A diag zigal

oAl aag

2023 - Juail

‘SLMAS\ / 'Bh}.“;e.m\

Operator Overloading
Using Member
Functions

Operator Overloading
Tips and Restrictions

Nonmember Operator
Functions

Overloading the
Relational and Logical
Operators

(1)
C++ from the Ground Up, Herbert
Scheldt, Third Edition , McGraw-
Hill/Osborne,2013.

A gt agliny Bl I fplly SN (3 el kel

Chapliter Fowr

Lfll-

Base Class Accesr Conlrol

~ College of Computer Sciences and Information Technology

Inheritance

When one class inherits another, the members of the base class
become members of the derived class. The access status of the base
class members inside the derived class is determined by the access
specifier used for inheriting the base class. The base class access
specifier must be public, private, or protected. If the access specifier is

not used, then it is private by default if the derived class is a class. If the
derived class isa struct, then public is the default in the absence of an
explicit access specifier. Let’s examine the ramifications of using public
or private access. (The protected specifieris described in the next
section.)

When a base class is inherited as public, all public members of the
base class become public members of the derived class. In all cases,
the private elements of the base class remain private to that class, and
are not accessible by members of the derived class. For example, in the
following program, the public members of base become public members
of derived. Thus, they are accessible by other parts of the program.

#include <iostream.h>
class base

{
inti, j;
public:
void set(int a, int b) { 1 = a; j = b; }
void show() { cout<<ik< " " << j << "\n"; }
}i
class derived : public base
{
int k;
public:

derived(int x) { k = x; }
void showk () { cout<< k << "\n"; }

College of Computer Sciences and Information Technology

3 Chapliter Fowr
};
intmain ()
{
derived ob(3) ;
ob.set(l, 2); // access member of base
ob.show () ; // access member of base
ob.showk () ; // uses member of derived class
return O;
}

When a base class is inherited as private, its public members
become private members of the derived class.Since set() and show()
are inherited as public, they can be called on an object of type derived
from within main(). Since 1 and j are specified as private, they remain
private to base.

The opposite of public inheritance is private inheritance. When the
base class is inherited as private, then all public members of the base
class become private members of the derived class. For example, the
program shown next will not compile, because both set()and show()
are now private members of derived, and thus cannot be called from
main().

// This program won't compile.
#include <iostream.h>
class base

{
inti, j;
public:
void set(int a, int b) { 1 = a; j = b; }
void show() { cout<<i<k< " " << j << "\n"; }
}s

// Public elements of base are private in derived.
class derived : private base

{

int k;

College of Computer Sciences and Information Technology

Inheritance

public:
derived(int x) { k = x; }
void showk () { cout<< k << "\n"; }
};
intmain ()

{
derived ob (3) ;

ob.set(1l, 2); // Error, can't access set()
ob.show(); // Error, can't access show()

return 0;

}

The key point to remember is that when a base class is inherited
as private, public members of the base class become private members
of the derived class. This means that they are still accessible by
members of the derived class, but cannot be accessed by other parts of
your program.

Using protected Members

In addition to public and private, a class member can be declared as
protected. Further, a base class can be inherited as protected. Both of
these actions are accomplished by using the protected access specifier.
The protected keyword is included in C++ to provide greater flexibility

for the inheritance mechanism.

When a member of a class is declared as protected, that member is
not accessible to other, non-member elements of the program. With one
important exception, access to a protected member is the same as access
to a private member; it can be accessed only by other members of the
class of which it is a part. The sole exception to this rule is when a
protected member is inherited. In this case, a protected member differs
substantially from a private one.

As you know, a private member of a base class 1s not accessible

by any other partof your program, including any derived class.
However, protected members behave differently. When a base class is

5

inherited as public, protected members in the base class become
protected members of the derived class, and are accessible to the
derived class. Therefore, by using protected, you can create class
members that are private to their class, but that can still be inherited
and accessed by a derived class.Consider this sample program:

Chapliter Fowr

#include <iostream.h>
class base

{
protected:
inti, j; // private to base, but accessible to derived
public:
void set(int a, int b) { 1 = a; j = b; }
void show() { cout<<ik< " " << j << "\n"; }

}i
class derived : public base

{
int k;
public:
// derived may access base's i and j
void setk() { k = i*j; }
void showk () { cout<< k << "\n"; }
}i
intmain ()
{

derived ob;

ob.set (2, 3); // OK, known to derived
ob.show(); // OK, known to derived
ob.setk() ;

ob.showk () ;

return O;

}
Here, because base is inherited by derived as public, and because 1

and j are declared as protected, derived’s function setk() may access
them. If 1 and j were declared as private by base, then derived would not
have access to them, and the program would not compile.

College of Computer Sciences and Information Technology

6

When a derived class is used as a base class for another derived
class, then any protected member of the initial base class that is
inherited (as public) by the first derived class can be inherited again, as
a protected member, by a second derived class. For example, the
following program is correct, and derived2 does, indeed, have access to
1and j:

Inheritance

#include <iostream.h>
class base

{
protected:
inti, j;
public:
void set(int a, int b) { 1 = a; j = b; }
void show() { cout<<ik< " " << j << "\n"; }
}i

// i and j inherited as protected.
class derivedl : public base

{
int k;
public:
void setk() { k = i*j; } // legal
void showk () { cout<< k << "\n"; }
};

// i and j inherited indirectly through derivedl.
class derived2 : public derivedl
{
int m;
public:
void setm() { m = i-j; } // legal
void showm() { cout<< m << "\n"; }
}s;
intmain ()
{
derivedl obl;
derived2 ob2;

obl.set (2, 3);
obl.show() ;

obl
obl

ob2

ob2
ob2

Chapliter Fowr

.setk () ;
.showk () ;

.set (3, 4);
ob2.
ob2.
ob2.

show () ;
setk () ;
setm() ;

.showk () ;
.showm() ;

return O;

}

When a base class is inherited as private, protected members of the

base class become private members of the derived class. Therefore, in
the preceding example, if basewere inherited as private, then all
members of base would become private members of derivedl, meaning
that they would not be accessible to derived2. (However, 1 and j would
still be accessible to derivedl.) This situation is illustrated by the
following program, which i1s in error (and won’t compile). The

comments describe each error.

// This program won't compile.
#include <iostream.h>
class base

{
protected:
inti, j;
public:
void set(int a, int b) { 1 = a; j = b; }
void show() { cout<<ik< " " << j << "\n"; }
}s;

// Now, all elements of base are private in derivedl.
class derivedl : private base

{

int k;
public:
// This is legal because i and j are private to

College of Computer Sciences and Information Technology

S

Inheritance

derivedl. void setk() { k = i*j; } // OK
void showk () { cout<< k << "\n"; }

};
// Access to i, j, set(), and show() not inherited.
class derived2 : public derivedl

{
int m;
public:
// Illegal because i and j are private to derivedl.
void setm() { m = i-j; } // error
void showm() { cout<< m << "\n"; }
}i
intmain ()
{

derivedl obl;
derived2 ob2;
obl.set(1l, 2); // Error, can't use set()

obl.show() ; // Error, can't use show()
ob2.set (3, 4); // Error, can't use set()
ob2.show () ; // Error, can't use show()
return O;

}

Even though base is inherited as private by derivedl, derivedl still
has access to the public and protected elements of base. However, it
cannot pass this privilege along. This is the reason that protected is part
of the C++ language. It provides a means of protecting certain members
from being modified by non-member functions, but allows them to be
inherited.

The protected specifier can also be used with structures. It cannot
be used with a union, however, because a union cannot inherit another
class or be inherited. (Some compilers will accept its use in a union
declaration, but because unions cannot participate in inheritance,
protected is the same as private in this context.)

The protected access specifier may occur anywhere in a class
declaration, although typically it occurs after the (default) private

" College of Computer Sciences and Information Technology

9 Chapliter Fowr

members are declared, and before the public members. Thus, the most
common full form of a class declaration is

class class-name

{
private members
protected:
protected members
public:
public members

}i

Of course, the protected category 1s optional.

College of Computer Sciences and Information Technology

m

Conslrvctors, Destrvclors, and Inheritance

) — Chaplier Four

Constructors, Destructors, and Inheritance

There are two important questions that arise relative to
constructors and destructors when inheritance is involved. First, when
are base class and derived class constructors and destructors called?
Second, how can parameters be passed to a base class constructor? This
section answers these questions.

