =>sm;=xc ('*'15':—)

17
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Ex.1 Solve y’ + ysinx = e€0S¥

Solution:

Here,y' + ysinx = e®%5*
Comparing it with y' + P(x)y = Q(x)
We have,

P(x) = sinx and Q(x)=e2sX
Now, [ p(x)dx= [sinxdx

= —CosXx

LF. = of P(x) dx

— g~ CoOsXx

The general solution is,

y(I.F.) =fQ(x) (I.F.)dx + ¢
= ye™ COSX = J’ pCOSX | o= COSXdy 4 ¢

= ye SX¥ = [1dx +c

=>ye “C*=x+4+c

18
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d
Ex.4 Solve(x + l)d—z —y=(x+1)%e%*

Solution:
dy
Here, (x + 1)5 —y=(x+1)%e%*

Dividingit by (x + 1)

dy
dx x+1

y=(x+1)e3*

Comparing it with % + P(x)y = Q(x)

We have,

P(x)=— and Q(x) = (x + 1)e3*

x+1

Now, [ p(x)dx = f—ﬁ dx

=—log(x +1) =log(x+1)7?!
LE = el Pt dx

— elug(x+1)('”

19
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The general solution is,

y(I.F.) ZfQﬁx) (I.F.)dx +c¢

=y(xil)=f(x\1)e3x-(}ﬁ\%)dx +c
= y(xil)=f63xdx+c

d
Ex.7 Solve é + (cotx)y = 2cos x

Solution:

dy
Ix + (cot x)y = 2cos x

Comparing it with y" + P(x)y = Q(x)
We have,

P(x) = cotx and Q(x) = 2cosx
Now, [ p(x)dx = [cotx

= logsinx

20



LE = ef:ﬂEI] dx

— e]c'g sinx

=sinx

The general solution is,

y(I.F.) =fQ(x) (I.F.)dx +c

= ysinx =12c05x-5inxdx +c

= ysinx=fsin2xdx+c

COS2X
2

= ysinx = — +c

| Lecturer Dr. Makarim ALTURKY

Bernoulli’s Differential Equation

» A differential equation of the form

2+ Py = Q)(y") or

d

d

S+ POx = Q) x"

is known as Bernoulli’s Differential Equation.

»Here, n is real number (n # 0,1)

» This type of differential equation can be converted into

linear differential equation.

21
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Processtoreducethe Bernoulli'sDE into
Linear DE

» Case-1

dy _ -
— + Py =0y (1)

Dividing both sides of equation (1) by y",

d
=y + Py = Q) )

Let yI™ ™ =y

dy dv

Let y'™ = 1-n)ytm—==—

et y v=(1-n)y Ix — dx
dx (1-n)dx

Then from equation (2) (i. e.y‘"% +P(x)y'™ = Q(x))

. 1 dv
(1 —n)dx

+ P(x)v = Q(x)

= % + P(x)(1 —n)v = Q(x)(1 —n) which is alinear DE

22
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» Case-2

A differential of the form

dy .
—+ P () = Q|90 |

Dividing both sides of equation by g(¥)

1 dy ) _

= g(y) dx * P(x)g(y) =0 )
fo)

LEtg(.v) v

Differentiate with respect to x both the sides,

Equation (3) becomes Linear Differential equation.

M-4 Examples on Bernoulli’s DE

23
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Ex.3 Solve & + J;" = =t

dx
Solution:
dy 'V _ 5.6
—_ 4 = 1
T XY (1)

Divide the above equation both the sides by y®

ldy vy )
#Fa+x—¢—x

>y ﬁa‘l'y E=x2 (2)

: -6y Y 2
Now, from equation (2) (L.E.}" T =X )

ldv v

——— =X

S5dx  x

2

24
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dv 5v_

———=-5
=}d:r: X x

2

Which is a linear differential equation.

Now, compare the above equation with g +p(x)v=Q(x)

= P(x) = —g and Q(x) = —5x?

1
f P(x)dx = =5 J’; dx = —5logx =logx™®

I.F.= ¢l Pdx
— plogx™>
= x_5

The general solution is,

v(I.F.) =jQ(x) (I.F.)dx + ¢
= px > =J’—5x2 (x5)dx +c

=>vx > =-5 rx‘3dx+c

25



= x> = —5[3:‘3 dx + ¢

s 5x7°
=>vx > = +c
2
S5x~2
=y 2x% = St

Which is required solution.

dy tany
Ex.5 Solve — —

dx 1+x
Solution:
dy _tany

_— X
T =(1+x)e*secy

Divide both the sides by sec y

=(1+x)e*

dy tan y
ﬁ — —
COSy———Cosy T
d sin
= cosy%— 1 +}; =(1+x)e*

26
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= (1+x)e*secy

(1)

(2)
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Letsiny=v

dy dv
= cosya= a

Now, from equation (2) (i. e.cos yg - % =1+ x)ex)

dv v

dx 1+x

=(1+x)e*
Which is a linear differential equation.

Now, compare this equation with :—z +p(x)v = Q(x)

1
_ _ .
= P(x) = 15 and Q(x) = (1+x)e
IP dx = J’ ! d
(x)dx = T+ x
= —log(1 + x)
=log(1 + x)7?!
[F=el Pdx = glog1+x)™% _ 1
1+x

27



The general solution is,

v(l.F.) =jQ(x) (I.F.)dx + c

v 1
= — = 1 x
- f( e g dxt o
sin
Y - *+c
1+x

Which is required solution.

Ex.7 Solve 2 — 2 y tanx = y? tan? x

dx
Solution:
dy .2 2
<~ 2ytanx =y?tan’x (1)
Divide both the sides by y?
dy
2% =1 — 2
=y 2~ -2y 'tanx = tan’x (2)
Lety l=v
dy dv dy dv
—_y = = _2—= -
==y dx ~ dx =Yy dx dx

28
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Now, from equation (2) (i. e.y? j—f: — 2y~ tanx = tan? x)

dv 5
—— —2vtanx = tan“ x
dx
v 2
= —+ 2vtanx = —tan“ x
dx

Which is a linear differential equation.

Now, compare this equation with % + p(x)v = Q(x)

= P(x) = 2tanx and Q(x) = —tan’x
Now, [ P(x) dx = 2 [tan x dx

= 2logsecx

= logsec? x
LF.=elPax

2
- elog sec® x

= sec? x

29



| Lecturer Dr. Makarim ALTURKY

The general solution is,

v(l.F.) = f Q(x) (I.F.)dx + ¢

vsec?x = —ftanzxseczx dx+c ©
®
]
, tan3 x
vseclx = — +c
3
sec? x tan® x
= — +cC
v 3

Exact Differential Equation

» A differential equation of the form M(x,y)dx + N(x,y)dy = 0 is said
to be Exact Differential Equation if it can be derived from its primitive
by direct differential without any further transformation such as

elimination etc.

» Necessary and Sufficient Condition:

M N where 1°" order partial derivative of
By ox M & N must exist at all points of f(x,y)

151:

» The general solution of Exact Differential Equation is

I M(x,y)dx + f{terms of N free fromx)dy = ¢
y=constant

M-5 Examples on Exact DE

30



| Lecturer Dr. Makarim ALTURKY

Ex. 1 Solve (x® + 3xy?)dx + (¥* + 3x%y)dy = 0

Solution:
Compare the given equation with M(x, y)dx + N(x,y)dy =0

Therefore, we get that

M = x3 + 3xy? and N =y3 +3x%y

Now, differentiate M and N w.r.to y and x respectively.

:>6M—6 d aN—ﬁ
dy xy an o = o
:aaM_aN
dy ox

Therefore, the given differential equation is Exact.

