
 نموذج وصف المقرر

 وصف المقرر

 كُىنىعُب انًؼهىيبدكهُخ ػهىو انحبضىة ور / َجب عبيؼخ الا انًؤضطخ انزؼهًُُخ .1

 َظى انًؼهىيبدلطى انمطى انغبيؼٍ / انًركس .2

 42314 / 2 ثريغخ كُبَُخ انًمر اضى / يس .3

 انجرايظ انزٍ َذخم فُهب .4

 دواو ضًٍ أشكبل انحضى انًزبحخ .5

 - 2023انفصم انضبٍَ انفصم / انطُخ .6

 75)انكهٍ(ػذد انطبػبد انذ اضُخ .7

 رب َخ إػذاد هذا انىصف .8

 : أهذاف انًمر -9
 .وكيفية التعامل معها البرمجة الكيانية والاصناف والكائنات اكتساب الطالب لمفهوم - أ

 .الاصناف وما هي الدوال والخصائص الخاصة بيها والكائنات لكل صنف توضيح مفهوم - ب

 .الكائنات والاصناف وتوزيع الخصائص والدوال رة في التعامل مع إعطاء الطالب خب -ج

 مراجعة أداء مؤسسات التعليم العالي))مراجعة البرنامج الأكاديمي((

دراسة البرمجة المهيكلة والبرمجة الكيانية وما يعرف بالبرمجة الشيئية ومعرفة الايعازات والدوال لتهيئة

ات وكيفية بناء الاصناف والكائنات الطالب لمعرفة كيفية كتابة مجموعة من الاوامرومعرفة ما هي الايعاز

وما يحمله الصنف من خواص ودوال وكيفية بناء عدة اصناف وعدة كائنات وكيف يتم وراثة الخصائص

 بينهم .

 يخرعبد انزؼهى وطرائك انزؼهُى وانزؼهى وانزمُُى .9

 انًؼرفخ وانفهى -أ
وانزؼبيم الاَؼبزاد انجريغُخ وانذوال انخبصخ ثبنجريغخ انكُبَُخ نمذ ح وانًهب ح فٍ رًُُس ا اكزطبة -

 يؼهب.

 وانرثظ ثُُهًب. انكبئُبد والاصُبف وانذوالح انزًُُس ثٍُ اكزطبة يهب -

 .نصفبد وانخصبئص انخبصخ ثكم صُف وثريغخ انذوالزؼبيم يغ اان -

 ع انًهب اد انخبصخ ثبنًىضى -ة

 انزذ َت انصُفٍ–

 ثحىس رخرط –

 رمب َر ػهًُخ –

 طرائك انزؼهُى وانزؼهى

 . الاخزجب اد انُىيُخ انًفبعئخ والاضجىػُخ انًطزًرح -

 انزذ َجبد والأَشطخ فٍ لبػخ انذ ش . -

 .ىالغ الانكزروَُخ نلإفبدح يُهبإ شبد انطلاة إنً ثؼض انً -

 انزمُُى طرائك

 انًشب كخ فٍ لبػخ انذ ش. -

 رمذَى الأَشطخ -

 وأَشطخ . ئُخوَهب اخزجب اد فصهُخ -

 يهب اد انزفكُر -ط

 . انًمر انًىػذ فٍ ورطهًُهب انىاعجبد أداء ػهً نهؼًم انطبنت لذ ح رطىَر -

 .انًزىلؼخ واَغبد انحهىل نهب ػهً اضبش انُزبئظ ثريغٍ رحهُم انًشكهخ ثشكم -

 وانًُبلشخ. انحىا ػهً انطبنت لذ ح رطىَر -

 طرائك انزؼهُى وانزؼهى

 رطجُمٍ يررجظ ثىالغ انحُبح انُىيُخ نغذة انطبنت انً يىضىع انذ ش دوٌ َحى ػهً انًحبضرح إدا ح

 .الاثزؼبد ػٍ صهت انًىضىع نزكىٌ انًبدح يرَه لبثهه نهفهى وانزحهُم
 انغًبػُخ وانىاعجبد الأَشطخ ثجؼض طبنتان ركهُف.

 هىاعجبد انُىيُخ والاخزجب اد .ن انذ عخ يٍ َطجخ رخصُص

 طرائك انزمُُى

 انًطؤونُخ ورحًهه انطبنت انزساو دنُم انذ ش لبػخ فٍ انفبػهخ انًشب كخ.

 وانجحىس. انىاعجبد رمذَى فٍ انًحذد ثبنًىػذ الانزساو
 وانًهب ٌ انًؼرفٍ وانزحصُم الانزساو ػٍ وانُهبئُخ انفصهُخ الاخزجب اد رؼجر.

 انًهب اد انؼبيخ وانًُمىنخ) انًهب اد الأخري انًزؼهمخ ثمبثهُخ انزىظُف وانزطى انشخصٍ (. -د

 انزمُُخ. وضبئم يغ انزؼبيم ػهً انطبنت لذ ح رًُُخ -

 الإَزرَذ. يغ انزؼبيم ػهً انطبنت لذ ح رًُُخ -

 انًزؼذدح. انىضبئم يغ انزؼبيم ػهً انطبنت حلذ رًُُخ -

 .وانًُبلشخ انحىا ػهً انطبنت لذ ح رطىَر -

 ثُُخ انًمر .14

 انطبػبد الأضجىع
يخرعبد انزؼهى

 انًطهىثخ
اضى انىحذح / انًطبق

 أو انًىضىع
 طرَمخ انزمُُى طرَمخ انزؼهُى

 Introduction to انفصم الاول 5 الاول

Operator Overloading
 َظرٌ+ػًهٍ

اضئهخ ػبيخ

 ويُبلشخ

 5 انضبٍَ
والاصناف الدوال

 والكائنات

Operator Overloading

Using Member

Functions

اضئهخ ػبيخ َظرٌ+ػًهٍ

ويُبلشخ او

 ايزحبٌ اٍَ

 انضبنش
 Unary Operators الاصناف والعمليات 5

Overloading

أضئهخ ػبيخ َظرٌ+ػًهٍ

 ويُبلشخ

 انراثغ
5

 Operator Overloading انًىاضُغ انطبثمخ

Tips and Restrictions

 انىاعجبد َظرٌ+ػًهٍ

 +انغًبػُخ

 يُبلشخ

 Nonmember Operator انًىاضُغ انطبثمخ 5 انخبيص

Functions
 ايزحبٌ اٍَ َظرٌ+ػًهٍ

 انطبدش
 Using a Friend to انًىاضُغ انطبثمخ 5

Overload a Unary

Operator

أضئهخ ػبيخ ٍ َظرٌ+ػًه

ويُبلشخ او

 ايزحبٌ اٍَ

 انطبثغ
 Overloading the انًىاضُغ انطبثمخ 5

Relational and Logical

Operators

اضئهخ ػبيخ و َظرٌ+ػًهٍ

 يُبلشخ

 انضبيٍ
5

 انذوال والاصُبف

 وانكبئُبد
Introducing

Inheritance

 انىاعجبد َظرٌ+ػًهٍ

 +انغًبػُخ

 يُبلشخ

 Base Class Access خانى اص 5 انزبضغ

Control
 اضئهخ ػبيخ َظرٌ+ػًهٍ

 انؼبشر
5

 Using protected انى اصخ

Members
 انىاعجبد َظرٌ+ػًهٍ

 انغًبػُخ

 Inheriting Multiple انًىاضُغ انطبثمخ 5 انحبدٌ ػشر

Base Classes
 اضئهخ ػبيخ َظرٌ+ػًهٍ

 انضبٍَ ػشر
 ,Constructors انًىاضُغ انطبثمخ 5

Destructors, and

Inheritance

ايزحبٌ َظرٌ+ػًهٍ

 شهرٌ

 انضبنش ػشر
 Passing Parameters انًىاضُغ انطبثمخ 5

to Base Class

Constructors

 َظرٌ+ػًهٍ
 اضئهخ ػبيخ

 انراثغ ػشر
5

 Virtual Base Classes انًىاضُغ انطبثمخ

 انىاعجبد َظرٌ+ػًهٍ

 +انغًبػُخ

 يُبلشخ

 Final Exam 5 انخبيص ػشر
ايزحبٌ َظرٌ+ػًهٍ

 شهرٌ

 انمجىل .11

 لا رىعذ انًزطهجبد انطبثمخ

 14 ألم ػذد يٍ انطهجخ

 66 أكجر ػذد يٍ انطهجخ

 انمراءاد انًطهىثخ : -11
 كزت انًمر
 اخري

(1)

C++ from the Ground Up, Herbert

Scheldt, Third Edition , McGraw-

Hill/Osborne,2013.

 خيزطهجبد خبص

انخذيبد الاعزًبػُخ) ورشًم ػهً ضجُم

انًضبل يحبضراد انضُىف وانزذ َت

 اضبد انًُذاَُخ (انًهٍُ وانذ
 التطبيق العملي في الشركات والدوائر ذات العلاقة ومشاريع بحوث التخرج.

1 Chapter Four

 College of Computer Sciences and Information Technology

CHAPTERFOUR

Base Class Access Control

2 Inheritance

 College of Computer Sciences and Information Technology

Base Class Access Control

When one class inherits another, the members of the base class

become members of the derived class. The access status of the base

class members inside the derived class is determined by the access

specifier used for inheriting the base class. The base class access

specifier must be public, private, or protected. If the access specifier is

not used, then it is private by default if the derived class is a class. If the

derived class isa struct, then public is the default in the absence of an

explicit access specifier. Let’s examine the ramifications of using public

or private access. (The protected specifieris described in the next

section.)

