1978 1 1408

UNIVERSITY OF ANBAR

il glrall L ol 9385 g o guslad] o gle 418

45U A al)
QQAJ'UJ&‘ ddla

puls daa g Ba

General Concept Lecture One

V. Introduction

Algorithm is a step-by-step procedure, which defines a set of
instructions to be executed in a certain order to get the desired output.
Algorithms are generally created independent of underlying languages,
I.e. an algorithm can be implemented in more than one programming

language.

From the data structure point of view, following are some important

categories of algorithms:
« Search — Algorithm to search an item in a data structure.
o Sort — Algorithm to sort items in a certain order.
o Insert — Algorithm to insert item in a data structure.
« Update — Algorithm to update an existing item in a data structure.

« Delete — Algorithm to delete an existing item from a data structure.

1.2 Characteristics of an Algorithm

Not all procedures can be called an algorithm. An algorithm should

have the following characteristics:

e Unambiguous: Algorithm should be clear and unambiguous. Each
of its steps (or phases), and their inputs/outputs should be clear and
must lead to only one meaning.

¢ Input: An algorithm should have 0 or more well-defined inputs.

e Output: An algorithm should have 1 or more well-defined outputs,
and should match the desired output.

¢ Finiteness: Algorithms must terminate after a finite number of steps.

e Feasibility: Should be feasible with the available resources.

General Concept Lecture One

¢ Independent: An algorithm should have step-by-step directions,

which should be independent of any programming code.

1.3 How to Write an Algorithm?

There are no well-defined standards for writing algorithms. Rather, it is a
problem and resource-dependent. Algorithms are never written to support

a particular programming code.

Algorithm writing is a process and is executed after the problem domain
is well-defined. So it should know the problem domain, for which we are

designing a solution.

The common constructs such as like loops (do, for, while), flow-control
(if-else), etc are all programming languages share these basic codes .so, it

can be used to write an algorithm.
Example:

Design an algorithm to add two numbers and display the result.

Step 1 — START

Step 2 — declare three integers 8, b & ¢ <« |
Step 3 — define values of a & b

Step 4 — add values ofa & b

Step 5 — store output of step 4 to C

Input

Step6 —printc «——— | Output

Step7-STOP ¥ ———

terminate

1.4 Algorithm Analysis

The efficiency of an algorithm can be analyzed at two different stages,

before implementation, and after implementation. They are the following

General Concept Lecture One

1. Priori Analysis :(execution time) this is a theoretical analysis of an
algorithm. The efficiency of an algorithm is measured such as processor

speed, are constant and has no effect on the implementation.

2. Posterior Analysis :(running time) this is an empirical analysis of an
algorithm. The selected algorithm is implemented using a programming
language. This is then executed on the target computer machine. In this
analysis, actual statistics like running time and space required, are

collected.
1.5 Algorithm Complexity

Suppose X is an algorithm and n is the size of input data, the time and
space used by the algorithm X are the two main factors, which decide the
efficiency of X.

« Time Factor — Time is measured by counting the number of key

operations such as comparisons in the sorting algorithm.

« Space Factor — Space is measured by counting the maximum

memory space required by the algorithm.

The complexity of an algorithm f(n) gives the running time and/or the

storage space required by the algorithm in terms of n as the size of input
data.

1.5.1Space Complexity

Space complexity of an algorithm represents the amount of memory space
required by the algorithm in its life cycle. The space required by an

algorithm is equal to the sum of the following two components —

« A fixed part that is a space required to store certain data and
variables, that are independent of the size of the problem. For
example, simple variables and constants used, program size, etc.

¢

General Concept Lecture One

« A variable part is a space required by variables, whose size depends

on the size of the problem. For example, dynamic memory
« allocation, recursion stack space, etc.

Space complexity S(x) of any algorithm x is S(x) = C + S(I), where C is
the fixed part and S(1) is the variable part of the algorithm, which depends

on instance characteristic I.

Following is a simple example that tries to explain the concept.

Algorithm: SUM(A, B)
Step1- START

Step 2 - Ce A+B+10a— | Fixed
Step 3 - Stop

S(x) = C + S(I) 2 s(x)=1+2>=3

Variable

1.5.2 Time complexity

Time complexity of an algorithm represents the amount of time required
by the algorithm to run to completion. Time requirements can be defined
as a numerical function T(n), where T(n) can be measured as the number

of steps, provided each step consumes constant time.

For example, addition of two n-bit integers takes n steps. Consequently,
the total computational time is T(n) = ¢ * n, where c is the time taken for
the addition of two bits. Here, we observe that T(n) grows linearly as the

Input size increases.
the time required by an algorithm falls under three types :
« Best Case — Minimum time required for program execution.
« Average Case — Average time required for program execution.

« Worst Case — Maximum time required for program execution.

General Concept Lecture One

Homework

Homework1: is the following steps is an algorithm ? justifying your

answer
Step 1: Start
Step 2: Declare variables a,b,c and d,
Step3:Declear x=1.
Step 4: Read variables a,b and c.
Step5:1fa>b
Ifa>c
atc
Else
b=a
Else
Ifb>c
Display b is the largest number.
Else
Display c is the greatest number.
Step 6: while x>0
X=x+1

Step 6: Stop

k,khkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkikkikkhkkkkkkkkikkkkkk

General Concept Lecture One

Homework 2: the following an algorithm to find all roots of a

quadratic equation a(x)"2+bx+c=0.
compute the Space complexity of this algorithm
Step 1: Start
Step 2: Declare variables a, b, ¢, D, x1, X2, rp and ip;
Step 3: Calculate discriminant
D = b2-4ac
Step 4: If D =0
rl =(-b+D)/2a
r2 = (-b-D)/2a
Display rl and r2 as roots.
Else
Calculate real part and imaginary part
rp = b/2a
ip =(-D)/2a
Display rp+j(ip) and rp-j(ip) as roots

Step 5: Stop

* 1978 1408

UNIVERSITY OF ANBAR

il glrall L ol 9385 g o gusladl o gle 418

AU s sall
Slaa)y gad) Bala

puls daa g B a

Double Linked List Partl Lecture Ten

DOUBLE LINKED LIST (DLL)

e A double linked list is a two-way list in which all nodes will have two
links. This helps in accessing both successor node and predecessor node
from the given node position. It provides bi-directional traversing. Each
node contains three fields:

] Left link.
(] Data.
1 Right link.