The general solution is

J M(x,y)dx + f(terms of N free fromx)dy = ¢
y=constant

:j (x® + 3xy?)dx + J’y:"’dy =c
y=constant
4

x* 3x%y? vy
=}I+ 2 +T—C

31
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y cos x+siny+y 0
sin x+x cos v+x

Ex.8 Solve dy —+
dx

Solution:
Here,

dy  ycosx+siny+y
dx  sinx +xcosy+ x

= (sinx + xcosy + x)dy = —(ycosx + siny + y)dx

= (ycosx +siny + y)dx + (sinx + xcosy + x)dy =0
Compare the given equation with M(x, y)dx + N(x,y)dy = 0
M =ycosx +siny + y and N =sinx +xcosy + x

M =ycosx +siny + y and N =sinx + xcosy

Now, differentiate M and N w.r.to y and x respectively.

amM anN

= — =cosx +cosy + 1 and —— = CcOsS X + co
oy dx
aM anN

= = = —

The general solution is

= f M(x,y)dx + f(terms of N free fromx)dy = ¢
y=constant

=>f (ycosx+siny+y)dx =c
y=constant

= ysinx +xsiny+yx=c

32
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Ex.10 Solve (y2e™’ + 4x3)dx + (2xye*™’ — 3y2)dy = 0

Solution:

Compare the given equation with M(x, y)dx + N(x,y)dy =0
Therefore, we get that

M = y2e*¥* 4 4x3 and N = 2xye*¥’ — 3y2

Now, differentiate M and N w.r.to y and x respectively.

oM oN

= F i 2ye™¥’ + 2xy3e®”®  and Fr 2yeXY* 4 2xy3eXy’
oM ON

= —=—
dy Ox

Therefore, the given differential equation is Exact.

The general solution is

= M(x,y)dx + f(terms of N free fromx)dy = ¢

y=constant
= j (yz.e’“""2 +4x3) dx -3 f(yz)dy =c
y=constant

ye

= 7 +xt—yd=c e +xt—y3=¢

33
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Non Exact Differential Equation

» A differential equation which is not exact differential equation is

known as Non-Exact Differential Equation.

am _ an

~ l.e. ay ax

> We reduce the non-exact differential equation into exact

differential equation by multiplying it with LF.

Standard rules for finding I.F.

Condition Type of equation 1.F.
Mx + Ny = 0 H =
v omogeneous Mx + Ny
Mx — Ny # 0 Non 1
Homogeneous Mx — Ny
1/0M onN
(=== _= ") = _ — f rx)dx
N (ay x fF(x) I.F.= e
1 /N oM
(== _" ) = _ I.F.—= eJ 90 dy
M (6‘x ay) 9 €

Non Exact Differential Equation

» Now , multiply LF. with the given differential equation to get new

M and N.

» Therefore, the general solution is

f M dx + f(terms of N free fromx)dy = c
y=constant

Where, c is any constant.

34
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Homogeneous Differential Equation

> Homogeneous DE
A differential equation is called homogeneous

differential equation if each term has same degree.
>E.g (xy — 2yv?%)dx — (x? — 3xy)dy =0
Here, each term is of degree 2

Therefore, this diff. equation is homogeneous.

Non-Homogeneous Differential Equation

> When the function is not homogeneous, it is called nor

homogeneous function.
»E.g (x?y — 2y%)dx — (x? — 3xy3)dy =0
Here, each term doesn’t have same degree

Therefore, this diff. equation is Non-homogeneous.

M-6 Examples on Non-Exact DE

Ex.2 Solve (x?y — 2xy?)dx — (x3 — 3x?%y)dy = 0.

Solution:
Compare the given equation with M(x, y)dx + N(x,y)dy =0

Therefore, we get that

M = x?y — 2xy? and N = —x3 + 3x%y
Now, differentiate M and N w.r.to y and x respectively.

oM oON

e 2_4 e T 2

= dy x Xy and e 3x“ + 6xy
oM ¢6N

=>_ —
Jdy Ox

35
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» Here, the given differential equation is homogenous as each term

is of order 3.

1

> Therefore, [.F.= e

1
- (x2y—2xy3)x+(—x3+3x2y)y

1
x3y—2x2y2—x3y+3x2y?

_ 1
x2y2

» Now, multiply I.LF. with the given differential equation to reduce it

into exact form.

1
2 2 3 2 _

x2y2 (x“y — 2xy )dx_xzyz (x> —3x°y)dy =0
(1 Z)d (x 3)0! 0

—_—— = xX—\-—--— —

y x vz y)Y
Therefore, M = - — 2 and N=_iz+§

y x ¥z oy

Therefore, the given differential equation is Exact.

The general solution is

= M(x, yv)dx + f(terms of N free fromx)dy = c¢

y=constant
1 2 3
= ———|dx+ f— dy =c
y=constant \Y X y

1
=:-;x—210gx+31:)gy=c

36
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Ex.5 Solve (x?y? + 2)ydx + (2 — x?y?)xdy = 0.

Solution:
Compare the given equation with M(x, y)dx + N(x,y)dy = 0

Therefore, we get that

M=x%y3+2y and N = 2x — x3y?
Now, differentiate M and N w.r.to y and x respectively.

oM oON

e B b M T
:ay 3y“x“+2 and F 2—3x“y
6M¢6N
=>— —_—

dy Ox

» Here, the given differential equation is non-homogenous and it is

of the form f(x,y)ydx + g(x,y)xdy =0

1
Mx—=Ny

» Therefore, [.F.=

1
T (x2y342y)x—(2x—-x3y2)y

1
T x3y342xy-2xy+x3y3

1
2_1-3}.3

37
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» Now, multiply L.F. with the given differential equation to reduce it

into exact form.

1 1
2333 (x%y® + 2y)dx + 23y3 (2x —x3y?)dy =0

b )dx 4 (s — o= | dy =0
2x yzxx2y32yy_

1 1 1
2 and N——x2y3 2y

Therefore, M = L +
2x

Therefore, the given differential equation is Exact.

The general solution is

= f M(x,y)dx + j(terms of N free fromx)dy = c
y=constant

J‘ (1 1 )d lj'ld
= x—=|=dy=c
y=constant 2x IBJ”' 2]y

X 1
=c=>]ug;-— 2¢

3|
= log 7

38
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Ex.9 Solve (x? +y? +3)dx — 2xydy = 0.

Solution:
Compare the given equation with M(x, y)dx + N(x, y)dy = 0

Therefore, we get that

M =x? +y2 +3 and N = —2xy

Now, differentiate M and N w.r.to ¥ and x respectively.

= oM _ 2 d ON _ 2
ay y an dx o
aM anN

=>('i'y';‘&a.'tc

» Here, the given differential equation is non-homogenous.

1 aM ANy _ 1
> Here, — oy " ox) = 2xy(2}'+2}')
S
- 2Zxy
2
=—3=f(

Therefore, I. F. = eJ reax

2
— e—f;dx — e—2logx — plogx~2 _ , -2

> Now, multiply LLF. with the given differential equation to reduce it
into exact form.
x?(x?4+y?43)dx +x?(—2xy)dy =0

(1+x2y2+3x23)dx—2x"ydy =0
Therefore, M = 1 + x?y? + 3x 2and N =—2x"1y

Therefore, the given differential equation is Exact.
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= J- M (x, v)dx + j(terms of N free fromx)dy = ¢
v=constant

The general solution is

= J- (1+x2?y2+3x%)dx=c
yv=constant

>x————=¢c =x?—y?—-3=cx

Ex.10 Solve (3x?y* + 2xy)dx +(2x3y3 — x?)dy = 0.

Solution:
Compare the given equation with M (x, yv)dx + N(x, y)dy = 0

Therefore, we get that

M = 3x2y* + 2xy and N = 2x3y3 — x?

Now, differentiate M and N w.r.to ¥ and x respectively.

aM anN
—_— 2,3 o Bx2v3d —

= 3y 12x<y~ + 2x and e 6x°y 2x
aM odN

=>(‘i'j—':'f:ﬂ;\c

> Here, the given differential equation is non-homogenous.