When Constructors and Destructors Are Executed

It is possible for a base class, a derived class, or both, to contain a
constructor and/or destructor. It is important to understand the order in
which these are executed when an object of a derived class comes into
existence and when it goes out of existence.Examine this short program:

#include <iostream.h>
class base
{
public:
base () { cout<< "Constructing base\n"; }
~base () { cout<< "Destructing base\n"; }
};
class derived: public base
{
public:
derived () { cout<< "Constructing derived\n"; }
~derived() { cout<< "Destructing derived\n"; }
};
intmain ()
{
derived ob;
// do nothing but construct and destruct ob
return O;

College of Computer Sciences and Information Technology

102

As the comment in main() indicates, this program simply constructs
and then destroys an object called ob, which is of class derived. When
executed, this program displays:

Inheritance

Constructing base
Constructing derived
Destructing derived
Destructing base

As you can see, the constructor of base is executed, followed by the
constructor of derived. Next (since ob is immediately destroyed in this
program), the destructor of derived is called, followed by that of base.

The results of the foregoing experiment can be generalized as
follows: When an object of a derived class is created, the base class
constructor 1s called first, followed by the constructor for the derived
class. When a derived object is destroyed, its destructor is called first,
followed by the destructor for the base class. Put differently,
constructors are executed in the order of their derivation. Destructors are
executed in reverse order of derivation.

If you think about it, it makes sense that constructor functions are
executed in the order of their derivation. Because a base class has no
knowledge of any derived class, any initialization it needs to perform is
separate from, and possibly prerequisite to, any initialization performed
by the derived class. Therefore, it must be executed first.

Likewise, it is quite sensible that destructors be executed in reverse
order of derivation. Since the base class underlies a derived class, the
destruction of the base class implies the destruction of the derived
class. Therefore, the derived destructor must be called before the object
is fully destroyed.In the case of a large class hierarchy (i.e., where a
derived class becomes the base class for another derived class), the
general rule applies: Constructors are called in order of derivation,
destructors in reverse order. For example, this program

College of Computer Sciences and Information Technology

108 ——— Chaplier Four

#include <iostream.h>
class base
{
public:
base () { cout<< "Constructing base\n"; }
~base () { cout<< "Destructing base\n"; }

};

class derivedl : public base

public:
derivedl () { cout<< "Constructing derivedl\n"; }
~derivedl () { cout<< "Destructing derivedl\n"; }
};
class derived2: public derivedl
{
public:
derived2 () { cout<< "Constructing derived2\n"; }
~derived2 () { cout<< "Destructing derived2\n"; }
}s;
intmain ()
{
derived2 ob;// construct and destruct ob
return O0;

}
displays this output:

Constructing base
Constructing derivedl
Constructing derived2
Destructing derived2
Destructing derivedl
Destructing base

The same general rule applies in situations involving multiple base
classes. For example, this program

#include <iostream.h>
class basel

{

public:

~ College of Computer Sciences and Information Technology

104

Inheritance

basel () { cout<< "Constructing basel\n"; }
~basel () { cout<< "Destructing basel\n"; }
};
class base2
{
public:
base2 () { cout<< "Constructing base2\n"; }
~base2 () { cout<< "Destructing base2\n"; }
}s;
class derived: public basel, public base2
{
public:
derived () { cout<< "Constructing derived\n"; }
~derived() { cout<< "Destructing derived\n"; }
};
intmain ()
{
derived ob;// construct and destruct ob
return O;

}
produces this output:

Constructing basel
Constructing base2
Constructing derived
Destructing derived
Destructing base2
Destructing basel

As you can see, constructors are called in order of derivation, left
to right, as specified in derived’s inheritance list. Destructors are called
in reverse order, right to left. This means that if base2 were specified
before basel in derived’s list, as shown here:

class derived: public base2, public basel {

then the output of the preceding program would look like this:

Constructing base2
Constructing basel
Constructing derived

105 e Chaplier Four

Destructing derived
Destructing basel
Destructing base2

College of Computer Sciences and Information Technology

Copy construct

College of Computer Sciences and Information Technology

A Closer Look at Classes 32

One of the more important forms of an overloaded constructor is the
copy constructor. As earlier examples have shown, problems can occur
when an object is passed to, or returned from, a function. As you will
learn in this section, one way to avoid these problems is to define a
copy constructor, which is a special type of overloaded constructor.

To begin, let’s restate the problems that a copy constructor is
designed to solve. When an object is passed to a function, a bitwise (i.e.,
exact) copy of that object is made and given to the function parameter
that receives the object. However, there are cases in which this identical
copy 1s not desirable. For example, if the object contains a pointer to
allocated memory, then the copy will point to the same memory as does
the original object.

Therefore, if the copy makes a change to the contents of this
memory, it willbe changed for the original object, too! Furthermore,
when the function terminates, the copy will be destroyed, thus causing
its destructor to be called. This may also have undesired effects on the
original object.

A similar situation occurs when an object is returned by a function.
The compiler will generate a temporary object that holds a copy of the
value returned by the function. (This is done automatically, and is
beyond your control.) This temporary object goes out of scope once the
value is returned to the calling routine, causing the temporary object’s
destructor to be called. However, if the destructor destroys something
needed by the calling routine, trouble will follow.

At the core of these problems is the creation of a bitwise copy of the
object. To prevent them, you need to define precisely what occurs when
a copy of an object 1s made so that you can avoid undesired side
effects. The way you accomplish this is by creatinga copy constructor.

Before we explore the use of the copy constructor, it is important
for you to understandthat C++ defines two distinct types of situations
in which the value of one object is given to another. The first situation
is assignment. The second situation is initialization, which can occur
three ways:

33

When one object explicitly initializes another, such as in a
declaration

4
® When a copy of an object is passed as a parameter to a function

When a temporary object is generated (most commonly, as a
return value)

The copy constructor applies only to initializations. It does not apply
to assignments.The most common form of copy constructor is shown
here:

classname (constclassname&obij) ({
// body of constructor

}

Here, obj i1s a reference to an object that is being used to initialize
another object. For example, assuming a class called myclass, and y as
an object of type myclass, then the following statements would invoke
the myclass copy constructor:

myclass x = y; // y explicitly initializing x
funcl (y) ; // y passed as a parameter
y = func2(); // y receiving a returned object

In the first two cases, a reference to y would be passed to the copy
constructor. In the third, a reference to the object returned by func2()
would be passed to the copy constructor.To fully explore the value of
copy constructors, let’s see how they impact each of the three situations
to which they apply.

College of Computer Sciences and Information Technology

A Closer Look at Classes 34
cIII!! Constructors and Parameters

When an object is passed to a function as an argument, a copy of that
object is made. If a copy constructor exists, the copy constructor is
called to make the copy. Here is a program that uses a copy constructor
to properly handle objects of type myclass when they are passed to a
function. (This 1s a corrected version of the incorrect program shown
earlier in this chapter.)

// Use a copy constructor to construct a parameter.
#include <iostream.h>

#include <stdlib.h>

class myclass

{

int *p;
public:

myclass(int i); // normal constructor
myclass (constmyclassé&ob) ; // copy constructor
~myclass () ;
intgetval() { return *p; }

}i

// Copy constructor.
myclass: :myclass (constmyclassé&obi)
{
P = new int;
*p = *obj.p; // copy value
cout<< "Copy constructor called.\n";
}
// Normal Constructor.
myclass: :myclass (int 1)
{
cout<< "Allocating p\n";
P = new int;

*p:i;
}
myclass: :~myclass ()
{

cout<< "Freeing p\n";

College of Computer Sciences and Information Technology

39

delete p;
}

// This function takes one object parameter.
void display (myclassob)

{
cout<<ob.getval() << '\n';

}

int main()

{
myclass a(10) ;

display (a) ;
return O;

}
This program displays the following output:

Allocating p

Copy constructor called.
10

Freeing p

Freeing p

Here 1is what occurs when the program is run: When a is created
inside main(), the normal constructor allocates memory and assigns the
address of that memory to a.p. Next, a is passed to ob of display().
When this occurs, the copy constructor is called, and a copy of a is
created. The copy constructor allocates memory for the copy, and a
pointer to that memory is assigned to the copy’s p member. Next, the
value stored at the original object’s p is assigned to the memory pointed
to by the copy’s p. Thus, the areas of memory pointed to by a.p and ob.p
are separate and distinct, but the valuesthat they point to are the same. If
the copy constructor had not been created, then the default bitwise copy
would have caused a.p and ob.p to point to the same memory.

When display() returns, ob goes out of scope. This causes its
destructor to be called, which frees the memory pointed to by ob.p.
Finally, when main() returns, a goes out of scope, causing its destructor
to free a.p. As you can see, the use of the copy constructor has
eliminated the destructive side effects associated with passing an object
to a function.

