

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 المرحلة الثانية

 مادة الخورازميات

 م.م فرح معاذ جاسم

2

General Concept Lecture One

Introduction .1

Algorithm is a step-by-step procedure, which defines a set of

instructions to be executed in a certain order to get the desired output.

Algorithms are generally created independent of underlying languages,

i.e. an algorithm can be implemented in more than one programming

language.

From the data structure point of view, following are some important

categories of algorithms:

• Search − Algorithm to search an item in a data structure.

• Sort − Algorithm to sort items in a certain order.

• Insert − Algorithm to insert item in a data structure.

• Update − Algorithm to update an existing item in a data structure.

• Delete − Algorithm to delete an existing item from a data structure.

1.2 Characteristics of an Algorithm

Not all procedures can be called an algorithm. An algorithm should

have the following characteristics:

• Unambiguous: Algorithm should be clear and unambiguous. Each

of its steps (or phases), and their inputs/outputs should be clear and

must lead to only one meaning.

• Input: An algorithm should have 0 or more well-defined inputs.

• Output: An algorithm should have 1 or more well-defined outputs,

and should match the desired output.

• Finiteness: Algorithms must terminate after a finite number of steps.

• Feasibility: Should be feasible with the available resources.

3

General Concept Lecture One

• Independent: An algorithm should have step-by-step directions,

which should be independent of any programming code.

1.3 How to Write an Algorithm?

There are no well-defined standards for writing algorithms. Rather, it is a

problem and resource-dependent. Algorithms are never written to support

a particular programming code.

Algorithm writing is a process and is executed after the problem domain

is well-defined. So it should know the problem domain, for which we are

designing a solution.

The common constructs such as like loops (do, for, while), flow-control

(if-else), etc are all programming languages share these basic codes .so, it

can be used to write an algorithm.

Example:

Design an algorithm to add two numbers and display the result.

Step 1 − START

Step 2 − declare three integers a, b & c

Step 3 − define values of a & b

Step 4 − add values of a & b

Step 5 − store output of step 4 to c

Step 6 − print c

Step 7 − STOP

1.4 Algorithm Analysis

The efficiency of an algorithm can be analyzed at two different stages,

before implementation, and after implementation. They are the following

Input

Output

terminate

4

General Concept Lecture One

1. Priori Analysis :(execution time) this is a theoretical analysis of an

algorithm. The efficiency of an algorithm is measured such as processor

speed, are constant and has no effect on the implementation.

2. Posterior Analysis :(running time) this is an empirical analysis of an

algorithm. The selected algorithm is implemented using a programming

language. This is then executed on the target computer machine. In this

analysis, actual statistics like running time and space required, are

collected.

1.5 Algorithm Complexity

Suppose X is an algorithm and n is the size of input data, the time and

space used by the algorithm X are the two main factors, which decide the

efficiency of X.

• Time Factor − Time is measured by counting the number of key

operations such as comparisons in the sorting algorithm.

• Space Factor − Space is measured by counting the maximum

memory space required by the algorithm.

The complexity of an algorithm f(n) gives the running time and/or the

storage space required by the algorithm in terms of n as the size of input

data.

Space Complexity1.5.1

Space complexity of an algorithm represents the amount of memory space

required by the algorithm in its life cycle. The space required by an

algorithm is equal to the sum of the following two components −

• A fixed part that is a space required to store certain data and

variables, that are independent of the size of the problem. For

example, simple variables and constants used, program size, etc.

5

General Concept Lecture One

• A variable part is a space required by variables, whose size depends

on the size of the problem. For example, dynamic memory

• allocation, recursion stack space, etc.

Space complexity S(x) of any algorithm x is S(x) = C + S(I), where C is

the fixed part and S(I) is the variable part of the algorithm, which depends

on instance characteristic I.

Following is a simple example that tries to explain the concept.

Algorithm: SUM(A, B)

Step 1 - START

Step 2 - C ← A + B + 10

Step 3 - Stop

S(x) = C + S(I) → s(x)=1+2→=3

1.5.2 Time complexity

Time complexity of an algorithm represents the amount of time required

by the algorithm to run to completion. Time requirements can be defined

as a numerical function T(n), where T(n) can be measured as the number

of steps, provided each step consumes constant time.

For example, addition of two n-bit integers takes n steps. Consequently,

the total computational time is T(n) = c ∗ n, where c is the time taken for

the addition of two bits. Here, we observe that T(n) grows linearly as the

input size increases.

the time required by an algorithm falls under three types :

• Best Case − Minimum time required for program execution.

• Average Case − Average time required for program execution.

• Worst Case − Maximum time required for program execution.

Variable

Fixed

6

General Concept Lecture One

Homework

Homework1: is the following steps is an algorithm ? justifying your

answer

Step 1: Start

Step 2: Declare variables a,b,c and d,

Step3:Declear x=1.

Step 4: Read variables a,b and c.

Step 5: If a > b

 If a > c

 a+c

 Else

 b=a

 Else

 If b > c

 Display b is the largest number.

 Else

 Display c is the greatest number.

