
Mobile Applications Development Dr. Mazin A. Mohammed

1

Chapter One

1.1 MOBILE SYSTEM

Mobile system includes mobile device, mobile operating system, wire-

less network, mobile app, and app platform.

The mobile device consists of not only smartphones but also other

handheld computers, such as a tablet and Personal Digital Assistant

(PDA). A mobile device has a mobile operating system and can run

various types of apps. The most important parts of a mobile device are

Central Processing Unit (CPU), memory, and storage, which are

similar to a desktop but perform weaker than an on premise device.

Most mobile devices can also be equipped with Wi-Fi, Bluetooth, and

Global Positioning System (GPS) capabilities, and they can connect

to the Internet, other Bluetooth-capable device and the satellite

navigation system. Meanwhile, a mobile device can be equipped with

some human - computer interaction capabilities, such as camera,

microphone, audio systems, and some sensors.

All kinds of mobile devices run on various mobile Operating Systems

(OS), also referred to mobile OSs, such as iOS from Apple Inc.,

Android from Google Inc., Windows Phone from Microsoft, Blackberry

from BlackBerry, Firefox OS from Mozilla, and Sailfish OS from Jolla.

Mobile devices actually run two mobile operating systems. Besides the

mobile operating systems that end users can see, mobile devices also

run a small operating system that manages everything related to the

radio. Because of the high time dependence, the system is a low-level

Mobile Applications Development Dr. Mazin A. Mohammed

2

proprietary real-time operating system. However, this low-level system is

security vulnerable if some malicious base station gains high levels of

control over the mobile.

Mobile devices can connect to the Internet by wireless networks. There

are two popular wireless networks for mobile devices: cellular

network and Wi-Fi. The cellular network is peculiar to portable

transceivers. A cellular network is served by at least one fixed-location

transceiver, called cell site or base station, as shown in Fig. 1.1. Each

mobile device uses a different set of frequencies from neighboring ones,

which means a mobile device must connect to the base station before it

accesses to the Internet. Similarly, when a mobile device using a

cellular network wants to connect another mobile device, it must

connect to some base stations before it communicates with the target

device via the base stations.

Figure 1.1 Structure of a cellular network.

Figure 1.2 Logo of Wi-Fi.

Mobile Applications Development Dr. Mazin A. Mohammed

3

Wi-Fi is a local area wireless technology, which allows mobile de-

vices to participate in computer networks using 2.4 GHz 1 and 5 GHz

radio bands. Fig. 1.2 represents two common logos of Wi-Fi. Mobile

devices can connect to the Internet via a wireless networking access

point. The valid range of an access point is limited, and the signal

intensity descends as the distance increases. Wi-Fi allows cheaper

deployment of Local Area Networks (LAN), especially for spaces

where cables cannot be run. Wi-Fi Protected Access encryption

(WPA2) is considered a secure approach by providing a strong

passphrase. A Wi- Fi signal occupies five channels in the 2.4 GHz band.

Any two channel numbers differ by five or more. Many newer consumer

devices support the latest 802.11ac 2 standard, which uses the 5 GHz

and is capable of multistation WLAN throughput of at least 1 gigabit

per second.

1. Hz is the unit of frequency in the International System of Units and is

defined as one cycle per second. One gigahertz (GHz) represents 109 Hz.

2. IEEE 802.11ac was approved in January 2014 by IEEE Standards

Association.

Mobile Applications Development Dr. Mazin A. Mohammed

4

A mobile app is a program designed to run on smartphones, tablet

computers, and other mobile devices. Mobile apps emerged in 2008 and

are operated by the owner of the mobile operating systems. Currently,

the most popular digital distribution platforms for mobile apps are App

Store, Google Play, Windows Phone Store, and BlackBerry App World,

as shown in Fig. 1.3. These platforms are developed by Apple Inc.,

Google, Microsoft, and BlackBerry Ltd., respectively, and provide

different apps, which only can be used on their own operating systems.

Figure 1.3 Four dominate platforms for mobile apps.

1.2 MOBILE INTERFACE AND APPLICATIONS

Mobile devices, to some extent, are much more powerful than desk-

tops. They are highly personal, always on, always with users, usually

connected, and directly addressable. Furthermore, they are crawling

with powerful sensors with various functions that detect location, ac-

celeration, orientation, movement, proximity, and surrounding condi-

tions. The portability of mobile devices combined with powerful sensors

makes mobile interface extremely valuable for using mobile devices.

The User Interface (UI) is the look and feel of the on-screen sys- tem,

including how it works, its color scheme, and how it responds to users‟

operation. The interactions include not only users‟ active op- erations,

but also the passive ones. Users‟ passive operations include users‟

Mobile Applications Development Dr. Mazin A. Mohammed

5

locations, movements, and other information that does not need users‟

active operations. We will take telehealth as an example of mobile

interface. Telehealth is the delivery of health-related services and

information via telecommunications technologies [7].

Figure 1.4 Structure of the telehealth systems.

We can separate telehealth system into several modes: store-and-

forward, real-time, remote patient monitoring, and electronic consulta-

tion, as shown in Fig. 1.4. Each mode finish their job respectively and

achieve the whole process of collecting data from users, transmitting

this data to medical or clinical organizations, medical reasoning and

decision, and sending back to users. In the first step, observations of

daily living and clinical data are captured and stored on the mobile

device. All the sensors that collect and record data are heterogeneous

medical devices with different cost and time features. Then the mobile

Mobile Applications Development Dr. Mazin A. Mohammed

6

device transmits this information to the Telehealth pervasive computing

platform and cloud platform by wireless network.

Consequently, main challenges include finding out the approach of

collecting data from users by using sensors and scheduling sensors for

achieving energy-aware purposes. The process of transmitting data is a

part of real-time system. Different to normal real-time systems, the data

transmitting in telehealth is under a wireless condition. Similar to the

first step, there are various network paths with different cost and time

requirements, which results in a great challenge to security and data

integrity.

Furthermore, context-aware medical reasoning and decision is an- other

important issue in telehealth system. Context can refer to real world

characteristics, such as temperature, time or location. Combining with

users‟ personal information, the medical reasoning and decision focus

on data analytic, mining, and profiling issues. In conclusion, all the

challenges mentioned above can be summarized as a general problem:

how to minimize the total cost of heterogeneous telehealth while

finishing the whole diagnosis within certain time constraints .

1.2.1 Optimizations in Mobile Systems

All current mobile devices are battery-powered devices. The high usage of

mobile devices makes them hard to keep on charging like desktops, so the

improvement of battery life on mobile devices is gaining increasing

attention. Besides some energy-saving operations by users, there are

some researches focusing on the optimization in mobile system. The

Mobile Applications Development Dr. Mazin A. Mohammed

7

optimization problem, to some extent, is a tradeoff among multiple

constraints. Before talking about the optimization, let us discuss some

constraints in mobile systems.

The first and the most important constraint is the energy. The second

one is the performance. The third one is the networking speed to the

Internet. The fourth one is the resources of the mobile device. These

constraints are interrelated and mutually restrict to each other. Suppose

in an extreme situation, someone keeps his/her mobile device off. In this

situation, the battery life can last an almost unlimited time without

considering the self-discharge of the battery. However, the mobile

device in that situation is useless, and no one buys a mobile device just

for decoration. It is obvious that the more functions users use, the more

energy devices consume. Similarly, the performance is related to the

networking speed while constrained by the energy and resource. To

solve this problem, many researchers proposed various optimization

algorithms and frameworks.

1.2.2 Mobile Embedded System

An embedded system is a computer system with a dedicated function,

which is embedded as a part of a complete devices including hardware

and mechanical parts. Embedded systems are driving an information

revolution with their pervasion. These tiny systems can be found ev-

erywhere, ranging from commercial electronics, such as cell phones,

cameras, portable health monitoring systems, automobile controllers,

robots, and smart security devices, to critical infrastructure, such as

telecommunication networks, electrical power grids, financial institu-

Mobile Applications Development Dr. Mazin A. Mohammed

8

tions, and nuclear plants. The increasingly complicated embedded

systems require extensive design automation and optimization tools.

Architectural-level synthesis with code generation is an essential stage

toward generating an embedded system satisfying stringent

requirements, such as time, area, reliability, and power consumption,

while keeping the product cost low and development cycle short.

A mobile device is a typical embedded system, which includes mobile

processors, storage, memory, graphics, sensors, camera, battery, and

other chips for various functions. The mobile device is a high-level

synthesis for real-time embedded systems using heterogeneous func-

tional units (FUs). A functional unit is a part of an embedded system,

and it performs the operations and calculations for tasks. As a result, it

is critical to select the best FU type for various tasks.

1.3 MOBILE CLOUD

Limited resources is another critical characteristic of mobile devices.

With the development of cloud computing, mobile cloud computing has

been introduced to the public. Mobile cloud computing, as shown in Fig.