> Here, 2 (35 — 2¥) = o5 (6%%y° — 2x — 12x%y3 — 2x)
s —6x2y3—4x
(Bx2y*+2xy)
— 3
= DR
Therefore, I. F. = eJ 9074y
= e_%d" = e—2108Y = glogy™? — -2
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» Now, multiply L.LF. with the given differential equation to reduce it
into exact form.

vy 2(@Bx%y*+ 2xy)dx+ y ?(2x3y3 —x?)dy =0

Bx?y?2 +2xy VDNdx+ 2x3y —x%y™2)dy =0

2

Therefore, M = 3x?y?2 +2xy~! and N =2x3y—x?%y~

Now, the given differential equation is Exact.

The general solution is

= f M(x,y)dx + j(terms of N free fromx)dy =c¢
y=constant

= (3x%y?2+2xy Ddx=c

y=constant

2
X
3,2 =
=>x'y"+—=c¢
y

Orthogonal Trajectory

» Trajectory
A Curve which cuts every member of a given family of curves

according to some definite rule is called trajectory.

» Orthogonal Trajectory
A curve which cuts every member of a given family at right

angles is a called an Orthogonal Trajectory.
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Method for finding Orthogonal trajectory of
fC,y.¢) =0

1. Differentiate f(x,y,c) = 0 ... (1) w.r.t. x.
2. Eliminate ¢ by using egq™ ... (1) and its derivative.

3. Replace -Z—z by —-Z—:,. This will give you differential

equation of the orthogonal trajectories.

4. Solve the differential equation to get the equation of

the orthogonal trajectories.
M-7 Examples on Orthogonal Trajectory

Ex.1 Find orthogonal trajectoriesof y = x? + c.

Solution:
Here, vy = x2 + ¢
Now, differentiate both the sides w.r.to x

d
=2 _

2
dx *
dx 2 Replaci b dx
—— = 2x = Replacing — —_—
dy P gdx dy
= — dx = —2dy
1 dx = 2d
:»; x = — %

Integrate both the sides,
= logx = —2yv +

= logx + 2yv = c
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Method for finding Orthogonal trajectory of
f(r,8,c) =0

1. Differentiate f(r,80,c) = 0 ...(1) w.r.t. 6.

2. Eliminate c by using eqn ...(1) and its derivative

3. Replace z—; by —rzg. This will give you differential
eqn of the orthogonal trajectories.

4. Solve the differential equation to get the equation of

the orthogonal trajectories.

Ex.4 Find Orthogonal trajectories of r™ = a™ cosné@ .

Solution:

Here, r™ = a™ cos nf (1)

Differentiate both the sides w.r.to 8

=>;rf~“_1£ = —a™ sinn@
dg
. dr rm . 3 " I o
=T 1E:_cosnﬂsmng (-Byeq (D, a _cosnﬁ')
1dr
=:-;E=—tann9
1dr . p
= —— ==
~70 ann
o 2 _tanns Replacing Sr by — r25
ro-=—tann eplacing - by —r”—
1
:}CDtanE":; dr
log sin n@
=T=lugr+lagc
= logsinnf = nlogrc =sinnd = (rc)® =1r"=c"sinnd
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Second Order Differential Equations

general linear second order differential equation is in the form.

p(t)y"+q(t)y'+r(t)y=g(t) (1)

In fact, we will rarely look at non-constant coefficient linear second order differential equations. In the
case where we assume constant coefficients we will use the following differential equation.

oy +by'+oy=g(t) )

Initially we will make our life easier by looking at differential equations with g(t)=0. When g(t) =0 we
call the differential equation homogeneous and when g(t) # () we call the differential equation

nunhnmugenenus.

: Real & Distinct Roots

We start with the differential equation.

44



| Lecturer Dr. Makarim ALTURKY

ay"+by'+ey=0

Write down the characteristic equation.
ar’ +br+c=0

Solve the characteristic equation for the two roots, r; and rz. This gives the two solutions
_.nt

y(t)=e and ) (t)=e

nt

Now, if the two roots are real and distinct (i.e. r #r,) it willturn out that these two solutions are “nice
enough” to form the general solution

y(t)= f.'ler]r +czer2r

Example 1 Solve the following |

Yy +24y=0  p(0)=0  y(0)=-7
Solution
The characteristic equation is

rr+11r+24=0
(r+8)(r+3)=0

Its roots are r; =- 8 and r; =-3 and so the general solution and its derivative is.
V(1) =ce™ +ce™

y'(t)= 8™ ~3c,e™

Now, plug in the initial conditions to get the following system of equations.
(}:y[(]'):(?lﬂz‘2
-7='(0)=-8¢,-3c,

Solving this system gives ¢, :% and ¢, = —%. The actual solution to the differential equation is then

y (r] — %e—ﬁr _%E—Sf
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Example 2 Solve the following

y'+3y' —10y =0 v(0)=4 ¥ (0)=-2
Solution
The characteristic equation is

r*+3r-10=0
(r+5)(r—2)=0

Its roots are r; = -5 and rz = 2 and so the general solution and its derivative is.

y(t)=ee” +cpe”

V'(t)=—5ce™ +2¢c,e™

Now, plug in the initial conditions to get the following system of equations.
4= _1-'(0) =c + e
-2=y"(0)=-5¢+2¢c,

10

Solving this system gives ¢, =< and ¢, = % The actual solution to the differential equation is then

y(r) = ge_jt + gelt

| Lecturer Dr. Makarim ALTURKY

Find the general solution to the following differential equation.

y'=6y'=2y=0
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Solution
The characteristic equation is.

The roots of this equation are.

ril:iisfﬁ

Now, do NOT get excited about these roots they are just two real numbers.

1'1=3+v"1_1 and r'1=3—v’ﬁ

Admittedly they are not as nice looking as we may be used to, but they are just real numbers.
Therefore, the general solution is

y(r)=

[3+410): [3-J11)e
{?I'E' ) . CEE ) :

Complex Roots

In this section we will be looking at solutions to the differential equation
ay"+by' +cy =0
in which roots of the characteristic equation,
ar’ +br+e=0
are complex roots in the form #, = A+ ui .

the general form of the solution gives the following solutions to the

differential equation.
()= elAruit and v, ()= elAmaie

To do this we’ll need Euler’s Formula.
e =cosB+isind

W (r)=ete =e* (cos(,u.t] +isin(u r))
ATl e‘“(cos(;ﬁ)—iaﬁl(;xr))

Vi (r)=e e
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v(t)=ce™ cos(ut)+cye™ sin(put)

Example 1)
Y =4y +9y=0 y(0)=0 y'(0)=-8
Solution
The characteristic equation for this differential equation is.
P —dr+9=0
The roots of this equationare r, = 2+ \ﬁr . The general solution to the differential equation is
then.

y(t)= ce” cos (JEE] +e,e” sin(\/gt]

the following.
0=y(0)=¢

In other words, the first term will drop out in order to meet the first condition. This makes the
solution, along with its derivative

y(r)= c,e” sin («ﬁr]
V'(r)= 2¢,e” aill(v'rg.f) + \Eclez’ cos(\n@iﬁ]

A much nicer derivative than if we'd done the original solution. Now, apply the second initial
condition to the derivative to get.

8
—gz}’r({})z\fgcz — Cq Z—F
The actual solution is then.

_}-'[r) = —%ezr sin (ﬁr)

Example 2)
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¥y =8y +17y=0 v(0)=—4 ' (0)=-1

Solution
The characteristic equation this time is.

PP —8r+17=0

The roots of this are 1, =4 i. The general solution as well as its derivative is
y(1)=ce* cos(t)+ce* sin(r)
y'(t)=4ce cos(r)—ce™ sin(r)+4e,e™ sin (1) + ce™ cos(1)

Notice that this time we will need the derivative from the start as we won’t be having one of the
terms drop out. Applying the initial conditions gives the following system.

—4 = y({}) =q
—1=)"(0)=4e, +¢,

Solving this system gives ¢, = —4 and ¢, =15. The actual solution to the IVP is then.

v (t)=—4e* cos(t)+15e" sin(¢)

Repeated Roots

In this case we want solutions to

ay"+by'+ecy =10
where solutions to the characteristic equation
ar* +br+c=20
are double roots =5 =r.