Step 6: while x>0

 x=x+1

Step 6: Stop

**

7

General Concept Lecture One

Homework 2: the following an algorithm to find all roots of a

quadratic equation a(x)^2+bx+c=0.

compute the Space complexity of this algorithm

 Step 1: Start

Step 2: Declare variables a, b, c, D, x1, x2, rp and ip;

Step 3: Calculate discriminant

 D = b2-4ac

Step 4: If D =0

 r1 =(-b+D)/2a

 r2 = (-b-D)/2a

 Display r1 and r2 as roots.

 Else

 Calculate real part and imaginary part

 rp = b/2a

 ip =(-D)/2a

 Display rp+j(ip) and rp-j(ip) as roots

Step 5: Stop

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 المرحلة الثانية

 مادة الخورازميات

 م.م فرح معاذ جاسم

2

Double Linked List Part1 Lecture Ten

DOUBLE LINKED LIST (DLL)

• A double linked list is a two-way list in which all nodes will have two

links. This helps in accessing both successor node and predecessor node

from the given node position. It provides bi-directional traversing. Each

node contains three fields:

 Left link.

 Data.

 Right link.

• The left link points to the predecessor node and the right link points to

the successor node. The data field stores the required data.

• Many applications require searching forward and backward thru nodes

of a list. For example searching for a name in a telephone directory

would need forward and backward scanning thru a region of the whole

list.

• The basic operations in a double linked list are:

 Creation.

 Insertion.

 Deletion.

 Traversing.

3

Double Linked List Part1 Lecture Ten

A double linked list is shown in below figure:

• The following code gives the structure definition

struct node

{

 int Data;

 node *LL,*RL;

};

node *head=NULL;

INSERT NODE AT FIRST OF DOUBLE LINKED LIST:

void insertF(int n)

{

 node *X=new node;

 X->Data=n;

 X->LL=NULL;

 if (head==NULL)

 X->RL=NULL;

 else

 {X->RL=head;

 head->LL=X;

 }

 head=X;

}

4

Double Linked List Part1 Lecture Ten

INSERT NODE AT THE END OF DOUBLE LINKED LIST:

void insertEnd(int n)

{

 node *X=new node;

 X->Data=n;

 X->RL =NULL;

 node *q=head;

 while (q->RL!=NULL)

 q=q->RL;

 q->RL =X;

 X->LL =q;

}

5

Double Linked List Part1 Lecture Ten

DELETE THE FIRST NODE ON DLL

void deletF()

{

 if (head!=NULL)

 {

 head=head->RL;

 head->LL=NULL;

 }

 else

 head=NULL;

}

INSERT NODE AT THE MID OF DOUBLE LINKED

LIST:

void insertMid(int n, int y)

{

 node *X=new node;

 X->Data=n;

 node *q=head;

 while (q->Data!=y)

 q=q->RL;

 X->RL=q->RL;

 q->RL->LL=X;

 q->RL=X;

 X->LL=q;

}

6

Double Linked List Part1 Lecture Ten

DELETE THE END NODE ON DLL

void DeletEnd()

{

 node *q=head;

 while (q->RL->RL!=NULL)

 q=q->RL;

 q->RL=NULL;

}

7

Double Linked List Part1 Lecture Ten

DELETE ANY MID NODE ON DLL

void DeleteMid(int y)

{

node *q=head;

while(q->data!=y)

q=q->RL;

q->RL=q->RL->RL;

q->RL->RL->LL=q;

}

Homework:

1.create Double Linked List (DDL) with those nodes(Data, Adderess)

,(3,100),(5,200),(8,300),(45,400),(30,600) .

2.insert the node (20,600)to the end of DDL

3.Delete the first node

4.Delete node with 45=value

5.insert first (4,60),

Draw every step

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 المرحلة الثانية

 مادة الخورازميات

 م.م فرح معاذ جاسم

2

Tree Data Structure Lecture three

Introduction: 1.

. Tree2

A tree is a data structure that has hierarchal relationships between its

individual data items.

Figure (1)

Important notes:

- The higher node A of the tree in figure(1) is the root.

-The nodes B, C and D which are directly connected to the root node are

the children of the root.

- The link between a parent and its child is called branch.

- The root of the tree is the ancestor of all nodes in the tree.

Data Structure

Liner represention

array

stack

linked klist

queue

hierarchical
representation Tree

Link

Root

Parent

Children

3

Tree Data Structure Lecture three

 - Each node may be the parent of any number of nodes in the tree.

- The root of the tree (2) has level 0, and the level of any other node in the

tree is one more than the level of its father.

 - The depth of the tree is the maximum level of any leaf in the tree.

Figure (2)

-all nodes in the last level of a tree is called a leaf node (H, I, J, K).

- A tree is a recursive data structure because every node in a tree may have

children so that consider a subset tree of the primary tree.

- The children of a given parent is the set of sub trees. The node in the tree of

figure(2) A=[B,C,D,E,F,G,H,I,J,K] ,B=[D,E,F,H,I,J], C=[G,K], E=[H],F=[I,J],

G=[K]. where B,C,E,F,G are sub tree of A

Example: represented array A=[1,2,3,4,5,6,7,8,9,10,11] in a tree .