College of Computer Sciences and Information Technology

A Closer Look at Classes 36
cIII!! Constructors and Initializations

The copy constructor is also invoked when one object is used to
initialize another. Examine this sample program:

// The copy constructor is called for initialization.

#include <iostream.h>

#include <stdlib.h>

class myclass

{
int *p;

public:

myclass (int i); // normal constructor
myclass (constmyclassé&ob); // copy constructor
~myclass () ;
intgetval() { return *p; }

};

// Copy constructor.
myclass: :myclass (constmyclassé&ob)
{
P = new int;
*p = *ob.p; // copy value
cout<< "Copy constructor allocating p.\n";

// Normal constructor.

myclass: ::myclass (int i)

{
cout<< "Normal constructor allocating p.\n";
P = new int;
*p = i;

}

myclass: :~myclass ()

{

cout<< "Freeing p\n";
delete p;

37
int main()

{

myclass a(1l0); // calls normal constructor
myclass b = a; // calls copy constructor
return O;

}

This program displays the following output:

Normal constructor allocating p.
Copy constructor allocating p.
Freeing p

Freeing p

As the output confirms, the normal constructor is called for object a.
However, when a is used to initialize b, the copy constructor is invoked.
The wuse of the copy constructor ensures that b will allocate its own
memory. Without the copy constructor, b would simply be an exact copy
of a, and a.p would point to the same memory as b.p.

Keep in mind that the copy constructor is called only for
initializations. For example, the following sequence does not call the
copy constructor defined in the preceding program:

myclass a(2), b(3);
// ... b= a;

In this case, b = a performs the assignment operation, not a copy
operation.

A Closer Look at Classes 38
Ilsing I:ony Constructors When an 0|li8l:l IS Returned

The copy constructor is also invoked when a temporary object is
created as the result of a function returning an object. Consider this short

program:
#include <iostream>
class myclass {
public:
myclass () { cout<< "Normal constructor.\n"; }
myclass (constmyclassé&obj)
{ cout<< "Copy constructor.\n"; }

};

myclass £()
{

myclassob; // invoke normal constructor
return ob; // implicitly invoke copy constructor

}

int main()

{

myclass a; // invoke normal constructor
a = £f(); // invoke copy constructor
return 0;

}

This program displays the following output:

Normal constructor.
Normal constructor.
Copy constructor.

Here, the normal constructor is called twice: once when a is created
inside main(), and once when ob is created inside f(). The copy
constructor is called when the temporary object is generated as a return
value from f().Although copy constructors may seem a bit esoteric at
this point, virtually every real-world class will require one, due to the
side effects that often result from the default bitwise copy.

39
The this Keyword

Each time a member function is invoked, it is automatically passed a
pointer, calledzhis, to the object on which it is called. The this pointer is
an implicit parameter toall member functions. Therefore, inside a
member function, this may be used to refer to the invoking object.As
you know, a member function can directly access the private data of its
class. For example, given this class,

class cl

{int 1i;

void £() { ... };
//

};

inside f(), the following statement can be used to assign i the valuelO:
i=10;
In actuality, the preceding statement is shorthand for this one:
this->i = 10;

To see how the this pointer works, examine the following short
program:

#include <iostream.h>
class cl
{int i;
public:
void load i(intval) { this->i = val; }
// same as i = val
intget i() { return this->i; }// same as return i
|
int main()
{cl o;
o.load i(100);
cout<<o.get i();
return O0;

}

This program displays the number
100.

Friend function

A Closer Look at Classes 32

2.1Introduction

This chapter continues the discussion of the class begun in Lecture

1. It discusses friend functions, overloading constructors, passing
objects to functions, andreturning objects. It also examines a special
type of constructor, called the copy constructor, which i1s used when a
copy of an object is needed. The chapter concludes with a description of
the this keyword.

2.2 Friend Functions

It is possible to allow a non-member function access to the private
members of a class by declaring it a friend of the class. To make a
function a friend of a class, include its prototype in the public section of
the class declaration and precede it with the friend keyword. For
example, in this fragment frnd() is declared to be a friend of the class cl:

class cl

{

// ... public:

friend void frnd(cl ob) ;
};

The friend keyword gives a non- member function access to the
private membersof a class.As you can see, the keyword friend precedes
the rest of the prototype. A function may be a friend of more than one
class.Here is a short example that uses a friend function to access the
private members of myclass:

// Demonstrate a friend function.
#include <iostream.h>
class myclass
{
int a, b;
public:
myclass(int i, int j) { a=i; b=j; }

33 ChapterTwo

friend int sum(myclass x);
// sum() is a friend of myclass
};
// Note: sum() is not a member function of any class.
int sum(myclass x)

{
/* Because sum() is a friend of myclass,
it can directly access a and b. */
return x.a + x.b;

}

int main()

{

myclass n(3, 4);
cout<< sum(n) ;
return O;

}

In this example, the sum() function is not a member of myclass.
However, it still has full access to the private members of myclass.
Specifically, it can access x.a and x.b. Notice also that sum() is called
normally—mnot in conjunction with an object and the dot operator. Since
it 1s not a member function, it does not need to be qualified with an
object’s name. (In fact, it cannot be qualified with an object.)
Typically, a friend function i1s passed one or more objects of the class
for which it is a friend, as is the case with sum().

While there is nothing gained by making sum() a friend rather than a
member function of myclass, there are some circumstances in which
friend functions are quite valuable. First, friends can be useful for
overloading certain types of operators. Second, friend functions simplify
the creation of some types of I/O functions. Both of these uses are
discussed later in this course.

Thethird reason that friend functions may be desirable is that, in
some cases, two or more classes may contain members that are
interrelated relative to other parts of your program. For example,

College of Computer Sciences and Information Technology

A Closer Look at Classes 34

imagine two different classes that each display a pop-up message on the
screen when some sort of event occurs. Other parts of your program that
are designed to write to the screen will need to know whether the pop-up
message 1s active, so that no message is accidentally overwritten. It 1s
possible to create a member function in each class that returns a value
indicating whether a message is active or not; however, checking this
condition involves additional overhead (i.e., two function calls, not
just one). If the status of the pop-up message needs to be checked
frequently, the additional overhead may not be acceptable. However, by
using a friend function, it is possible to directly check the status of each
object by calling only one function that has access to both classes. In
situations like this, a friend function helps you write more efficient
code. The following program illustrates this concept.

// Use a friend function.
#include <iostream.h>
constint IDLE=0;
constint INUSE=1;

class C2; // forward declaration

class C1l

{

int status; // IDLE if off, INUSE if on screen
public:

void set status(int state);
friend int idle(Cl a, C2 b);
};

class C2

{int status; // IDLE if off, INUSE if on screen
public:

void set status(int state);
friend int idle(Cl a, C2 b);
};

void Cl::set_status(int state)
{

status = state;

}

39 ChapterTwo

void C2::set status(int state)

{

status = state;

}

// idle() is a friend of Cl and C2.

int idle(Cl a, C2 b)

{
if(a.status || b.status) return 0O;
else return 1;

}

int main()

{
Cl x; C2 y;
x.set status (IDLE) ;
y.set status (IDLE) ;

if (idle(x, y)) cout<< "Screen Can Be Used.\n";
else cout<< "Pop-up In Use.\n";

x.set status (INUSE) ;

if(idle(x, y)) cout<< "Screen Can Be Used.\n";
else cout<< "Pop-up In Use.\n";

return O;

}

The output produced by this program is shown here:

Screen Can Be Used.
Pop-up In Use.

Because idle() is a friend of both C1 and C2 it has access to the
private status memberdefined by both classes. Thus, a single call to
idle() can simultaneously check the status of an object of each class.

NOTE: A forward declaration declares a class type-name prior to
the definition of the class.

Technology

A Closer Look at Classes 36

Notice that this program uses a forward declaration (also called a
forward reference) for the class C2. This 1s necessary because the
declaration of idle() inside C1 refers to C2 before it is declared. To
create a forward declaration to a class, simply use the form shown in
this program.A friend of one class can be a member of another. For
example, here is the preceding program rewritten so that idle() is a
member of C1. Notice the use of the scope resolution operator when
declaring idle() to be a friend of C2.