When a base class is inherited as public, all public members of the

base class become public members of the derived class. In all cases,

the private elements of the base class remain private to that class, and

are not accessible by members of the derived class. For example, in the

following program, the public members of base become public members

of derived. Thus, they are accessible by other parts of the program.

#include <iostream.h>
class base
{

inti, j;
public:

void set(int a, int b) { i = a; j = b; }
void show() { cout<<i<< " " << j << "\n"; }

};

class derived : public base
{

int k;
public:

derived(int x) { k = x; }
void showk() { cout<< k << "\n"; }

3 Chapter Four

 College of Computer Sciences and Information Technology

};
intmain()
{

derived ob(3);
ob.set(1, 2); // access member of base
ob.show(); // access member of base
ob.showk(); // uses member of derived class
return 0;

}

When a base class is inherited as private, its public members

become private members of the derived class.Since set() and show()

are inherited as public, they can be called on an object of type derived

from within main(). Since i and j are specified as private, they remain

private to base.

The opposite of public inheritance is private inheritance. When the

base class is inherited as private, then all public members of the base

class become private members of the derived class. For example, the

program shown next will not compile, because both set()and show()

are now private members of derived, and thus cannot be called from

main().

// This program won't compile.
#include <iostream.h>
class base
{

inti, j;
public:

void set(int a, int b) { i = a; j = b; }
void show() { cout<<i<< " " << j << "\n"; }

};
// Public elements of base are private in derived.
class derived : private base
{

int k;

4 Inheritance

 College of Computer Sciences and Information Technology

public:
derived(int x) { k = x; }
void showk() { cout<< k << "\n"; }

};
intmain()
{

derived ob(3);
ob.set(1, 2); // Error, can't access set()
ob.show(); // Error, can't access show()

return 0;
}

The key point to remember is that when a base class is inherited

as private, public members of the base class become private members

of the derived class. This means that they are still accessible by

members of the derived class, but cannot be accessed by other parts of

your program.

Using protected Members

In addition to public and private, a class member can be declared as

protected. Further, a base class can be inherited as protected. Both of

these actions are accomplished by using the protected access specifier.

The protected keyword is included in C++ to provide greater flexibility

for the inheritance mechanism.

When a member of a class is declared as protected, that member is

not accessible to other, non-member elements of the program. With one

important exception, access to a protected member is the same as access

to a private member; it can be accessed only by other members of the

class of which it is a part. The sole exception to this rule is when a

protected member is inherited. In this case, a protected member differs

substantially from a private one.

As you know, a private member of a base class is not accessible

by any other partof your program, including any derived class.

However, protected members behave differently. When a base class is

5 Chapter Four

 College of Computer Sciences and Information Technology

inherited as public, protected members in the base class become

protected members of the derived class, and are accessible to the

derived class. Therefore, by using protected, you can create class

members that are private to their class, but that can still be inherited

and accessed by a derived class.Consider this sample program:

#include <iostream.h>
class base
{
protected:
inti, j; // private to base, but accessible to derived

public:
void set(int a, int b) { i = a; j = b; }
void show() { cout<<i<< " " << j << "\n"; }

};
class derived : public base
{

int k;
public:

// derived may access base's i and j
void setk() { k = i*j; }
void showk() { cout<< k << "\n"; }

};
intmain()
{

derived ob;

ob.set(2, 3); // OK, known to derived
ob.show(); // OK, known to derived
ob.setk();
ob.showk();

return 0;
}

Here, because base is inherited by derived as public, and because i

and j are declared as protected, derived’s function setk() may access

them. If i and j were declared as private by base, then derived would not

have access to them, and the program would not compile.

6 Inheritance

 College of Computer Sciences and Information Technology

When a derived class is used as a base class for another derived

class, then any protected member of the initial base class that is

inherited (as public) by the first derived class can be inherited again, as

a protected member, by a second derived class. For example, the

following program is correct, and derived2 does, indeed, have access to

i and j:

#include <iostream.h>
class base
{

protected:
inti, j;

public:
void set(int a, int b) { i = a; j = b; }
void show() { cout<<i<< " " << j << "\n"; }

};
// i and j inherited as protected.
class derived1 : public base
{

int k;
public:

void setk() { k = i*j; } // legal
void showk() { cout<< k << "\n"; }

};
// i and j inherited indirectly through derived1.
class derived2 : public derived1
{

int m;
public:

void setm() { m = i-j; } // legal
void showm() { cout<< m << "\n"; }

};
intmain()
{

derived1 ob1;
derived2 ob2;

ob1.set(2, 3);
ob1.show();

7 Chapter Four

 College of Computer Sciences and Information Technology

ob1.setk();
ob1.showk();

ob2.set(3, 4);
ob2.show();
ob2.setk();
ob2.setm();
ob2.showk();
ob2.showm();

return 0;

}

When a base class is inherited as private, protected members of the

base class become private members of the derived class. Therefore, in

the preceding example, if basewere inherited as private, then all

members of base would become private members of derived1, meaning

that they would not be accessible to derived2. (However, i and j would

still be accessible to derived1.) This situation is illustrated by the

following program, which is in error (and won’t compile). The

comments describe each error.

// This program won't compile.
#include <iostream.h>
class base
{

protected:
inti, j;

public:
void set(int a, int b) { i = a; j = b; }
void show() { cout<<i<< " " << j << "\n"; }

};
// Now, all elements of base are private in derived1.

class derived1 : private base
{

int k;
public:

// This is legal because i and j are private to

8 Inheritance

 College of Computer Sciences and Information Technology

derived1. void setk() { k = i*j; } // OK
void showk() { cout<< k << "\n"; }

};
// Access to i, j, set(), and show() not inherited.
class derived2 : public derived1
{

int m;
public:

// Illegal because i and j are private to derived1.
void setm() { m = i-j; } // error
void showm() { cout<< m << "\n"; }

};
intmain()
{
derived1 ob1;

derived2 ob2;
ob1.set(1, 2); // Error, can't use set()
ob1.show(); // Error, can't use show()
ob2.set(3, 4); // Error, can't use set()
ob2.show(); // Error, can't use show()
return 0;

}

Even though base is inherited as private by derived1, derived1 still

has access to the public and protected elements of base. However, it

cannot pass this privilege along. This is the reason that protected is part

of the C++ language. It provides a means of protecting certain members

from being modified by non-member functions, but allows them to be

inherited.

The protected specifier can also be used with structures. It cannot

be used with a union, however, because a union cannot inherit another

class or be inherited. (Some compilers will accept its use in a union

declaration, but because unions cannot participate in inheritance,

protected is the same as private in this context.)

The protected access specifier may occur anywhere in a class

declaration, although typically it occurs after the (default) private

9 Chapter Four

 College of Computer Sciences and Information Technology

members are declared, and before the public members. Thus, the most

common full form of a class declaration is

class class-name
{

private members
protected:
protected members
public:
public members

};

Of course, the protected category is optional.

CHAPTERFOUR

Constructors, Destructors, and Inheritance

101 Chapter Four

 College of Computer Sciences and Information Technology

Constructors, Destructors, and Inheritance

There are two important questions that arise relative to

constructors and destructors when inheritance is involved. First, when

are base class and derived class constructors and destructors called?

Second, how can parameters be passed to a base class constructor? This

section answers these questions.

When Constructors and Destructors Are Executed

It is possible for a base class, a derived class, or both, to contain a

constructor and/or destructor. It is important to understand the order in

which these are executed when an object of a derived class comes into

existence and when it goes out of existence.Examine this short program:

#include <iostream.h>
class base
{

public:
base() { cout<< "Constructing base\n"; }
~base() { cout<< "Destructing base\n"; }

};
class derived: public base
{

public:
derived() { cout<< "Constructing derived\n"; }
~derived() { cout<< "Destructing derived\n"; }

};
intmain()
{

derived ob;
// do nothing but construct and destruct ob
return 0;

}

102 Inheritance

 College of Computer Sciences and Information Technology

As the comment in main() indicates, this program simply constructs

and then destroys an object called ob, which is of class derived. When

executed, this program displays:

Constructing base
Constructing derived
Destructing derived
Destructing base

As you can see, the constructor of base is executed, followed by the

constructor of derived. Next (since ob is immediately destroyed in this

program), the destructor of derived is called, followed by that of base.

The results of the foregoing experiment can be generalized as

follows: When an object of a derived class is created, the base class

constructor is called first, followed by the constructor for the derived

class. When a derived object is destroyed, its destructor is called first,

followed by the destructor for the base class. Put differently,

constructors are executed in the order of their derivation. Destructors are

executed in reverse order of derivation.

If you think about it, it makes sense that constructor functions are

executed in the order of their derivation. Because a base class has no

knowledge of any derived class, any initialization it needs to perform is

separate from, and possibly prerequisite to, any initialization performed

by the derived class. Therefore, it must be executed first.