4

Tree Data Structure Lecture three

 Examples tree in real life:

• Family tree • Table of contents of a book • Class inheritance hierarchy

• Computer file system (folders and subfolders)

3. Binary Tree

A binary tree is the tree that is characterized by the fact that any node can

have at most two branches. (i.e) there is no node with degree greater than

two). A binary may be empty or consist of a root and two disjoint binary

tree called the left subtree and the right subtree.

In the binary tree the largest number of nodes for the (L) level is 𝟐𝑳 − 𝟏

Example :tree have 3 level what are the largest number of nodes?

Node num= 23 − 1 = 7

4.Full , Complete , Perfect Binary Trees

 • If every node has either 0 or 2 children, a binary tree is called full.

• If the lowest d-1 levels of a binary tree of height d are filled and level d

is partially filled from left to right, the tree is called complete.

• If all d levels of a height-d binary tree are filled, the tree is called perfect.

A

B

A A

C B

A

C

D

B

A

C

D

F

E

5

Tree Data Structure Lecture three

 5. Linear Representation

The linear representation method of a binary Search tree uses a one –

dimensional array of size (2𝑑+1-1) where s is the depth of the tree. In the

following tree, d =3 and this tree require an array of size (23+1-1) = 15 to

be represented.

Once the size of the array has been determine, the following method

is used is represent the tree:

1- Store the root in the 1st location of the array.

2- If a node is in the1st location of the array, Store its left child at location

(2n), and its right child at location (2n+1).

The main advantages of this method are:

- Its simplicity and the fact that given a child node, its parent node can be

determined immediately .If a child node is at location N in the array, then

its parent node can be determined immediately. If a child is at location N

in the array, then its parent node is at location N / 2.

The disadvantages of this method:

- Insertion and deletion of a node causes Considerable data monument up

and down the array, using an excessive amount of processing time,

because insertions and deletions are the major data processing activities.

- Wasted memory location.

6

Tree Data Structure Lecture three

6. Linked Representation of a Binary Tree

Because each node in a binary tree may have 2 children, a node in a linked

representation has 2pointer fields, one for each child, and one or more data

fields containing specific information about the node itself. When anode

has no children the corresponding pointer fields are NULL. As in a linear

linked list, the first node in the tree is pointed to by an external pointer.

Tree in c++ by using Linked list

Struct Node{

 Int data;

Node* left;

Node * right; };

Example:

7

Tree Data Structure Lecture three

 Homework

1. what are the disadvantages of represent a binary Search tree by using

linear representation method (one -dimensional array)?

2. The following tree is not a perfect binary tree .why? convert it to

perfect tree?

3. Is this tree a full binary tree.?? Justify your answer.

4.we have an array [10, 2,5,8,4] convert this value to a binary tree.

1

Tree Data Structure Lecture Four

1. Binary Search Trees

It is the binary tree in which the value of the element of the left branch

(child) of any node is less than the value of the element of that node as

the father (father) and the value of the element of the right branch (child)

is greater than the value of the element of the node (father).

2. Operations on Binary Search Trees

- Insert: add a new node to a binary search tree.

- Print: Binary tree traversal prints all elements in the binary search tree.

- Search: search for a node at the binary search tree.

- Delete: delete a node from the binary search tree.

1.Insert function

Node* insert (Node* root, int data)

{

 if (root==NULL)

 {

 root=get_newnode(data);

 }

 else if (data<= root->data)

 {

 root->left=insert(root->left,data);

 }

else

{

 root->right=insert(root->right,data);

}

 return root;

}

Node* get_newnode(int data)

{

 Node* newnode= new Node();

 newnode->data=data;

 newnode->left=NULL;

 newnode->right=NULL;

 return newnode;

}

2

Tree Data Structure Lecture Four

Example : show the Binary Tree search for the following :

1. insert(root,10)

2. insert(root,3)

3. insert(root,11)

4. insert(root,7)

5. insert(root,5)

6. insert(root, 0)

3

Tree Data Structure Lecture Four

7. insert (root,15)

8.insert (root,17)

4

Tree Data Structure Lecture Four

Example2: show the Binary Tree search for the following :2,5,6,10,23,4

2.Binary Tree Traversal

To print the information of nodes within a tree we need to visit each of

these nodes and then print its information. There are three different

method to visit the tree nodes, each of them prints nodes information in

different order.

5

Tree Data Structure Lecture Four

A- In order print function (left – root – right)

These method means traverse and print from the smallest to the

largest values. We first need to print the roots left subtree, then we print

the value I the root node finally print the value in the root's right subtree.