/* A function can be a member of one class and a
friend of another. */
#include <iostream.h>
constint IDLE=0;
constint INUSE=]1;
class C2; // forward declaration
class C1l
{
int status; // IDLE if off, INUSE if on screen
public:
void set status(int state);
int idle(C2 b); // now a member of Cl
}s
class C2
{
int status; // IDLE if off, INUSE if on screen
public:
void set status(int state);
friend int Cl::idle(C2 b); // a friend, here
}s;
void Cl::set status(int state)

{

status = state;

}

void C2::set_status(int state)

{

status = state;

}

37 ChapterTwo

// idle() is member of Cl, but friend of C2.
int Cl::idle(C2 Db)
{
if(status || b.status) return O;
else return 1;
}
int main()
{
Cl x; C2 y;
x.set_status (IDLE) ;
y.set status (IDLE) ;
if(x.idle(y)) cout<< "Screen Can Be Used.\n";
else cout<< "Pop-up In Use.\n";

x.set status (INUSE) ;

if(x.idle(y)) cout<< "Screen Can Be Used.\n";
else cout<< "Pop-up In Use.\n";

return 0;

}

Since idle() is a member of C1, it can access the status variable of
objects of typeCl1 directly. Thus, only objects of type C2 need be passed
to idle().

Chaplter Fowr

-AHN

Granting Accesr

Inheritance

When a base class is inherited as private, all members of that class
(public, protected, or private) become private members of the derived
class. However, in certain circumstances, you may want to restore one
or more inherited members to their original access specification. For

example, you might want to grant certain public members of the base
class public status in the derived class, even though the base class is
inherited as private. You have two ways to accomplish this. First, you
may use a using declaration within the derived class. This is the
method recommended by Standard C++ for use in new code. However, a
discussion of using is deferred until later in this book when namespaces
are examined. (The primary reason for using is to provide support for
namespaces.) The second way to adjust access to an inherited member
is to employ an access declaration. Access declarations are still
supported by Standard C++, but they have recently been deprecated,
which means that they should not be used for new code. Since they
arestill used in existing code, a discussion of access declarations is
presented here. An access declaration takes this general form:

base-class: :member;

The access declaration restores the access level of an inherited
member to what it was 1n the base class.

The access declaration is put under the appropriate access heading
in the derivedclass. Notice that no type declaration is required (or
allowed) in an access declaration. To see how an access declaration
works, let’s begin with this short fragment:

class base

{

public:
int j;// public in base

College of Computer Sciences and Information Technology

Chaplter Fowr

}i
// Inherit base as private.
class derived: private base

{

public:

// here is access declaration base::j;
// make j public again

//

}i

Because base is inherited as private by derived, the public variable j
is made a private variable of derived. However, the inclusion of this

access declaration
base::j;

under derived’s public heading restores j to its public status.You can
use an access declaration to restore the access rights of public and
protected members. However, you cannot use an access declaration to
raise or lower a member’s access status. For example, a member
declared as private within a base class cannot be made public by a
derived class. (Allowing this would destroy encapsulation!), The
following program illustrates the use of access declarations:

#include <iostream.h>
class base
{
inti; // private to base
public:
int j, k;
void seti(int x) { 1 = x; }
intgeti() { return i; }
}i
// Inherit base as private.
class derived: private base
{
public:
/* The next three statements override base's
inheritance as privateand restore j, seti()

College of Computer Sciences and Information Technology

Inheritance

and geti() to public access. */

base::j; // make j public again - but not k
base::seti; // make seti() public
base::geti; // make geti() public

// base: :i;

// illegal, you cannot elevate access

int a; // public

}i

intmain ()

{

derived ob;

//ob.i = 10;//illegal because i is private in derived
ob.j =
//ob.k = 30; // illegal because k is private in derived
ob.a = 40; // legal because a is public in derived
ob.seti(10);

cout<<ob.geti() << " " <<o0b.j<< " " <<ob.a;

return O;

}

20; // legal because j is made public in derived

Notice how this program uses access declarations to restore j,
seti(), and geti() to public status. The comments describe various other
access restrictions.C++ provides the ability to adjust access to inherited
members to accommodate those special situations in which most of an
inherited class is intended to be made private, but a few members are to
retain their public or protected status. It is best to use this feature

sparingly.

Chaplter Fowr

College of Computer Sciences and Information Technology

m

Inheritance

10] —m—m————— Chaplier Four

4.1 ntroduction

Inheritance 1s one of the cornerstones of OOP because it allows the
creation of hierarchical classifications. With inheritance, it is possible to
create a general classthat defines traits common to a set of related items.
This class may then be inherited by other, more specific classes, each
adding only those things that are unique to the inheriting class.

In standard C++ terminology, a class that is inherited is referred to
as a base class. The class that does the inheriting is called the derived
class. Further, a derived class can be used as a base class for another
derived class. In this way, a multilayered class hierarchy can be
achieved.

4.2 introducing Inheritance

C++ supports inheritance by allowing one class to incorporate
another class into its declaration. Before discussing the theory and
details, let’s begin with an example of inheritance. The following class,
called road vehicle, very broadly defines vehicles that travel on the
road. It stores the number of wheels a vehicle has and the number of
passengers it can carry.

class road vehicle
{
int wheels;
int passengers;
public:
void set wheels(intnum) { wheels = num; }
intget wheels() { return wheels; }
void set _pass(intnum) { passengers = num; }
intget pass() { return passengers; }
};
You can use this broad definition of a road vehicle to help define
specific types of vehicles. For example, the fragment shown here

inherits road vehicle to create a class called truck.

College of Computer Sciences and Information Technology

102

Inheritance

class truck : public road vehicle

{

int cargo;
public:

void set _cargo(int size) { cargo = size; }
intget cargo() { return cargo; }
void show() ;

}i

Because truck inherits road vehicle, truck includes all of

road vehicle. It then adds cargo to it, along with the supporting member

functions.Notice how road vehicle is inherited. The general form for
inheritance 1s shown here:

class derived-class : access base-class

{

body of new class

}

Here, access is optional. However, if present, it must be either
public, private, orprotected. You will learn more about these options
later in this chapter. For now,all inherited classes will use public. Using
public means that all the public members of the base class will also be
public members of the derived class. Therefore, in the preceding
example, members of truck have access to the public member functions
of road vehicle, just as if they had been declared inside truck. However,
truck does not have access to the private members of road vehicle.

For example, truck does not have access to wheels.Here is a
program that uses inheritance to create two subclasses of road vehicle.
One is truck and the other is automobile.

// Demonstrate inheritance.

#include <iostream.h>

// Define a base class for vehicles.
class road vehicle

{

int wheels;

College of Computer Sciences and Information Technology

10 ——m—4—4— Chapiter Fouwr

int passengers;

public:
void set wheels(intnum) { wheels = num; }
intget wheels() { return wheels; }
void set _pass(intnum) { passengers = num; }
intget pass() { return passengers; }

}i
// Define a truck.
class truck : public road vehicle
{
int cargo;
public:
void set cargo(int size) { cargo = size; }
intget _cargo() { return cargo; }
void show() ;
};
enum type {car, wvan, wagon};
// Define an automoble.
class automobile : public road vehicle
{
enum type car_type;
public:
void set type(type t) { car type = t; }
enum type get type() { return car_ type; }
void show() ;
}i
void truck: :show ()
{
cout<< "wheels: " <<get wheels() << "\n";
cout<< "passengers: " <<get pass() << "\n";
cout<< "cargo capacity in cubic feet: "
<< cargo << "\n";

void automobile: :show ()

{

cout<< "wheels: " <<get wheels() << "\n";
cout<< "passengers: " <<get pass() << "\n";
cout<< "type: ";

104

Inheritance

switch (get type())

{
case van: cout<< "van\n";break;
case car: cout<< "car\n" ;break;
case wagon: cout<< "wagon\n";

}

intmain ()

{
truck tl, t2;
automobile c;

tl.set_wheels(18);
tl.set pass(2);
tl.set cargo(3200);

t2.set_wheels(6) ;
t2.set _pass(3);
t2.set cargo(1200);

tl.show() ;
cout<< "\n"; t2.show();
cout<< "\n";

c.set wheels (4);
c.set pass(6) ;
c.set_type(van);

c.show() ;
return O;

}
The output from this program is shown here:

wheels: 18 passengers: 2
cargo capacity in cubic feet: 3200

wheels: 6 passengers: 3
cargo capacity in cubic feet: 1200

wheels: 4 passengers: 6 type: van

When a base class is inherited as public, its public members become
public members of the derived class.As this program shows, the major
advantage of inheritance is that it lets you create a base class that can be
incorporated into more specific classes. In this way, each derived class
can be precisely tailored to its own needs while still being part of a
general classification.