HEAD

" N

e The left link points to the predecessor node and the right link points to
the successor node. The data field stores the required data.

e Many applications require searching forward and backward thru nodes
of a list. For example searching for a name in a telephone directory
would need forward and backward scanning thru a region of the whole

list.

e The basic operations in a double linked list are:

- Creation.
- Insertion.
- Deletion.

- Traversing.

Double Linked List Partl Lecture Ten

A double linked list is shown in below figure:

Stores the
previous node

address.
.1'7

i start

100 ' 200

The start : 200 300
pointer ;

holds the data Stores the next The right field of
address of node address. the last node is
the first NULL.

node of the

list.

e The following code gives the structure definition
struct node
{
int Data;
node *LL,*RL;
¥
node *head=NULL;

INSERT NODE AT FIRST OF DOUBLE LINKED LIST:
void insertF(int n)

{
node *X=new node;
X->Data=n;
X->LL=NULL;

if (head==NULL)
X->RL=NULL;
else
{X->RL=head;
head->LL=X;

}

head=X;

Double Linked List Partl Lecture Ten

Head
400 [T
y
400| 10 200") 100 | 20 300" I 200 30
100 200 300
_p X | 40 [100
400
INSERT NODE AT THE END OF DOUBLE LINKED LIST:
void insertEnd(int n)
{
node *X=new node;
X->Data=n;
X->RL =NULL;
node *g=head;
while (g->RL!=NULL)
q=9->RL;
g->RL =X;
X->LL =q;
}
Head
100
X 10 [200 "_' 100 | 20 300") 200 30 |400
100 200 300

T

300 40
400

Double Linked List Partl Lecture Ten

DELETE THE FIRST NODE ON DLL

void deletF()
if (head!=NULL)

{
head=head->RL;
head->LL=NULL;
}
else
head=NULL;

L
G L
YT —
A X100 %__‘X 20300 g 200 30 X

100 200 300

INSERT NODE AT THE MID OF DOUBLE LINKED
LIST:

void insertMid(int n, int y)
{
node *X=new node;
X->Data=n;
node *g=head;
while (g->Datal!=y)
g=g->RL;
X->RL=0g->RL;
g->RL->LL=X;
g->RL=X;
X->LL=q;

Double Linked List Partl

Lecture Ten

Head

100 40 200

100
400
X 10 400

ﬁ

L’ 200| 30 X
DELETE THE END NODE ON DLL
void DeletEnd()
{
node *g=head;
while (g->RL->RL!=NULL)
0=0->RL;
g->RL=NULL;
}
Head
100
fm==="" === Tl
ARIRH ﬂ__’mo 0| X L’I/_ﬁzoo l i i
100 200 300

Double Linked List Partl Lecture Ten

DELETE ANY MID NODE ON DLL

void DeleteMid(int y)
{

node *g=head,;
while(g->datal=y)
9=0->RL;
q->RL=0->RL->RL;

g->RL->RL->LL=q;

}
head
100
o N
X 10 300‘_ i100: 20 :300: 2100 30
100 200 300
Homework:

1.create Double Linked List (DDL) with those nodes(Data, Adderess)
,(3,100),(5,200),(8,300),(45,400),(30,600) .

2.insert the node (20,600)to the end of DDL
3.Delete the first node

4.Delete node with 45=value

5.insert first (4,60),

Draw every step

1978 1 1408

UNIVERSITY OF ANBAR

il glrall L ol 9385 g o guslad] o gle 418

45U A al)
QQAJ'UJ&‘ ddla

puls daa g Ba

Tree Data Structure Lecture three

1. Introduction:

Liner represention

1111

lerarchica
representation
2. Tree

A tree is a data structure that has hierarchal relationships between its

individual data items.

< Root

Parent

Figure (1)

Important notes:

- The higher node A of the tree in figure(1) is the root.

-The nodes B, C and D which are directly connected to the root node are
the children of the root.

- The link between a parent and its child is called branch.

- The root of the tree is the ancestor of all nodes in the tree.

Tree Data Structure Lecture three

- Each node may be the parent of any number of nodes in the tree.
- The root of the tree (2) has level 0, and the level of any other node in the
tree is one more than the level of its father.

- The depth of the tree is the maximum level of any leaf in the tree.

Level 0

(»)
Level 1 @ c

Level 2 /

AR
VNN
& O O ©

Figure (2)

-all nodes in the last level of a tree is called a leaf node (H, I, J, K).

- A tree is a recursive data structure because every node in a tree may have

children so that consider a subset tree of the primary tree.

- The children of a given parent is the set of sub trees. The node in the tree of
figure(2) A=[B,C,D,E,F,G,H,1,J,K] ,B=[D,E,F,H,1,J], C=[G,K], E=[H],F=[l,J],
G=[K]. where B,C,E,F,G are sub tree of A

Example: represented array A=[1,2,3,4,5,6,7,8,9,10,11] in a tree .