Inorder print = 0 3 5 7 10 11 15 17

void inorder(Node* p)

{

 if (p!= NULL)

 {

inorder(p->left);

cout<< p->data<<"=>";

inorder(p->right);

 }

}

B-Preorder print function (Root - left - right)

Preorder method traverse end print each node information before its left

and right subtrees. Therefore, the information of the tree in the previous

example are print as follows: preorder print=10 3 0 7 5 11 15 17

void preorder(Node* p)

{

if (p!= NULL)

{

cout <<p->data<<"=>";

preorder(p->left);

preorder(p->right);

}

}

6

Tree Data Structure Lecture Four

C.Postorder print function (left – right – root)

Postorder method traverse and

 print each node information after its left and right subtree. The

information of the same example of the previous two methods are print

as follows: Postorder = 0 5 7 3 17 15 11 10

void postorder (Node* p)

{

if (p!= NULL)

{

postorder (p->left);

postorder (p->right);

cout <<p->data<<"=>";

}

Homework1

.Which of the following is false about a binary search tree?

a) The left child is always lesser than its parent

b) The right child is always greater than its parent

c) The left and right sub-trees should also be binary search trees

d) In order sequence gives decreasing order of elements

2. How to search for a key in a binary search tree?

3 . What does the following piece of code do?

7

Tree Data Structure Lecture Four

void ?????(Node* p)

{

if (p!= NULL)

{

cout <<p->data;">="<<

(?????p->left;)

(?????p->right;)

}

}

a)Preorder traversal

b) Inorder traversal

c) Postorder traversal

d) Level order traversal

4. Construct a binary search tree with the below information.

The key of a binary search tree are 15,4,11,0,3,2,8,18.

5 . Construct a binary search tree with the below information.

The preorder traversal of a binary search tree 10, 4, 3, 5, 11, 12.

 الانتباه على صيغة السؤال جيدا

6. The number of edges from the root to the node is called __________ of the tree.

a) Height

b) Depth

c) Length

d) Width

7. The number of edges from the node to the deepest leaf is called _________ of the tree.

a) Height

b) Depth

c) Length

d) Width

8

Tree Data Structure Lecture Four

8 . What is a full binary tree?

a) Each node has exactly zero or two children

b) Each node has exactly two children

c) All the leaves are at the same level

d) Each node has exactly one or two children

9. What does the following piece of code do?

void ???(Node* p)

{

 if (p!= NULL)

 {

(???p->left;)

cout<< p->data;">="<<

(???p->right;)

 }

}

a)Preorder traversal

b) Inorder traversal

c) Postorder traversal

d) Level order traversal

11 . What is a complete binary tree?

a) Each node has exactly zero or two children

b) A binary tree, which is completely filled, with the possible exception of the bottom level,

which is filled from right to left

c) A binary tree, which is completely filled, with the possible exception of the bottom level,

which is filled from left to right

d) A tree In which all nodes have degree 2

Construct a binary tree by using postorder and inorder sequences given below.

9

Tree Data Structure Lecture Four

11 . Construct a binary search tree with the below information.

The key of a binary search tree are p,x,a,r,f,z,i

1

Tree Structure Lecture Five

Delete Node from Binary tree search
Delete function is used to delete the specified node from a binary search tree.

However, we must delete a node from a binary search tree in such a way, that the

property of binary search tree doesn't violate. There are three situations of deleting

a node from binary search tree:

1: The node to be deleted is a leaf node

It is the simplest case, in this case, replace the leaf node with the NULL and simple

free the allocated space. In the following image, we are deleting the node 85, since

the node is a leaf node, therefore the node will be replaced with NULL and allocated

space will be freed.

2

Tree Structure Lecture Five

2: The node to be deleted has only one child:

In this case, replace the node with its child and delete the child node, which now

contains the value which is to be deleted. Simply replace it with the NULL and free

the allocated space.

 In the following image, the node 12 is to be deleted. It has only one child. The

node will be replaced with its child node and the replaced node 12 (which is now

leaf node) will simply be deleted.

3

Tree Structure Lecture Five

3:The node to be deleted has two children.:

It is a bit complexed case compare to other two cases. However, the node which is

to be deleted, is replaced with its in-order successor or predecessor recursively until

the node value (to be deleted) is placed on the leaf of the tree. After the procedure,

replace the node with NULL and free the allocated space.

In the following image, the node 50 is to be deleted which is the root node of the

tree. The in-order traversal of the tree given below.6, 25, 30, 50, 52, 60, 70, 75.

replace 50 with its in-order successor 52. Now, 50 will be moved to the leaf of the

tree, which will simply be deleted.

4

Tree Structure Lecture Five

Node* Delete(struct Node *root, int data(

{

 If (root == NULL) return root ;

 else if(data < root->data) root->left = Delete(root->left,data ;(

 else if (data > root->data) root->right = Delete(root->right,data);

 // ... I found you, Get ready to be deleted

 else {

 // Case 1: No child

 If (root->left == NULL && root->right == NULL (

 {

 delete root;

 root = NULL;

 }

 // Case 2: One child

 else if(root->left == NULL (

 {

 struct Node *temp = root;

 root = root->right;

 delete temp;

 }

 else if(root->right == NULL)

 {

 struct Node *temp = root;

 root = root->left;

 delete temp;

 }

 // case 3: 2 children

 else

 {

 struct Node *temp = FindMin(root->right);

 root->data = temp->data;

 root->right = Delete(root->right,temp->data);

 }

 }

 return root;

}

5

Tree Structure Lecture Five

Node* FindMin(Node* root)

{

 ;while(root->left != NULL)

root = root->left

 ;return root

}

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 المرحلة الثانية

 مادة الخورازميات

 م.م فرح معاذ جاسم

2

Sorting Algorithm part 1 Lecture Six

.1 Sorting Algorithm6

Sorting refers to arranging data in a particular format. Sorting algorithm

specifies the way to arrange data in a particular order.