This leads to a problem however. Recall that the solutions are
_}’1 (f} — el'j_!‘ — ELr.r },2 (f} — E_r}.r — IE1".r

Example 1)
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Y -4y +4y=0 y(0)=12 ¥'(0)==-3
Solution
The characteristic equation and its roots are.

r—dr+4=(r-2) =0 )

The general solution and its derivative are

2 2
y(t)=ce” +epte”

v'(t] =2ce” +ce’ +2c. e’
) =20 2 2

Don’t forget to product rule the second term! Plugging in the initial conditions gives the following
system.

12= _}-'({]) =q
-3=y'(0)=2¢,+¢,

This system is easily solve to get c; = 12 and ¢; =-27. The actual solution to the IVP is then.
v(t)=12e* - 27te*

Example2)
- ' . 9
16y"—40y"+25y =0 y(0)=3 y {{])=—Z
Solution
The characteristic equation and its roots are.
2 5
1672 —40r +25=(4r-5)" =0 na =3

The general solution and its derivative are

v(r)= cle'j} - czre:{‘i

5 5t 5t 5 5t
V(1) ==ceT +ceT +—cyreT
4 T g

3=y('D)=c1
9

5
—Zzy'({})z ch +c,

This system is easily solve to get ¢; = 3 and ¢; = -6. The actual solution to the IVP is then.

y [r] —3e7 —6re*
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Nonhomogeneous Differential Equations

linear nonhomogeneous differential equation is
y'+p(t)y'+q(t)y=g(1)
First, we will call

yi+p(t)y' +q(t)y=0

the associated homogeneous differential equation to (1).

Undetermined Coefficients

the complementary solution

the particular solution

Example 1 Determine a particular solution to

V' —4y —12y =3¢

Solution
The point here is to find a particular solution, however the first thing that we're going to do is find the

complementary solution to this differential equation. Recall that the complementary solution comes
from solving,

y' -4y -12y=0

The characteristic equation for this differential equation and its roots are.
rP—4r-12=(r-6)(r+2)=0 =  p=-2 1K=6

The complementary solution is then,
V()= ce™ +cpe”
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Now, all that we need to do is do a couple of derivatives, plug this into the differential equation and
see if we can determine what A needs to be.

Y, ()= Ae” '

Plugging into the differential equation gives
254e” —4(54e% ) —12( Ae™ ) = 3™

) _
—TAe”" =3e”

S0, in order for our guess to be a solution we will need to choose A so that the coefficients of the
exponentials on either side of the equal sign are the same. In other words we need to choose A so
that,
- 3
—7A4=3 = A= -

Okay, we found a value for the coefficient. This means that we guessed correctly. A particular
solution to the differential equation is then,

T, ()= —e"
Example 2 Solve the following IVP
" , : 18 ' 1
Yy —4y —12y =3¢’ y(0)=— y ({])=—:

7

Solution
We know that the general solution will be of the form,

y(t)=y.(t)+ ¥ (1)

- 3 ;5
v(t)=ce™ +c,e” ——e

15
, — " —2r Gr
V(1) =—2ce™ +6c,e —e

Mow, apply the initial conditions to these.

18 3
? = _}-'('D) =¢ +c, _._'-’

1 15
==Y (0)=—2¢, +6c, -

Solving this system gives c; = 2 and ¢z = 1. The actual solution is then.

_}-'(r) =2e " +e¥ —%e

5r
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Example 3 Find a particular solution for the following differential equation.
y'—4y'—12y =sin(2t)

Solution

Y, (t)=Asin(2f)

Differentiating and plugging into the differential equation gives,
—4Asin(2t)—4(24cos(2t))-12(Asin(2t))=sin(2f)

Collecting like terms yields
—164sin(2t)—84cos(2t)=sin(2¢)

We need to pick A so that we get the same function on both sides of the equal sign. This means that
the coefficients of the sines and cosines must be equal. Or,

cos(2t): -84=0 =  A4=0

sin(lr): -164=1 = A=——
Y,(t)=Acos(2t)+ Bsin(2t)

—4Acos(2t)—4Bsin(2t)—4(—24sin(2¢)+2Bcos(2t)) -
12(Acos(2¢)+ Bsin [2:‘)) =sin(2t)
(—44-8B—12A4)cos(2r)+(—4B+84—12B)sin(2r) =sin(2t)
(-16.4—8B)cos(2t)+(84—16B)sin(2r) = sin(2r)

Now, set the coefficients equal

cos(2t): -164-8B=0
sin(2¢): 84-16B=1
Solving this system gives us
_ L B-__L
40 20

We found constants and this time we guessed correctly. A particular solution to the differential
equation is then,

Yo (t)= 4—101.:05 (2t)- %sin{lr)
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Now that we've gone over the three basic kinds of functions that we can use undetermined coefficients
on let’s summarize.

g(t) Ya(t) guess

ae™ Ae™
acos(fBt) Acos(ft)+ Bsin( Br)
bsin( ft) Acos(ft)+Bsin( fr)

acos(ft)+bsin(pt) | Acos(pt)+Bsin(fr)
n'" degree polynomial | A"+ A4 " +--- At+ A,

Fact
If Yesft) is a particular solution for

Y +p(t)y'+q(t)y=g/(1)

and if Yes{t) is a particular solution for

V'+p(t)y'+q(t)y=2g,(1)

then Yes(t)+ Yea(t) is a particular solution for

V'+p(1)y'+4(1)y =& (t)+ (1)

Find a particular solution for the following differential equation.
Y —4y' —12y ="

V(1) =ce™ +cpe”
Yy (1) = Ae®
Plugging this into the differential equation gives,

364e® —24.4e° —12.4e% =¥

&r
O=e
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¥y —4y'—12y =0
Yp(t)= Ate®

Plugging this into our differential equation gives,
(12Ae°’” +56Ateﬁ’)—4(ﬁeﬁ' + GAteﬁ’)—lﬁAfe’s’ = e
(364-244-124)1e" +(124—44)e* =e”
84e* =&

Now, we can set coefficients equal.

84=1 = A=

OO |

So, the particular solution in this case is,

Yp (r) = éeﬁf

Exercises

Solve y”"—y" =2y =0.
Solve y” -8y +16y=0.
Solve y” —y =2y =4x>.

Solve y” =y =2y=sin2x.

Laplace Transforms

we will be looking at how to use Laplace transforms to solve differential equations.

- -

Before we start with the definition of the Laplace transform we need to get another definition out of the
way.
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A function is called piecewise continuous on an interval if the interval can be broken into a finite
number of subintervals on which the function is continuous on each open subinterval (i.e. the

subinterval without its endpoints) and has a finite limit at the endpoints of each subinterval. Below isa
sketch of a piecewise continuous function.

A

In other words, a piecewise continuous function is a function that has a finite number of breaks in it and
doesn’t blow up to infinity anywhere.

Now, let’s take a look at the definition of the Laplace transform.

Definition

Suppose that f(t) is a piecewise continuous function. The Laplace transform of f{t) is denoted
L{f (r)} and defined as

LU ()= [ e f (¢)dt (1)

There is an alternate notation for Laplace transforms. For the sake of convenience we will often denote

Laplace transforms as,
L{fF(D)}=F(s)

the integral in the definition of the transform is called an improper integral .
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Example 1 If ¢ # 0, evaluate the following integral.
x
I e dt
0
Solution
Remember that you need to convert improper integrals to limits as follows,

-~ x % o n
J e“"dr=lim| e“dt
0 0

n—x v

Now, do the integral, then evaluate the limit.

I: e dt=lim .f " e dt

n—x0

= lim(le“ )
n—x O o

= lim[le‘" —lJ
n—>x\ ¢ ]

Now, at this point, we’ve got to be careful. The value of ¢ will affect our answer. We've already
assumed that ¢ was non-zero, now we need to worry about the sign of c. If ¢ is positive the
exponential will go to infinity. On the other hand, if ¢ is negative the exponential will go to zero.

n

So, the integral is only convergent (i.e. the limit exists and is finite) provided c<0. In this case we get,

j.: e dt = 2 provided ¢ <0 2)
c

Example 2 Compute L {1}.