Likewise, it is quite sensible that destructors be executed in reverse

order of derivation. Since the base class underlies a derived class, the

destruction of the base class implies the destruction of the derived

class. Therefore, the derived destructor must be called before the object

is fully destroyed.In the case of a large class hierarchy (i.e., where a

derived class becomes the base class for another derived class), the

general rule applies: Constructors are called in order of derivation,

destructors in reverse order. For example, this program

103 Chapter Four

 College of Computer Sciences and Information Technology

#include <iostream.h>
class base
{

public:
base() { cout<< "Constructing base\n"; }
~base() { cout<< "Destructing base\n"; }

};
class derived1 : public base

 {
public:

derived1() { cout<< "Constructing derived1\n"; }
~derived1() { cout<< "Destructing derived1\n"; }

};
class derived2: public derived1
{

public:
derived2() { cout<< "Constructing derived2\n"; }
~derived2() { cout<< "Destructing derived2\n"; }

};
intmain()
{
derived2 ob;// construct and destruct ob
return 0;

}

displays this output:

Constructing base
Constructing derived1
Constructing derived2
Destructing derived2
Destructing derived1
Destructing base

The same general rule applies in situations involving multiple base

classes. For example, this program

#include <iostream.h>
class base1
{

public:

104 Inheritance

 College of Computer Sciences and Information Technology

base1() { cout<< "Constructing base1\n"; }
~base1() { cout<< "Destructing base1\n"; }

};
class base2
{

public:
base2() { cout<< "Constructing base2\n"; }
~base2() { cout<< "Destructing base2\n"; }

};
class derived: public base1, public base2
{

public:
derived() { cout<< "Constructing derived\n"; }
~derived() { cout<< "Destructing derived\n"; }

};
intmain()
{

derived ob;// construct and destruct ob
return 0;

}

produces this output:

Constructing base1
Constructing base2
Constructing derived
Destructing derived
Destructing base2
Destructing base1

As you can see, constructors are called in order of derivation, left

to right, as specified in derived’s inheritance list. Destructors are called

in reverse order, right to left. This means that if base2 were specified

before base1 in derived’s list, as shown here:

class derived: public base2, public base1 {

then the output of the preceding program would look like this:

Constructing base2
Constructing base1
Constructing derived

105 Chapter Four

 College of Computer Sciences and Information Technology

Destructing derived
Destructing base1
Destructing base2

Copy construct

32 A Closer Look at Classes

College of Computer Sciences and Information Technology

Creating and Using a Copy Constructor

One of the more important forms of an overloaded constructor is the
copy constructor. As earlier examples have shown, problems can occur
when an object is passed to, or returned from, a function. As you will
learn in this section, one way to avoid these problems is to define a
copy constructor, which is a special type of overloaded constructor.

To begin, let’s restate the problems that a copy constructor is
designed to solve. When an object is passed to a function, a bitwise (i.e.,
exact) copy of that object is made and given to the function parameter
that receives the object. However, there are cases in which this identical
copy is not desirable. For example, if the object contains a pointer to
allocated memory, then the copy will point to the same memory as does
the original object.

Therefore, if the copy makes a change to the contents of this
memory, it willbe changed for the original object, too! Furthermore,
when the function terminates, the copy will be destroyed, thus causing
its destructor to be called. This may also have undesired effects on the
original object.

A similar situation occurs when an object is returned by a function.
The compiler will generate a temporary object that holds a copy of the
value returned by the function. (This is done automatically, and is
beyond your control.) This temporary object goes out of scope once the
value is returned to the calling routine, causing the temporary object’s
destructor to be called. However, if the destructor destroys something
needed by the calling routine, trouble will follow.

At the core of these problems is the creation of a bitwise copy of the
object. To prevent them, you need to define precisely what occurs when
a copy of an object is made so that you can avoid undesired side
effects. The way you accomplish this is by creatinga copy constructor.
 Before we explore the use of the copy constructor, it is important
for you to understandthat C++ defines two distinct types of situations
in which the value of one object is given to another. The first situation
is assignment. The second situation is initialization, which can occur
three ways:

33

College of Computer Sciences and Information Technology

◆ When one object explicitly initializes another, such as in a
declaration

◆ When a copy of an object is passed as a parameter to a function

◆ When a temporary object is generated (most commonly, as a
return value)

The copy constructor applies only to initializations. It does not apply
to assignments.The most common form of copy constructor is shown
here:

classname (constclassname&obj) {
// body of constructor
}

Here, obj is a reference to an object that is being used to initialize
another object. For example, assuming a class called myclass, and y as
an object of type myclass, then the following statements would invoke
the myclass copy constructor:

myclass x = y; // y explicitly initializing x
func1(y); // y passed as a parameter
y = func2(); // y receiving a returned object

In the first two cases, a reference to y would be passed to the copy
constructor. In the third, a reference to the object returned by func2()
would be passed to the copy constructor.To fully explore the value of
copy constructors, let’s see how they impact each of the three situations
to which they apply.

34 A Closer Look at Classes

College of Computer Sciences and Information Technology

Copy Constructors and Parameters

When an object is passed to a function as an argument, a copy of that
object is made. If a copy constructor exists, the copy constructor is
called to make the copy. Here is a program that uses a copy constructor
to properly handle objects of type myclass when they are passed to a
function. (This is a corrected version of the incorrect program shown
earlier in this chapter.)

// Use a copy constructor to construct a parameter.
#include <iostream.h>
#include <stdlib.h>
class myclass
{

int *p;
public:

myclass(int i); // normal constructor
myclass(constmyclass&ob); // copy constructor
~myclass();
intgetval() { return *p; }

};
// Copy constructor.
myclass::myclass(constmyclass&obj)
{

p = new int;
*p = *obj.p; // copy value
cout<< "Copy constructor called.\n";

}
// Normal Constructor.
myclass::myclass(int i)
{

cout<< "Allocating p\n";
p = new int;
*p = i;

}
myclass::~myclass()
{
cout<< "Freeing p\n";

35

College of Computer Sciences and Information Technology

delete p;
}
// This function takes one object parameter.
void display(myclassob)
{

cout<<ob.getval() << '\n';
}
int main()
{

myclass a(10);
display(a);
return 0;

}

This program displays the following output:

Allocating p
Copy constructor called.
10
Freeing p
Freeing p

Here is what occurs when the program is run: When a is created
inside main(), the normal constructor allocates memory and assigns the
address of that memory to a.p. Next, a is passed to ob of display().
When this occurs, the copy constructor is called, and a copy of a is
created. The copy constructor allocates memory for the copy, and a
pointer to that memory is assigned to the copy’s p member. Next, the
value stored at the original object’s p is assigned to the memory pointed
to by the copy’s p. Thus, the areas of memory pointed to by a.p and ob.p
are separate and distinct, but the valuesthat they point to are the same. If
the copy constructor had not been created, then the default bitwise copy
would have caused a.p and ob.p to point to the same memory.

When display() returns, ob goes out of scope. This causes its
destructor to be called, which frees the memory pointed to by ob.p.
Finally, when main() returns, a goes out of scope, causing its destructor
to free a.p. As you can see, the use of the copy constructor has
eliminated the destructive side effects associated with passing an object
to a function.

36 A Closer Look at Classes

College of Computer Sciences and Information Technology

Copy Constructors and Initializations

The copy constructor is also invoked when one object is used to
initialize another. Examine this sample program:

// The copy constructor is called for initialization.

#include <iostream.h>
#include <stdlib.h>
class myclass
{

int *p;
public:

myclass(int i); // normal constructor
myclass(constmyclass&ob); // copy constructor
~myclass();
intgetval() { return *p; }

};

// Copy constructor.
myclass::myclass(constmyclass&ob)
{

p = new int;
*p = *ob.p; // copy value
cout<< "Copy constructor allocating p.\n";

}

// Normal constructor.
myclass::myclass(int i)
{

cout<< "Normal constructor allocating p.\n";
p = new int;
*p = i;

}
myclass::~myclass()
{

cout<< "Freeing p\n";
delete p;

}

37

College of Computer Sciences and Information Technology

int main()
{
myclass a(10); // calls normal constructor
myclass b = a; // calls copy constructor
return 0;
}

This program displays the following output:

Normal constructor allocating p.
Copy constructor allocating p.
Freeing p
Freeing p

As the output confirms, the normal constructor is called for object a.
However, when a is used to initialize b, the copy constructor is invoked.
The use of the copy constructor ensures that b will allocate its own
memory. Without the copy constructor, b would simply be an exact copy
of a, and a.p would point to the same memory as b.p.

Keep in mind that the copy constructor is called only for
initializations. For example, the following sequence does not call the
copy constructor defined in the preceding program:

myclass a(2), b(3);
// ... b = a;

In this case, b = a performs the assignment operation, not a copy
operation.

38 A Closer Look at Classes

College of Computer Sciences and Information Technology

Using Copy Constructors When an Object Is Returned

The copy constructor is also invoked when a temporary object is

created as the result of a function returning an object. Consider this short

program:
#include <iostream>
class myclass {
public:

myclass() { cout<< "Normal constructor.\n"; }
myclass(constmyclass&obj)
{ cout<< "Copy constructor.\n"; }

};

myclass f()
{

myclassob; // invoke normal constructor
return ob; // implicitly invoke copy constructor

}
int main()
{
myclass a; // invoke normal constructor

a = f(); // invoke copy constructor
return 0;

}

This program displays the following output:

Normal constructor.
Normal constructor.
Copy constructor.

Here, the normal constructor is called twice: once when a is created
inside main(), and once when ob is created inside f(). The copy
constructor is called when the temporary object is generated as a return
value from f().Although copy constructors may seem a bit esoteric at
this point, virtually every real-world class will require one, due to the
side effects that often result from the default bitwise copy.

39

College of Computer Sciences and Information Technology

The this Keyword

Each time a member function is invoked, it is automatically passed a
pointer, calledthis, to the object on which it is called. The this pointer is
an implicit parameter toall member functions. Therefore, inside a
member function, this may be used to refer to the invoking object.As
you know, a member function can directly access the private data of its
class. For example, given this class,

class cl
{int i;
void f() { ... };
// ...
};

inside f(), the following statement can be used to assign i the value10:

i = 10;

In actuality, the preceding statement is shorthand for this one:

this->i = 10;

To see how the this pointer works, examine the following short
program:

#include <iostream.h>
class cl
{int i;

public:
void load_i(intval) { this->i = val; }
// same as i = val
intget_i() { return this->i; }// same as return i

} ;
int main()
{cl o;

o.load_i(100);
cout<<o.get_i();

return 0;
}

This program displays the number

100.