Other Definition: Sorting is the process of arranging a set of graphical

elements according to the value of a field (or fields) called a key

(ascending) or descending.

6.2 Sorting Applications and Purposes
• Uniqueness testing

• Deleting duplicates: solve the problem of similarity restrictions.

• Prioritizing events :To simplify the processing of files

• Frequency counting

• Reconstructing the original order

• Set intersection/union

• Finding a target pair x, y such that x+y = z

• Efficient searching: To increase the efficiency of the search

algorithm for an item.

5.3 Steps in the sorting process

The steps of the sorting algorithm are summarized in the following stages:

1- Reading the key field. Which mean the input data that will sort it.

2- Inference (deduction) the location of the element in the new

arrangement.

3- Move the sorted element to its new location.

6.4 Types of sorting algorithms

There are two types of internal sort (in the main memory) ,and external

sort (the secondary storage).see the figure below:

3

Sorting Algorithm part 1 Lecture Six

6.5 key determinants of the sorting algorithm selection

The testing of any of the ranking algorithms should be in light of a number

of factors, the most important of which are:

1 - The volume of data stored.

2. Storage type (main memory, disk, and tape).

3. Degree of data order (unordered, semi-ordered)

6.6 Selection sort

The algorithm for this arrangement is summarized by the following steps:

1- Find the smallest item in the list and replace it from its location with

the item in the first location in the list.

2- Find the smallest element in the remaining part of the list and replace it

from its location with the element in the second location in the list.

3- We continue in this process until we reach the end of the list.

Example: sort the following list in ascending order (30 39 22 19 34)

So
rt
in
g
al
go
ri
th
m
s

Internal

Selection Sort

Insertion Sort

Bubble Sort
(exchange)

Radix Sort

Quick Sort

Heap Sort

Shell Sort
Extenal

Two-way-Merge
Sort

K-way-Merge Sort

4

Sorting Algorithm part 1 Lecture Six

5

Sorting Algorithm part 1 Lecture Six

Example: sort the following list in ascending order (8 3 9 7 2 6 4).

 6 5 4 3 2 1 القائمة الأصلية

 2 2 2 2 2 2 8

 3 3 3 3 3 3 3

 4 4 4 4 9 9 9

 6 6 6 7 7 7 7

 7 7 8 8 8 8 2

 8 8 7 6 6 6 6

 9 9 9 9 4 4 4

Example: sort the following list in ascending order (22 3 16 7 0 5 9).

 6 5 4 3 2 1 القائمة الأصلية

 0 0 0 0 0 0 22

 3 3 3 3 3 3 3

 5 5 5 5 16 16 16

 7 7 7 7 7 7 7

 9 9 22 22 22 22 0

 16 16 16 16 5 5 5

 22 22 9 9 9 9 9

6

Sorting Algorithm part 1 Lecture Six

Example: sort the following list in ascending order (re, xy, zn, or, py, cz,

ab)

 6 5 4 3 2 1 القائمة الأصلية

 ab ab ab ab ab ab re

 cz cz cz cz cz xy xy

 or or or or zn zn zn

 py py py zn or or or

 re re zn py py py py

 xy xy xy xy xy cz cz

 zn zn re re re re ab

Selection sort function in c++

void slctsort(int ar[n],int n)

{

 int i,k,j,item,x,y;

 for(i=0;i<n-1;i++)

 {

 k=i;

 item=ar[i];

 for(j=i+1;j<n;j++)

 {

 if(ar[j]<item)

 {

 x=ar[j];

 ar[j]=item;

 item=x;

 }

 }

 y=item;

 item=ar[k];

 ar[k]=y;

 }

}

 هنا الدالة تأخذ متغيرين مصفوفة وعدد عناصرها

 1على كل العناصر من العنصر الاول الى الاخير ممكن نبدأ من بحثلكي ي loopهذا ال

 nلل

 K متغير اخزن بي القيمة الي وصلت بيها اقارن يعني رقم الpass الي اذا وجدت رقم

 اصغر ابدل بمكانه واذا لا يبقى بدون تغير

 loopهذا ال

Item العنصر الي اقارن بي يعني رقم =

 passال

اذا وجد رقم اصغر ممنه يعمل تبديل واذا لا

 noبدون تغير يعني خطوة ال ar[k]يبقى

change

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 المرحلة الثانية

 مادة الخورازميات

 م.م فرح معاذ جاسم

2

Sorting Algorithm part 2 Lecture six

6.1 Inserting Sort

Inserting Sort is one of the internal type sort. It is used when the data is

semi-ordered .The steps of this algorithm are summarized as follows:

1- We start with the second element i = 2 in the original list and compare

it with the first element i = 1 and put them in order and be ascending to

the top of the list.

2- We take the third element i = 3 in the original list and compare it with

the introduction to the list that contains the first and second element and

put it in its correct location with them.