1.5, is the combination of cloud computing, mobile computing, and

wireless networks to bring rich computational resources to the mobile

system. In general, a mobile device with limited resources can utilize

computational resources of various cloud resources to enhance the

computational ability of itself. There are several challenges in mobile

cloud computing, such as moving computational processes from mobile

devices to the cloud, networking latency, context processing, energy

management, security, and privacy.

Mobile Applications Development Dr. Mazin A. Mohammed

9

Figure 1.5 Main structure of mobile cloud computing.

Currently, some research and development addresses execution code

offloading, seamless connectivity and networking latency; however, ef-

forts still lack in other domains.

Architecture. The architecture for a heterogeneous mobile cloud

computing environment is crucial for unleashing the power of mobile

computing toward unrestricted ubiquitous computing.

Energy-aware transmission. Offloading executive codes into the

cloud can greatly reduce the burden and the time of local mobile

devices, but increase the transmission between mobile de- vices and the

cloud. The transmission protocol should be carefully designed for saving

energy.

Context-aware computing. Context-aware and socially aware

computing are inseparable traits of mobile devices. How to achieve the

vision of mobile computing among heterogeneous con- verged networks

among mobile devices is an essential need.

Live Virtual Machine (VM) migration. A virtual machine is an

emulation of a particular computer system. Executive re- source

Mobile Applications Development Dr. Mazin A. Mohammed

10

offloading involves encapsulation of a mobile app in a VM instance, and

migrating in the cloud is a challenging task.

Security and privacy. Due to lack of confidence in the cloud, many

users are concerned with the security and privacy of their information. It

is extremely important to improve the security and the privacy of

mobile cloud computing.

1.3.1 Big Data Application in Mobile Systems

Big data is an all-encompassing term for any collection of data sets so

large or complex that it becomes difficult to process them using

traditional data processing applications. Data sets grow in size in part

because they are increasingly being gathered by mobile devices. There

are 4.6 billion mobile phone subscriptions worldwide and between 1

billion and 2 billion people accessing the Internet.

With billions of mobile devices in the world today, mobile computing is

becoming the universal computational platform of the world. These

mobile devices generate huge amounts of data every day. The rise of

big data demands that we be able to access data resources any- time and

anywhere about every daily thing. Furthermore, these kinds of data are

invaluable and profitable if used well.

However, a few challenges must be addressed to make big data

analytics possible. More specifically, instead of being restricted to single

computers, ubiquitous applications must be able to execute on an

ecosystem of networked devices, each of which may join or leave the

shared ubiquitous space at any time. Moreover, there exist analytics

tasks that are too computationally expensive to be performed on a

Mobile Applications Development Dr. Mazin A. Mohammed

11

mobile device ecosystem. Also, how can we harness the specific

capabilities of each device, including varying display size, input

modality, and computational resources?

1.3.2 Data Security and Privacy Protection in Mobile Systems

Due to the universality and the particularity of mobile systems to desk-

top system, the security in mobile systems is much more complicated

and important than that in desktop systems. The security in mobile

systems can be separated into a few parts.

The first threat is the malware (virus). Mobile malware is a malicious

software that targets mobile devices and results in the collapse of the

system and loss or leakage of information. According to the June 2014

McAfee Labs Threat Report, new mobile malware has in- creased for

five straight quarters, with a total mobile malware growth of 167 percent

in the recent past years. Security threats are also growing with 200 new

threats every minute. In addition to 2.4 mil- lion new samples of mobile

malware, 2013 also brought 1 million new unique samples of

ransomware, 5.7 million new malicious signed binaries, and 2.2 million

new Master Boot Record (MBR)-attack-related samples. The most

frequent two incentives are exfiltrating user information and premium

calls or SMS. Furthermore, there are some other incentives, such as

sending advertisement spam, novelty and amusement, and exfiltrating

user credentials.

Another research issue is the security frameworks or approaches for

detecting mobile malware. There are several approaches for monitoring

mobile devices and detecting mobile malware. The signature- based

Mobile Applications Development Dr. Mazin A. Mohammed

12

solution is an approach used for detecting attacks, but it fails miserably

in detecting the sophisticated cyber-criminal who targets specific

organizations with exploits tailored to those victims. From a process

perspective, when it comes to validating a threat and subsequent root

cause analysis, first-level responders have to send all data that looks

like malicious code to the reverse engineers. This process often causes

delays, because these malware teams are typically inundated.

Meanwhile, with the development of technology, an efficient repre-

sentation of malware behaviors using a key observation often reveals

the malicious intent even when each action alone may appear harm-

less. The logical ordering of an application‟s actions are often over time.

Based on this idea, researchers present various approaches to monitor

and detect malicious behavior using static analysis on data flow.

Next security problem is the data over-collection behaviors in mobile

apps. Current mobile phone operating systems only provide coarsegrained

permissions that determine whether an app can access private

information, while providing few insights into the scope of private in-

formation being used. Meanwhile, only a few users are aware of per-

missions information during the installations. Furthermore, some users

choose to stop installing or to uninstall an app when the system warns

them and asks for permission, even though they know it may bring

some hidden security troubles. For example, we take location data and

analyze the current status and discuss the risks caused by over collect-

ing it.

Location data are the most frequently used data in smartphones. It can

be used in apps whose main functions include maps, photo or-

Mobile Applications Development Dr. Mazin A. Mohammed

13

ganization, shopping and restaurant recommendations, and weather.

From the report of Appthority, 50% of the top iOS free apps and 24%

of the top iOS paid apps track a user‟s location. Although users are

warned whenever an app intends to capture their locations, they usually

choose to allow the permission for the function offered by the app. Apps

that over collect location data can be separated into two main types:

location service as main function and location service as the auxiliary

function. The first type of apps normally ask users for permissions to

their location information, while the other app type can collect users‟

location information without noticing users. The first and the most direct

risk is a physical security concern. Users‟ tracks are easily exposed to

those who have users‟ real-time and accurate location data. Users‟

habits and customs are easy to be inferred by using simple data mining

methods.

Furthermore, solving the data over collection problem is also a research

issue in mobile apps. PiOS, presented by M. Egele et al., to detect

privacy leaks in iOS applications, used static analysis to detect

sensitive data flow to achieve the aim of detecting privacy leaks in ap-

plications in iOS. Sharing a similar goal with PiOS, TaintDroid, is a

system wide dynamic taint tracking multiple sources of sensitive data.

The main strategy of TaintDroid is real-time analysis by leveraging

Android‟s virtualized execution environment. Another secure model via

automated validation uses commodity cloud infrastructure to emulate

smartphones to dynamically track information flows and actions. This

model automatically detects malicious behaviors and sensitive data

misuse via further analysis of dependency graphs based on the tracked

Mobile Applications Development Dr. Mazin A. Mohammed

14

information flows and actions.

These approaches or techniques mentioned above only focus on

monitoring and detecting apps. The prerequisites are that apps already

gain permissions from users. However, these solutions only provide

methods of monitoring and detecting behaviors of data over-collections.

This approach leaves remedying operations to users, such as disabling

the permissions of apps or uninstalling those apps. Users have to

manually disable permissions of these apps that over collect users‟ data

or uninstall them. Furthermore, running these approaches or tools adds

the consumption of energy, which is particularly valuable for smart-

phones with limited resources. As a result, the active method of avoid-

ing data over collection behaviors in mobile apps is a crucial challenge

that needs to be solved.

1.3.3 Concept of Mobile Apps

Mobile apps were originally developed to offer general productivity and

information retrieval, including email, calendar, contacts, and weather

information. However, with the rapid increment of public requirement,

mobile apps expand into lots of other categories, such as games, music,

finance, and news.

A lot of people distinguish apps from applications in a perspective of

device forms. They think that applications are used on a desktop or

laptop, while apps are used on a phone or tablet. Nevertheless, this

simplistic view is too narrow and no longer the consensus, because

apps can be used on desktops, and, conversely, applications can run on

phones. At Gartner Portals, Content and Collaboration Summit 2013,

many experts and developers participated a roundtable discussion titled

Mobile Applications Development Dr. Mazin A. Mohammed

15

“Why an App is not an Application”. They proposed that the difference

between app and application is not about the delivery mechanism and

landed on a consensus that:

App = software designed for a single purpose and performs a single function.

Application = software designed to perform a variety of functions.

From the view of users, they do not care whether it is an app or an

application by definition, and they just want to accomplish their tasks

easily. Meanwhile, from the view of developers, the question they should

answer is not whether they should be building an app or an application,

but how they can combine the best of both into something users love.