Chaplter Fowr

One other point: Notice that both truck and automobile include a
member function called show(), which displays information about each
object. This illustrates another aspect of polymorphism. Since each
show() is linked with its own class, the compiler can easily tell which
one to call for any given object.Now that you have seen the basic
procedure by which one class inherits another, let’s examine inheritance
in detail.

College of Computer Sciences and Information Technology

Operalor Overloading

Operator Qverloading 62
3.1 Introduction

InC++, operators can be overloaded relative to class types that you

define. The principal advantage to overloading operators is that it allows
you to seamlesslyintegrate new data types into your programming
environment.

Operator overloading allows you to define the meaning of an
operator for a particular class. For example, a class that defines a linked
list might use the + operator to add an object to the list. A class that
implements a stack might use the + to push an object onto the stack.
Another class might use the + operator in an entirely different way.
When an operator is overloaded, none of its original meaning is lost. It is
simply that a new operation, relative to a specific class, is defined.
Therefore, overloading the + to handle a linked list, for example, does
not cause its meaning relative to integers (i.e., addition) to change.

Operator overloading is closely related to function overloading. To
overload an operator, you must define what the operation means relative
to the class to which it is applied. To do this, you create an operator
function, which defines the action of the operator. The general form of
an operator function is

type classname: :operator# (arg-list)

{

operation relative to the class

}

Operators are overloaded using an operator function.Here, the
operator that you are overloading is substituted for the #, and type is the
type of value returned by the specified operation. Although it can be of
any type you choose, the return value is often of the same type as the
class for which the operator is being overloaded. This correlation
facilitates the use of the overloaded operator in compound expressions.

College of Computer Sciences and Information Technology

63 Chapter Three
The specific nature of arg-list is determined by several factors, as you
will soon see.

Operator functions can be either members or nonmembers of a
class. Nonmember operator functions are often friend functions of the
class, however. Although similar, there are some differences between
the way a member operator function is overloaded and the way a
nonmember operator function is overloaded. Each approach is described
here.

3.2 Operator Overioading Using Member Functions

To begin our examination of operator overloading using member
functions, we will start with a simple example. The following program
creates a class called three d, which maintains the coordinates of an

object in three-dimensional space. This program overloads the + and the
= operators relative to the three d class. Examine it closely:

// Overload operators using member functions.
#include <iostream.h>
class three d
{
int x, y, z; // 3-D coordinates
public:
three d() { x =y =2z = 0; }
three d(inti, int j, int k)
{x=1i; y=3; z =k; }
three d operator+(three_d op2);
three d operator=(three d op2);
void show() ;

};

// Overload +.
three dthree d::operator+(three_d op2)
{

three d temp;
temp.x = X + op2.x; // These are integer additions
temp.y =y + op2.y; // and the + retains itsoriginal

College of Computer Sciences and Information Technology

Operalor Qverloading 64

temp.z = z + op2.z; // meaning relative to them.
return temp;

}

// Overload assignment.

three dthree d::operator=(three d op2)

{
X = op2.x; // These are integer assignments
y = op2.y; // and the = retains its original
z = op2.z; // meaning relative to them.
return *this;

}

// Show X, Y, Z coordinates.

void three_ d: :show()

{
coutkK x <« ", ";
coutK y << ", ";
cout<< z << "\n";

}

intmain ()

{
three da(1, 2, 3), b(10, 10, 10), c;

.show() ;
.show () ;

oo

= a + b; // add a and b together
.show() ;

=a+ b+ c; // add a, b and c together
.show() ;

0 0n0an

c =b = a; // demonstrate multiple assignment
c.show() ;
b.show() ;

return 0O;

}

This program produces the following output:

~ College of Computer Sciences and Information Technology

65 Chapter Three

1, 2, 3

10, 10, 10

11, 12, 13

22, 24, 26

1, 2, 3

1, 2, 3

As you examined the program, you may have been surprised to see

that both operatorfunctions have only one parameter each, even though
they overload binary operations. Thereason for this apparent
contradiction is that when a binary operator is overloaded using a
member function, only one argument is explicitly passed to it. The other
argument 1s implicitly passed using the this pointer. Thus, in the line

temp.x = x + op2.x;

the x refers to this—>x, which is the x associated with the object that
invokes the operator function. In all cases, it 1s the object on the left side
of an operation that causes the call to the operator function. The object
on the right side is passed to the function.

In general, when you use a member function, no parameters are used
when overloading a unary operator, and only one parameter is required
when overloading a binary operator. (You cannot overload the ternary ?
operator.) In either case, the object that invokes the operator function is
implicitly passed via the this pointer.

To understand how operator overloading works, let’s examine the
preceding program carefully, beginning with the overloaded operator +.
When two objects of type three d are operated on by the + operator, the
magnitudes of their respective coordinates are added together, as shown
in operator+(). Notice, however, that this functiondoes not modify the
value of either operand. Instead, an object of type three d, which
contains the result of the operation, is returned by the function. To
understand whythe + operation does not change the contents of either
object, think about the standard arithmetic + operation, as applied like
this: 10 + 12. The outcome of this operation is22, but neither 10 nor 12
is changed by it. Although there is no rule that prevents an overloaded
operator from altering the value of one of its operands, it is best for the

College of Computer Sciences and Information Technology

Operator Qverloading 66

actions of an overloaded operator to be consistent with its original
meaning.

Notice that operator+() returns an object of type three d. Although
the function could have returned any valid C++ type, the fact that it
returns a three d object allows the + operator to be used in compound
expressions, such as at+b+c. Here, a+b generates a result that is of type
three d. This value can then be added to c. Had any other type of value
been generated by a+b, such an expression would not work.

In contrast with the + operator, the assignment operator does, indeed,
cause one of its arguments to be modified. (This is, after all, the very
essence of assignment.) Since the operator=() function is called by the
object that occurs on the left side of the assignment, it is this object that
is modified by the assignment operation. Most often, the return value of
an overloaded assignment operator is the object on the left, after the
assignment has been made. (This is in keeping with the traditional
action of the = operator.) For example, to allow statements like

a=b=c=4d;

it is necessary for operator=() to return the object pointed to by this,
which will be the object that occurs on the left side of the assignment
statement. This allowsa string of assignments to be made. The
assignment operation is one of the most important uses of the this
pointer.

College of Computer Sciences and Information Technology

67 Chaplter Three

// This program uses friend operator++() functions.
#include <iostream.h>
class three d
{
int x, y, z; // 3-D coordinates
public:
three d() { x =y z =0; }
three d(inti, int j, int k)
{(x=1i; y=3; z =k; }

friend three d operator+(three d opl, three_d op2);
three d operator=(three d op2);

// use a reference to overload the ++
friend three d operator++(three dé&opl) ;
friend three d operator++(three d&opl, intnotused);

void show () ;

}

// This is now a friend function.
three d operator+(three d opl, three d op2)
{

three_d temp;

temp.x = opl.x + op2.x;

temp.y = opl.y + op2.y;

temp.z = opl.z + op2.z;

return temp;
}
// Overload the =.
three dthree d::operator=(three_d op2)
{

X = op2.x;

y = op2.y;

z = op2.z;

return *this;

~ College of Computer Sciences and Information Technology

Operator Qverloading 68

/* Overload prefix ++ using a friend function.
This requires the use of a reference parameter. */
three d operator++ (three dé&opl)
{

opl.x++; opl.y++; opl.z++; return opl;
}

/* Overload postfix ++ using a friend function.
This requires the use of a reference parameter. */
three_d operator++(three dé&opl, intnotused)
{
three d temp = opl;
opl.x++; opl.y++; opl.z++;
return temp;
}
// Show X, Y, Z coordinates.
void three_ d: :show()
{
coutK x <« ", ";
coutK y <« ", ";
cout<< z << "\n";
}
intmain ()
{
three da(1, 2, 3), b(10, 10, 10), c;

a.show() ;
b.show() ;

c =a+b; // add a and b together c.show() ;

c=a+Db+c; // add a, b and c together
c.show() ;

c =b = a; // demonstrate multiple assignment
c.show() ;

b.show() ;

++c; // prefix increment c.show();

~ College of Computer Sciences and Information Technology

69 Chapter Three

c++; // postfix increment c.show() ;

= ++c; // a receives c's value after increment
.show(); // a and c

.show(); // are the same

= c++; // a receives c's value prior to increment
.show(); // a and c

.show(); // now differ

O Qe e

return O;

}
3.8 Overioading the Relational and Logical Operators

Overloading a relational or logical operator, such as ==, <, or && is
a straightforward process. However, there is one small distinction. As

you know, an overloaded operator function usually returns an object of
the class for which it 1s overloaded. However, an overloaded relational
or logical operator typically returns a true or false wvalue. This is in
keeping with the normal usage of these operators, and allows them to be
used in conditional expression.Here is an example that overloads the =
= relative to the three d class:

//overload ==.
bool three d::operator==(three d op2)
{
if((x == op2.x) && (y == op2.y) && (z == op2.z))
return true;
else
return false;

}

Once operator==() has been implemented, the following fragment
is perfectly valid:

three d a, b;

//
if(a == b) cout<< "a equals b\n";

College of Computer Sciences and Information Technology

Operator Qverloading 70

else cout<< "a does not equal b\n";

Because == returns a bool result, its outcome can be used to control
an if statement. As an exercise, try 1implementing several of the
relational and logical operators relative to the three d class.