3- We take the fourth element i = 4 in the original list and compare it with

the introduction to the list that contains the three elements and put it in its

correct position between them.

4- We continue in this process until the last component and we will get

the list in order.

3

Sorting Algorithm part 2 Lecture six

Example1: sort the following list items in ascending order (8 3 9 7 2 6 4)

Pass0 8 3 9 7 2 6 4 القائمة الاصلية

Pass1 3 8 9 7 2 6 4 نفحص الموقع الاول مع الثاني من هو الاصغر ونبدل المكان ونزحف الباقي

Pass2 3 8 9 7 2 6 4 عندما وصل العداد لل 9 فهي اكبر من 3 و8 فبقيت في مكانها

Pass3 3 7 8 9 2 6 4 وصل العداد لل 2 فقام بفحصها من البداية وجدها اصغير من 3 فوضع ال2 مكان ال3 وزحف

 الباقي

Pass4 2 3 7 8 9 6 4 وصل العداد لل 6 فقارنها مع 2و3و7 ووضعها قبل ال7 وزحف الباقي

Pass5 2 3 6 7 8 9 4 6وصل العداد لل 4 فقارنها مع 2 و3و6 فوجد مكانه الصحيح قبل ال 6 توضع ال4 قبل ال

 وتزحف الباقي

Pass6 2 3 4 6 7 8 9

Example2- sort (77, 33, 44, 11, 88, 22, 66, 55)

Pass0 77 33 44 11 88 22 66 55

Pass1 33 77 44 11 88 22 66 55

Pass2 33 44 77 11 88 22 66 55

Pass3 11 33 44 77 88 22 66 55

Pass4 11 33 44 77 88 22 66 55

Pass5 11 22 33 44 77 88 66 55

Pass6 11 22 33 44 66 77 88 55

Pass7 11 22 33 44 55 66 77 88

4

Sorting Algorithm part 2 Lecture six

Example3- sort in descending order (0 4, 8, 11, 100, 22, 15, 55,2)

Pass0 0 4 8 11 100 22 15 55 2

Pass1 4 0 8 11 100 22 15 55 2

Pass2 8 4 0 11 100 22 15 55 2

Pass3 11 8 4 0 100 22 15 55 2

Pass4 100 11 8 4 0 22 15 55 2

Pass5 100 22 11 8 4 0 15 55 2

Pass6 100 22 15 11 8 4 0 55 2

Pass7 100 55 22 15 11 8 4 0 2

Pass8 100 55 22 15 11 8 4 2 0

Example 4: sort the following items(xray,rab, for,if ,car)

Pass0 xray rab for if car

Pass1 rab xray for if car

Pass2 for rab xray if car

Pass3 for if rab xray car

Pass4 for car if rab xray

6.2 Advantages for Insertion sort

1. Implementation of insertion sort is very easy as compared to sorting

algorithms like quick sort, merge sort or heap sort.

2. Very efficient in the case of a small number of elements.

3. If the elements are already in sorted order it won’t spend much time in

useless operations and will deliver a run time of O(n).

4. It is a stable sorting technique, that is, the order of keys is maintained.

5

Sorting Algorithm part 2 Lecture six

5. It requires constant “additional” memory, no matter the number of

elements.

6. It can sort the elements as soon as it receives them.

6.3 Disadvantage

1. It is less efficient on list containing more number of elements.

2. As the number of elements increases the performance of the program

would be slow.

3. Insertion sort needs a large number of element shifts.

Inserting Sort function in c++

const size=20;

int line[size],int i,m;

void insertionsort (int data[size],int n)

{

 int i,j,item;

 i=1; عدد المراحل pass

while(i<n)

 {

 j=i;

 while((j>=1) && (data[j]<data[j-1]))

 {

 item= data[j];

 data[j]=data[j-1];

 data[j-1]=item;

 j--;

 }

 i++;

 }

 }

6

Sorting Algorithm part 2 Lecture six

1

Sorting Algorithm part3 Lecture seven

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 المرحلة الثانية

 مادة الخورازميات

 م.م فرح معاذ جاسم

2

Sorting Algorithm part3 Lecture seven

6.1 Bubble Sort

The bubble sort used when the data items is not huge and semi-ordered.

The idea of this method involves testing the smallest values and placing

them in the list (that is, the small value floats to the surface.)

1. In the first stage (first pass) :We compare the two elements in the

two locations (n-1), (n) and we exchange their location to be the

smallest before the other, and we continue to the top of the list until

we reach the comparison of the element in the second location with

the element in the first site.