1.3.4 Brief Introduction of Android and Its Framework

1.3.4.1 A Brief History of Android

Android was founded in Palo Alto, California, in October 2003 by Andy

Rubin, Rich Miner, Nick Sears, and Chris White in an effort to develop a

smarter mobile device that is more aware of its owner‟s location and

preferences. Then to Google acquired Android Inc. and key employees,

including Rubin, Miner, and White, on August 17, 2005. At Google,

the team, led by Rubin, developed a mobile device platform powered by

the Linux kernel. Google had lined up a series of hardware components

and software partners and signaled to carriers that it was open to

various degrees of cooperation on their part. On November 5, 2007, the

Open Handset Alliance unveiled itself with a goal to develop open

standards for mobile devices. This alliance includes technology

companies, like Google, device manufacturers such as HTC, wireless

carriers such as T-Mobile, and chipset makers such as Qualcomm.

Then, on October 22, 2008, the first commercially available smartphone

Mobile Applications Development Dr. Mazin A. Mohammed

16

running Android came out with a fantasy name: HTC Dream. Since

2008, Android has seen numerous updates that have incrementally

improved the operating system, adding new features and fixing bugs in

previous releases. There are some milestones of Android SDK, such as

Android SDK 2.0 (Eclair) in 2009, Android SDK 3.0 (Honeycomb) for

tablets only in 2011, Android SDK 4.0 (Ice Cream Sandwich) in 2011,

Android 4.1 to 4.3 (Jelly Bean) in 2012, Android SDK 4.4 (KitKat) in

2013, and Android SDK 5.0 (Lollipop) in 2014.

Figure 1.6 Android device distribution in January and July 2012.

Figure 1.7 Android device distribution in August 2012 and August 2013.

Mobile Applications Development Dr. Mazin A. Mohammed

17

Figure 1.8 Android device distribution in January 2014 and January 2015

1.3.4.2 Android Device Distribution

Fig. 1.6 shows the Android device distributions in 2012. We can see

that Android 2.3.3 and 2.2 dominate more than half of the market.

Nonetheless, in the second half of 2012, Android 4.0.3 became more

and more popular. In August 2013, Android 4.0 and 4.1, named Ice

Cream Sandwich and Jelly Bean, respectively, surpassed Android 2.0s

and dominated the Android market, as shown in Fig. 1.7. In January

2014, Android 4.1 to 4.3 still dominated the Android market. However,

after one year, Android 4.4, named KitKat, rapidly occupied 39.1% of

the whole market, as shown in Fig. 1.8.

1.3.4.3 Android SDK

Android SDK is open-source and widely used, which makes it the best

choice for teaching and learning mobile development. Android is a soft-

ware stack for mobile devices, and it includes a mobile operating sys-

tem, middleware, and some key applications. As shown in Fig. 1.9,

there are Linux kernel, libraries, application framework, and

applications and widgets, from bottom to top. We will introduce them

one by one.

Mobile Applications Development Dr. Mazin A. Mohammed

18

The Linux kernel is used to provide some core system services, such as

security, memory management, process management, power

management, and hardware drivers. These services cannot be called by

Android programs directly and is transparent to users. The next layer

above the kernel is the native libraries, which are all written in C or

C++. These libraries are compiled for the particular hardware

architecture used by the mobile devices. They are responsible for

handling structured data storage, graphics, audio, video, and network,

which only can be called by higher-level programs. Meanwhile, Android

run- time is also on top of the kernel, and it includes the Dalvik virtual

machine and the core Java libraries.

What is Dalvik? Dalvik is the process virtual machine in Google’s Android

operating system, which specifically executes applications written for

Android. Programs are written in Java and compiled to bytecode for the

Java virtual machine, which is then translated to Dalvik bytecode and

stored in .dex and .odex files. The compact Dalvik executable format is

designed for systems with limited resources.

The application framework layer provides the high-level building

blocks used for creating application. It comes preinstalled with

Android, but can be extended with its own components as needed. We

will introduce some basic and important building blocks of Android.

Mobile Applications Development Dr. Mazin A. Mohammed

19

Figure 1.9 Android system architecture.

Activity. An activity is a user interface screen. A single activity

defines a single screen with a user interface, and it defines simple life

cycle methods like onCreat, onResume, and onPause for handling

interruptions. Furthermore, applications can define one or more activities

to handle different phases of the program.

Intent. An intent is a mechanism for describing a specific action, such

as “pick a photo”, or “phone home”. In Android, everything goes through

intents, and developer, have plenty of opportunities to replace or reuse

components. Intents can be implicit or explicit. An explicit intent can be

to invoke another screen when a button is pressed on the Activity in

Mobile Applications Development Dr. Mazin A. Mohammed

20

context. An implicit intent is when you create an intent and hand it off

to the system to handle it.

Service. A service is a task that runs in the background without the

user‟s direct interaction. In fact, it does the majority of processing for

an application. Developers can sub-class the Service class to write their

own custom service.

Content Provider. A Content provider is a set of data wrapped up

in a custom Application Programming Interface (API) to read and write

it. This is the best way to share global data between applications. The

content provider provides a uniform singular interface to the content

and data and provides a consistent inter- face to retrieve/store data via

RESTful model supporting create, read, update, and delete (CRUD)

operations.

An Android Emulator, as shown in Fig. 1.10, called Android Vir- tual

Device (AVD), is essential to testing Android app but is not a substitute

for a real device. AVDs have configurable resolutions, RAM, SD cards,

Mobile Applications Development Dr. Mazin A. Mohammed

21

skins, and other hardware. If you have installed Android SDKs, the

AVD Manager can allow you to create AVDs that target any Android

API level.

Figure 1.10 Android Emulator.

An Android emulator has the following basic functions:

 Host computer‟s keyboard works as keyboard of device.

 Host‟s mouse acts as finger.

 Connecting to the Internet using host‟s Internet connection.

 Buttons: Home, Menu, Back, Search, Volume up and down.

 Ctrl-F11 toggle landscape to portrait.

 Alt-Enter toggle full-screen mode.

However, emulators have some limitations. They do not support

for:

 Placing or receiving actual phone calls. USB and Bluetooth

connections.

 Camera or video capture as input. Device-attached headphones.

 Determining connected state.

 Determining battery charge level and AC charging state.

 Determining SD card insert or eject. SD card is a nonvolatile

memory card used extensively in portable devices.

 Simulating the accelerometer.

Then we will introduce the process of producing an Android app. In

Fig. 1.11, an android app is written in Java and generates .java file.

Mobile Applications Development Dr. Mazin A. Mohammed

22

Then javac compiler .java reads source files and transforms java code

into byte code. Then Dalvik takes responsibility for handling these byte

codes combining with other byte codes for other .class files, and

generates classes.dex. At last, classes.dex, resources, and AndroidMan-

ifest.xml cooperate and generate an .apk file, which is a runnable

Android app.

Every Android app must have an AndroidManifest.xml file in its root

directory. The manifest presents essential information about the

application to the Android system, information the system must have

before it can run any of the application‟s code. The AndroidMani-

fest.xml file names the Java package for the application and describes

the components of the application, including the activities, services,

broadcast receivers, and content providers that the application is

composed of. The file also names the classes that implement each of

the components and publishes their capabilities. These declarations let

the Android system know what the components are and under what

conditions they can be launched.

Furthermore, AndroidManifest.xml file determines, which processes will

host application components, and it declares which permissions the

application must have in order to access protected parts of the API and

interact with other application. The file also declares the permission

that others are required to have in order to interact with the

application‟s components and lists the instrumentation classes that

provide profiling and other information as the application is running.

These declarations are present in the manifest only while the

application is published. It declares the minimum level of the Android

Mobile Applications Development Dr. Mazin A. Mohammed

23

API that the application requires, and it lists the libraries that the

application must be linked to.

Figure 1.11 Process of producing an Android app.

Chapter Two

Quick Start on Android

CONTENTS

2.1 Installing Java
2.2 Installing Integrate Development Environment
2.3 Installing Android SDK
2.4 Creating an Android Application
2.5 Android Virtual Device

Before we jump into the Android world, let us have a quick

review about Android installations, project creations, and application

Mobile Applications Development Dr. Mazin A. Mohammed

24

executions. Introduce the process of in- stalling Android and creating

an Android project in this chapter. Main contents include:

Installing Java

Installing integrate development environment

Installing Android SDK

Creating an Android application project

Creating an Android Virtual Device

Running an Android application on the emulator

Running an Android application on a real phone

2.1 INSTALLING JAVA

The Android Software Development Kit (SDK) can work on any oper-

ating system, such as Windows, Linux, and Mac OS X. Before

starting our installing Android and coding programs, we need to

install Java. All the Android development tools require Java, and

programs will be using the Java language. From the latest version of

the Android Developer website, we suggest that Java 7 or 8 is the

best choice.