—“

Tree Data Structure Lecture three

Examples tree in real life:

* Family tree * Table of contents of a book ¢ Class inheritance hierarchy

» Computer file system (folders and subfolders)

3. Binary Tree

A binary tree is the tree that is characterized by the fact that any node can
have at most two branches. (i.e) there is no node with degree greater than
two). A binary may be empty or consist of a root and two disjoint binary

tree called the left subtree and the right subtree.

Y8 @(S &k
() @

In the binary tree the largest number of nodes for the (L) level'is 2L — 1
Example :tree have 3 level what are the largest number of nodes?

Node num=23-1=7

4.Full , Complete , Perfect Binary Trees

« If every node has either 0 or 2 children, a binary tree is called full.

« If the lowest d-1 levels of a binary tree of height d are filled and level d
Is partially filled from left to right, the tree is called complete.

« Ifall d levels of a height-d binary tree are filled, the tree is called perfect.

full complete perfect

Tree Data Structure Lecture three

5. Linear Representation

The linear representation method of a binary Search tree uses a one —
dimensional array of size (24*1-1) where s is the depth of the tree. In the
following tree, d =3 and this tree require an array of size (23t1-1) = 15 to

be represented.

®/®\

Once the size of the array has been determine, the following method
is used is represent the tree:

1- Store the root in the 1st location of the array.

2- Ifa node is in thelst location of the array, Store its left child at location
(2n), and its right child at location (2n+1).

The main advantages of this method are:

- Its simplicity and the fact that given a child node, its parent node can be
determined immediately .1f a child node is at location N in the array, then
its parent node can be determined immediately. If a child is at location N

in the array, then its parent node is at location N / 2,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(s [sfsf=2]+fefofr -] -] -]-[7]-]]

-
2

The disadvantages of this method:

- Insertion and deletion of a node causes Considerable data monument up
and down the array, using an excessive amount of processing time,
because insertions and deletions are the major data processing activities.

- Wasted memory location.

Tree Data Structure Lecture three

6. Linked Representation of a Binary Tree

Because each node in a binary tree may have 2 children, a node in a linked
representation has 2pointer fields, one for each child, and one or more data
fields containing specific information about the node itself. When anode
has no children the corresponding pointer fields are NULL. As in a linear
linked list, the first node in the tree is pointed to by an external pointer.
Tree in c++ by using Linked list

Struct Node{

Int data;

Node* left;

Node * right; };

_data

_left_child |_right_child

AN

data _data
_lefe_child | _right_child _lefc_child]_right_child
' Vool
/ \ 0 4
_data _data
_left_child |_right_child _left_child |_right_child
0 0 0 0

Example:

Tree Data Structure Lecture three

Homework
1. what are the disadvantages of represent a binary Search tree by using

linear representation method (one -dimensional array)?

2. The following tree is not a perfect binary tree .why? convert it to

perfect tree?

3. Is this tree a full binary tree.?? Justify your answer.

4.we have an array [10, 2,5,8,4] convert this value to a binary tree.

Tree Data Structure Lecture Four

1. Binary Search Trees

It is the binary tree in which the value of the element of the left branch
(child) of any node is less than the value of the element of that node as
the father (father) and the value of the element of the right branch (child)
Is greater than the value of the element of the node (father).

2. Operations on Binary Search Trees

- Insert: add a new node to a binary search tree.

- Print: Binary tree traversal prints all elements in the binary search tree.
- Search: search for a node at the binary search tree.

- Delete: delete a node from the binary search tree.

1.Insert function

Node* insert (Node* root, int data)

{
iIf (root==NULL)
{
root=get_newnode(data);
b
else if (data<= root->data)
{
root->left=insert(root->left,data);
¥
else
{
root->right=insert(root->right,data);
¥
return root;
¥
Node* get_newnode(int data)
{

Node* newnode= new Node();
newnode->data=data;
newnode->left=NULL;
newnode->right=NULL,;
return newnode;

Tree Data Structure Lecture Four

Example : show the Binary Tree search for the following :
1. insert(root,10)

2. insert(root,3)

3. insert(root,11)
4. insert(root,7)

5. insert(root,5)

6. insert(root, 0)

(&

)
(=

Tree Data Structure Lecture Four

. insert (root,15)

@‘

8.insert (root,17)

Tree Data Structure Lecture Four

Example2: show the Binary Tree search for the following :2,5,6,10,23,4
2

2.Binary Tree Traversal

To print the information of nodes within a tree we need to visit each of
these nodes and then print its information. There are three different
method to visit the tree nodes, each of them prints nodes information in

different order.

Left

Tree Data Structure Lecture Four

A- In order print function (left — root — right)

These method means traverse and print from the smallest to the
largest values. We first need to print the roots left subtree, then we print
the value | the root node finally print the value in the root's right subtree.
Inorder print =0357 10111517

void inorder(Node* p)

{
if (p!= NULL)

{

inorder(p->left);
cout<< p->data<<''=>";
inorder(p->right);

}

B-Preorder print function (Root - left - right)

Preorder method traverse end print each node information before its left
and right subtrees. Therefore, the information of the tree in the previous
example are print as follows: preorder print=103075 11 15 17

void preorder(Node* p)
{

if (p!= NULL)

{

cout <<p->data<<''=>";
preorder(p->left);
preorder(p->right);

}

}

Tree Data Structure Lecture Four

C.Postorder print function (left — right — root)

Postorder method traverse and

print each node information after its left and right subtree. The
information of the same example of the previous two methods are print
as follows: Postorder =057 317 1511 10

void postorder (Node* p)

{

if (p!= NULL)

{

postorder (p->left);
postorder (p->right);

cout <<p->data<<''=>";

}

Y Homework

.Which of the following is false about a binary search tree®

a) The left child is always lesser than its parent
b) The right child is always greater than its parent
c) The left and right sub-trees should also be binary search trees

d) In order sequence gives decreasing order of elements

.YHow to search for a key in a binary search tree¢

.YWhat does the following piece of code do¢

Tree Data Structure

Lecture Four

}

if (p!= NULL(

}

cout <<p->data¢"<=">>
)seesep->efts(
)$89eep->right(

a)Preorder traversal
b) Inorder traversal
c) Postorder traversal

d) Level order traversal

.£Construct a binary search tree with the below information.