College of Computer Sciences and Information Technology

71 Chapter Three

College of Computer Sciences and Information Technology

Order Matters

When overloading binary operators, remember that in many cases,
the orderof the operands does make a difference. For example, while A
+ B is commutative,A — B is not. (That is, A — B is not the same as B —
A!) Therefore, when implementing overloaded versions of the non-

commutative operators, you must remember which operand is on the
left and which is on the right. For example, in this fragment, subtraction
is overloaded relative to the three d class:

// Overload subtraction.
three dthree d::operator-(three d op2)

{
three_d temp;

temp.x = x - op2.x;

temp.y =y - op2.y;
temp.z = z - op2.z;
return temp;

}

Remember, it is the operand on the left that invokes the operator
function.The operand on the right is passed explicitly. This is why x —
op2.x is the proper order for the subtraction.For example, in the
following program, a friend is used instead of a member function to
overload the + operation:

// Overload + using a friend.
#include <iostream.h>
class three_d

int x, y, z; // 3-D coordinates
public:

three d() { x =y =2z =0; }
three d(inti, int j, int k)
{x=1i; y =3/, z = k;}

friend three d operator+(three d opl, three d op2);
three d operator=(three d op2);

nces and Information Technology

63 Chapter Three
void show() ;

}

// This is now a friend function.
three d operator+(three d opl, three_d op2)

{
three d temp;

temp.x = opl.x + op2.x;
temp.y = opl.y + op2.y;
temp.z = opl.z+ op2.z;
return temp;

}

// Overload assignment.
three dthree d::operator=(three d op2)
{
X = Op2.X; Yy = 0op2.y; z2 = op2.z;
return *this;
}
// Show X, Y, Z coordinates.
void three_d: :show()
{
coutkK x <« ", ";
coutK y << ", ";
cout<< z << "\n";

intmain ()

{
three da(1, 2, 3), b(10, 10, 10), c;

a.show() ;
b.show() ;

c =a+Db; // add a and b together
c.show() ;

c=a+b+c; // add a, b and c together
c.show() ;

College of Computer Sciences and Information Technology

c = b = a;// demonstrate multiple assignment
c.show() ;
b.show() ;

return O;

}

As you can see by looking at operator+(), now both operands are
passed to it. The left operand is passed in opl, and the right operand in
op2.In many cases, there is no benefit to using a friend function rather
than a member function when overloading an operator. However, there
is one situation in which a friend function is quite useful: when you
want an object of a built-in type to occur on the left side of a binary
operator. To understand why, consider the following.

As you know, a pointer to the object that invokes a member
operator function is passed in this. In the case of a binary operator, it is
the object on the left that invokes the function. This is fine, provided
that the object on the left defines the specified operation. For example,
assuming some object called Ob, which has integer addition defined for
it, then the following is a perfectly valid expression:

Ob + 10; // will work

Because the object Ob is on the left side of the + operator, it
invokes its overloaded operator function, which (presumably) is capable
of adding an integer value to some element of Ob. However, this
statement won’t work:

10 + Ob; // won't work

The problem with this statement is that the object on the left of the
+ operator is an integer, a built-in type for which no operation involving
an integer and an object of Ob’s type is defined.

The solution to the preceding problem is to overload the + using

two friend functions. In this case, the operator function is explicitly

65 Chapter Three
passed both arguments, and it is invoked like any other overloaded
function, based upon the types of its arguments. One version of the +
operator function handles object + integer, and the other handles integer
+ object. Overloading the + (or any other binary operator) using friend

functions allows a built-in type to occur on the left or right side of the
operator. The following sample program shows you how to accomplish
this:

#include <iostream.h>
class CL
{
public:
int count;
CL operator=(CL obj) ;
friend CL operator+ (CL ob, inti);
friend CL operator+(inti, CL ob) ;

};

CL CL: :operator=(CL obj)
{
count = obj.count;
return *this;
}
// This handles ob + int.
CL operator+ (CL ob, inti)

{
CL temp;

temp.count = ob.count + i;
return temp;

}

// This handles int + ob.

CL operator+(inti, CL ob)

{
CL temp;

temp.count = ob.count + 1i;

return temp;

}

intmain ()

{
CL O;

O.count = 10;
cout<<O.count<< " "; // outputs 10

O =10 + O0; // add object to integer
cout<<O.count<< " "; // outputs 20

O =0+ 12; // add integer to object
cout<<O.count; // outputs 32

return 0O;
}
As you can see, the operator+() function is overloaded twice, to
accommodate the two ways in which an integer and an object of type
CL can occur in the addition operation.

m

Passing Parameters to Barse Class Conslruciors

101 - Chapter Four

So far, none of the preceding examples have included constructors
requiring arguments. In cases where only the constructor of the derived

class requires one or more arguments, you simply use the standard
parameterized constructor syntax. But how do you pass arguments to a
constructor in a base class? The answer is to use an expanded form of
the derived class’ constructor declaration, which passes arguments along
to one or more base class constructors. The general form of this
expanded declaration is shown here:

derived-constructor (arg-list) : basel (arg-list),
base2 (arg-list), ... baseN(arg-list)

{

body of derived constructor

}

Here, basel throughbaseN are the names of the base classes

inherited by the derived class. Notice that a colon separates the
constructor declaration of the derived class from the base classes, and
that the base classes are separated from each other by commas, in the
case of multiple base classes.Consider this sample program:

#include <iostream.h>

class base

{

protected:

inti;

public:

base (int x)

{ i = x; cout<< "Constructing base\n"; }
~base () { cout<< "Destructing base\n"; }
};

class derived: public base

{
int j;

College of Computer Sciences and Information Technology

102

Inheritance
public:
// derived uses x; y is passed along to base.
derived(int x, int y): base(y)
{ j = x; cout<< "Constructing derived\n"; }
~derived() { cout<< "Destructing derived\n"; }
void show() { cout<<ik< " " << j << "\n"; }
};
intmain ()
{
derived ob (3, 4);
ob.show(); // displays 4 3
return O;

}
Here, derived’s constructor is declared as taking two parameters, x

and y. However,derived() uses only x; y is passed along to base(). In
general, the constructor of thederived class must declare the
parameter(s) that its class requires, as well as any required by the base
class. As the preceding example illustrates, any parameters required by
the base class arepassed to it in the base class’ argument list, specified
after the colon.Here 1is a sample program that uses multiple base
classes:

#include <iostream.h>
class basel
{
protected:
inti;
public:
basel (intx) {i = x;cout<<"Constructing basel\n";}
~basel () { cout<< "Destructing basel\n"; }
};
class base2
{
protected:
int k;
public:
base2 (intx) {k = x;cout<<"Constructing base2\n";}
~base2 () { cout<< "Destructing base2\n"; }

College of Computer Sciences and Information Technology

103 - Chapter Four
}i
class derived: public basel, public base2
{
int j;
public:

derived(int x, int y, int z): basel (y), base2(z)
{ j = x; cout<< "Constructing derived\n"; }
~derived() { cout<< "Destructing derived\n"; }
void show()
{ cout<<i<< " " << j << " " << k << "\n"; }

};

intmain ()

{

derived ob (3, 4, 5);

ob.show () ; // displays 4 3 5

return O;

}

It is important to understand that arguments to a base class
constructor are passed via arguments to the derived class’ constructor.
Therefore, even if a derived class’ constructor does not use any
arguments, it still must declare one or more arguments if the base class
takes one or more arguments. In this situation, the arguments passed to
the derived class are simply passed along to the base. For example, in
the following program, the constructor of derived takes no arguments,
but basel() and base2() do:

#include <iostream.h>
class basel
{
protected:
inti;
public:
basel (int x)
{ i=x; cout<< "Constructing basel\n"; }
~basel () { cout<< "Destructing basel\n"; }

};

College of Computer Sciences and Information Technology

104

Inheritance

class base2
{
protected:
int k;
public:
base2 (int x)
{ k = x; cout<< "Constructing base2\n"; }
~base2 () { cout<< "Destructing base2\n"; }

}i

class derived: public basel, public base2

{
public:
/* Derived constructor uses no parameters,
but still must be declared as taking them to pass
them along to base classes.*/
derived(int x, int y): basel (x), base2(y)
{ cout<< "Constructing derived\n"; }
~derived() { cout<< "Destructing derived\n"; }
void show () { cout<<i<< " " << k << "\n"; }

};

intmain ()

{
derived ob (3, 4);
ob.show() ; // displays 3 4
return O;

}

The constructor of a derived class is free to use any and all
parameters that it is declared as taking, whether or not one or more are
passed along to a base class. Put differently, just because an argument
is passed along to a base class does not preclude its use by the derived
class as well. For example, this fragment is perfectly valid:

class derived: public base

{
int j;
public:
// derived uses both x and y

College of Computer Sciences and Information Technology

105 e Chaplier Four

derived(int x, int y): base(x, y)
{ j = x*y; cout<< "Constructing derived\n"; }

//

}
One final point to keep in mind when passing arguments to base

class constructors: An argument being passed can consist of any
expression valid at the time, including function calls and variables. This
is in keeping with the fact that C++ allows dynamic initialization.