We recommend getting the Java runtime environment (JRE) 8 from

http://java.com/en/download/manual.jsp. For Windows users, there

are two kinds of versions offered, which are 32-bit and 64-bit. You can

choose the 32-bit download to use with a 32-bit browser, and choose

the 64-bit download to use with a 64-bit browser. For Mac OS users,

there is only one choice, which needs Mac OS X 10.7.3 version and

above. For Linux users, there are four choices, and users can download

one of them based on users‟ operating system.

http://java.com/en/download/manual.jsp

Mobile Applications Development Dr. Mazin A. Mohammed

25

It is not enough to just have a JRE, and you need the full develop-

ment kit. We recommend downloading Java Development Kit (JDK) 8

from http://www.oracle.com/technetwork/java/javase/downloads/jdk8-

downloads-2133151.html. To verify you have the right version, go to

your shell window or terminal and type in “java ?version”. The result

should be something similar to what is shown in Fig. 2.1.

Figure 2.1 Verify the version of Java.

2.2 INSTALLING INTEGRATE DEVELOPMENT ENVIRONMENT

A Java development environment is recommended to make Android

programming easier. There are many optional Integrate Development

Environments (IDE), but we only introduce the most widely used one,

which is Google‟s Android Studio.

Android Studio is the official IDE for Android application develop-

ment. You can download it from http://developer.android.com/sdk/

index.html. After downloading and installing Android Studio, you can

see a similar screen figure, as shown in 2.2, when you open it.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-
http://developer.android.com/sdk/

Mobile Applications Development Dr. Mazin A. Mohammed

26

Figure 2.2 Blank interface of Android Studio.

2.3 INSTALLING ANDROID SDK

The Android SDK includes a comprehensive set of development tools.

These tools include a debugger, libraries, a handset emulator, documen-

tation, sample code, and tutorials. Using the installed IDE, Android

SDK can be downloaded and installed conveniently.

In Android Studio, on the top of the screen, select the Tools menu,

then Android, and then SDK Manager (Tools → Android → SDK Man-

ager), as shown in Fig. 2.3. Then we can see the interface of Android

SDK Manager, similar to Figure 2.4.

Install Android SDK Tools, Android SDK Platform-tools, at least one

Android SDK Build-tools, and at least one Android API, as shown in

Fig. 2.5. API is a set of routines, protocols, and tools for building

Mobile Applications Development Dr. Mazin A. Mohammed

27

software applications. The Android 5.0.1 (API 21) is the newest

version of Android SDK. We suggest installing Documentation for An-

droid SDK, SDK Platform, ARM EABI v7a System Image, and

Google APIs. The documentation for Android SDK can help solve

programming problems. The ARM EABI v7a system image is a

virtual mobile operating system image running on virtual

devices.

Figure 2.3 Android SDK Manager in Android Studio.

2.4 CREATING AN ANDROID APPLICATION

After installing the Android SDK, we can create our first Android

Application.

On the top left corner of the Android Studio, select File, and

then New Project (File → New Project). You will see the “Create

Mobile Applications Development Dr. Mazin A. Mohammed

28

New Project” dialog. In the first step of creating a new Android ap-

plication, type in the application name, such as “My Application,” as

shown in Fig. 2.5. You can type in company domain, such as

“my.android.example.com”. Furthermore, you can choose a directory

to store your Android project.

In the second step of creating a new Android application, you can

choose which kind of device your application runs on. You can choose

more than one device, such as phone and tablet, TV, and Wear. In this

Android application, only select “Phone and Tablet”, as shown in Fig.

2.6.

Figure 2.4 Details of Android SDK Manager in Android Studio.

Mobile Applications Development Dr. Mazin A. Mohammed

29

In the third step of creating a new Android application, you can add

an activity to your Android application, and you have many choices,

such as blank activity, blank activity with fragment, fullscreen activity,

Google maps activity, login activity, navigation drawer activity, setting

activity, and tabbed activity, as shown in Fig. 2.7. In the latest version

of Android Studio, fragment was integrated into activity.

In the last step of creating a new Android application, you can

change the name of the activity added in the third step, as shown in

Fig. 2.8. Then click “finish,” the interface of Android Studio will be

similar to Fig. 2.9.

2.5 ANDROID VIRTUAL DEVICE

After creating the first Android application, we need to create an Android

Virtual Device (AVD) to run it. First, on the top of the interface, select

Tools, then Android, and then AVD Manager (Tools → Android → AVD

Manager). The AVD Manager is similar to Fig. 2.10.

Mobile Applications Development Dr. Mazin A. Mohammed

30

Figure 2.5 First Step of creating an Android Application in Android

Studio.

Click “Create a virtual device”; the interface will be similar to Fig.

2.11. Choose Phone in the category list, and Nexus S as the device.

Then click “Next.”

In the second step of creating an AVD in Android Studio, you can

choose the version of Android SDK which you want to use, as shown

in Fig. 2.12. Then click “Next.”

Mobile Applications Development Dr. Mazin A. Mohammed

31

Figure 2.6 First step of creating an Android application in Android

Studio.

Figure 2.7 Second step of creating an Android application in Android

Studio.

30 ■ Mobile Applications Development with Android

32

Figure 2.8 Last step of creating an Android application in Android

Studio.

Figure 2.9 Interface of Android Studio with a new Android project.

33

Figure 2.10 Android Virtual Device Manager in Android Studio.

In the last step of creating an AVD in Android Studio, you can change

the name of the AVD you want to create, as shown in Fig. 2.13. Then

click “Finish”.

The AVD is created, as shown in Fig. 2.14. Then click the green

arrow on the right side to start this virtual device. After waiting a

while, the virtual device is started, as shown in Fig. 2.15.

Then run your Android application on this virtual device. Select the

application created before, and then click the green arrow to that was

run it. At last, the Android application runs on the virtual device, as

shown in Fig. 2.16.

34

Figure 2.11 First Step of Creating an Android Virtual Device in Android

Studio -1.

Figure 2.12 Second Step of Creating an Android Virtual Device in An-
droid Studio -2.

35

Figure 2.13 Last Step of Creating an Android Virtual Device in Android
Studio.

Figure 2.14 New Virtual Device in AVD Manager in Android Studio.

36

Figure 2.15 Android Virtual Device in Android Studio

Figure 2.16 Android Application Running on the Android Virtual Device
in Android Studio

Mobile Applications Development Dr. Mazin A. Mohammed

37

Chapter Three

Introduction of Key Concepts of Android

CONTENTS

3.1 App Components .

 3.1.1 Activities .

 3.1.2 Services .

 3.1.3 Content Providers .

 3.1.4 Intents .

3.2 App Resources .

3.3 App Mainfest .

 3.3.1 Elements .

 3.3.2 Attributes .

 3.3.3 Declaring Class Names .

 3.3.4 Multiple Values .

 3.3.5 Resource Values .

 3.3.6 Sting Values .

Understand key concepts of Android is a basic requirement for de-

signing Android mobile apps. In this chapter, we introduce some basic concepts

of Android, including the app components, app resources, and app manifest.

Students will able to answer the following questions after reading this chapter.

1. What is an activity in Android?

2. Can we directly save resource files inside the res/directory?

3. What is an APP MAINFEST?

Mobile Applications Development Dr. Mazin A. Mohammed

38

3.1 APP COMPONENTS

App components are the essential building blocks of an Android app.

Each component is a different point through which the system can enter

your app. Not all components are actual entry points for the user, and

some depend on each other, but each one exists as its own entity and

plays a specific role. Each one is a unique building block that helps

define your app‟s overall behavior.

The following subsections represent four types of app components,

which include activities, services, content providers, and intents.

3.1.1 Activities

An activity represents a single screen with a user interface. For ex-

ample, an email app might have one activity that shows a list of new

emails, another activity to compose an email, and another activity for

reading emails. Although the activities work together to form a cohesive

user experience in the email app, each one is independent of the others.

As such, a different app can start any one of these activities (if the

email app allows it). For example, a camera app can start the activity in

Mobile Applications Development Dr. Mazin A. Mohammed

39

the email app that composes new mail, in order for the user to share a

picture. You can find more information about activities at

https://developer.android.com/guide/components/activities.html.

3.1.2 Services

A service is a component that runs in the background to perform long-

running operations or to perform work for remote processes. A service

does not provide a user interface. For example, a service might play

music in the background while the user is in a different app, or it might

fetch data over the network without blocking user interaction with an

activity. Another component, such as an activity, can start the service

and let it run or bind to it in order to inter- act with it. You can find

more information about content providers at

https://developer.android.com/reference/android/app/Service.html.

3.1.3 Content Providers

A content provider manages a shared set of app data. You can store the

data in the file system, a SQLite database, on the web, or any other

persistent storage location your app can access. Through the content

provider, other apps can query or even modify the data (if the content

provider allows it). For example, the Android system provides a content

Mobile Applications Development Dr. Mazin A. Mohammed

40

provider that manages the user‟s contact information. As such, any app

with the proper permissions can query part of the content provider

(such as ContactsContract.Data) to read and write information about a

particular person.