The key of a binary search tree are 15,4,11,0,3,2,8,18.

.°Construct a binary search tree with the below information.
The preorder traversal of a binary search tree 10, 4, 3, 5, 11, 12.
I Jlsud) drpa o olasy)

.1The number of edges from the root to the node is called
a) Height
b) Depth
c) Length
d) Width

.YThe number of edges from the node to the deepest leaf is called
a) Height

b) Depth

c) Length

d) Width

of the tree.

of the tree.

Tree Data Structure

Lecture Four

AWhat is a full binary tree¢

a) Each node has exactly zero or two children
b) Each node has exactly two children

c) All the leaves are at the same level

d) Each node has exactly one or two children

-YWhat does the following piece of code do¢
void ???(Node™ p(
H
if (p!= NULL(
H
)$8p->lefts(
cout<< p->datas"<=">>
)eeep->rights(
{

a)Preorder traversal
b) Inorder traversal
c) Postorder traversal

d) Level order traversal

.Y *What is a complete binary treef

a) Each node has exactly zero or two children

b) A binary tree, which is completely filled, with the possible exception of the bottom level,

which is filled from right to left

c) A binary tree, which is completely filled, with the possible exception of the bottom level,

which is filled from left to right

d) A tree In which all nodes have degree 2

Construct a binary tree by using postorder and inorder sequences given below.

Tree Data Structure Lecture Four

.YYConstruct a binary search tree with the below information.

The key of a binary search tree are p,x,a,r,f,z,i

Tree Structure

Lecture Five

Delete Node from Binary tree search

Delete function is used to delete the specified node from a binary search tree.

However, we must delete a node from a binary search tree in such a way, that the

property of binary search tree doesn't violate. There are three situations of deleting

a node from binary search tree:

1: The node to be deleted is a leaf node

It is the simplest case, in this case, replace the leaf node with the NULL and simple

free the allocated space. In the following image, we are deleting the node 85, since

the node is a leaf node, therefore the node will be replaced with NULL and allocated

space will be freed.

delete node 85

Assign node to NULL |

/75\ and free the node

/\

Tree Structure Lecture Five

2: The node to be deleted has only one child:

In this case, replace the node with its child and delete the child node, which now
contains the value which is to be deleted. Simply replace it with the NULL and free

the allocated space.
In the following image, the node 12 is to be deleted. It has only one child. The

node will be replaced with its child node and the replaced node 12 (which is now

leaf node) will simply be deleted.

(50) 50)

" / \ \ Replace 12 with 6 and / \
‘ __25/ /) 75 delete 12 | 75/
delete node 12 / \ / = / \
12 ’; '30w / \ “| 430| /60\
/ 52) (70 52 |

J ex Y °

Deleted node

Tree Structure Lecture Five

3:The node to be deleted has two children.:
It is a bit complexed case compare to other two cases. However, the node which is

to be deleted, is replaced with its in-order successor or predecessor recursively until
the node value (to be deleted) is placed on the leaf of the tree. After the procedure,

replace the node with NULL and free the allocated space.

In the following image, the node 50 is to be deleted which is the root node of the
tree. The in-order traversal of the tree given below.6, 25, 30, 50, 52, 60, 70, 75.
replace 50 with its in-order successor 52. Now, 50 will be moved to the leaf of the

tree, which will simply be deleted.

50 (52

A A

Replace 50 with its

: (25) (75)

in-order successor L
delete node 50 / \ / > / /
(6) | 30) /6 \ (6) (3] ‘GK

8] (70) ;o;\ 70)

N / _ J - /

Deleted Node

Tree Structure Lecture Five

Node* Delete(struct Node *root, int data)

{
B (root == NULL) return root ¢

else if(data < root->data) root->left = Delete(root->left,data)¢
else if (data > root->data) root->right = Delete(root->right,data)¢
//... | found you, Get ready to be deleted

else {

//Case 1: No child
If (root->left == NULL && root->right == NULL)

{

delete root
root = NULL¢

}

//Case 2: One child
else if(root->left == NULL)

{
struct Node *temp = root:
root = root->right
delete temp:
}
else if(root->right == NULL)
{
struct Node *temp = root:
root = root->left:
delete temp:
{
//case 3: 2 children
else
{
struct Node *temp = FindMin(root->right)¢
root->data = temp->data:
root->right = Delete(root->right,temp->data)¢
}

}

return root:

Tree Structure Lecture Five

Node* FindMin(Node* root)
{

while(root->left 1= NULL) ¢
root = root->left

return root:

}

1978 1 1408

UNIVERSITY OF ANBAR

il glrall L ol 9385 g o guslad] o gle 418

45U A al)
QQAJ'UJ&‘ ddla

puls daa g Ba

Sorting Algorithm part 1 Lecture Six

6.1 Sorting Algorithm
Sorting refers to arranging data in a particular format. Sorting algorithm

specifies the way to arrange data in a particular order.