 Friend function

32 A Closer Look at Classes

2.1 Introduction

This chapter continues the discussion of the class begun in Lecture

1. It discusses friend functions, overloading constructors, passing

objects to functions, andreturning objects. It also examines a special

type of constructor, called the copy constructor, which is used when a

copy of an object is needed. The chapter concludes with a description of

the this keyword.

2.2 Friend Functions

It is possible to allow a non-member function access to the private

members of a class by declaring it a friend of the class. To make a

function a friend of a class, include its prototype in the public section of

the class declaration and precede it with the friend keyword. For

example, in this fragment frnd() is declared to be a friend of the class cl:

class cl
{
// ... public:
friend void frnd(cl ob);
};

The friend keyword gives a non- member function access to the

private membersof a class.As you can see, the keyword friend precedes

the rest of the prototype. A function may be a friend of more than one

class.Here is a short example that uses a friend function to access the

private members of myclass:

// Demonstrate a friend function.
#include <iostream.h>
class myclass
{
int a, b;
public:

myclass(int i, int j) { a=i; b=j; }

33 ChapterTwo

College of Computer Sciences and Information Technology

friend int sum(myclass x);
// sum() is a friend of myclass

};
// Note: sum() is not a member function of any class.
int sum(myclass x)

{
/* Because sum() is a friend of myclass,
it can directly access a and b. */
return x.a + x.b;

}
int main()
{
myclass n(3, 4);
cout<< sum(n);
return 0;
}

In this example, the sum() function is not a member of myclass.

However, it still has full access to the private members of myclass.

Specifically, it can access x.a and x.b. Notice also that sum() is called

normally—not in conjunction with an object and the dot operator. Since

it is not a member function, it does not need to be qualified with an

object’s name. (In fact, it cannot be qualified with an object.)

Typically, a friend function is passed one or more objects of the class

for which it is a friend, as is the case with sum().

While there is nothing gained by making sum() a friend rather than a

member function of myclass, there are some circumstances in which

friend functions are quite valuable. First, friends can be useful for

overloading certain types of operators. Second, friend functions simplify

the creation of some types of I/O functions. Both of these uses are

discussed later in this course.

Thethird reason that friend functions may be desirable is that, in

some cases, two or more classes may contain members that are

interrelated relative to other parts of your program. For example,

34 A Closer Look at Classes

imagine two different classes that each display a pop-up message on the

screen when some sort of event occurs. Other parts of your program that

are designed to write to the screen will need to know whether the pop-up

message is active, so that no message is accidentally overwritten. It is

possible to create a member function in each class that returns a value

indicating whether a message is active or not; however, checking this

condition involves additional overhead (i.e., two function calls, not

just one). If the status of the pop-up message needs to be checked

frequently, the additional overhead may not be acceptable. However, by

using a friend function, it is possible to directly check the status of each

object by calling only one function that has access to both classes. In

situations like this, a friend function helps you write more efficient

code. The following program illustrates this concept.

// Use a friend function.
#include <iostream.h>
constint IDLE=0;
constint INUSE=1;
class C2; // forward declaration
class C1
{
int status; // IDLE if off, INUSE if on screen
public:
void set_status(int state);
friend int idle(C1 a, C2 b);
};
class C2
{int status; // IDLE if off, INUSE if on screen
public:
void set_status(int state);
friend int idle(C1 a, C2 b);
};
void C1::set_status(int state)
{
status = state;
}

35 ChapterTwo

College of Computer Sciences and Information Technology

void C2::set_status(int state)
{
status = state;
}
// idle() is a friend of C1 and C2.
int idle(C1 a, C2 b)
{

if(a.status || b.status) return 0;
else return 1;

}

int main()
{

C1 x; C2 y;
x.set_status(IDLE);
y.set_status(IDLE);

if(idle(x, y)) cout<< "Screen Can Be Used.\n";
else cout<< "Pop-up In Use.\n";

x.set_status(INUSE);

if(idle(x, y)) cout<< "Screen Can Be Used.\n";
else cout<< "Pop-up In Use.\n";

return 0;

}

The output produced by this program is shown here:

Screen Can Be Used.
Pop-up In Use.

Because idle() is a friend of both C1 and C2 it has access to the
private status memberdefined by both classes. Thus, a single call to
idle() can simultaneously check the status of an object of each class.

NOTE: A forward declaration declares a class type-name prior to
the definition of the class.

36 A Closer Look at Classes

Notice that this program uses a forward declaration (also called a
forward reference) for the class C2. This is necessary because the
declaration of idle() inside C1 refers to C2 before it is declared. To
create a forward declaration to a class, simply use the form shown in
this program.A friend of one class can be a member of another. For
example, here is the preceding program rewritten so that idle() is a
member of C1. Notice the use of the scope resolution operator when
declaring idle() to be a friend of C2.

/* A function can be a member of one class and a
friend of another. */
#include <iostream.h>
constint IDLE=0;
constint INUSE=1;
class C2; // forward declaration
class C1
{

int status; // IDLE if off, INUSE if on screen
public:
void set_status(int state);

int idle(C2 b); // now a member of C1
};
class C2
{

int status; // IDLE if off, INUSE if on screen
public:

void set_status(int state);
friend int C1::idle(C2 b); // a friend, here

};
void C1::set_status(int state)
{
status = state;
}
void C2::set_status(int state)
{
status = state;
}

37 ChapterTwo

College of Computer Sciences and Information Technology

// idle() is member of C1, but friend of C2.
int C1::idle(C2 b)
{

if(status || b.status) return 0;
else return 1;

}
int main()
{

C1 x; C2 y;
x.set_status(IDLE);
y.set_status(IDLE);
if(x.idle(y)) cout<< "Screen Can Be Used.\n";
else cout<< "Pop-up In Use.\n";

x.set_status(INUSE);

if(x.idle(y)) cout<< "Screen Can Be Used.\n";
else cout<< "Pop-up In Use.\n";

return 0;

}

Since idle() is a member of C1, it can access the status variable of
objects of typeC1 directly. Thus, only objects of type C2 need be passed
to idle().

1 Chapter Four

 College of Computer Sciences and Information Technology

CHAPTERFOUR

Granting Access

2 Inheritance

 College of Computer Sciences and Information Technology

Granting Access

When a base class is inherited as private, all members of that class

(public, protected, or private) become private members of the derived

class. However, in certain circumstances, you may want to restore one

or more inherited members to their original access specification. For

example, you might want to grant certain public members of the base

class public status in the derived class, even though the base class is

inherited as private. You have two ways to accomplish this. First, you

may use a using declaration within the derived class. This is the

method recommended by Standard C++ for use in new code. However, a

discussion of using is deferred until later in this book when namespaces

are examined. (The primary reason for using is to provide support for

namespaces.) The second way to adjust access to an inherited member

is to employ an access declaration. Access declarations are still

supported by Standard C++, but they have recently been deprecated,

which means that they should not be used for new code. Since they

arestill used in existing code, a discussion of access declarations is

presented here. An access declaration takes this general form:

base-class::member;

The access declaration restores the access level of an inherited

member to what it was in the base class.

The access declaration is put under the appropriate access heading

in the derivedclass. Notice that no type declaration is required (or

allowed) in an access declaration. To see how an access declaration

works, let’s begin with this short fragment:

class base
{

public:
int j; // public in base

3 Chapter Four

 College of Computer Sciences and Information Technology

};
// Inherit base as private.
class derived: private base
{
public:
// here is access declaration base::j;
// make j public again
// ...
};

Because base is inherited as private by derived, the public variable j

is made a private variable of derived. However, the inclusion of this

access declaration

base::j;

under derived’s public heading restores j to its public status.You can

use an access declaration to restore the access rights of public and

protected members. However, you cannot use an access declaration to

raise or lower a member’s access status. For example, a member

declared as private within a base class cannot be made public by a

derived class. (Allowing this would destroy encapsulation!), The

following program illustrates the use of access declarations:

#include <iostream.h>
class base
{

inti; // private to base
public:

int j, k;
void seti(int x) { i = x; }
intgeti() { return i; }

};
// Inherit base as private.
class derived: private base
{
public:
/* The next three statements override base's
inheritance as privateand restore j, seti()

4 Inheritance

 College of Computer Sciences and Information Technology

and geti() to public access. */
base::j; // make j public again - but not k
base::seti; // make seti() public
base::geti; // make geti() public
// base::i;
// illegal, you cannot elevate access
int a; // public
};
intmain()
{

derived ob;
//ob.i = 10;//illegal because i is private in derived
ob.j = 20; // legal because j is made public in derived
//ob.k = 30; // illegal because k is private in derived

ob.a = 40; // legal because a is public in derived
ob.seti(10);
cout<<ob.geti() << " " <<ob.j<< " " <<ob.a;
return 0;

}

Notice how this program uses access declarations to restore j,

seti(), and geti() to public status. The comments describe various other

access restrictions.C++ provides the ability to adjust access to inherited

members to accommodate those special situations in which most of an

inherited class is intended to be made private, but a few members are to

retain their public or protected status. It is best to use this feature

sparingly.

5 Chapter Four

 College of Computer Sciences and Information Technology

CHAPTERFOUR

 Inheritance

101 Chapter Four

 College of Computer Sciences and Information Technology

4.1 Introduction

Inheritance is one of the cornerstones of OOP because it allows the

creation of hierarchical classifications. With inheritance, it is possible to

create a general classthat defines traits common to a set of related items.

This class may then be inherited by other, more specific classes, each

adding only those things that are unique to the inheriting class.

In standard C++ terminology, a class that is inherited is referred to

as a base class. The class that does the inheriting is called the derived

class. Further, a derived class can be used as a base class for another

derived class. In this way, a multilayered class hierarchy can be

achieved.