Content providers are also useful for reading and writing data that is

private to your app and not shared. For example, the Note Pad sample

app uses a content provider to save notes. You can find more

information about content provider at:

https://developer.android.com/reference/android/content/ContentProv

ider.html

3.1.4 Intents

An intent is a mechanism for describing a specific action, such as “pick

a photo,” “phone home,” or “open the pod bay doors.” In Android, just

about everything goes through intents, so you have plenty of

opportunities to replace or reuse components. For example, there is an

intent for “send an email.” If your application needs to send mail, you

can invoke that intent. Or, if you are writing a new email application,

you can register an activity to handle that intent and replace the

standard mail program. The next time somebody tries to send an email,

they‟ll get the option to use your program instead of the standard one.

Mobile Applications Development Dr. Mazin A. Mohammed

41

You can find more information about intents at

https://developer.android.com/guide/components/intents- filters.html.

A unique aspect of the Android system design is that any app can start

another app‟s component. For example, if you want the user to capture a

photo with the device camera, there‟s probably another app that does

that and your app can use it, instead of developing an activity to capture a

photo yourself. You don‟t need to incorporate or even link to the code

from the camera app. Instead, you can simply start the activity in the

camera app that captures a photo. When complete, the photo is even

returned to your app so you can use it. To the user, it seems as if the

camera is actually a part of your app.

When the system starts a component, it starts the process for that app

(if it‟s not already running) and instantiates the classes needed for the

component. For example, if your app starts the activity in the camera

app that captures a photo, that activity runs in the process that belongs

to the camera app, not in your app‟s process. Therefore, unlike apps on

most other systems, Android apps don‟t have a single entry point

(there‟s no main() function, for example).

Since the system runs each app in a separate process with file per-

missions that restrict access to other apps, your app cannot directly

activate a component from another app. The Android system, however,

Mobile Applications Development Dr. Mazin A. Mohammed

42

can. So, to activate a component in another app, you must deliver a

message to the system that specifies your intent to start a particular

component. The system then activates the component for you.

Intents can be used to activate activities and services, but content

providers are activated when targeted by a request from a Conten tRe-

solver. There are separate methods for activating each type of compo-

nent:

1. You can start an activity (or give it something new to do) by

passing an Intent to startActivity() or startActivityForResult()

(when you want the activity to return a result).

2. You can start a service (or give new instructions to an ongoing

service) by passing an Intent to startService(). Or you can bind

to the service by passing an Intent to bindService().

3. You can perform a query to a content provider by calling query()

on a ContentResolver.

Fig. 3.1 is the default AndroidManifest.xml generated by the Integrated

Development Environment (IDE) after we create a blank Android

application. The Main Activity is the only activity in this project, and it is

a subclass of Activity, as “class Main Activity extends Activity” shown.

In Main Activity, we need to implement callback methods that the

Mobile Applications Development Dr. Mazin A. Mohammed

43

system calls when the activity transitions between various states of its

life cycle.

The onCreate() method is indispensable, and it will be called when the

MainActivity is created. Within the implementation of the onCre- ate()

method, we should initialize the essential components of this ac- tivity.

We must call setContentView() to define the layout for this activity‟s

user interface. Although these processes are implemented by IDE, it is

necessary for us to have this knowledge.

Figure 3.1 Default MainActivity.java.

3.2 APP RESOURCES

Mobile Applications Development Dr. Mazin A. Mohammed

44

You should always externalize resources, such as images and strings,

from your application code, so that you can maintain them indepen-

dently. You should place each type of resource in a specific subdirectory of

your project‟s res/ directory, as shown in Fig. 3.2.

drawable/ file contains bitmap files, such as png, jpg and gif. layout/

contains XML files that define a user interface layout. menu/ contains

XML files that define application menus.

vaules/ contains XML files that contain simple values, such as strings,

integers, and colors.

Besides the ones shown in Fig. 3.1, we can add some other resource files

into res/ directory, such as animator/, raw/, and xml/ files.

The animator file contains Android property animations. The property

animation system is a robust framework that allows you to animate

almost anything. You can define an animation to change any object

property over time, regardless of whether it draws to the screen or not.

You can find more information about property animation at

http://developer.android.com/guide/topics/graphics/prop-

animation.html.

http://developer.android.com/guide/topics/graphics/prop-
http://developer.android.com/guide/topics/graphics/prop-

Mobile Applications Development Dr. Mazin A. Mohammed

45

Figure 3.2 File hierarchy for a simple project.

The raw file stores any files in their raw form. You must call Re-

source.openRawResource() to open these resources with a raw Input-

Stream.

The XML file contains arbitrary XML files that can be read at run- time

by calling Resource.getXML(). Various XML configuration files must

be saved here, such as a searchable configuration.

HINT: Never save resource files directly inside the res/ directory, because it

will cause a compiler error.

3.3 APP MAINFEST

The manifest file is indispensable in every Android application. The

manifest file presents essential information about your app to the

Android system, information the system must have before it can run any

Mobile Applications Development Dr. Mazin A. Mohammed

46

of the app‟s code. Among other things, the manifest does the following:

1. It names the Java package for the application. The package name

serves as a unique identifier for the application.

2. It describes the components of the application, the activities,

services, broadcast receivers, and content providers that the

appli-cation is composed of. It names the classes that

implement each of the components and publishes their

capabilities (for example, which Intent messages they can

handle). These declarations let the Android system know what

the components are and under what conditions they can be

launched.

3. It determines which processes will host application components.

4. It declares which permissions the application must have in or- der

to access protected parts of the Application Programming

Interface (API) and interact with other applications.

5. It also declares the permissions that others are required to have in

order to interact with the application‟s components.

6. It lists the Instrumentation classes that provide profiling and other

information as the application is running. These declarations are

Mobile Applications Development Dr. Mazin A. Mohammed

47

present in the manifest only while the application is being

developed and tested; they‟re removed before the application is

published.

7. It declares the minimum level of the Android API that the

application requires.

8. It lists the libraries that the application must be linked against.

3.3.1 Elements

Only the <manifest> and <application> elements are required, they

each must be present and can occur only once. Most of the others can,

occur many times or not at all, although at least some of them must be

present for the manifest to accomplish anything meaningful.

If an element contains anything at all, it contains other elements. All

values are set through attributes, not as character data within an

element. Elements at the same level are generally not ordered. For

example,

<activity>, <provider>, and <service> elements can be intermixed in

any sequence. (An <activity-alias> element is the exception to this rule:

Mobile Applications Development Dr. Mazin A. Mohammed

48

It must follow the <activity> it is an alias for.)

3.3.2 Attributes

In a formal sense, all attributes are optional. However, there are some

that must be specified for an element to accomplish its purpose. Use the

documentation as a guide. For truly optional attributes, it mentions a

default value or states what happens in the absence of a specification.

Except for some attributes of the root <manifest> element, all attribute

names begin with an android: prefix, for example, an-

droid:alwaysRetainTaskState. Because the prefix is universal, the

documentation generally omits it when referring to attributes by name.

3.3.3 Declaring Class Names

Many elements correspond to Java objects, including elements for the

application itself (the <application> element) and its principal compo-

nents, activities (<activity>), services (<service>), broadcast receivers

(<receiver>), and content providers (<provider>).

If you define a subclass, as you almost always would for the component

classes (Activity, Service, BroadcastReceiver, and Content- Provider),

the subclass is declared through a name attribute. The name must include

the full package designation. However, as a shorthand, if the first

character of the string is a period, the string is appended to the

Mobile Applications Development Dr. Mazin A. Mohammed

49

application‟s package name (as specified by the <manifest> element‟s

package attribute).

When starting a component, Android creates an instance of the named

subclass. If a subclass isn‟t specified, it creates an instance of the base

class.

3.3.4 Multiple Values

If more than one value can be specified, the element is almost always

repeated, rather than listing multiple values within a single element.

3.3.5 Resource Values

Some attributes have values that can be displayed to users, for example, a

label and an icon for an activity. The values of these attributes should be

localized and therefore set from a resource or theme.

The package name can be omitted if the resource is in the same package

as the application, type is a type of resource, such as “string” or

“drawable,” and name is the name that identifies the specific resource.

3.3.6 Sting Values

Where an attribute value is a string, double backslashes („\\‟) must be

used to escape characters, for example, „\\n‟ for a newline or „\\uxxxx‟ for

Mobile Applications Development Dr. Mazin A. Mohammed

50

a Unicode character.

Figure 3.3 Default AndroidManifest.xml

Fig. 3.3 is the default AndroidManifest.xml file generated by IDE

after a blank Android application. In the third creating line,

“com.example.csis.pace.edu.mypace,” is the package name of the

project, and it exactly as the same as the first line of MainActivity.java.

Many elements inside the <application> and </application> cor-

respond to Java objects, including activities (<activity>), services

(<service>), broadcast receivers (<receiver>), and content providers

(<provider>). In our project, we only create an activity, thus, there is

Mobile Applications Development Dr. Mazin A. Mohammed

51

only one <activity> in AnroidManifest.xml file. In this <activity>, the

android:name=“.MainActivity” shows the name of the activity.