Solution
There’s not really a whole lot do here other than plug the function f{t) = 1 into (1)

c{y=[ e dr

Now, at this point notice that this is nothing more than the integral in the previous example with
¢ =—5. Therefore, all we need to do is reuse (2) with the appropriate substitution. Doing this gives,

@ _ 1
cil=| edi=—— rovided —s5 <0
=], — P
Ji.’3{1}=i provided s = 0
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Solution

Plug the function into the definition of the transform and do a little simplification.

wm co sy
.-i'.{em} = lo e e dr = |o e dr

Once again, notice that we can use (2) provided ¢ =a — 5. So, let's do this.
£ {e‘”} = j e TN dr
o

=— provided a —s < 0

= provided s > a
Example 4 Compute L {Siﬂ (at]} .

Solution
MNote that we're going to leave it to you to check most of the integration here. Plug the function into
the definition. This time let’s also use the alternate notation.

L {sin (ar)} =F(s)
= J:e_“ sin(at)dt

=lim [;J e " sin (ar}d’t

H— T -

Now, if we integrate by parts we will arrive at,

F{S} = 11_1;1; —(%e_“ cos(ar))

n
L T
- t)dt
T J'O e cos[a ]

n
&5

F(s)=lim| —(1—e™ cos(an)) - (le—” s.i.n(ar)]

L 7 | a a

s opmo_ .
+—J' st t)dt
T . s111{a)

Mow, evaluate the second term, take the limit and simplify.

F (3) = lim[é(l —e M cos (mr)) —5(%«8_“ sin{cm) + %j‘: e ¥ sin (at)dt ]]

H—X
_1 (&5 pm . .
—;—E[;Jne slxl[at]dtJ
1 s

oo .
=—— —2‘[ e sin(ar)dt
a a "¢

MNow, notice that in the limits we had to assume that s>0 in order to do the following two limits.

11_1:11; e ™ coa{an) =0

11_1}1;. e 7 sin [rm] =0
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F(s)=1-Z F(s)

Now, simply solve for Ffs) to get,
. a .
L {5111 (at]} =F (.5') = . provided s = 0

Fact
Given f{t) and g(t) then,

Liaf (t)+bg(t)}=aF(s)+bG(s)

for any constants a and b.

Table Of Laplace Transforms

f(t)=L7{F(s)} F(s)=L{f(t)}
: | 1 l
s
2. e 1
s—a
!
3. A n=123,... s’:*"
I'(p+1
4. tp'p>_1 (S};” )
N/
5. At 7:
2s?
1-3-5--(2n-1
B 1 =125 ("., Wx
v
: a
7. sin(at
() s’+a’
8.  cos(at) ,S -
s’+a’
2as
9. tsin(at) (s2+a2)2
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

tcos(at)

sin (at ) —at cos(at)

sin(at)+at cos(at)

cos(at)—atsin(at)

cos(at)+atsin(at)

sin(at +b)

cos(at+b)

sinh (at)
cosh(at)
e” sin (bt)
e” cos(bt)
e sinh (bt)

e cosh [E:rr')
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2 2

s"—a
(ra)
2a’
(s +a?)
2as’
3(32 —az}
(s +a?)
._'r.'(s2 + 302)
(7 +a’)

5 sin (b)+ a cos{b]

2 2
5 +a

5 cos(b) —a 5i11(b)

2 2
5 +a




25.

20.

27.
28.
29.
30.

31.

32.

33.

34.

35.
36.
37.
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(1) =u(i-c) e

Heaviside Function 3

d(t-c) o

Dirac Delta Function

u, () f(t-c) e “F(s)

u,(t)g(t) e“L{g(t+c)}

e“f (1) F(s-c)

t"f(t). n=L2.3... (-1)"F" (s)

%f(r) J'::F(u] du

|; f(v)av F(s)

[[7(r-7)g(r)dr F(s)G(s)

7(t+T)=£(1 o= s @
1-e

F(1) SF(s)=1(0)

f(t) SEF(S]—Sf(ﬂ]—fr[ﬂ)

(1) $"F (5)=s""£(0)=s"2f(0)—=5f " (0)- £ (0)

Table Notes

Recall the definition of hyperbolic functions.
e +e” . e —e”
. 511111(.*) =

cosh [r] =
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Formula #4 uses the Gamma function which is defined as
_ *® =1 3.
I'(t)= _[0 e X" dx
If n is a positive integer then,

[(n+1)=n!

The Gamma function is an extension of the normal factorial function. Here are a couple of quick
facts for the Gamma function

I(p+1)=pI(p)
[(p+n)

p(p+1)(p+2)-(p+n-1)= ()

Example 1 Find the Laplace transforms of the given functions.
@) f(t)=6e~"+e¥ +5t -9

(b) g(t)=4ccs(ri.t]—951'n(4t)+2c05(10t)

() h(t)=3sinh(2f)+ 3sin(21)

(@ g(f)=e +cos(6t)—e” cos(6t)
Solution

Okay, there’s not really a whole lot to do here other than go to the table, transform the individual
functions up, put any constants back in and then add or subtract the results.

We'll do these examples in a little more detail than is typically used since this is the first time we’re
using the tables.

(a) f(t)=6e"" +€”" +5 -9

1 1 3 1

F(s)—ﬁs_(_5)+s_3+533+1—9;
_ 6 1 309
s+5 s-3 st s
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)
(b) g(t)=4cos(4t)—9sin(47)+ 2cos(10¢)

G[S)=4 7 = 2_9 bl : 2+2 > - 2
5° +(—1] s” +(4] s~ +(1CI]
4= 36 25
2 T2 +—

s +16 s +16 s +100

(¢) h(t)=3sinh(2t)+ 3sin(2f)

H(s)=3

(d) g(t)=e" +cos(6f)—e” cos(6t)
1 g 5—3
+ 3 2 2 2
s=3 s +(6) (s-3) +(6)
1 5 5—3
+— - 2
s—3 5436 (3_3] +36

G(s)=

Example 2 Find the transform of each of the following functions.
(a) f(t)=1tcosh(3r)
() h(t)=1sin(2r)
© g(t)=r
@ f(t)=(10t)*
(e f(t)=tg'(¢)
Solution

(a) f(t)=tcosh(3t)

This function is not in the table of Laplace transforms. However, we can use #30 in the table to
compute its transform. This will correspond to #30 if we take n=1.

F(s)=~L{tg(t)}=-G'(s). whereg(t)=cosh(3t)

So, we then have,
]
5 , s +9
s5—0

G(s)=

Using #30 we then have,
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This part will also use #30 in the table. In fact, we could use #30 in one of two ways. We could use it
with n=1.

(b) h(t)="1sin(2t)

H(s)=L{tf (t)}=-F'(s). where (1) =tsin(2t)

Or we could use it with n=2.

H(s)=£{-r2f(r)}=F'(s). where f (1) =sin(2¢)

Since it’s less work to do one derivative, let’s do it the first way. So, using #9 we have,
2
4s 1257 -16

F(s)= a8
(s‘+4)

3 F'(s)=-

The transform is then,

(@ g(t)=r

This part can be done using either #6 (with n=2) or #32 (along with #5). We will use #32 so we can
see an example of this. In order to use #32 we’ll need to notice that

2 i
[(Bav=24 = SN P
] 3 2«0

Now, using #5,

we get the following.

This is what we would have gotten had we used #6.
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For this part we will use #24 along with the answer from the previous part. To see this note that if

g(t)=r1

(@) £ (r)=(10¢)*

then

F(t)y=g(101r)

Therefore, the transform is.
1 5
Fls)y=—G] —
( ) 10 (10]
1| 3w

10 4(i]%
10

(e) fF(r)=1te'(r)

This final part will again use #3230 from the table as well as #35.

d

£l () =~ {g)
— - {sG(s)-2(0)}
=—(G(s)+sG'(5)—0)
=—G(s)—sG'(5)

Remember that g{0) is just a constant so when we differentiate it we will get zero!