4.2 Introducing Inheritance

C++ supports inheritance by allowing one class to incorporate

another class into its declaration. Before discussing the theory and

details, let’s begin with an example of inheritance. The following class,

called road_vehicle, very broadly defines vehicles that travel on the

road. It stores the number of wheels a vehicle has and the number of

passengers it can carry.

class road_vehicle
{

int wheels;
int passengers;

public:
void set_wheels(intnum) { wheels = num; }
intget_wheels() { return wheels; }
void set_pass(intnum) { passengers = num; }
intget_pass() { return passengers; }

};

You can use this broad definition of a road vehicle to help define

specific types of vehicles. For example, the fragment shown here

inherits road_vehicle to create a class called truck.

102 Inheritance

 College of Computer Sciences and Information Technology

class truck : public road_vehicle
{

int cargo;
public:

void set_cargo(int size) { cargo = size; }
intget_cargo() { return cargo; }
void show();

};

Because truck inherits road_vehicle, truck includes all of

road_vehicle. It then adds cargo to it, along with the supporting member

functions.Notice how road_vehicle is inherited. The general form for

inheritance is shown here:

class derived-class : access base-class
{

body of new class
}

Here, access is optional. However, if present, it must be either

public, private, orprotected. You will learn more about these options

later in this chapter. For now,all inherited classes will use public. Using

public means that all the public members of the base class will also be

public members of the derived class. Therefore, in the preceding

example, members of truck have access to the public member functions

of road_vehicle, just as if they had been declared inside truck. However,

truck does not have access to the private members of road_vehicle.

For example, truck does not have access to wheels.Here is a

program that uses inheritance to create two subclasses of road_vehicle.

One is truck and the other is automobile.

// Demonstrate inheritance.
#include <iostream.h>
// Define a base class for vehicles.
class road_vehicle
{

int wheels;

103 Chapter Four

 College of Computer Sciences and Information Technology

int passengers;
public:

void set_wheels(intnum) { wheels = num; }
intget_wheels() { return wheels; }
void set_pass(intnum) { passengers = num; }
intget_pass() { return passengers; }

};
// Define a truck.
class truck : public road_vehicle
{

int cargo;
public:

void set_cargo(int size) { cargo = size; }
intget_cargo() { return cargo; }
void show();

};
enum type {car, van, wagon};
// Define an automoble.
class automobile : public road_vehicle
{

enum type car_type;
public:

void set_type(type t) { car_type = t; }
enum type get_type() { return car_type; }
void show();

};
void truck::show()
{

cout<< "wheels: " <<get_wheels() << "\n";
cout<< "passengers: " <<get_pass() << "\n";
cout<< "cargo capacity in cubic feet: "
<< cargo << "\n";

}

void automobile::show()
{

cout<< "wheels: " <<get_wheels() << "\n";
cout<< "passengers: " <<get_pass() << "\n";
cout<< "type: ";

104 Inheritance

 College of Computer Sciences and Information Technology

switch(get_type())
{

case van: cout<< "van\n";break;
case car: cout<< "car\n";break;
case wagon: cout<< "wagon\n";

}
}
intmain()
{

truck t1, t2;
automobile c;

t1.set_wheels(18);
t1.set_pass(2);
t1.set_cargo(3200);

t2.set_wheels(6);
t2.set_pass(3);
t2.set_cargo(1200);

t1.show();
cout<< "\n"; t2.show();
cout<< "\n";

c.set_wheels(4);
c.set_pass(6);
c.set_type(van);

c.show();
return 0;

}

The output from this program is shown here:

wheels: 18 passengers: 2
cargo capacity in cubic feet: 3200

wheels: 6 passengers: 3
cargo capacity in cubic feet: 1200

wheels: 4 passengers: 6 type: van

105 Chapter Four

 College of Computer Sciences and Information Technology

When a base class is inherited as public, its public members become

public members of the derived class.As this program shows, the major

advantage of inheritance is that it lets you create a base class that can be

incorporated into more specific classes. In this way, each derived class

can be precisely tailored to its own needs while still being part of a

general classification.

One other point: Notice that both truck and automobile include a

member function called show(), which displays information about each

object. This illustrates another aspect of polymorphism. Since each

show() is linked with its own class, the compiler can easily tell which

one to call for any given object.Now that you have seen the basic

procedure by which one class inherits another, let’s examine inheritance

in detail.

Operator Overloading

62 Operator Overloading

 College of Computer Sciences and Information Technology

3.1 Introduction

InC++, operators can be overloaded relative to class types that you

define. The principal advantage to overloading operators is that it allows

you to seamlesslyintegrate new data types into your programming

environment.

Operator overloading allows you to define the meaning of an

operator for a particular class. For example, a class that defines a linked

list might use the + operator to add an object to the list. A class that

implements a stack might use the + to push an object onto the stack.

Another class might use the + operator in an entirely different way.

When an operator is overloaded, none of its original meaning is lost. It is

simply that a new operation, relative to a specific class, is defined.

Therefore, overloading the + to handle a linked list, for example, does

not cause its meaning relative to integers (i.e., addition) to change.

Operator overloading is closely related to function overloading. To

overload an operator, you must define what the operation means relative

to the class to which it is applied. To do this, you create an operator

function, which defines the action of the operator. The general form of

an operator function is

type classname::operator#(arg-list)
{
operation relative to the class
}

Operators are overloaded using an operator function.Here, the

operator that you are overloading is substituted for the #, and type is the

type of value returned by the specified operation. Although it can be of

any type you choose, the return value is often of the same type as the

class for which the operator is being overloaded. This correlation

facilitates the use of the overloaded operator in compound expressions.

63 Chapter Three

 College of Computer Sciences and Information Technology

The specific nature of arg-list is determined by several factors, as you

will soon see.

Operator functions can be either members or nonmembers of a

class. Nonmember operator functions are often friend functions of the

class, however. Although similar, there are some differences between

the way a member operator function is overloaded and the way a

nonmember operator function is overloaded. Each approach is described

here.

3.2 Operator Overloading Using Member Functions

To begin our examination of operator overloading using member

functions, we will start with a simple example. The following program

creates a class called three_d, which maintains the coordinates of an

object in three-dimensional space. This program overloads the + and the

= operators relative to the three_d class. Examine it closely:

// Overload operators using member functions.
#include <iostream.h>
class three_d
{

int x, y, z; // 3-D coordinates
public:

three_d() { x = y = z = 0; }
three_d(inti, int j, int k)
{x = i; y = j; z = k; }

three_d operator+(three_d op2);
three_d operator=(three_d op2);
void show() ;
};

// Overload +.
three_dthree_d::operator+(three_d op2)
{

three_d temp;
temp.x = x + op2.x; // These are integer additions
temp.y = y + op2.y; // and the + retains itsoriginal

64 Operator Overloading

 College of Computer Sciences and Information Technology

temp.z = z + op2.z; // meaning relative to them.
return temp;

}

// Overload assignment.
three_dthree_d::operator=(three_d op2)
{

x = op2.x; // These are integer assignments
y = op2.y; // and the = retains its original
z = op2.z; // meaning relative to them.
return *this;

}
// Show X, Y, Z coordinates.
void three_d::show()
{

cout<< x << ", ";
cout<< y << ", ";
cout<< z << "\n";

}
intmain()
{

three_da(1, 2, 3), b(10, 10, 10), c;

a.show();
b.show();

c = a + b; // add a and b together
c.show();
c = a + b + c; // add a, b and c together
c.show();

c = b = a; // demonstrate multiple assignment
c.show();
b.show();

return 0;
}

This program produces the following output:

65 Chapter Three

 College of Computer Sciences and Information Technology

1, 2, 3
10, 10, 10
11, 12, 13
22, 24, 26
1, 2, 3
1, 2, 3

As you examined the program, you may have been surprised to see
that both operatorfunctions have only one parameter each, even though
they overload binary operations. Thereason for this apparent
contradiction is that when a binary operator is overloaded using a
member function, only one argument is explicitly passed to it. The other
argument is implicitly passed using the this pointer. Thus, in the line

temp.x = x + op2.x;

the x refers to this–>x, which is the x associated with the object that
invokes the operator function. In all cases, it is the object on the left side
of an operation that causes the call to the operator function. The object
on the right side is passed to the function.

In general, when you use a member function, no parameters are used

when overloading a unary operator, and only one parameter is required
when overloading a binary operator. (You cannot overload the ternary ?
operator.) In either case, the object that invokes the operator function is
implicitly passed via the this pointer.

To understand how operator overloading works, let’s examine the

preceding program carefully, beginning with the overloaded operator +.
When two objects of type three_d are operated on by the + operator, the
magnitudes of their respective coordinates are added together, as shown
in operator+(). Notice, however, that this functiondoes not modify the
value of either operand. Instead, an object of type three_d, which
contains the result of the operation, is returned by the function. To
understand whythe + operation does not change the contents of either
object, think about the standard arithmetic + operation, as applied like
this: 10 + 12. The outcome of this operation is22, but neither 10 nor 12
is changed by it. Although there is no rule that prevents an overloaded
operator from altering the value of one of its operands, it is best for the

66 Operator Overloading

 College of Computer Sciences and Information Technology

actions of an overloaded operator to be consistent with its original
meaning.

Notice that operator+() returns an object of type three_d. Although

the function could have returned any valid C++ type, the fact that it
returns a three_d object allows the + operator to be used in compound
expressions, such as a+b+c. Here, a+b generates a result that is of type
three_d. This value can then be added to c. Had any other type of value
been generated by a+b, such an expression would not work.