The <intent-filter> specifies the type of intents that an activity, service,

or broadcast receiver can respond to. An intent filter declares the

capabilities of its parent component, what an activity or service can do

and what types of broadcasts a receiver can handle. It opens the

component to receiving intents of the advertised type, while filtering

out those that are not meaningful for the component.

When adding an action to an intent filter. An <intent-filter> element

must contain one or more <action> elements. If it doesn‟t contain

any, no Intent objects will get through the filter. Some standard

actions are defined in the Intent class as ACTION_string con-

stants. To assign one of these actions to this attribute, prepend “an-

droid.intent.action.” to the string that follows ACTION_. In our project,

use “android.intent.action.MAIN” for ACTION_MAIN.

The <category> is used to add a category name to an in-

tent filter. Standard categories are defined in the Intent class as

CATEGORY_name constants. The name assigned here can be derived

from those constants by prefixing “android.intent.category.” to the

name that follows CATEGORY_. In our project, the string value is “an-

droid.intent.category.LAUNCHER” for CATEGORY_LAUNCHER.

Mobile Applications Development Dr. Mazin A. Mohammed

52

Chapter Four

2 D Graphics and Multimedia in Android

CONTENTS

4.1 Introduction of 2-D Graphics Techniques
4.1.1 Color ..
4.1.2 Paint ...
4.1.3 Path ...
4.1.4 Canvas ...
4.1.5 Drawable ..
4.1.6 Button Selector ...

4.2 Advanced UI Design ...
4.2.1 Multiple Screens ..
4.2.2 Action Bar ..
4.2.3 Custom Views ...

4.3 Overview of Multimedia in Android ...
4.3.1 Understanding the MediaPlayer Class
4.3.2 Life Cycle of the MediaPlayer State

4.4 Audio Implementations in Android ...
4.5 Executing Video in Android ..

2-D Graphics and UI Design are two important aspects in User

Interface (UI) design. In this chapter, we will introduce 2-D graphics

and some advanced UI design techniques. Main techniques of 2-D

graphics include Color, Paint, Path, Canvas, Drawable, and

Button Selector. Students will also learn how to create multiple

screens, action bars, and custom views on the UI. Moreover, multimedia

on Android systems is a functionality increasing your mobile

apps‟adoptability. In this chapter, we will introduce multimedia in

Mobile Applications Development Dr. Mazin A. Mohammed

53

Android and how to add multimedia to our Android app. Three main

aspects in multimedia include Media, Audio, and Video.

4.1 INTRODUCTION OF 2 D GRAPHICS TECHNIQUES

Android implements complete 2-D functions in one package, named

android.graphics. This package provides various kinds of graphics tools,

such as canvas, color filter, point, line, and rectangles. We can use these

graphics tools to draw the screen directly. We will introduce some basic

knowledge in detail. First of all, we create a new Android application

project named ColorTester.

4.1.1 Color

Colors are represented as packed integers, made up of 4 bytes: Alpha,

Red, Green, and Blue. Alpha is a measure of transparency, from value 0

to value 255. The value 0 indicates the color is completely transparent.

The value 255 indicates the color is completely opaque. Besides alpha,

each component ranges between 0 and 255, with 0 meaning no

contribution for that component, and 255 meaning 100% contribution.

We can create a half-opaque purple color like: int color1 =

Color.argb(127, 255, 0, 255);

Mobile Applications Development Dr. Mazin A. Mohammed

54

Or in XML resource file, like:

<color name=“half_op_purple”>#7fff00ff</color>

The colors in Android XML resource files must be formulated as “#”

+ 6 or 8 bit Hexadecimal number.

Furthermore, Android offers some basic colors as constants, as shown in

Fig. 4.1. We can use them directly, like:

int color2 = Color.Black;

In Android Studio, we can preview the color we created in XML file, as

shown in Fig. 4.2. There are some small squares with the color created

in the same line. We can see that the #ffffffff is opaque-white, and the

#ff000000 is opaque-black.

Mobile Applications Development Dr. Mazin A. Mohammed

55

Figure 4.1 Colors as constants provided by Android.

We can use these color, created in colors.xml by “color/color_name”.

For example, android:background=“color/my_color”.

After we define some colors in the XML file, we can reference them by

their names, as we did for strings, or we can use them in Java code like:

int color3 = getResource().getColor(R.color.my_color); or

int color3 = R.color.text_color

The getResources() method returns the ResourceManager class for the

current activity, and get getColor() asks the manager look up a color

Mobile Applications Development Dr. Mazin A. Mohammed

56

given a resource ID.

Figure 4.2 Preview of colors in XML files in Android Studio.

4.1.2 Paint

The Paint class holds the style and color information on drawing

geometries, text, and bitmaps. Before we draw something on the screen,

we can set color to a Paint via setColor() method.

Figure 4.3 Paint class in Android.

As shown in Fig. 4.3, we create two Paints, which are cPaint to draw a

circle and tPaint to draw text. We set the color of the circle as light

gray and the color of text as blue. Beside colors, we also can set other

attributes to Paint class, such as the TextSize.

Mobile Applications Development Dr. Mazin A. Mohammed

57

4.1.3 Path

The Path class encapsulates multiple contour geometric paths, such as

lines, rectangles, circles, and curves. Fig. 4.4 is an example that defines a

circular path and a rectangle path.

The second line defines a circle, whose center is at position x=300,

y=200, with a radius of 150 pixels. The fourth line defines a rectangle

whose left top point is at position x=150, y=400, and right bottom point

is at position x=400, y=650. The Path.Direction.CW indicates that the

shape will be drawn clockwise. The other direction is CCW, which

indicates counter-clockwise.

Figure 4.4 Create two Path object and add details to them.

4.1.4 Canvas

To draw something, we need to prepare four basic components, including

a Bitmap to hold the pixels, a Canvas to host the draw call, a drawing

primitive, and a Paint. The Bitmap is the place where to draw something,

and the Canvas is used to hold the “draw” calls. A drawing primitive can

Mobile Applications Development Dr. Mazin A. Mohammed

58

be a Rect, a Circle, a Path, a Text, and a Bitmap.

In Android, a display screen is taken up by an Activity, which hosts a

View, which in turn hosts a Canvas. We can draw on the canvas by

overriding the View.onDraw() method. A Canvas object is the only

parameter to onDraw() method. We create a new activity, which contains

a view called GraphicsView, but not the layout.xml, as shown in Fig.

4.8.

In Fig. 4.5, we comment the original code and set the content view of

this activity to some layout.xml, and set it to some new view we

created, which is GraphicsView.

Let‟s review the two methods of designing Android apps. There are two

methods to design Android apps, which are procedural and declarative.

The “setContentView(R.layout.activity_main)” is a typical

example of declarative, which is described all objects in the activity

using XML files. The “setContentView(new GraphicsView(this))” is a

typical example of a procedural, which means writing Java code to

create and manipulate all the user interface objects [56].

This new class, GraphicsView, extends the class View. The on- Draw()

method is over-rider and used to implement the function of drawing.

Fig. 4.6 shows the details of the onDraw() method. We use Paint with

different colors to draw a Path on the View via calling

Mobile Applications Development Dr. Mazin A. Mohammed

59

onDraw(Canvas) method.

Figure 4.5 A new activity whose contentView is the view created our-

selves but not layout.xml.

Meanwhile, we have another choice to create a Canvas, as shown in Fig.

4.8. In Fig. 4.8, we create a Bitmap that is a square whose size is

100*100 and will use it as the argument of Canvas. Then we can use

this canvas as the same as the one offered in the onDraw() method.

4.1.5 Drawable

Android.graphics.drawable provides classes to manage a variety of visual

elements, which are intended for display, such as bitmaps and gradients.

We can combine drawables with other graphics, or we can use them in

UI widgets, such as the background for a button. Android offers

Mobile Applications Development Dr. Mazin A. Mohammed

60

following types of drawables:

Bitmap: A bitmap graphic file (.png, .jpg, or .gif).

Nine-Patch: A PNG file with stretchable regions to allow image

resizing based on content (.9.png).

Layer: A Drawable that manages an array of other Drawables. These are

drawn in array order, so the element with the largest index is be drawn

on top.

Figure 4.6 The “onDraw()” method that draws a circle and a rectangle.

Mobile Applications Development Dr. Mazin A. Mohammed

61

Figure 4.7 Running result of GraphicsView.

Figure 4.8 Use Bitmap to create a new Canvas.

State: An XML file that references different bitmap graphics for

different states (for example, to use a different image when a button is

pressed).

Level: An XML file that defines a drawable that manages a num- ber of

alternate Drawables, each assigned a maximum numerical value. Creates a

LevelListDrawable.

Transition: An XML file that defines a drawable that can cross-fade

Mobile Applications Development Dr. Mazin A. Mohammed

62

between two drawable resources.