Other Definition: Sorting is the process of arranging a set of graphical

elements according to the value of a field (or fields) called a key
(ascending) or descending.
6.2 Sorting Applications and Purposes

e Uniqueness testing

e Deleting duplicates: solve the problem of similarity restrictions.

e Prioritizing events :To simplify the processing of files

e Frequency counting

e Reconstructing the original order

e Set intersection/union

e Finding a target pair X, y such that x+y = z

e Efficient searching: To increase the efficiency of the search

algorithm for an item.
5.3 Steps in the sorting process

The steps of the sorting algorithm are summarized in the following stages:
1- Reading the key field. Which mean the input data that will sort it.

2- Inference (deduction) the location of the element in the new
arrangement.

3- Move the sorted element to its new location.

6.4 Types of sorting algorithms

There are two types of internal sort (in the main memory) ,and external

sort (the secondary storage).see the figure below:

Sorting Algorithm part 1 Lecture Six

—— Selection Sort

——— Insertion Sort

- Internal —
Bubble Sort

(exchange)

— Radix Sort

— Quick Sort

— Heap Sort

- Shell Sort
L Extenal —

‘ Sorting algorithms

Two-way-Merge
Sort

——— K-way-Merge Sort

6.5 key determinants of the sorting algorithm selection

The testing of any of the ranking algorithms should be in light of a number

of factors, the most important of which are:
1 - The volume of data stored.
2. Storage type (main memory, disk, and tape).

3. Degree of data order (unordered, semi-ordered)

6.6 Selection sort

The algorithm for this arrangement is summarized by the following steps:
1- Find the smallest item in the list and replace it from its location with
the item in the first location in the list.

2- Find the smallest element in the remaining part of the list and replace it
from its location with the element in the second location in the list.

3- We continue in this process until we reach the end of the list.

Example: sort the following list in ascending order (30 39 22 19 34)

v

Sorting Algorithm part 1 Lecture Six
osul—| 03n1—| of 30 o| 30 o 19 |4
Compare Compare
1] 39 | 1| 39 Galer 1] 39 1| 39 1| 39 Saiag
2| 22 21 22 21 22 4—| 2] 22 2| 22
Compare
il 19 il 19 il 19 ‘_I&alt:r il 19 il 30 |+
Compare
41 34 41 34 il 34 41 34 ‘_I 34
MinPosition MinPosition MinPasition MinPosition
0 2 3 3
First Pass
o| 19 ol 19 o] 19 ol 19
1| 39 & 1| 39 1] 39 1| 22 |¢&
Compare Swap
2| 22 |¢ Jaaker 2| 22 | 2| 22 2| 39 |1
Compare Compare
3] 30 3] 30 3| 30 3] 30
4| 34 41 34 4| 34 41 34
MinPosition MinPosition MinPosition
2 .4 2
Second Pass
of 19 o] 19 o] 19
1| 22 1l 22 11 22
21 39 1—| 21 39 2| 30 ‘—|
Compare Swap
3| 30 |¢Jsarer 3| 30 |4 3| 39 |
Compare
41 34 | 34 ¢ |] 34
MinPositon MinPosition
3 3

Third Pass

Sorting Algorithm part 1 Lecture Six

ol 19 ol 19
11 22 1| 22
21 30 21 30
3l 39 'l—l il 34 1—|
Compare Swap
% 34 ‘_||S alter ¥ 39 4 |
MinPositon
4

Fourth Pass

Example: sort the following list in ascendingorder (8 3 9 7 2 6 4).

6 5 4 3 2 1 ilayiida
2 2 2 2 2 2 8e—
3 3 3 3 3 3«3
4 4 4 4 9% 9 9
6 6 6 7 7 1 7T
7 7 8“8 8 8 2
8 8“7 6 6 6 6
9 9 9 9 4 4 4

Example: sort the following list in ascending order (22 3 16 7 0 5 9).

6 5 4 3 2 1 alayaad
o 0o 0 0 0 0 2

3 3 3 3 3 3“3

5 5 5 5 16* 16 16

AR Y Y & A

9 9 292 2 2

22 22 9 9 9 9

Sorting Algorithm part 1 Lecture Six

Example: sort the following list in ascending order (re, Xy, zn, or, py, Cz,
ab)
6 5 4 3 2 1 LAY

ab ab ab ab ab ab re

cZ ¢ ¢ €z €z Xy Xy
or or or or zn“ zn zn
py py py zm or or or
re re zn py py py py
Xy Xy Xy Xy Xy €z CzZ

Zn Zn re re re re ab

Selection sort function in c++

void slctsort(int ar[n],int n)

{ la jalic dac g 48 diaa o e 231 Al L
Int |_,k,J,!tem,x_,y;) e a8 San AV I Y1 i) (g ealinll (K e iy S o0 I 138
for(i=0;i<n-1;i++) L
{k:I V,E)QJ;)\.J\L“;\ pass J\é)@qu)\é\t@uuh}&\w\@uﬁ\):\ﬂaK
- . 3 054 (b Y 13 5 4ilSey Ja) jaal
item=arl[i];
for(j=i+1;j<n;j++)
t .
if(ar[j]<item) loop J 13
{) A S 2 0 (I paiall = tem
x=ar[j]; pass JI
Item=x; no J)8sha iny 55 s ark] iy
} change
} -
y=item;
item=ar[k];
ar[k]=y;
}

1978 & 1408

UNIVERSITY OF ANBAR

il glrall L ol iS5 g o guslad) o gle 4,418

4301 Alayal
Glaa)y eAd) 3ala

Sorting Algorithm part 2 Lecture six

6.1 Inserting Sort

Inserting Sort is one of the internal type sort. It is used when the data is

semi-ordered .The steps of this algorithm are summarized as follows:

1- We start with the second element i = 2 in the original list and compare
it with the first element i = 1 and put them in order and be ascending to
the top of the list.