In contrast with the + operator, the assignment operator does, indeed,

cause one of its arguments to be modified. (This is, after all, the very
essence of assignment.) Since the operator=() function is called by the
object that occurs on the left side of the assignment, it is this object that
is modified by the assignment operation. Most often, the return value of
an overloaded assignment operator is the object on the left, after the
assignment has been made. (This is in keeping with the traditional
action of the = operator.) For example, to allow statements like

a = b = c = d;

it is necessary for operator=() to return the object pointed to by this,
which will be the object that occurs on the left side of the assignment
statement. This allowsa string of assignments to be made. The
assignment operation is one of the most important uses of the this
pointer.

67 Chapter Three

 College of Computer Sciences and Information Technology

// This program uses friend operator++() functions.
#include <iostream.h>
class three_d
{

int x, y, z; // 3-D coordinates
public:

three_d() { x = y = z = 0; }
three_d(inti, int j, int k)
{x = i; y = j; z = k; }

friend three_d operator+(three_d op1, three_d op2);
three_d operator=(three_d op2);

// use a reference to overload the ++
friend three_d operator++(three_d&op1);
friend three_d operator++(three_d&op1, intnotused);

void show() ;

} ;

// This is now a friend function.
three_d operator+(three_d op1, three_d op2)
{

three_d temp;
temp.x = op1.x + op2.x;
temp.y = op1.y + op2.y;
temp.z = op1.z + op2.z;
return temp;

}
// Overload the =.
three_dthree_d::operator=(three_d op2)
{

x = op2.x;
y = op2.y;
z = op2.z;
return *this;

}

68 Operator Overloading

 College of Computer Sciences and Information Technology

/* Overload prefix ++ using a friend function.
This requires the use of a reference parameter. */
three_d operator++(three_d&op1)
{

op1.x++; op1.y++; op1.z++; return op1;
}

/* Overload postfix ++ using a friend function.
This requires the use of a reference parameter. */
three_d operator++(three_d&op1, intnotused)
{

three_d temp = op1;
op1.x++; op1.y++; op1.z++;
return temp;

}
// Show X, Y, Z coordinates.
void three_d::show()
{

cout<< x << ", ";
cout<< y << ", ";
cout<< z << "\n";

}
intmain()
{

three_da(1, 2, 3), b(10, 10, 10), c;

a.show();
b.show();

c = a + b; // add a and b together c.show();

c = a + b + c; // add a, b and c together
c.show();

c = b = a; // demonstrate multiple assignment
c.show();
b.show();

++c; // prefix increment c.show();

69 Chapter Three

 College of Computer Sciences and Information Technology

c++; // postfix increment c.show();

a = ++c; // a receives c's value after increment
a.show(); // a and c
c.show(); // are the same
a = c++; // a receives c's value prior to increment
a.show(); // a and c
c.show(); // now differ

return 0;

}

3.8 Overloading the Relational and Logical Operators

Overloading a relational or logical operator, such as ==, <, or && is

a straightforward process. However, there is one small distinction. As

you know, an overloaded operator function usually returns an object of

the class for which it is overloaded. However, an overloaded relational

or logical operator typically returns a true or false value. This is in

keeping with the normal usage of these operators, and allows them to be

used in conditional expression.Here is an example that overloads the =

= relative to the three_d class:

//overload ==.
bool three_d::operator==(three_d op2)
{

if((x == op2.x) && (y == op2.y) && (z == op2.z))
return true;
else
return false;

}

Once operator==() has been implemented, the following fragment

is perfectly valid:

three_d a, b;
// ...
if(a == b) cout<< "a equals b\n";

70 Operator Overloading

 College of Computer Sciences and Information Technology

else cout<< "a does not equal b\n";

Because == returns a bool result, its outcome can be used to control

an if statement. As an exercise, try implementing several of the

relational and logical operators relative to the three_d class.

71 Chapter Three

 College of Computer Sciences and Information Technology

Order Matters

 College of Computer Sciences and Information Technology

Order Matters

When overloading binary operators, remember that in many cases,

the orderof the operands does make a difference. For example, while A

+ B is commutative,A – B is not. (That is, A – B is not the same as B –

A!) Therefore, when implementing overloaded versions of the non-

commutative operators, you must remember which operand is on the

left and which is on the right. For example, in this fragment, subtraction

is overloaded relative to the three_d class:

// Overload subtraction.
three_dthree_d::operator-(three_d op2)
{
three_d temp;

temp.x = x - op2.x;
temp.y = y - op2.y;
temp.z = z - op2.z;
return temp;

}

Remember, it is the operand on the left that invokes the operator

function.The operand on the right is passed explicitly. This is why x –

op2.x is the proper order for the subtraction.For example, in the

following program, a friend is used instead of a member function to

overload the + operation:

// Overload + using a friend.
#include <iostream.h>
class three_d

 {
int x, y, z; // 3-D coordinates

public:
three_d() { x = y = z = 0; }
three_d(inti, int j, int k)
{ x = i; y = j; z = k;}

friend three_d operator+(three_d op1, three_d op2);
three_d operator=(three_d op2);

63 Chapter Three

 College of Computer Sciences and Information Technology

void show() ;
} ;

// This is now a friend function.
three_d operator+(three_d op1, three_d op2)
{

three_d temp;

temp.x = op1.x + op2.x;
temp.y = op1.y + op2.y;
temp.z = op1.z+ op2.z;
return temp;

}

// Overload assignment.
three_dthree_d::operator=(three_d op2)
{

x = op2.x; y = op2.y; z = op2.z;
return *this;

}
// Show X, Y, Z coordinates.
void three_d::show()
{

cout<< x << ", ";
cout<< y << ", ";
cout<< z << "\n";

}

intmain()
{

three_da(1, 2, 3), b(10, 10, 10), c;

a.show();
b.show();

c = a + b; // add a and b together
c.show();

c = a + b + c; // add a, b and c together
c.show();

 College of Computer Sciences and Information Technology

c = b = a; // demonstrate multiple assignment
c.show();
b.show();

return 0;

}

As you can see by looking at operator+(), now both operands are

passed to it. The left operand is passed in op1, and the right operand in

op2.In many cases, there is no benefit to using a friend function rather

than a member function when overloading an operator. However, there

is one situation in which a friend function is quite useful: when you

want an object of a built-in type to occur on the left side of a binary

operator. To understand why, consider the following.

As you know, a pointer to the object that invokes a member

operator function is passed in this. In the case of a binary operator, it is

the object on the left that invokes the function. This is fine, provided

that the object on the left defines the specified operation. For example,

assuming some object called Ob, which has integer addition defined for

it, then the following is a perfectly valid expression:

Ob + 10; // will work

Because the object Ob is on the left side of the + operator, it

invokes its overloaded operator function, which (presumably) is capable

of adding an integer value to some element of Ob. However, this

statement won’t work:

10 + Ob; // won't work

The problem with this statement is that the object on the left of the

+ operator is an integer, a built-in type for which no operation involving

an integer and an object of Ob’s type is defined.

The solution to the preceding problem is to overload the + using

two friend functions. In this case, the operator function is explicitly

65 Chapter Three

 College of Computer Sciences and Information Technology

passed both arguments, and it is invoked like any other overloaded

function, based upon the types of its arguments. One version of the +

operator function handles object + integer, and the other handles integer

+ object. Overloading the + (or any other binary operator) using friend

functions allows a built-in type to occur on the left or right side of the

operator. The following sample program shows you how to accomplish

this:

#include <iostream.h>
class CL
{
public:

int count;
CL operator=(CL obj);
friend CL operator+(CL ob, inti);
friend CL operator+(inti, CL ob);

};

CL CL::operator=(CL obj)
{

count = obj.count;
return *this;

}
// This handles ob + int.
CL operator+(CL ob, inti)
{

CL temp;

temp.count = ob.count + i;
return temp;

}
// This handles int + ob.
CL operator+(inti, CL ob)
{

CL temp;

temp.count = ob.count + i;

 College of Computer Sciences and Information Technology

return temp;
}
intmain()
{

CL O;

O.count = 10;
cout<<O.count<< " "; // outputs 10

O = 10 + O; // add object to integer
cout<<O.count<< " "; // outputs 20

O = O + 12; // add integer to object
cout<<O.count; // outputs 32

return 0;

}

As you can see, the operator+() function is overloaded twice, to

accommodate the two ways in which an integer and an object of type

CL can occur in the addition operation.