Inset Drawable: An XML file that defines a drawable that insets

another drawable by a specified distance. This is useful when a View

needs a background drawable that is smaller than the View‟s actual

bounds.

Clip: An XML file that defines a drawable that clips another Draw- able

based on this Drawable’s current level value.

Scale: An XML file that defines a drawable that changes the size of

another Drawable based on its current level value.

Shape: An XML file that defines a geometric shape, including colors and

gradients.

A drawable resource is a general concept for a graphic that can be

drawn to the screen and that can be retrieved with Application

Programming Interface (API). Now we will add a gradient background to

our ColorTester. We create a drawable resource file in res\drawable, and

then create a Shape inside the background.xml file, as shown in Fig. 4.9

and Fig. 4.10.

Figure 4.9 The first step of creating a new Drawable resource file.

As shown in Fig. 4.11, we define a gradient from the start color to the

end color. The angle indicates the direction of the gradient, and it must

Mobile Applications Development Dr. Mazin A. Mohammed

63

be the extract times 45. When the angle = 0, the sequence is from left

to right. When the angle = 90, the sequence is from bottom to top.

When the angle = 180, the sequence is from right to left. When the

angle = 270, the sequence is from top to bottom.

Figure 4.10 The second step of creating a new Drawable resource file.

Figure 4.11 Shape Drawable.

Then add one attribute into the RelativeLayout in activity_main

.xml as “android:background:@drawable/background”. The running

result is shown in Fig. 4.12.

Besides gradient, there are some other common attributes that can be

Mobile Applications Development Dr. Mazin A. Mohammed

64

added into a shape, including stroke, corners, and padding. We add

them into the shape of background.xml, and set the color of the stroke

is red, the width of the dash is 10dp, etc. The attributes and the running

result are shown in Fig. 4.13. From Fig. 4.13, we can see that the

background is stroked by a red dash, and every corner has a round

edge.

Figure 4.12 Gradient background.

Mobile Applications Development Dr. Mazin A. Mohammed

65

Figure 4.13 Stroke, Corners, and Padding Drawables

4.1.6 Button Selector

We want to set different colors to buttons when they are at differ- ent

states. We set the default color of a button as light purple, and the color

when it is pressed is light orange. As we introduced in the previous

section, we need to create a drawable resource file to implement this

function. Thus, we create a new drawable resource file named

“button_selection”, and between the <selector> and <

/selector> add two items. The first one is the pressed state, which

indicates that the button is pressed, as shown in Fig. 4.14. The second

one is the default state, as shown in Fig. 4.15.

Mobile Applications Development Dr. Mazin A. Mohammed

66

Figure 4.14 Default state of button.

Then, we add one attribute to all the three buttons as follows:

android:background=“@drawable/button_selector".

The running result is shown in Fig. 4.16.

4.2 ADVANCED UI DESIGN

Android provides a flexible framework for UI design that allows apps to

display different layouts for different devices, create custom UI widgets,

and control aspects of the system UI beyond the apps‟ window.

4.2.1 Multiple Screens

Mobile Applications Development Dr. Mazin A. Mohammed

67

The goal of this part is to build a UI, which is flexible enough to fit

perfectly on any screen and to create different interaction patterns that are

optimized for different screen sizes.

To ensure that your layout is flexible and adapts to different screen

sizes, you should use “wrap_content” and “match_parent” for the

width and height of some view components. If you use “wrap_content”,

the width or height of the view is set to the minimum size necessary

to fit the content within that view, while “match_parent” (also known

as “fill_parent” before API level 8) makes the component expand to

match the size of its parent view.

Figure 4.15 Pressed state of the button.

Mobile Applications Development Dr. Mazin A. Mohammed

68

Figure 4.16 Running result of the button selector.

You can construct fairly complex layouts using nested instances of

LinearLayout and combinations of “wrap_content” and “match_parent”

sizes. However, LinearLayout does not allow you to precisely control

the spacial relationships of child views; views in a Lin- earLayout simply

line up side by side. If you need child views to be oriented in variations

other than a straight line, a better solution is often to use a

RelativeLayout, which allows you to specify your layout in terms of the

special relationships between components. For instance, you can align

one child view on the left side and another view on the right side of the

Mobile Applications Development Dr. Mazin A. Mohammed

69

screen.

Supporting different screen sizes usually means that your image re-

sources must also be capable of adapting to different sizes. For example, a

button background must fit whichever button shape it is applied to. If

you use simple images on components that can change size, you will

quickly notice that the results are somewhat less than impressive, since

the runtime will stretch or shrink your images uniformly. The solution

is using nine-patch bitmaps, which are specially formatted

PNG files that indicate which areas can and cannot be stretched.

Therefore, when designing bitmaps that will be used on components with

variable sizes, always use nine-patches. To convert a bitmap into a nine-

patch, you can start with a regular image. Then run it through the

draw9patch utility of the Software Development Kit (SDK) (which is

located in the tools/ directory), in which you can mark the areas that

should be stretched by drawing pixels along the left and top borders.

You can also mark the area that should hold the content by drawing

pixels along the right and bottom borders. The process is shown from

Fig. 4.17 to Fig. 4.18.

Mobile Applications Development Dr. Mazin A. Mohammed

70

Figure 4.17 Original image (.png).

The black pixels are along the borders. The ones on the top and

Figure 4.18 Nine-patch image (.9.png).

left borders indicate the places where the image can be stretched, and

the ones on the right and bottom borders indicate where the content

should be placed.

Figure 4.19 A nine-patch image used in various sizes.

4.2.2 Action Bar

The action bar, also called app bar, is one of the most important design

elements in activities. It provides a visual structure and interactive

Mobile Applications Development Dr. Mazin A. Mohammed

71

elements that are familiar to users. A typical action bar is shown in Fig.

4.20.

Figure 4.20 A typical action bar.

An action bar has some key functions listed as follows:

1. Dedicated space for giving the app an identity and indicating the

user‟s virtual location in the app.

2. Access to important actions in a predictable way, such as search.

3. Support for navigation and view switching (with tabs or drop-

down lists).

In its most basic form, the action bar displays the title for the activity on

one side and an overflow menu on the other. Beginning with Android 3.0

(API level 11), all activities that use the default theme have an ActionBar

as an app bar. However, app bar features have gradually been added to

the native ActionBar over various Android releases. As a result, the

native ActionBar behaves differently depending on what version of the

Android system a device may be using. By contrast, the most recent

Mobile Applications Development Dr. Mazin A. Mohammed

72

features are added to the support library‟s version of Toolbar, and they

are available on any device that can use the support library.

For this reason, you should use the support library‟s Toolbar class to

implement your activities‟ app bars. Using the support library‟s toolbar

helps ensure that your app will have consistent behavior across the widest

range of devices. For example, the Toolbar widget provides a material

design experience on devices running Android 2.1 (API level

7) or later, but the native action bar doesn‟t support material design

unless the device is running Android 5.0 (API level 21) or later.

4.2.3 Custom Views

Android has a large set of view classes for interacting with users and

displaying various types of data. However sometimes we have some

unique requirements that are not covered by the built-in views. To be a

well-designed class, a custom view should:

1. conform to Android standards;

2. provide custom styleable attributes that work with Android XML

layouts;

3. send accessibility events;

4. be compatible with multiple Android platforms.

All of the view classes defined in the Android framework extend the View.

Mobile Applications Development Dr. Mazin A. Mohammed

73

The custom view can also extend View directly, or we can extend some

existing view subclasses, such as Button. Then we need to define some

attributes for the custom view. To define custom attributes, add

<declare-styleable> resources to our project. It‟s customary to put these

resources into a res/values/attrs.xml file.

After a view is created from an XML layout, all of the attributes in the

XML tags are read from the resource bundle and passed into the view‟s

constructor as an AttributeSet. Then we will pass the Attribute- Set to

obtainStyledAttributes(). This method passes back a TypedAr- ray

array of values that has already been dereferenced and styled.

Then we need to add properties and events to the custom view. To

provide dynamic behavior, we need to expose a property getter and

setter pair for each custom attribute, for example, showing text and

image. After creating and initiating the custom view, we move to the

most important part of a custom view, which is its appearance.

Furthermore, the most important step in drawing a custom view is to

override the onDraw() method. The parameter to onDraw() is a Canvas

object that the view can use to draw itself. The Canvas class defines

methods for drawing text, lines, bitmaps, and many other graphics

primitives. You can use these methods in onDraw() to create your

custom UI.

Mobile Applications Development Dr. Mazin A. Mohammed

74

Drawing a UI is only one part of creating a custom view. You also need

to make your view respond to user input in a way that closely resembles

the real-world action you‟re mimicking. We need to make the view

interactive, including input gestures, physically plausible motion, and

making transactions smooth.