2- We take the third element i = 3 in the original list and compare it with
the introduction to the list that contains the first and second element and

put it in its correct location with them.

3- We take the fourth element i = 4 in the original list and compare it with
the introduction to the list that contains the three elements and put it in its

correct position between them.

4- We continue in this process until the last component and we will get

the list in order.

nserlion Sort Execution Example

l'*II?II‘JII1-J.1II!*II~"=I
,E_p Lz el (rzl{alls]le]
Ulmlllfl 1] 5] [&]

IENEIIERER - BEERI R
FEEARERREE - RERE
-E-IEIE_!lI

R ||a|-
[(21 (5] (2] (5] 4

ENREAREIREN AR REF

2

n
(]

in
(¥

Sorting Algorithm part 2

Lecture six

Examplel: sort the following list items in ascending order (8 397 2 6 4)

Pass0 319 |7 6 |4 dalay) daildl)

Passl 8 19 |7 6 | 4 | Bl injiy Oisall Jady) b (e (U e J Y a8 sall i

Pass2 8 19 |7 6 |4 | isa A cuid 853 (1 Sl g8 9 Halal) Juay Ladic

Pass3 718 19 6 | 4 | “inis3d GSa2d) puash 3 (e sl Laa g 4ol (e Lguandy aldh D I dlaadl Juag
A

Pass4 3|7 |8 6 | 4 | Bl a7 Il lgrdagy 75352 e g a8 6 I dlardl Sy

Pass5 316 |7 9 [4|6J dd4)) pasi 6 J S gaall 4lSa 22 5h 6939 2 ae L t8E 4 H dlaad) Juay
(Bl s i

Passé 314 |6 8 |9

Example2- sort (77, 33, 44, 11, 88, 22, 66, 55)

Pass0

77

33

44

11

88

22

66

55

Passl

33

77

44

11

88

22

66

55

Pass?2

33

44

77

11

88

22

66

55

Pass3

11

33

44

77

88

22

66

55

Pass4

11

33

44

77

88

22

66

55

Pass5

11

22

33

44

77

88

66

55

Passb6

11

22

33

44

66

77

88

55

Pass7

11

22

33

44

55

66

77

88

Sorting Algorithm part 2 Lecture six

Example3- sort in descending order (0O 4, 8, 11, 100, 22, 15, 55,2)

PassO|0 |4 |8 |11 |100|22 |15 |55 |2
Passl1|4 |0 |8 |11 |100|22 |15 |55 |2
Pass2|{8 |4 |0 |11 100(22 |15 |55 |2
Pass3|11 |8 |4 |0 [100|22 |15 |55 |2
Pass4 | 100118 (4 (0 |22 |15 |55 |2
Pass5 10022118 |4 [0 |15|55 |2
Pass6 [100 {22 |15|11 |8 (4 |0 [55|2
Pass/|100 55|22 |15 (11 |8 |4 [0 |2
Pass8 [100 (55|22 |15 |11 |8 |4 |2 |0

Example 4: sort the following items(xray,rab, for,if ,car)

PassO

xray | rab | for if car

Passl

rab | xray | for | if car

Pass?2

for |rab | xray | if car

Pass3

for |if rab | xray | car

Pass4

for |car |if rab | xray

6.2 Advantages for Insertion sort

1.

Implementation of insertion sort is very easy as compared to sorting
algorithms like quick sort, merge sort or heap sort.

Very efficient in the case of a small number of elements.

If the elements are already in sorted order it won’t spend much time in
useless operations and will deliver a run time of O(n).

It is a stable sorting technique, that is, the order of keys is maintained.

Sorting Algorithm part 2 Lecture six

5. It requires constant “additional” memory, no matter the number of
elements.

6. It can sort the elements as soon as it receives them.

6.3 Disadvantage

1. It is less efficient on list containing more number of elements.

2. As the number of elements increases the performance of the program

would be slow.

3. Insertion sort needs a large number of element shifts.

Inserting Sort function in c++
const size=20;

int line[size],int i,m;

void insertionsort (int data[size],int n)

{
inti,j,item;
i=1; Jal el 22 pass
while(i<n)
{
j=i;
while((j>=1) && (data[j]<data[j-1]))
{
item= data[j];
data[j]=data[j-1];
data[j-1]=item;
-

Sorting Algorithm part 2 Lecture six

Set)=1-1

Neo J>=0
AND
> Value

Set Arrayl[) + 1] =
Arrayl)]

l

Decrement J
(=)

= Arrayl) + 1] = Value

l

Increment |
(les)

~

B

Yes
No

Sorting Algorithm part3 Lecture seven

o] e 1408

UNIVERSITY OF ANBAR

il glrall L ol iS5 g o guslad) o gle 4,418

4301 Alayal
Glaa)y eAd) 3ala

Sorting Algorithm part3

Lecture seven

6.1 Bubble Sort

The bubble sort used when the data items is not huge and semi-ordered.

The idea of this method involves testing the smallest values and placing

them in the list (that is, the small value floats to the surface.)

1. In the first stage (first pass) :We compare the two elements in the

two locations (n-1), (n) and we exchange their location to be the

smallest before the other, and we continue to the top of the list until

we reach the comparison of the element in the second location with

the element in the first site.