CHAPTERFOUR

Passing Parameters to Base Class Constructors

101 Chapter Four

 College of Computer Sciences and Information Technology

Passing Parameters to Base Class Constructors

So far, none of the preceding examples have included constructors

requiring arguments. In cases where only the constructor of the derived

class requires one or more arguments, you simply use the standard

parameterized constructor syntax. But how do you pass arguments to a

constructor in a base class? The answer is to use an expanded form of

the derived class’ constructor declaration, which passes arguments along

to one or more base class constructors. The general form of this

expanded declaration is shown here:

derived-constructor(arg-list) : base1(arg-list),

base2(arg-list), ... baseN(arg-list)

{

body of derived constructor

}

Here, base1 throughbaseN are the names of the base classes

inherited by the derived class. Notice that a colon separates the

constructor declaration of the derived class from the base classes, and

that the base classes are separated from each other by commas, in the

case of multiple base classes.Consider this sample program:

#include <iostream.h>
class base
{
protected:
inti;
public:
base(int x)
{ i = x; cout<< "Constructing base\n"; }
~base() { cout<< "Destructing base\n"; }
};
class derived: public base
{

int j;

102 Inheritance

 College of Computer Sciences and Information Technology

public:
// derived uses x; y is passed along to base.
derived(int x, int y): base(y)
{ j = x; cout<< "Constructing derived\n"; }
~derived() { cout<< "Destructing derived\n"; }
void show() { cout<<i<< " " << j << "\n"; }

};
intmain()
{

derived ob(3, 4);
ob.show(); // displays 4 3
return 0;

}

Here, derived’s constructor is declared as taking two parameters, x

and y. However,derived() uses only x; y is passed along to base(). In

general, the constructor of thederived class must declare the

parameter(s) that its class requires, as well as any required by the base

class. As the preceding example illustrates, any parameters required by

the base class arepassed to it in the base class’ argument list, specified

after the colon.Here is a sample program that uses multiple base

classes:

#include <iostream.h>
class base1
{

protected:
inti;
public:
base1(intx){i = x;cout<<"Constructing base1\n";}
~base1() { cout<< "Destructing base1\n"; }

};
class base2
{
protected:
int k;
public:

base2(intx){k = x;cout<<"Constructing base2\n";}
~base2() { cout<< "Destructing base2\n"; }

103 Chapter Four

 College of Computer Sciences and Information Technology

};
class derived: public base1, public base2
{

int j;
public:
derived(int x, int y, int z): base1(y), base2(z)
{ j = x; cout<< "Constructing derived\n"; }
~derived() { cout<< "Destructing derived\n"; }
void show()
{ cout<<i<< " " << j << " " << k << "\n"; }

};
intmain()
{
derived ob(3, 4, 5);
ob.show(); // displays 4 3 5
return 0;
}

It is important to understand that arguments to a base class

constructor are passed via arguments to the derived class’ constructor.

Therefore, even if a derived class’ constructor does not use any

arguments, it still must declare one or more arguments if the base class

takes one or more arguments. In this situation, the arguments passed to

the derived class are simply passed along to the base. For example, in

the following program, the constructor of derived takes no arguments,

but base1() and base2() do:

#include <iostream.h>
class base1
{
protected:

inti;
public:
base1(int x)
{ i=x; cout<< "Constructing base1\n"; }
~base1() { cout<< "Destructing base1\n"; }
};

104 Inheritance

 College of Computer Sciences and Information Technology

class base2
{

protected:
int k;

public:
base2(int x)
{ k = x; cout<< "Constructing base2\n"; }
~base2() { cout<< "Destructing base2\n"; }

};
class derived: public base1, public base2
{

public:
/* Derived constructor uses no parameters,
but still must be declared as taking them to pass
them along to base classes.*/
derived(int x, int y): base1(x), base2(y)
{ cout<< "Constructing derived\n"; }
~derived() { cout<< "Destructing derived\n"; }
void show() { cout<<i<< " " << k << "\n"; }

};

intmain()
{

derived ob(3, 4);
ob.show(); // displays 3 4
return 0;

}

The constructor of a derived class is free to use any and all

parameters that it is declared as taking, whether or not one or more are

passed along to a base class. Put differently, just because an argument

is passed along to a base class does not preclude its use by the derived

class as well. For example, this fragment is perfectly valid:

class derived: public base
{

int j;
public:
// derived uses both x and y

105 Chapter Four

 College of Computer Sciences and Information Technology

derived(int x, int y): base(x, y)
{ j = x*y; cout<< "Constructing derived\n"; }
// ...

}

One final point to keep in mind when passing arguments to base

class constructors: An argument being passed can consist of any

expression valid at the time, including function calls and variables. This

is in keeping with the fact that C++ allows dynamic initialization.

Using Member Functionsto Overload

Unary Operators

62 Operator Overloading

 College of Computer Sciences and Information Technology

Using Member Functionsto Overload Unary Operators

You may also overload unary operators, such as ++, – –, or the unary
– or +. As stated earlier, when a unary operator is overloaded by means
of a member function, no object is explicitly passed to the operator
function. Instead, the operation is performed on the object that generates
the call to the function through the implicitly passed this pointer.For
example, here is an expanded version of the previous example program.
This version defines the increment operation for objects of type three_d.

// Overload a unary operator.
#include <iostream.h>
class three_d
{

int x, y, z; // 3-D coordinates
public:

three_d() { x = y = z = 0; }
three_d(inti, int j, int k)
{x = i; y = j; z = k; }
three_d operator+(three_d op2);
three_d operator=(three_d op2);
three_d operator++(); // prefix version of ++
void show() ;

} ;
// Overload +.
three_dthree_d::operator+(three_d op2)
{

three_d temp;
temp.x = x + op2.x; // These are integer additions
temp.y = y + op2.y;// and the + retains its original
temp.z = z + op2.z; // meaning relative to them.
return temp;

}
// Overload assignment.
three_dthree_d::operator=(three_d op2)
{

x = op2.x; // These are integer assignments

63 Chapter Three

 College of Computer Sciences and Information Technology

y = op2.y; // and the = retains its original
z = op2.z; // meaning relative to them.
return *this;

}
// Overload the prefix version of ++.
three_dthree_d::operator++()
{

x++; // increment x, y, and z
y++;
z++;
return *this;

}
// Show X, Y, Z coordinates.
void three_d::show()
{

cout<< x << ", ";
cout<< y << ", ";
cout<< z << "\n";

}

intmain()
{

three_da(1, 2, 3), b(10, 10, 10), c;
a.show();
b.show();

c = a + b; // add a and b together
c.show();

c = a + b + c; // add a, b and c together
c.show();

c = b = a; // demonstrate multiple assignment
c.show();
b.show();

++c; // increment c
c.show();

return 0;
}

The output from the program is shown here.

64 Operator Overloading

 College of Computer Sciences and Information Technology

1, 2, 3
10, 10, 10
11, 12, 13
22, 24, 26
1, 2, 3
1, 2, 3
2, 3, 4

As the last line of the output shows, operator++() increments each
coordinate in the object and returns the modified object. Again, this is in
keeping with the traditional meaning of the ++ operator.As you know,
the ++ and – – have both a prefix and a postfix form. For example,
both++O;andO++;are valid uses of the increment operator. As the
comments in the preceding program state, the operator++() function
defines the prefix form of ++ relative to the three_d class. However, it is
possible to overload the postfix form as well. The prototype for the
postfix form of the ++ operator, relative to the three_d class, is shown
here:

three_dthree_d::operator++(intnotused);

The increment and decrement operators have both a prefix and
postfix form. The parameternotused is not used by the function, and
should be ignored. This parameter is simply a way for the compiler to
distinguish between the prefix and postfix forms of the increment
operator. (The postfix decrement uses the same approach.)Here is one
way to implement a postfix version of ++ relative to the three_d class:

// Overload the postfix version of ++.
three_dthree_d::operator++(intnotused)
{

three_d temp = *this; // save original value

x++; // increment x, y, and z
y++;
z++;
return temp; // return original value

}

65 Chapter Three

 College of Computer Sciences and Information Technology

Notice that this function saves the current state of the operand by

using the statement

three_d temp = *this;

and then returns temp. Keep in mind that the traditional meaning of

a postfix increment is to first obtain the value of the operand, and then to

increment the operand. Therefore,it is necessary to save the current state

of the operand and return its original value, before it is incremented,

rather than its modified value.

The following version of the original program implements both

forms of the ++operator:

// Demonstrate prefix and postfix ++.
#include <iostream.h>
class three_d
{

int x, y, z; // 3-D coordinates
public:

three_d() { x = y = z = 0; }
three_d(inti, int j, int k)
{x = i; y = j; z = k; }

three_d operator+(three_d op2);
three_d operator=(three_d op2);
three_d operator++(); // prefix version of ++
three_d operator++(intnotused);
// postfix version of ++
void show() ;

};

// Overload +.
three_dthree_d::operator+(three_d op2)
{

three_d temp;

temp.x = x + op2.x; // These are integer additions
temp.y = y + op2.y; // and the + retains itsoriginal

66 Operator Overloading

 College of Computer Sciences and Information Technology

temp.z = z + op2.z; // meaning relative to them.
return temp;

}
// Overload assignment.
three_dthree_d::operator=(three_d op2)
{

x = op2.x; // These are integer assignments
y = op2.y; // and the = retains its original
z = op2.z; // meaning relative to them.
return *this;

}

// Overload the prefix version of ++.
three_dthree_d::operator++()
{

x++; // increment x, y, and z
y++;
z++;
return *this; // return altered value

}
// Overload the postfix version of ++

three_dthree_d::operator++(intnotused)
{

three_d temp = *this; // save original value

x++; // increment x, y, and z
y++;
z++;
return temp; // return original value

}
// Show X, Y, Z coordinates.
void three_d::show()
{

cout<< x << ", ";
cout<< y << ", ";
cout<< z << "\n";

}
intmain()
{
three_da(1, 2, 3), b(10, 10, 10), c;

67 Chapter Three

 College of Computer Sciences and Information Technology

a.show();
b.show();

c = a + b; // add a and b together c.show();
c = a + b + c; // add a, b and c together c.show();

c = b = a; // demonstrate multiple assignment
c.show();
b.show();

++c; // prefix increment c.show();
c++; // postfix increment c.show();

a = ++c; // a receives c's value after increment
a.show(); // a and c
c.show(); // are the same 13
a = c++; // a receives c's value prior to increment
a.show(); // a and c c.show(); // now differ

return 0;
}

The output is shown here.

1, 2, 3

As the last four lines show, the prefix increment increases the value

of c before its value is assigned to a, and the postfix increment increases

c after its value is assigned to a.

Remember that if the ++ precedes its operand, the operator++() is

called. If it follows its operand, the operator++(intnotused) function is

called. This same approach is also used to overload the prefix and

postfix decrement operator relative to any class. Youmight want to try

defining the decrement operator relative to three_d as an exercise.