Inverse Laplace Transforms

f(t)=L{F(s)}

Fact
Given the two Laplace transforms F(s) and G(s) then

L7HaF (s)+bG(s)} =aL™ {F(s)}+bLT{G(s)}

for any constants a and b.

65



| Lecturer Dr. Makarim ALTURKY

Example 1 Find the inverse transform of each of the following.

(o] 1 4
a) Fs)=—— +
@ ( ) s s—8 -3
19 1 7
by H = — 4+
® [S} s+2 35—5 s
o5 3
c) Fis)= +
© ( } sT+25 52425
8 3
ad) Gs)= +
@ G(s) 357 +12 s —49
Solution
6 1 4
F — - _
(2) (S] 5 S—S+.5'—3
F[s)zﬁl— 1 41
5 s5—8 g—23

F(r)=6(1)—e* +4(e™)

=6—e" +4e™

19 1 7

b) His)= — +—

(k) ( ] s+2 3s—-5 s°

19 1 T

EH — _ 4!

P Ry B TP M
_10 1 1 1 7 41

—_—— +_
s—(-2) 3s-3 415

hit)=19e™" —éeal +J::|;._1r""r

8 3
+—
+12 5749

@) G(s)=5

8 3
2 + 3
sT+4 57 —49
(H(2) 3%
2 2 + ] 2
sT+(2) 57 —(7)

G(.s')=

W= | =

g(1)= %si.n (27)+ %sinh (77)

Exercises
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Example 2 Find the inverse transform of each of the following.

(a) F(s)z%

® F) =g
© G(s)= 2:33i;32—2
@ H(s) =50

Example 3 Find the inverse transform of each of the following.

86s5s—78

G -
i 5=t) (s+3)(s—4)(55s-1)
by F - 2—S5s
o (s)_(s—é)(sz+ll)

05

— 25

e s° (.s2 +4s+5)
Table
Factor in Termin partial
denominator fraction decomposition
._______________________________________________________________________________________|
A
ax+b "y
ax

by 4 4 A
(ax+b) ax+b  (ax+b)’ (ax+b)*
) Ax+B

ax-+bx+ec abroc
k Ax+B, Ax+ B, A.x+ B,
(m':+bx+c') . Y gt ¥
ax +ox+c (m“+bx+c') (ax‘+b;r+c')
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Solutions of Linear Differential
Equations with Constant

Fact

Suppose that f, f, f*....f™Y are all continuous functions and f is a piecewise continuous function.
Then,

£{ ) =7F ()71 (0) 572 1(0) 5/ (0) -/ 0)

L{y}=sY(s)-»(0)
£{y"} =57 (s)—sv(0)—»7(0)

Example 1 Solve the following

y"—l(}y'+_9y=5r_. y(0)=-1 »'(0)=2

L{y"}-10L{y"}+9L{y} = L{51}

Using the appropriate formulas from our table of Laplace transforms gives us the following.

fy(s)-sy(o]—y’(ﬂ]—lﬂ(ﬂ’(s}—y(“]]+‘”’(S)%—2

(sz—103+*:9]1m[;;]+s—12=i2

8
5 12—5

¥(s)= T (=9)(s-1) " (5-9)(s-1)

A4 B C D

¥ .=
(S) 5 +.5'1 +3—9+3—1

5+125° =5 = As(s-9)(s—1)+ B(s-9)(s-1)+ Cs* (s—1)+ Ds’ (s-9)
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5=0 5-9B — B_2
9
s=1 16 = —8D = D=-2
s5=9 248 = 648C = C=§
s=2 45— 144+ 225 = 4=22
81 81
0 5 3l )
V(s)="+5+——-
g 5 5-9 s5-1
50 5 31
y(t)=—+=1+—e" - 2¢'
81 9 81
Example 2 Solve the following
2y"+3y -2y =te", y(0)=0 y'(0)=-2
E(SEY(SJ—.?}-'[D)—_}"[D)}+3(SY{S)—}={G]]—2Y{S)=;,
(.5'+2)_
1
257 +35-2)¥(s)+4=———
( ) {) {3+2)_

Y(s] 1 4

B (23—1]{_g+2)3 _(23—1]{s+2)

1—4(s+2)

Fils)= 3
[ ) [23—1](s+2]
_ —45 —165—15
(2s—1)(s+2)
Y{s]= A B C D

+ + o ;
25—1 s5+2 (.5‘+2}' (s+2)
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—45% —165—15= A(s+2) + B(2s—1)(s+2) +C(2s—-1)(s+2)+ D(2s—1)
=(A4+2B)s’ +(64+7B+2C)s” +(124+4B+3C+2D)s
+84-4B-2C-D

A+2B=0 192 B o6
6A+7B+2C=—-4 _ A__125 125
124+ 4B +3C+2D =-16 c—_2 p__1
84d—-4B-2C-D=-15 25 5
1 —192 96 10 254 |
Y(s)= ~+ — - — =
125 E(S—j) S+2 {S —|—2]_ (.5'+ 2)
1 i _ 2 254 5
y(t)=—=| —96e +96e™ ~10te™ -t 3’]
125 2 .
Exercises
Example 3 Solve the following
¥'—63y" +15y = 2sin(3t). y(0)=—1 »'(0)=—4
Example 4 Solve the following
V' +4y ' =cos(r—3)+4r. ¥(3)=0 ¥ (3)=7

Power series

A power series about a point g is an expression of the form
o0

Z an (x — z0)" = ag+ ay (x — xo) + ag (z — x0)* +--
n=>0
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Examplel

Find a power series expansion for f'(x), with

fl@)=Q1+z)"" Z (="

n=>0

Solution.
P =3 [0 =3 (~ )" ae 1= ()" (ot 1),
n=>0 n=1 n=>0
Example2

Find a power series expansion for g(x) = [ O:E f(t)dt for

fla)=1+z)"'=>" (-1"

n=>0

Solution. Compute

/fm_Z(—u jn—z (D mtihc,

=10

The constant C' is determined through setting @ = 0:

C'=g(0)=0

Therefore

(L) Z (n—|—1
oy =3 o

or if preferred,

Example3

Find at least the first four nonzero terms in a power series expansion about = = 0 for a
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!

2" — 2z =0.

Solution. We write

o
Z(I)=a0+a1I+---:Z anz".
n=i0

Substituting into the equation, we have
0 = 2" 2%z

(]
ann(n—1)z"—2— E Ay 2
=0

||
Wt

=
Il
1

||
E

o0
any2(n+2)(n+1)z" — Z Ap—2 X"
n=2

=
Il
=]

oo
= 2(124—6{13:1:4—2 [ani2(n+2)(n+1) —a, o] z™

n=32
Thus we have
2 ay = O
6&3 = 0
n—2
ani2(n+2)(n+1) = an_o2=—>apni2=

(n+2)(n+1)

We conclude:

e — 0
g — 0
__ 4o
41 = 93
“ ar
5 20

As we only need 4 nonzero terms, we stop here. The solution is

L} . €L
a0 a4, M 5.,

;f:{;r:}:1:143—|—{:",1:;z::—l—l2 50

Example 22. Find a power series expansion about z = 0 for a general solution to the given differential
equation. Your answer should include a general formula for the coefficients.
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y'—xy'+4y=0.

20
y{vL} = Z ap ™
n=>0

Solution. We write

Substituting into the equation, we have

0 — yH_Iy!_I__iy

= iﬂ’“ (n—1)x —.LZnan -I—Z—lﬂn
n= -2 n=1 o

= ZG’“” (n+2)(n+1)2 —Z nanT -1—2 day "
n=>0

= (2az+4ag)+ Z [(n4+2)(n+1)ayi2— (n—4)a,]z™

This gives

2as+4ayg = 0
(n+2)(n+1)apro—(n—4)a, = 0
Therefore
ay; = —2ap,
n—4
pt2 =

(n+2)(n+1) n

It is clear that we should discuss n =2k and n=2k — 1 separately.
For even n. we have

_ 2k-5 _ (2k-5)(2k-7) _ (2k=5)(-3)
M R 2R T T R - 2k =) T T T k)

a.
Summarizing, we have

y(r )_ao{l—Qr +;L }-I—m [r-l-z R(Q?+1§_3} 2kl
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Example 23. Find at least the first four nonzero terms in a power series expansion about = = 0 for the
solution to the given initial value problem.

w”"+3rw —w=0, w(0)=2, w’(0)=0.