2. In the second pass: We compare in the same way as the previous

one, but from the element in the location (n) to the element in the

second site because the first site was chosen where the least

valuable element in the previous step

3. Mention the above steps for (n-1) stages.

Example: sort the list by 8, 3, 9, 7, 2 ascending:

The fourth | The third The second The first The input
Pass Pass i=3 Pass i=2 Pass i=1
1 2 1 3 2 1 4 3 2 1 n
2 2 2 2 2 2 |2 8 8 8 8
3 3 3 3 8 8 8 2 3 3 3
7 7 8 8 3 3 |3 3 2 9 9
8 8 7| 7 7 7 /9 9 9 2 7 (n-1)
9 9 9| 9 9 9 |7 7 7 7 2 (n)

Sorting Algorithm part3

Lecture seven

Example: sort the list by 13,20,5,4,3,0 ascending using bubble sort

algorithm:
The fifth The fourth | The third The second The first The
Pass pass pass pass pass input
Is the Out put
1 2 | 1 [3[2|1|4(3]2]1|5]4[3]|2]|1 j
0 0| 0[0[O0|0O|O[0O|0 |[0]O]13]13]13/ 13| 13
3 3 3 /3|3 |3| 3|13|13|13|/13/0 (20| 20|20 20
4 4 | 4 | 4]13|13/ 13| 3 |20| 20/ 20{20/0 |5 |5 5
5 5 | 13 |13] 4 (20/20(20| 3|5 |5 (5|5 |0 |4 4
13 13| 5 |20{20/4| 5| 5|5(3|4(4|4 4]0 3
20 20 20| 5|5 (5] 4(4]|4|4[3[|3|3[3]3 0
Ok La g Liad Ui | e &iall aaai U || (g fag Ala all 028 &
Jal (e Jins) (o sl) Jawy) 556 gisal
4l deai of A | Y s Gy (S .
paial) paiall 4 maal JsY) A ds & uﬁf
Sl oY gl ¢ R sl || 0 A Jeaa
% g paiall | i saee) o hady || &l s aead)
e S 1o || 18 D) N
4) il 4 oa¥) Bl 4 s
Example: sort the list by 70, 101, 13, 0, 2 ascending:
The fourth | The third The second The first he input
Pass i=4 | Passi=3 Pass i=2 Pass i=1
The our put
1 2 1 3 2 1 4 | 3 2 1 n
0 0 0 0 0 0 0|70 70 70 70
2 2 2 2 70 70 70 | 0 | 101 | 101 101
13 13 | 70 70 2 101 [101]101| O 13 13
70 70 | 13 | 101 | 101 2 13 | 13 | 13 0 0
101 101 | 101 | 13 13 13 2 | 2 2 2 2

985 (5% 3 palall (S8 4L

Sorting Algorithm part3 Lecture seven

Bubble Sort function in c++
void bubblesort(int ar[20],int n)

L
intij;
int item; o=l a0 sl s 5 s pealic a5 s ala) je 230 Joop JI (e e Sall 138
for(i=0;i<n;i++) pass Jlae Jie
{for(j:n-l'j>i'--j) e g sl Alae JA0Y Y 1N 5 Jaw ial 13 Jeud) (e 45 leal) dilac Lia
{ 1 ’ [RCX] Lg.ﬂ\ ‘),\a.ud\
if(ar[j]<ar[j-1]) i O dems o) G g J=n-1 oY Jiad) e lag j dlaad) Gus
{ |
item=ar[j];
ar[j]=ar[j-1];
ar[j-1]=item;
h
by
by

¥

6.2 balanced two —way merge

This method is one of the types of external sorting algorithm, and the

algorithm is summarized in the following steps:
1- Divide the original list (data) into two roughly equal lists, let it be a, b

2- We compare the first element of list with its counterpart the first

element of list b and put them in order in list c.

3- We compare the second element of list a with its counterpart the second

element of list b and put them in order in list d

4- \We repeat steps 2.3 and we get string of length 2 in each of the two lists
cd.

5- In the same way we combine the elements of lists ¢ and d and put them
in lists a,b and we will have their elements of length 4.

Sorting Algorithm part3 Lecture seven

6- We repeat the method by merging the elements of lists a,b and putting

them in lists ¢,d and their elements will be 8 .
7- We will continue in this manner until the final ranked list is obtained.

Example: sort in ascending order this list that used balanced two —
way merge algorithm ((18, 23, 02, 50, 42, 63, 20, 28, 33, 47, 3))

QJ&SJAJA&JSS'AUHM\A&Q
C,D (A byl paig cpadl)

QJGJJ.\JALGJS.S&EM\M.}

C:(18, 63,2 , 28| ,42 ,47 AB b baaall gl cppadil

D:(23, 20, B3, 50, ||3

A:|18, 20, 23, 63,3, 42, 47

Cci2, 18, 20, 23, 28)]33, 50, 63

A{2 , 3, 18, 20, 23, 28, |42, 47

B133 50, 63

Sorting Algorithm part3

Lecture seven

d:2, 3, 18, 20, 23, 28, 33, |50, 63
D: 42, 47

A{2, 3, 18, 20, 23, 28, 33, 42|47
B{350, 63

C:2, 3, 18, 20, 23, 28, 33, 42, 50 , 63
D:|47

A:2, 3, 18, 20, 23, 28, 33, 42, 50 ,47, 63

Search Algorithms Lecture Six

6.1 Search Algorithms

Before consider specific search techniques, let define some terms. A
table or a file is group of elements, each of which is called a record.
Associated with each record is a key, which is used to differential among

different records.

For every file there is at least one set of keys (possible more) that is
unique (that is, no two records have the same key). Such a key is called
primary key. For example, if the file is stored as an array, the index

within the array of an element is a unique external key for that element.

A searching algorithm is an algorithm that accepts an argument and tries
to find a record whose key is a. The algorithm may return entire record
or, more commonly; it may return a pointer to that record. It is possible
that the search for a particular argument in a table is unsuccessful; that

is, there is no record | the table with that argument as its key.