2. In the second pass: We compare in the same way as the previous

one, but from the element in the location (n) to the element in the

second site because the first site was chosen where the least

valuable element in the previous step

3. Mention the above steps for (n-1) stages.

Example: sort the list by 8, 3, 9, 7, 2 ascending:

The input The first

 Pass i=1

The second

 Pass i=2

The third

Pass i=3

The fourth

Pass

n 4 3 2 1 3 2 1 2 1 1

8 2 8 8 8 2 2 2 2 2 2

3 8 2 3 3 3 8 8 3 3 3

9 3 3 2 9 8 3 3 7 8 7

7 (n-1) 9 9 9 2 7 7 7 8 7 8

2 (n) 7 7 7 7 9 9 9 9 9 9

3

Sorting Algorithm part3 Lecture seven

Example: sort the list by 13,20,5,4,3,0 ascending using bubble sort

algorithm:

The

 input

The first

 pass

The second

 pass

The third

pass

The fourth

pass

The fifth

Pass

 Is the Out put

j 1 2 3 4 5 1 2 3 4 1 2 3 1 2 1

13 13 13 13 13 0 0 0 0 0 0 0 0 0 0 0

20 20 20 20 0 13 13 13 13 3 3 3 3 3 3 3

5 5 5 0 20 20 20 20 3 13 13 13 4 4 4 4

4 4 0 5 5 5 5 3 20 20 20 4 13 13 5 5

3 0 4 4 4 4 3 5 5 5 4 20 20 5 13 13

0 3 3 3 3 3 4 4 4 4 5 5 5 20 20 20

Example: sort the list by 70, 101, 13, 0, 2 ascending:

The input The first

 Pass i=1

The second

 Pass i=2

The third

Pass i=3

The fourth

Pass i=4

The our put

n 1 2 3 4 1 2 3 1 2 1

70 70 70 70 0 0 0 0 0 0 0

101 101 101 0 70 70 70 2 2 2 2

13 13 0 101 101 101 2 70 70 13 13

0 0 13 13 13 2 101 101 13 70 70

2 2 2 2 2 13 13 13 101 101 101

في هذه المرحلة يبدأ من

 5و 6الموقع

ولكن في كل عامود

مقارنة بالعدد حصلت

الاصغر ويبدل المواقع

 1الى ان يصل الى الموقع

 ويضع به الرقم الاصغر

هنا تحدث المقارنة من

الاسفل الى الموقع

الثاني وليس الاول لان

الاول اصبح فيه

اصغر قيمة , لهذا

ح ان الاممد قت نلا

 1ب

هنا ايضا نبدأ

من الاسفل

الى ان نصل

لتعنصر

لان الثالث

العنصر

الثاني صار

فيه اصغر

منصر بعد

 الاول

هنا نقارن

من الاسفل

لغاية

العنصر

الرابع

ويتوقف

من

 المقارنة

نلاح العامود الاول تكرر لان حصت

ممتية مقارنة ولكن اصلا العدد اصغر من

 الي قبته فيكتب العامود بدون تغيير

4

Sorting Algorithm part3 Lecture seven

Bubble Sort function in c++

void bubblesort(int ar[20],int n)

{

 int i,j;

 int item;

 for(i=0;i<n;i++)

 {

 for(j=n-1;j>i;--j)

 {

 if(ar[j]<ar[j-1])

 {

 item=ar[j];

 ar[j]=ar[j-1];

 ar[j-1]=item;

 }

 }

 }

}

6.2 balanced two –way merge

This method is one of the types of external sorting algorithm, and the

algorithm is summarized in the following steps:

1- Divide the original list (data) into two roughly equal lists, let it be a, b

2- We compare the first element of list with its counterpart the first

element of list b and put them in order in list c.

3- We compare the second element of list a with its counterpart the second

element of list b and put them in order in list d

4- We repeat steps 2.3 and we get string of length 2 in each of the two lists

c,d .

5- In the same way we combine the elements of lists c and d and put them

in lists a,b and we will have their elements of length 4.

التبديل ويعبر متى هنا ممتية المقارنة من الاسفل اذا اصغر يبدل واذا لا لايدخل ممتية

 العنصر الذي بعده

 iويتوقف الى ان يصل لل J=n-1يبدا من الاسفل لان jحيث العداد

بالتناقص iويبدأ nوهو المتغير مدد مناصره يساويمدد مراحته loopهذا الجزء من ال

 passالي يمثل مدد ال

5

Sorting Algorithm part3 Lecture seven

6- We repeat the method by merging the elements of lists a,b and putting

them in lists c,d and their elements will be 8 .

7- We will continue in this manner until the final ranked list is obtained.

Example: sort in ascending order this list that used balanced two –

way merge algorithm ((18, 23, 02, 50, 42, 63, 20, 28, 33, 47, 3))

بعد التقسيم نأخذ كل عامود ونقارن

 c,Dالقيمين ونضع الجديدة في

بعد التقسيم نأخذ كل عامود ونقارن

 A,Bالقيمين ونضع الجديدة في

6

Sorting Algorithm part3 Lecture seven

A: 2, 3, 18, 20, 23, 28, 33, 42, 50 , 47, 63

1

Search Algorithms Lecture Six

6.1 Search Algorithms

Before consider specific search techniques, let define some terms. A

table or a file is group of elements, each of which is called a record.

Associated with each record is a key, which is used to differential among

different records.

For every file there is at least one set of keys (possible more) that is

unique (that is, no two records have the same key). Such a key is called

primary key. For example, if the file is stored as an array, the index

within the array of an element is a unique external key for that element.

A searching algorithm is an algorithm that accepts an argument and tries

to find a record whose key is a. The algorithm may return entire record

or, more commonly; it may return a pointer to that record. It is possible

that the search for a particular argument in a table is unsuccessful; that

is, there is no record I the table with that argument as its key.