Solution. We write
{n o)
w(r)= Z apx'".
n=0

Substituting into the equation, we obtain

oo

0 = ann(n—1)z""2+3x E naprt T — E ap "
2

n= n=1 n=>0

o0 o o0
= Z apiz2(n+2) (n+l};r.n—|—z 3?1{1,11'“—2 apx"
n=0

n=>0 n=1

o
= QGQ—QD+Z [(n+2)(n+1)ani2+3na, —ap| ™.

n=1

Therefore

2&2—{10 = 0
(r+2)(n+1)apni2+(3n—1)a, = 0
which leads to
an = 1{1
2 2 ]
o o 1—3n o
n+2 = (n+2) (n+1) e

On the other hand, the initial values give
2=w(0)=ag, O0=w'(0)=a;.

Therefore we can compute successively
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1
ay = anzl,

~9
g — 6 le:U,
- D
T 128 T 1
s = ——a3=0,
a 20 ag 3
o o1t 11
7 T30 T2

We stop here as only four nonzero terms are required. Finally the answer is

w(I)ZQ—I—;L'?—%;Ed‘—I—%IG—l—---.

Example 25. Consider
2y"+3y —zy=0.
Solution. Write

O
y= Z "
n=>0
Substituting into the equation, we obtain
o0
0 = QZ apn(n—1)z"" 2—1—32?1(171 " Zan;r:“"'l
n=>0
o0 o0
= Zann(n—l Z (n+1)apyrz™ Zan_lw”
n=2 7;; n=1
= 3a;+(6az —ap)r+ Z [apn(n—1)+3(n+1)api1 —an_1] =™
n=2

This leads to
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3{11 =0
6{12—{15 =0
3(n+l)aps1+n(n—1)ap—a,—1 = 0, n

W
[

which leads to
ap an—1—n(n—1)an

Fourier Series

</ Fourier sine series

 the Fourier sine series of an odd function f(r) on —L <x =L isgiven

Example I Find the Fourier sine series for ¥ { x)=xon —-L=x=01.

Solution
First note that the function we’'re working with is in fact an odd function and so this is something we

can do. There really isn’t much to do here other than to compute the coefficients for f fx} =Xx.

Here is that work and note that we’'re going to leave the integration by parts details to you to verify.
Don’t forget that n, L, and 7T are constants!

2 * HTX 2 L M TX FTX
B"=—Jﬂ xsin( = }dx=—( = ,] Lsi_u[—)—nfrxcos[ }
LJ, L L\ n m~ L L

= n:";;rz (L f_.iu(n fr)—nﬂ'Lcos(n fr)}

L

]

These integrals can, on occasion, be somewhat messy especially when we use a general L for the
endpoints of the interval instead of a specific number.

Now, taking advantage of the fact that n is an integer we know that Si.ll{nﬂ']l =0 and that

cos (n?r] = (—l]u . We therefore have,

(—1)"" 2L

- n=12.3__.
1T

B,k #(—nﬁL (—1)") =

The Fourier sine series is then,

- _1 n—lzL - _1 =1 -
-’(=Z( ) sin(”jxl=£T( ) Shl[nﬁx]

1 niT F 1 L
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Fourier cosine series.

£(3)= 3 4, cos( 2%

“this functionon —L<x <L
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the Fourier cosine series of an even function, f(x‘) on —L=x=1Lis

given by,

f(x)=> 4, CDS(T]

n=0

%jif[x]dx n=>0

HITX

e
EJ_Lf(x]CGS[T]dT n#0

Finally, before we work an example, let’s notice that because both f(x] and the cosines are even the

integrand in both of the integrals above is even and so we can write the formulas for the 4, 's as

follows,

Now let’s take a look at an example.
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Example 1 Find the Fourier cosine series for f{t’) =x"on—-L=<x<L.

0 L\ 3

Sl S
A =EJ‘G f(x) coa(zﬂ)dr = E,L x° coa[nLﬂ)dx

- 1 ,, 1(C) I
A‘ﬂ=—J f(x]dx=EJ X dr——(—]——

: _ .
.
=:[ ELE][ELHEICGS(E]-I-(HE?IEIE—ELE)gill(m]]
L\nm L I .:;
=— 3(2L1mr cos(n ﬂ']+('r!2.?[1L2 —ELz)ain(nf.r))
nT
2 _ ]
PO s
nwe

The Fourier cosine series is then,

X = iAw coa[nfx) =4, +iz1,J cos[nixl=£+iucm(nsz

n=0 n=1

Note that we'll often strip out the n =0 from the series as we've done here because it will almost
always be different from the other coefficients and it allows us to actually plug the coefficients into
the series.

In this case, before we actually proceed with this we'll need to define the even extension of a function,
f(t] on —L<x<L. So,given a function f(t] we’ll define the even extension of the function as,

| f(x) if 0<x<L
g(I)_{f(—x] if ~L<x<0

Showing that this is an even function is simple enough.

g(-x)=1(-(-x))=1(x)=2(x) for0<x<L
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Example 3 Find the Fourier cosine series f[:rf(:c] =L—-xon0=x=1L.

Selution
All we need to do is compute the coefficients so here is the work for that,

1 -~z 1,z L
2 ’ nax 2 * nax
A":Ejﬂ f(x}cos( 3 _]dx:EJD{L_I)COS( 7 de

_ %[#)(m@_x)siu(”“)_Lm(”fDL

]

=£[ = )( Leos(nm)+L)= %(l+(—l]"+l) n=123....

L\ n*x?

The Fourier cosine series is then,

L = 2L ntl naTx
(x)——+zn,ﬂ2 (1+(—1) )cos[ 7 ]

2 n=l

Note that as we did with the first example in this section we stripped out the 4, term before we

plugged in the coefficients.

FExample 4 Find the Fourier cosine series for f (r) =x"on0O=<x<L.

Solution
The integral for 4, is simple enough but the integral for the rest will be fairly messy as it will require

three integration by parts. We'll leave most of the details of the actual integration to you to verify.

Here's the work,

3
- = dr=— dv =
A, | f{x] x = j x* dx 2
2 . naTx 17X
A.r=E f{x]f:m( .'=— x* 4.05 ]dx
o
2. L 5 3 0 ) . HITX 5 mom 3 HITX .
=—[ 3 _i](mrx{n‘;r‘x‘—GL‘)ﬁ.m( - J+(3Lu-;r-x-_5,{,-}¢m[ - ]]
L . L . L o
2 .L ¥ o R | 3 3 3
i[ r 4)(n;rf_lin'.rr'L'—ﬁf_'}aiu{n;r)+{3.[5n';r'—Elf)coaln:r}+ﬁ£3)
n i
2( 3r
_I( T ]( +l'n al —1) ) 33 ( (u at — ](—1} ) n=12.3._ .
The Fourier cosine series for this function is then,
'|- -
6L’ N nITX
f( )=_+§:H¢JT‘(-:+(” }( 1) )ED"( L ]
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Fourier Series

Okay, in the previous two sections we’ve looked at Fourier sine and Fourier cosine series. It is now time
to look at a Fourier series. With a Fourier series we are going to try to write a series representation for

f(x] on =L <x < L inthe form,

)= S eor "2+ 35,2

following formulas that we derived when we proved the two sets were mutually orthogonal.
L ) 2r ifnrn=m=0
J cos{nﬂrx}cos[mﬁx]dx= I ifnm=m=0
= r L ]
Q0 ifrm=m
I .
r fm=
sin| 272X |sin| P72 gy = 1 n=m
_r L L 0 ifmn=m
I )
. M X PRI X
Jﬂ sul[—]cos[ ]dx =
s r L

So, let’s start off by multiplying both sides of the series above by L‘O&( T ) and integrating from —L to

L. Doing this gives,

j f(x cos(mx)cfx ZA,,cos.( H]cos(mx)dx+j_ iB“ sm(iﬁ)cos(ﬂiﬁ]dx

-L n=l L n=1

[= =]

Ezf(x}::os(mf]dr=EA_JJ*_LLCDS(”Ex)cos(mfx)dx+i3?ff£ i (”Ex)cc}ﬁ(mfx]dr

n=0 =1

A, (2L) ifm=m=0
A (L) ifn=m=0

[, F(x)cos (=) ax =
Sclving for 4, gives,
Ay =[5 r(x)ax
Ah,:EJ‘_lf(x]cos(”‘“)dx m—=1.2.3.__
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Solving for A,w gives,

_ Lt x ) dx
A”_:LJ-Lf{ )d
AM=%Iif(x)cos(ﬂfi]dx m=12.3. .