College of Computer Sciences and Information Technology

Using Member Functionsto Overload

Unary Operators

Operator Qverloading 62

Using Member Functionsto Overioad Unary Operators

You may also overload unary operators, such as ++, — —, or the unary
— or +. As stated earlier, when a unary operator is overloaded by means
of a member function, no object is explicitly passed to the operator
function. Instead, the operation is performed on the object that generates
the call to the function through the implicitly passed this pointer.For
example, here is an expanded version of the previous example program.
This version defines the increment operation for objects of type three d.

// Overload a unary operator.
#include <iostream.h>
class three_d
{
int x, y, z; // 3-D coordinates
public:

three d() { x =y z =0; }
three d(inti, int j, int k)
{x=1; y = 3j; z = k; }
three d operator+(three d op2);
three d operator=(three_d op2);
three d operator++(); // prefix version of ++
void show() ;
} o
// Overload +.
three dthree d::operator+(three d op2)
{
three d temp;
temp.x = X + op2.x; // These are integer additions
temp.y =y + op2.y;// and the + retains its original
temp.z = z + op2.z; // meaning relative to them.
return temp;
}
// Overload assignment.
three dthree d::operator=(three d op2)

X = op2.x; // These are integer assignments

College of Computer Sciences and Information Technology

63 Chapter Three

y = op2.y; // and the = retains its original
z = op2.z; // meaning relative to them.
return *this;
}
// Overload the prefix version of ++.
three dthree d::operator++ ()
{
x++; // increment x, y, and z
y++;
z++;
return *this;
}
// Show X, Y, Z coordinates.
void three_ d: :show()
{
coutkK x <« ", ";
coutK y << ", ";
cout<< z << "\n";

}

intmain ()

{
three da(1, 2, 3), b(10, 10, 10), c;
a.show() ;
b.show() ;

c =a+Db; // add a and b together
c.show() ;

c=a+b+c; // add a, b and c together
c.show() ;

c =b = a; // demonstrate multiple assignment
c.show() ;
b.show() ;

++c; // increment c
c.show() ;

return 0O;

}
The output from the program is shown here.

College of Computer Sciences and Information Technology

Operalor Qverloading 64

1, 2, 3

10, 10, 10

11, 12, 13

22, 24, 26

1, 2, 3

1, 2, 3

2, 3, 4

As the last line of the output shows, operator++() increments each
coordinate in the object and returns the modified object. Again, this is in
keeping with the traditional meaning of the ++ operator.As you know,
the ++ and — — have both a prefix and a postfix form. For example,
both++0O;andO++;are valid uses of the increment operator. As the
comments in the preceding program state, the operator++() function
defines the prefix form of ++ relative to the three d class. However, it is
possible to overload the postfix form as well. The prototype for the
postfix form of the ++ operator, relative to the three d class, is shown
here:

three dthree d::operator++ (intnotused) ;

The increment and decrement operators have both a prefix and
postfix form. The parameternotused is not used by the function, and
should be ignored. This parameter is simply a way for the compiler to
distinguish between the prefix and postfix forms of the increment
operator. (The postfix decrement uses the same approach.)Here is one
way to implement a postfix version of ++ relative to the three d class:

// Overload the postfix version of ++.
three dthree d::operator++ (intnotused)

{

three d temp = *this; // save original value

x++; // increment x, y, and z

y++;

z++;

return temp; // return original value

65 Chapter Three

Notice that this function saves the current state of the operand by

using the statement

three d temp = *this;

and then returns temp. Keep in mind that the traditional meaning of
a postfix increment is to first obtain the value of the operand, and then to
increment the operand. Therefore,it is necessary to save the current state
of the operand and return its original value, before it is incremented,
rather than its modified value.

The following version of the original program implements both
forms of the ++operator:

// Demonstrate prefix and postfix ++.
#include <iostream.h>
class three_ d
{
int x, y, z; // 3-D coordinates
public:
three d() { x =y =2z = 0; }
three d(inti, int j, int k)
{(x=1i; y=3; z =k; }

three d operator+(three_d op2);

three d operator=(three_d op2);

three d operator++(); // prefix version of ++
three d operator++ (intnotused) ;

// postfix version of ++

void show () ;

};

// Overload +.
three dthree d::operator+(three d op2)

{

three d temp;

temp.x = X + op2.x; // These are integer additions
temp.y =y + op2.y; // and the + retains itsoriginal

Operator Qverloading 66

temp.z = z + op2.z; // meaning relative to them.
return temp;
}
// Overload assignment.
three dthree d::operator=(three_d op2)
{
X = op2.x; // These are integer assignments
y = op2.y; // and the = retains its original
z = op2.z; // meaning relative to them.
return *this;

// Overload the prefix version of ++.
three dthree d::operator++ ()
{

x++; // increment x, y, and z

y++;

z++;

return *this; // return altered value
}
// Overload the postfix version of ++

three dthree d::operator++ (intnotused)

{

three d temp = *this; // save original value

x++; // increment x, y, and z

y++;

z++;

return temp; // return original value
}
// Show X, ¥, Z coordinates.
void three_d: :show()
{

cout x <« ", ",

cout<kK y <« ", ";

cout<< z << "\n";

}

intmain ()

{
three da(1l, 2, 3), b(10, 10, 10), c;

67

c.
b.

Chapler Three
.show () ;
.show () ;
= a + b; // add a and b together c.show();
=a+ b+ c; // add a, b and c together c.show();
= b = a; // demonstrate multiple assignment
show () ;
show () ;

++c; // prefix increment c.show() ;
c++; // postfix increment c.show() ;

a
a
(e
a
a

= ++c; // a receives c's value after increment
.show(); // a and c

.show(); // are the same 13

= c++; // a receives c's value prior to increment
.show(); // a and ¢ c.show(); // now differ

return O;

}

The output is shown here.

1

2, 3

As the last four lines show, the prefix increment increases the value

of ¢ before its value is assigned to a, and the postfix increment increases
c after its value is assigned to a.

Remember that if the ++ precedes its operand, the operator++() is
called. If it follows its operand, the operator++(intnotused) function is
called. This same approach is also used to overload the prefix and
postfix decrement operator relative to any class. Youmight want to try
defining the decrement operator relative to three d as an exercise.

Operator Overioading Tips and Restrictions

The action of an overloaded operator, as applied to the class for
which it 1s defined, need not bear any relationship to that operator’s

s and Information Technology

Operator Qverloading 68

default usage, as applied to C++’s built-in types. For example, the <<
and >> operators, as applied to cout and cin, have little in common with
the same operators applied to integer types. However, to maintain the
transparency and readability of your code, an overloaded operator
should reflect, when possible, the spirit of the operator’s original use.
For example, the + relative to three dis conceptually similar to the +
relative to integer types. There would be little benefit in defining the +
operator relative to some class in such a way that it acts more the way
you would expect the || operator, for instance, to perform. The central
concept here is that, while you can give an overloaded operator any
meaning you like, for clarity, it is best when its new meaning is related
to its original meaning.

There are some restrictions to overloading operators. First, you
cannot alter the precedence of any operator. Second, you cannot alter
the number of operands required by the operator, although your operator
function could choose to ignore an operand. Finally, except for the
function call operator (discussed later), operator functions cannot have
default arguments.The only operators that you cannot overload are
shown here: (. :: .* ?). Nonmember binary operator functions
have two parameters. Nonmember unary operator functions have one
parameter.