6.2Types of Search Algorithm:

1. Sequential search

2- Binary search

3- Binary tree search

6.3 Sequential search

It is the process of searching for a specific item in a list of items

through (reviewing) all the list items from its beginning and in sequence

until the required element is reached in its presence or reaching the end

of the list when it is not present, so the average number of comparisons

will be (n / 2) meaning that the time of implementation This algorithm

will be O (n).

2

Search Algorithms Lecture Six

Every item is checked and if a match is found then that particular item

is returned, otherwise the search continues till the end of the data

collection.

Linear Search (Array A, Value x)

Step 1: Set i to 1

Step 2: if i > n then go to step 7

Step 3: if A[i] = x then go to step 6

Step 4: Set i to i + 1

Step 5: Go to Step 2

Step 6: Print Element x Found at index i and go to step 8

Step 7: Print element not found

Step 8: Exit

3

Search Algorithms Lecture Six

6.4 Binary search

Binary search is a fast search algorithm with run-time complexity of

Ο(log n). This search algorithm works on the principle of divide and

conquer. For this algorithm to work properly, the data collection should

be in the sorted form.

Binary search looks for a particular item by comparing the middle most

item of the collection. If a match occurs, then the index of item is

returned. If the middle item is greater than the item, then the item is

searched in the sub-array to the left of the middle item. Otherwise, the

item is searched for in the sub-array to the right of the middle item. This

process continues on the sub-array as well until the size of the subarray

reduces to zero.

The algorithm of this research assumes searching for a specific item in a

sorted list according to a specific sequence and can be summarized in

the following steps:

1- Locate the item, which is located approximately in the middle of the

list.

2- Compare the item you want to search for x with the victory in the

middle of the list.

3- If the required element x is equal to the element in the mean, the

search process will end here.

4- If the required element x is less than the value of the element that is

located in the middle, then the search will be limited to the part that

includes the smaller values, and let the part be in the left section.

4

Search Algorithms Lecture Six

5- If the required element x is greater than the value of the element that

is in the middle, then the search will be limited to the part that includes

the largest values, and let the part that falls into the right section be.

6- In either case (5,4), that part is treated in the same way, i.e. choosing

the midpoint and comparison until the required element is reached.

 In this algorithm, each comparison will reduce the number of

subsequent comparisons by half, and therefore the largest number of

comparisons will reach (log2n) when searching in the list of the number

of its components n, noting that the elements must be stored in an array

because they will be in successive locations.

6.5 How Binary Search Works?

For a binary search to work, it is mandatory for the target array to be

sorted. The following is our sorted array and let us assume that we need

to search the location of value 31 using binary search.

First, we shall determine half of the array by using this formula −

mid = low + (high - low) / 2

Here it is, 0 + (9 - 0) / 2 = 4 (integer value of 4.5). So, 4 is the mid of

the array.

5

Search Algorithms Lecture Six

Now we compare the value stored at location 4, with the value being

searched, i.e. 31. We find that the value at location 4 is 27, which is not

a match. As the value is greater than 27 and we have a sorted array, so

we also know that the target value must be in the upper portion of the

array.

We change our low to mid + 1 and find the new mid value again.

low = mid + 1

mid = low + (high - low) / 2

Our new mid is 7 now. We compare the value stored at location 7 with

our target value 31.

The value stored at location 7 is not a match, rather it is more than what

we are looking for. So, the value must be in the lower part from this

location.

Hence, we calculate the mid again. This time it is 5.

6

Search Algorithms Lecture Six

We compare the value stored at location 5 with our target value. We

find that it is a match.

We conclude that the target value 31 is stored at location 5.

Binary search halves the searchable items and thus reduces the count of

comparisons to be made to very less numbers.

const n=20;

int a[n];

void binsearch(int a[n],int x,int n,int j)

{

 int upper,lower,mid;

 int found;

 lower=1;

 upper=n-1;

 found=0;

 while((lower<=upper)&&(!found))

 {

 mid=(lower+upper)/2;

 switch (compare(x,a[mid]))

 {

 case'>':lower=mid+1;break;

 case'<':upper=mid-1;break;

 case'=':

 {

 j=mid;

 found=1;

 }

 break;

 }

 }

}

7

Search Algorithms Lecture Six

char compare(int x,int y)

{

 if(x>y)

 return('>');

 else

 {

 if(x<y)

 return('<');

 else return('=');

 }

}

Search In Binary Search Tree

Search operations in binary search trees will be very similar to that. Let’s

say we want to search for the number X.

 We start at the root, and then we compare the value to be searched

with the value of the root,

 If it’s equal we are done with the search if it’s smaller we

know that we need to go to the left subtree because in a

binary search tree all the elements in the left subtree are

smaller and all the elements in the right subtree are larger.

 Searching an element in the binary search tree is basically

this traversal, at each step we go either left or right and at

each step we discard one of the sub-trees.

bool search (Node* root,int data)

{

if (root==NULL) return false;

else if (root->data== data) return true ;

else if (data<= root->data) return (search(root->left,data));

else return search(root->right,data);

}