Now, do it all over again only this time multiply both sides by sin {%] , integrate both sides from —L

to [ and interchange the integral and summation to get,

Jif(x] 5'111( mfx] dx = g‘i"j—i cos(%] sin(%)cix + 2 B,,j_ll sin(%)sm( mfx] dx

In this case the integral in the first series will always be zero and the second will be zero if 1M and so
we get,

jLL f(x) sin(ffﬁ)dr =B, (L)

Finally, solving for B,,, gives,

Bmzij‘if(xjsm[ﬂf—x)dx m=123_..

here in this section, as we've done in the previous two sections as well. Provided nin an integer then,
C{)S{HH) = (—1]” sill(mr] =0

Also, don't forget that sine is an odd function, i.e. SiIl(—.‘f] =—sin [*{] and that cosine is an even

function, i.e. L‘DS(—I) =08 (T) We'll also be making heavy use of these ideas without comment in

many of the integral evaluations so be ready for these as well.

Now let’s take a look at an example.

31



Example 1 Find the Fourier series for f(*(} =Ll-xon-L=<x=L.

Solution
So, let’s go ahead and just run through formulas for the coefficients.

AD=—j fix )dx__j L-xdx=L

4, =%j:f[x)cos[?17x]dx——j (L—x) cos[ﬂjx]dx
o [l e (7|

-1
= _,{l[ :]: 5 }(—Eﬂﬁlsﬁl{—ﬂ 7)) =
N\ nw'm

:_j £(x)s 111{ “’”] x = %j:{L—x]sin[an)dr
A A

-1
2 2L(-1)
=%{ ;[ 5 (2?}:1'(:05{???:)—2sin{mr))}=%

nT
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Note that in this case we had 4, # 0 and 4 =0. n=12.3..__ This will happen on occasion so don’t

get excited about this kind of thing when it happens.

The Fourier series is then,

f(x)=>4, cos[ rr;rx J+ZB” si_n(nin)

=l

=]

@ . ao , - -] 2L 1 n , :
=Aﬂ+‘?Ancos[ HETJ+ZB"5111(HfIJ L+ ) sm[ ”FHJ
— niT

L

A=1 A=l n—l
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(L if —L=x<0

Example 2 Find the Fourier series for f(x)= 412 foccey OO -L=x=L.
X 1 =x=

Solution

Because of the piece-wise nature of the function the work for the coefficients is going to be a little
unpleasant but let’s get on with it.

Ay =ijif[x]dx=ﬁ“lf{x)dx+j:f[x]dx}

=i[jimr+jjzxdx] = %[f +r_?] =L

4, =%£f(_r)cm(”fjdx=%Uu f(_r)cns(ngx)dx—i-j:f[x]cos(”ix]dx:l
A ol (e

-L
At this point it will probably be easier to do each of these individually.

’ HTx I’ HTX ’
J. Lcns[—]dx= —sin| ——
I L nT L

-L

L
g nTX 2L nTx . [ nmx
2xcos| — |dx=| —— || Lcos| — |+naxsin| —
" L nmwe L L

0

2

=L—si11(mr] =0
nx

<[ 2L, |(Leos (nz) + nzLsin (n7) - Leos(0))
{H 7 ]

:[?322‘:‘:3]((—1]"—1)

So, if we put all of this together we have,

4 =%jif[x]coa[nfx)dr _ {m[%}((_l]" _1)}
2L

- 5=((-)"-1) . n=123, .

noT
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So, we've gotten the coefficients for the cosines taken care of and now we need to take care of the

coefficients for the sines.
)dx+j f{x)sm[ }d‘x:‘

T S
_ %U‘:L«,m[" x ]d‘x+J‘:szin(n§x)dr:l

As with the coefficients for the cosines will probably be easier to do each of these individually.

° nITX I’ nIx ’
j Lsin[ ]dx=(——cos[ H
I L T L i
L
j Exsin(
0

2

_ L_(_1+-::DS[?‘F?!)) =L—2([_1)" _1]

nmr nw

nmx nzx
—NAXCOS
L } ( L J]

L

. 2L :
nET}dx= —— (LSH](
L nome

L

0

= % (Lsin(nm)—nzLcos(nr))
nm
2r " 2r

| A (—mr[—l] )z__{ 1)

So, if we put all of this together we have,

_J‘ f{:r)gnl[ ] 1[‘5— (-1 _1]_£( 1)}

_ L[ 1 (- 1)] ( +(-1)") n=1.2.3. .

i

So, after all that work the Fourier series is,

PRI
—AD+ZA"::99( )+ZB sm(”ﬂ)

—L+”Z::MT ((-1)"-1)c ;;[MT) i

(1+(-1)")sir (”ﬂ]
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Example 3 Find the Fourier series for f(x)=xX on —L=<x=1TL.

Solution

Let's start with the integrals for A.I .

1 r 1 r
Aozfj_lf{x):ﬁ(:fj_zxdxzo
1 * M TxX 1 * ‘RaTx
A, _EJ-_lf[x)cos[ T }d’x_EJ-_Lxcos[- a -]dx_{)

In both cases note that we are integrating an odd function (x is odd and cosine is even so the product

is odd) over the interval [—L. I.] and so we know that both of these integrals will be zero.

MNext here is the integral for B,,
1 L - 1 L - - L -
B, =— JS(x)sin nﬁx]dx:— xsiu[”ﬂpx dx = — xsiu[nﬂpx dx
L) _; rL rJ) _, L . P L

- {_l)n+'l -7
" FIIT

rm=1.2.3.__.

In this case the Fourier series is.

> 7T >  ((max = (—1)"""2r T
F(x)= Z;incos[ ]+;Bn 5111[_TJ=§ 5111{ o ]

— I FT

Example 4 Find the Fourier series for f(x] =x"on —L=x<=L1L.

Solution

Here are the integrals for the 1‘1,, and in this case because both the function and cosine are even we’ll
be integrating an even function and so can “simplify™ the integral.

1 L 1 r 1 r
Ay =§_F_Lf(x)dx =£J‘_}_x2 dx:EjD x* dx

1 * BaTx 1 * naTx 2 + aTx
A, =— f[:r]cos[—)dx=—j xzcos[—dez;j xzcos[ ]dx
r. _; L r. _; s r.), rL

As with the previous example both of these integrals were done in Example 1 in the Fourier cosine
series section and so we'll not bother redoing them here. The coefficients are,

2 2 L]
= 4r-(—1
A0=L— 14_":#. n=12.3.__.
3 o
Next here is the integral for the Bﬂ
1 o . X 1 £ s . M TX
B, =— F(x)sin dx =— x% sin dx =0
rL)_, L rJ)_, L

In this case the function is even and sine is odd so the product is odd and we're integrating over
—IL = x = I andso the integral is zero.

The Fourier series is then,

= ' = 2 = 4r*(—1)" '
f{x]:zo‘dncos[an]+ZB"5in(n;rx]:%+z ,{ 2) Cos[n;'rx}

Pl