You can overload an operator for a class by using a nonmember
function, which is often a friend of the class. As you learned earlier,

nonmember functions, including friend functions, do not have a this
pointer. Therefore, when a friend is used to overload an operator, both
operands are passed explicitly when a binary operator is overloaded,
and a single operand is passed when a unary operator is overloaded. The
only operators that cannot be overloaded using nonmember functions are
= (), [], and —>.

~ College of Computer Sciences and Information Technology

overload ++ operator

Operator Quverloading

Using a Friend to Overioad a Unary Operator

You can also overload a unary operator by using a friend function.
However,doing so requires a little extra effort. To begin, think back to

the original version of the overloaded ++ operator relative to the three d
class that was implemented as a member function. It is shown here for
your convenience:

// Overload the prefix form of ++.
three_dthree d::operator++ ()

{
X++; y++; z++;
return *this;

}

As you know, every member function receives as an implicit
argument this, which is a pointer to the object that invokes the function.
When a unary operator is overloaded by use of a member function, no
argument is explicitly declared. The only argument needed in this
situation is the implicit pointer to the invoking object. Any changes
made to the object’s data will affect the object on which the operator
function is called. Therefore, in the preceding function, x++ increments
the x member of the invoking object.

Unlike member functions, a nonmember function, including a
friend, does not receive a this pointer, and therefore cannot access the
object on which it was called. Instead, a friend operator function is
passed its operand explicitly. For this reason, trying to create a friend
operator++() function, as shown here, will not work:

// THIS WILL NOT WORK
three d operator++(three_d opl)

{
opl.x++; opl.y++; opl.z++; return opl;

}

College of Computer Sciences and Information Technology

This function will not work because only a copy of the object that
activated the call to operator++() is passed to the function in parameter
opl. Thus, the changes inside operator++() will not affect the calling
object, only the local parameter.

If you want to use a friend function to overload the increment or
decrement operators, you must pass the object to the function as a
reference parameter. Since a reference parameter is an implicit pointer
to the argument, changes to the parameter will affect the argument.
Using a reference parameter allows the function to increment or
decrement the object used as an operand.

When a friend is used for overloading the increment or decrement
operators, the prefix form takes one parameter (which is the operand).
The postfix form takes two parameters. The second is an integer, which
is not used.Here 1is the entire three d program, which uses a friend
operator++() function. Notice that both the prefix and postfix forms are
overloaded.

// This program uses friend operator++() functions.
#include <iostream.h>
class three d
{
int x, y, z; // 3-D coordinates
public:
three d() { x =y z =0; }
three d(inti, int j, int k)
{(x=1i; y=3; z =k; }

friend three d operator+(three d opl, three_d op2);
three d operator=(three_d op2);

// use a reference to overload the ++
friend three d operator++(three dé&opl) ;
friend three d operator++(three dé&opl, intnotused);

void show() ;

}

iences and Information Technology

Operator Quverloading

// This is now a friend function.
three d operator+(three d opl, three_d op2)
{

three_d temp;

temp.x = opl.x + op2.x;

temp.y = opl.y + op2.y;

temp.z = opl.z + op2.z;

return temp;
}
// Overload the =.
three dthree d::operator=(three_d op2)
{

X = op2.x;

y = op2.y;

z = op2.z;

return *this;

}

/* Overload prefix ++ using a friend function.
This requires the use of a reference parameter. */
three d operator++ (three_dé&opl)
{

opl.x++; opl.y++; opl.z++; return opl;
}

/* Overload postfix ++ using a friend function.
This requires the use of a reference parameter. */
three d operator++(three_dé&opl, intnotused)
{
three d temp = opl;
opl.x++; opl.y++; opl.z++;
return temp;
}
// Show X, Y, Z coordinates.
void three d: :show()
{
coutkKk x <« ", ";
coutK y << ", ";
cout<< z << "\n";

}

intmain ()

{
three da(1, 2, 3), b(10, 10, 10), c;

a.show() ;
b.show() ;

c =a+Db; // add a and b together c.show() ;

=a+ b+ c; // add a, b and c together
c.show() ;

0]

c =b = a; // demonstrate multiple assignment
c.show() ;
b.show() ;

++c; // prefix increment c.show();

c++; // postfix increment c.show() ;

a = ++c; // a receives c's value after increment
a.show(); // a and c

c.show(); // are the same

a = c++; // a receives c's value prior to increment
a.show(); // a and c

c.show(); // now differ

return O;

}
Overioading the Relational and Logical Operators

Overloading a relational or logical operator, such as ==, <, or && 1is
a straightforward process. However, there is one small distinction. As
you know, an overloaded operator function usually returns an object of
the class for which it is overloaded. However, an overloaded relational
or logical operator typically returns a true or false wvalue. This 1is in

keepmg with the normal usage of these operators, and allows them to be

~ College of Computer Sciences and Information Technology

Operator Quverloading

used in conditional expression.Here is an example that overloads the =
= relative to the three d class:

//overload ==.
bool three d::operator==(three_ d op2)
{
if((x == op2.x) && (y == op2.y) && (z == op2.z))
return true;
else
return false;

}
Once operator==() has been implemented, the following fragment
is perfectly valid:

three d a, b;

//
if(a == b) cout<< "a equals b\n";
else cout<< "a does not equal b\n";

Because == returns a bool result, its outcome can be used to control
an if statement. As an exercise, try 1implementing several of the
relational and logical operators relative to the three d class.

a.!’JHIIH!!!I"H-

Using protected for Inheritance of a Base Class

In addition to specifying protected status for members of a class,

the keyword protected can also be used to inherit a base class. When a
base class is inherited as protected, all public and protected members of
the base class become protected members of the derived class. Here is
an example:

// Demonstrate inheriting a protected base class.
#include <iostream.h>
class base
{
inti;
protected:
int j;
public:
int k;
void seti(int a) { 1 = a; }
intgeti() { return i; }
}s;
// Inherit base as protected.
class derived : protected base
{
public:
void setj(int a) { j = a; } // j is protected here
void setk(int a) { k = a; } // k is also protected
intgetj () { return j; }
intgetk () { return k; }
};
intmain ()
{
derived ob;
/* This next line is illegal because seti() is
a protected member of derived, which makes it
inaccessible outside of derived. */
// ob.seti (10);

//cout<<ob.geti() ;illegal -- geti() is protected
//ob.k = 10; also illegal because k is protected

// these next statements are OK
ob.setk (10) ;
cout<<ob.getk () << ' ';
ob.setj(12);
cout<<ob.getj() << ' ';

return O;

}
As you can see by reading the comments in this program, k, j,

seti(), and geti()in base become protected members of derived. This
means that they cannotbe accessed by code outside of derived. Thus,
inside main(), references to these members through ob are illegal.

Reviewing public, protected, and private

Because the access rights as defined by public, protected, and

private are fundamental to C++ programming, let’s review their
meanings.

When a class member is declared as public, it can be accessed by
any other part of a program. When a member is declared as private, it
can be accessed only by members of its class. Further, derived classes
do not have access to private base class members. When a member is
declared as protected, it can be accessed only by members of its class,
or by derived classes. Thus, protected allows a member to be inherited,
but to remain private within a class hierarchy.

When a base class is inherited by use of public, its public
members become public members of the derived class, and its protected
members become protected members of the derived class.

When a base class is inherited by use of protected, its public and
protected members become protected members of the derived class.

When a base class is inherited by use of private, its public and
protected members become private members of the derived class.

In all cases, private members of a base class remain private to the
base class, and are not inherited.As you become more familiar with
C++, the meaning of public, protected, and private will become second
nature. For now, if you are unsure what precise effect an access
specifier has, write a short sample program as an experiment and
observe the results.

It is possible for a derived class to inherit two or more base
classes. For example, in this short program, derived inherits both basel
and base2:

// An example of multiple base classes.
#include <iostream.h>
class basel
{

protected:

int x;

public:

void showx () { cout<< x << "\n"; }
};
class base2
{

protected:

int y;

public:

void showy() { cout<< y << "\n"; }
};
// Inherit multiple base classes.
class derived: public basel, public base2
{
public:

void set(inti, int j) { x =1i; y = Jj; }

};

intmain ()

{

derived ob;

ob.set (10, 20); // provided by derived

ob.showx () ; // from basel
ob.showy () ; // from base2
return O;

}

As this example illustrates, to cause more than one base class to be
inherited, you must use a comma-separated list. Further, be sure to use
an access specifier for each base class inherited.