6.2Types of Search Algorithm:
1. Sequential search
2- Binary search

3- Binary tree search

6.3 Sequential search

It is the process of searching for a specific item in a list of items
through (reviewing) all the list items from its beginning and in sequence
until the required element is reached in its presence or reaching the end
of the list when it is not present, so the average number of comparisons
will be (n/ 2) meaning that the time of implementation This algorithm
will be O (n).

Search Algorithms Lecture Six

Every item is checked and if a match is found then that particular item
is returned, otherwise the search continues till the end of the data

collection.

16
P
37

34
43 |—

I Mm = W k= O

Linear Search

10 14 19 26 27 31 33 35 42 44

Linear Search (Array A, Value x)

Step 1: Setito 1l

Step 2: if i > n then go to step 7

Step 3: if A[i] = x then go to step 6

Step4:Setitoi+1

Step 5: Go to Step 2

Step 6: Print Element x Found at index i and go to step 8
Step 7: Print element not found

Step 8: Exit

Search Algorithms Lecture Six

6.4 Binary search

Binary search is a fast search algorithm with run-time complexity of
O(log n). This search algorithm works on the principle of divide and
conguer. For this algorithm to work properly, the data collection should

be in the sorted form.

Binary search looks for a particular item by comparing the middle most
item of the collection. If a match occurs, then the index of item is
returned. If the middle item is greater than the item, then the item is
searched in the sub-array to the left of the middle item. Otherwise, the
item is searched for in the sub-array to the right of the middle item. This
process continues on the sub-array as well until the size of the subarray

reduces to zero.

The algorithm of this research assumes searching for a specific item in a
sorted list according to a specific sequence and can be summarized in

the following steps:

1- Locate the item, which is located approximately in the middle of the

list.

2- Compare the item you want to search for x with the victory in the
middle of the list.

3- If the required element x is equal to the element in the mean, the

search process will end here.

4- If the required element x is less than the value of the element that is
located in the middle, then the search will be limited to the part that

includes the smaller values, and let the part be in the left section.

Search Algorithms Lecture Six

5- If the required element x is greater than the value of the element that
is in the middle, then the search will be limited to the part that includes

the largest values, and let the part that falls into the right section be.

6- In either case (5,4), that part is treated in the same way, i.e. choosing

the midpoint and comparison until the required element is reached.

In this algorithm, each comparison will reduce the number of
subsequent comparisons by half, and therefore the largest number of
comparisons will reach (log2n) when searching in the list of the number
of its components n, noting that the elements must be stored in an array

because they will be in successive locations.

6.5 How Binary Search Works?

For a binary search to work, it is mandatory for the target array to be
sorted. The following is our sorted array and let us assume that we need

to search the location of value 31 using binary search.

1018 [10 [28 [27 [30 [30][36 [42 |]

0 1 2 3 4 5 6 7 8 g
First, we shall determine half of the array by using this formula —
mid = low + (high - low) / 2

Here itis, 0 + (9 - 0) / 2 = 4 (integer value of 4.5). So, 4 is the mid of

the array.

!

10 | 14] 10 [20 |[Bl] 51 |[30 | 58 | 42]]

0 1 2 3 < 5 6 7 8 g

Search Algorithms Lecture Six

Now we compare the value stored at location 4, with the value being
searched, i.e. 31. We find that the value at location 4 is 27, which is not
a match. As the value is greater than 27 and we have a sorted array, so
we also know that the target value must be in the upper portion of the

array.

3 [0)[3s] 2]

0 1 2 3 4 5 6 7 8 9
We change our low to mid + 1 and find the new mid value again.

low=mid + 1

mid = low + (high - low) / 2

Our new mid is 7 now. We compare the value stored at location 7 with

our target value 31.

|

28 - B8R

0 1 2 3 4 5 6 7 8 g

The value stored at location 7 is not a match, rather it is more than what
we are looking for. So, the value must be in the lower part from this

location.

0 1 2 3 4 5 6 7 8 9

Search Algorithms Lecture Six

We compare the value stored at location 5 with our target value. We

find that it is a match.

0 1 2 3 d 5 6 7 8 9

We conclude that the target value 31 is stored at location 5.

Binary search halves the searchable items and thus reduces the count of

comparisons to be made to very less numbers.

const n=20;
int a[n];
void binsearch(int a[n],int x,int n,int j)
{
int upper,lower,mid;
int found;
lower=1;
upper=n-1;
found=0;
while((lower<=upper)&&(!found))
{
mid=(lower+upper)/2;
switch (compare(x,a[mid]))
{
case™":lower=mid+1;break;
case'<":upper=mid-1;break;
case'=".
{
j=mid;
found=1;
}
break;
}
}
}

Search Algorithms Lecture Six

char compare(int x,int y)

{
if(x>y)
return('>");
else

{

if(x<y)
return('<");

else return('=");

¥
¥

Search In Binary Search Tree
Search operations in binary search trees will be very similar to that. Let’s
say we want to search for the number X.
« We start at the root, and then we compare the value to be searched
with the value of the root,
o Ifit’s equal we are done with the search if it’s smaller we
know that we need to go to the left subtree because in a
binary search tree all the elements in the left subtree are
smaller and all the elements in the right subtree are larger.
« Searching an element in the binary search tree is basically
this traversal, at each step we go either left or right and at

each step we discard one of the sub-trees.

bool search (Node* root,int data)

{

If (root==NULL) return false;

else if (root->data== data) return true ;

else if (data<= root->data) return (search(root->left,data));
else return search(root->right,data);

¥