Operator Overloading Tips and Restrictions

The action of an overloaded operator, as applied to the class for

which it is defined, need not bear any relationship to that operator’s

68 Operator Overloading

 College of Computer Sciences and Information Technology

default usage, as applied to C++’s built-in types. For example, the <<

and >> operators, as applied to cout and cin, have little in common with

the same operators applied to integer types. However, to maintain the

transparency and readability of your code, an overloaded operator

should reflect, when possible, the spirit of the operator’s original use.

For example, the + relative to three_dis conceptually similar to the +

relative to integer types. There would be little benefit in defining the +

operator relative to some class in such a way that it acts more the way

you would expect the || operator, for instance, to perform. The central

concept here is that, while you can give an overloaded operator any

meaning you like, for clarity, it is best when its new meaning is related

to its original meaning.

There are some restrictions to overloading operators. First, you

cannot alter the precedence of any operator. Second, you cannot alter

the number of operands required by the operator, although your operator

function could choose to ignore an operand. Finally, except for the

function call operator (discussed later), operator functions cannot have

default arguments.The only operators that you cannot overload are

shown here: (. :: .* ?). Nonmember binary operator functions

have two parameters. Nonmember unary operator functions have one

parameter.

Nonmember Operator Functions

You can overload an operator for a class by using a nonmember

function, which is often a friend of the class. As you learned earlier,

nonmember functions, including friend functions, do not have a this

pointer. Therefore, when a friend is used to overload an operator, both

operands are passed explicitly when a binary operator is overloaded,

and a single operand is passed when a unary operator is overloaded. The

only operators that cannot be overloaded using nonmember functions are

=, (), [], and –>.

 overload ++ operator

CHAPTERTHREE

 Operator Overloading

 College of Computer Sciences and Information Technology

Using a Friend to Overload a Unary Operator

You can also overload a unary operator by using a friend function.

However,doing so requires a little extra effort. To begin, think back to

the original version of the overloaded ++ operator relative to the three_d

class that was implemented as a member function. It is shown here for

your convenience:

// Overload the prefix form of ++.
three_dthree_d::operator++()
{

x++; y++; z++;
return *this;

}

As you know, every member function receives as an implicit

argument this, which is a pointer to the object that invokes the function.

When a unary operator is overloaded by use of a member function, no

argument is explicitly declared. The only argument needed in this

situation is the implicit pointer to the invoking object. Any changes

made to the object’s data will affect the object on which the operator

function is called. Therefore, in the preceding function, x++ increments

the x member of the invoking object.

Unlike member functions, a nonmember function, including a

friend, does not receive a this pointer, and therefore cannot access the

object on which it was called. Instead, a friend operator function is

passed its operand explicitly. For this reason, trying to create a friend

operator++() function, as shown here, will not work:

// THIS WILL NOT WORK
three_d operator++(three_d op1)
{

op1.x++; op1.y++; op1.z++; return op1;
}

 College of Computer Sciences and Information Technology

This function will not work because only a copy of the object that

activated the call to operator++() is passed to the function in parameter

op1. Thus, the changes inside operator++() will not affect the calling

object, only the local parameter.

If you want to use a friend function to overload the increment or

decrement operators, you must pass the object to the function as a

reference parameter. Since a reference parameter is an implicit pointer

to the argument, changes to the parameter will affect the argument.

Using a reference parameter allows the function to increment or

decrement the object used as an operand.

When a friend is used for overloading the increment or decrement

operators, the prefix form takes one parameter (which is the operand).

The postfix form takes two parameters. The second is an integer, which

is not used.Here is the entire three_d program, which uses a friend

operator++() function. Notice that both the prefix and postfix forms are

overloaded.

// This program uses friend operator++() functions.
#include <iostream.h>
class three_d
{

int x, y, z; // 3-D coordinates
public:

three_d() { x = y = z = 0; }
three_d(inti, int j, int k)
{x = i; y = j; z = k; }

friend three_d operator+(three_d op1, three_d op2);
three_d operator=(three_d op2);

// use a reference to overload the ++
friend three_d operator++(three_d&op1);
friend three_d operator++(three_d&op1, intnotused);

void show() ;

} ;

 Operator Overloading

 College of Computer Sciences and Information Technology

// This is now a friend function.
three_d operator+(three_d op1, three_d op2)
{

three_d temp;
temp.x = op1.x + op2.x;
temp.y = op1.y + op2.y;
temp.z = op1.z + op2.z;
return temp;

}
// Overload the =.
three_dthree_d::operator=(three_d op2)
{

x = op2.x;
y = op2.y;
z = op2.z;
return *this;

}

/* Overload prefix ++ using a friend function.
This requires the use of a reference parameter. */
three_d operator++(three_d&op1)
{

op1.x++; op1.y++; op1.z++; return op1;
}

/* Overload postfix ++ using a friend function.
This requires the use of a reference parameter. */
three_d operator++(three_d&op1, intnotused)
{

three_d temp = op1;
op1.x++; op1.y++; op1.z++;
return temp;

}
// Show X, Y, Z coordinates.
void three_d::show()
{

cout<< x << ", ";
cout<< y << ", ";
cout<< z << "\n";

 College of Computer Sciences and Information Technology

}
intmain()
{

three_da(1, 2, 3), b(10, 10, 10), c;

a.show();
b.show();

c = a + b; // add a and b together c.show();

c = a + b + c; // add a, b and c together
c.show();

c = b = a; // demonstrate multiple assignment
c.show();
b.show();

++c; // prefix increment c.show();

c++; // postfix increment c.show();

a = ++c; // a receives c's value after increment
a.show(); // a and c
c.show(); // are the same
a = c++; // a receives c's value prior to increment
a.show(); // a and c
c.show(); // now differ

return 0;

}

Overloading the Relational and Logical Operators

Overloading a relational or logical operator, such as ==, <, or && is

a straightforward process. However, there is one small distinction. As

you know, an overloaded operator function usually returns an object of

the class for which it is overloaded. However, an overloaded relational

or logical operator typically returns a true or false value. This is in

keeping with the normal usage of these operators, and allows them to be

 Operator Overloading

 College of Computer Sciences and Information Technology

used in conditional expression.Here is an example that overloads the =

= relative to the three_d class:

//overload ==.
bool three_d::operator==(three_d op2)
{

if((x == op2.x) && (y == op2.y) && (z == op2.z))
return true;
else
return false;

}

Once operator==() has been implemented, the following fragment

is perfectly valid:

three_d a, b;
// ...
if(a == b) cout<< "a equals b\n";
else cout<< "a does not equal b\n";

Because == returns a bool result, its outcome can be used to control

an if statement. As an exercise, try implementing several of the

relational and logical operators relative to the three_d class.

 College of Computer Sciences and Information Technology

CHAPTERFOUR

Using protected for Inheritance of a Base Class

Using protected for Inheritance of a Base Class

In addition to specifying protected status for members of a class,

the keyword protected can also be used to inherit a base class. When a

base class is inherited as protected, all public and protected members of

the base class become protected members of the derived class. Here is

an example:

// Demonstrate inheriting a protected base class.
#include <iostream.h>
class base
{

inti;
protected:
int j;
public:
int k;

void seti(int a) { i = a; }
intgeti() { return i; }

};
// Inherit base as protected.
class derived : protected base
{
public:

void setj(int a) { j = a; } // j is protected here
void setk(int a) { k = a; } // k is also protected
intgetj() { return j; }

intgetk() { return k; }
};
intmain()
{

derived ob;
/* This next line is illegal because seti() is
a protected member of derived, which makes it

inaccessible outside of derived. */
// ob.seti(10);

//cout<<ob.geti();illegal -- geti() is protected
//ob.k = 10; also illegal because k is protected

// these next statements are OK

ob.setk(10);
cout<<ob.getk() << ' ';
ob.setj(12);
cout<<ob.getj() << ' ';

return 0;
}

As you can see by reading the comments in this program, k, j,

seti(), and geti()in base become protected members of derived. This

means that they cannotbe accessed by code outside of derived. Thus,

inside main(), references to these members through ob are illegal.

Reviewing public, protected, and private

Because the access rights as defined by public, protected, and

private are fundamental to C++ programming, let’s review their

meanings.

When a class member is declared as public, it can be accessed by

any other part of a program. When a member is declared as private, it

can be accessed only by members of its class. Further, derived classes

do not have access to private base class members. When a member is

declared as protected, it can be accessed only by members of its class,

or by derived classes. Thus, protected allows a member to be inherited,

but to remain private within a class hierarchy.

When a base class is inherited by use of public, its public

members become public members of the derived class, and its protected

members become protected members of the derived class.

When a base class is inherited by use of protected, its public and

protected members become protected members of the derived class.

When a base class is inherited by use of private, its public and

protected members become private members of the derived class.

In all cases, private members of a base class remain private to the

base class, and are not inherited.As you become more familiar with

C++, the meaning of public, protected, and private will become second

nature. For now, if you are unsure what precise effect an access

specifier has, write a short sample program as an experiment and

observe the results.

Inheriting Multiple Base Classes

It is possible for a derived class to inherit two or more base

classes. For example, in this short program, derived inherits both base1

and base2:

// An example of multiple base classes.
#include <iostream.h>
class base1
{

protected:
int x;
public:
void showx() { cout<< x << "\n"; }

};
class base2
{

protected:
int y;
public:
void showy() { cout<< y << "\n"; }

};
// Inherit multiple base classes.
class derived: public base1, public base2
{
public:

void set(inti, int j) { x = i; y = j; }
};

intmain()
{

derived ob;

ob.set(10, 20); // provided by derived
ob.showx(); // from base1
ob.showy(); // from base2

return 0;

}

As this example illustrates, to cause more than one base class to be

inherited, you must use a comma-separated list. Further, be sure to use

an access specifier for each base class inherited.