4.3 OVERVIEW OF MULTIMEDIA IN ANDROID

4.3.1 Understanding the Media Player Class

Android support audio and video output through the Media Player class in

the android.media package. The android.media is used to manage

various media interfaces. The Media APIs are used to play and record

media files, including audio and video . The Media Player class can be

used to control playback of audio/video files and streams. The control

of audio/video files and streams is managed as a state machine, as

shown in Fig. 4.21.

Mobile Applications Development Dr. Mazin A. Mohammed

75

Figure 4.21 State diagram of the MediaPlayer.

4.3.2 Life Cycle of the MediaPlayer State

The life cycle and the state of a MediaPlayer object are driven by the

supported playback control operations. The setDataSource() method is

called to transfer a MediaPlayer object from the idle state to the

initialized state. A MediaPlayer object must enter the prepared state

first before it is started and played back. A MediaPlayer can enter the

prepared state by call the prepare() or prepareAsync() method. The

prepare() method transfers the object to the prepared state once the

method call is returned. The prepareAsync() method first transfers the

object to the preparing state after the call returns while the internal

player engine continues working to complete the rest of the preparation

work.

Mobile Applications Development Dr. Mazin A. Mohammed

76

The start() method must be called to start the playback. The Me-

diaPlayer object is in the started state, after start() returns. Calling

start() has no effect on a MediaPlayer object that is already in the

started state.

4.4 AUDIO IMPLEMENTATIONS IN ANDROID

To learn how to play audio, we create a new project named “MediaT-

ester” and keep other configuration default. Then we copy one song

from local directory to “MediaTester\app\src\main\res\raw” directory.

Notice that we need to ensure that the file format can be recognized by

Android. Fortunately, Android supports most all kinds of audio file

formats. However, if Android does not support the file format of your

audio, try to transform it to a common format.

First, create two buttons to show the “start” and “pause” functions. As

introduced in the previous chapter, we create two buttons in the

activity_main.xml, as shown in Fig. 4.22. Meanwhile, we need to add

two strings in the strings.xml file as:

< stringname = “start_button” > Start < /string >

< stringname = “pause_button” > P ause < /string >

Mobile Applications Development Dr. Mazin A. Mohammed

77

Figure 4.22 Creating two buttons in activity_main.xml.

Then jump into the MainActivity.java file and add a new Medi- aPlayer

object into the MainActivity class as:

private MediaPlayer mp

Then we modify the MainActivity to implement OnClickListener, as

introduced in previous chapter, and create onClick(View v) method to

implement the functions of these two buttons. Then set OnClickLis-

tener to these two buttons, and now the MainActivity.java is shown as

Fig. 4.23.

Mobile Applications Development Dr. Mazin A. Mohammed

78

Figure 4.23 MediaPlayer object and the OnClickListener.

Then in the onClick() method, we implement functions to these two

buttons, which are start a song, pause, and resume it. Before starting a

song, we need to create a resource to the MediaPlayer object. Then we

need to tell the computer which audio we want to play. We can use an

integer ID of audio resource to identify the audio resource. In our

example, we use resId = R.raw.test, then we call the start() method to

play music. Before use pause a song, we need to judge whether it is

playing. If it is playing, we call pause() method to pause it; if not, we

call start() method to resume it. The code is shown in Fig. 4.24.

The running result is shown in Fig. 4.25. When we click the “START”

button, Android plays the song that we previously put in the raw file.

When we click the “PAUSE” button, Android will pause the song if it

is playing or resume it if it is paused.

4.5 EXECUTING VIDEO IN ANDROID

The MediaPlayer class works with video the same way it does with

audio. However, we need to create a surface to play video, and the

surface is VideoView class. The VideoView class can load images from

various sources and takes charge of computing its measurement from

the video. Furthermore, it provides various display options, such as

Mobile Applications Development Dr. Mazin A. Mohammed

79

scaling.

HINT: VideoView does not retain its full state when going into the

background. It does not restore the current play state, position, selected tracks,

or any subtitle tracks.

We will add something about video into the MediaTester project.

Figure 4.24 Implementing the functions of two buttons in onClick()

method.

Mobile Applications Development Dr. Mazin A. Mohammed

80

Figure 4.25 Running result of the MediaTester.

First, we create a new VideoView below the pause button in

activity_main.xml as follows:

<VideoView

android:layout_width=“wrap_content”

android:layout_height=“wrap_content”

android:id=“@+id/video”

android:layout_below=“@+id/button_pa

use” android:layout_gravity=“center”/>

Then, jumping into Java file, we create a View object named video and

connect it to the VideoView as follows:

VideoView video = (VideoView) findViewById(R.id.video);

Then we need to set a path to identify the location of the video.

However, the Android Virtual Device (AVD) cannot recognize the local

Mobile Applications Development Dr. Mazin A. Mohammed

81

path in our computer. Android offers several options to store persistent

application data as follows:

Shared Preferences The SharedPreferences class provides a general

framework that allows you to save and retrieve persistent key-value

pairs of primitive data types.

Internal Storage We can save files directly on the device‟s internal storage.

Files saved to the internal storage are private in default.

External Storage Android devices support a shared external stor- age to

save files. The external storage can be a removable storage media, such

as an SD card, or internal storage.

SQLite Databases We can use SQLite in Android to create databases

that will be accessible by name to any class in the app.

Network Connection We can use the network to store and retrieve data in

our own services.

Before we play a video using VideoView, we need to set a path to

locate the video, and this path must be inside the AVD itself.

First of all, run an AVD, and jump into Dalvik Debug Monitor Service

(DDMS) after the AVD runs. In Android Studio, select Tools, then

Mobile Applications Development Dr. Mazin A. Mohammed

82

Android, then click Android Device Monitor (Tools → Android →

Android Device Monitor), as shown in Fig. 4.26. The Android Device

Monitor will be similar to Fig. 4.27.

Then select the AVD we just run, and then in the “File Explorer” tab,

we can see many folders and files listed. Find the “data” folder and

click “Push a file onto the device” on the right top of the interface, as

shown in Fig. 4.28. Then select and push a local video file onto the

device.

Figure 4.26 Android device monitor.

Mobile Applications Development Dr. Mazin A. Mohammed

83

Figure 4.27 Android device Monitor.

Figure 4.28 Push a file onto the device.

Mobile Applications Development Dr. Mazin A. Mohammed

84

Figure 4.29 Setting video path and start a video.

The DDMS is used to operate the AVD, not the Android app. If we have

pushed some video into a device before, we do not need to push it again

in Android Project. Then add two methods to the onCreate() method to

set the Video path and play it as follows:

video.setVideoPath(“/data/samplevideo.3gp”);

video.start();

Then the current onCreate() method can refer to Fig. 4.29.

In the end, the running result is shown in Fig. 4.30.

Mobile Applications Development Dr. Mazin A. Mohammed

85

Figure 4.30 The running result of the MediaTester.

Chapter Five
Mobile Embedded System Architecture

CONTENTS

5.1 Embedded Systems .
 5.1.1 Embedded Systems Overview .
5.2 Scheduling Algorithms .

 5.2.1 Basic Concepts .
 5.2.2 First-Come, First-Served Scheduling Algorithm . . .

Mobile Applications Development Dr. Mazin A. Mohammed

86

 5.2.3 Shorted-Job-First Scheduling Algorithm
 5.2.4 Multiprocessors .
 5.2.5 Priority Scheduling Algorithm .
 5.2.6 ASAP and ALAP Scheduling Algorithm
 5.2.6.1 ASAP .
 5.2.6.2 ALAP .
5.3 Memory Technology .
5.4 Mobile Embedded Systems .

 5.4.1 Embedded Systems in Mobile Devices
 5.4.2 Embedded Systems in Android .
 5.4.3 Power Management of Android .
 5.4.4 Embedded Systems in Mobile Apps
5.5 Messaging and Communication Mechanisms

 5.5.1 Message Mechanisms .
 5.5.2 Communication Mechanisms .

Mobile device is the indispensable part of a mobile sys- tem, and all the

chips used in a mobile device are embedded systems. These embedded

systems with various functions are controlled by the mobile operating

system and collaborate with each other to complete every task mobile

apps request.

In this chapter, we introduce the mobile embedded system architecture,

including:

Overview of embedded systems

Applications of embedded system.

The processor technology in embedded systems

Basic concepts in processor technology in embedded systems

The scheduling algorithms in processor technology in embedded

Mobile Applications Development Dr. Mazin A. Mohammed

87

systems

Memory technology in embedded systems

Embedded systems in mobile devices

Embedded systems in Android

5.1 EMBEDDED SYSTEMS

5.1.1 Embedded Systems Overview

Embedded systems are anything that uses a microprocessor but is not a

general-purpose computer. An embedded system is a computer system

with a dedicated function, which is embedded as a part of a complete

device, including hardware and mechanical parts. These tiny systems

can be found everywhere, ranging from commercial electronics, such

as cell phones, cameras, portable health monitoring systems, auto-

mobile controllers, robots, and smart security devices, to critical infras-

tructure, such as telecommunication networks, electrical power grids,

financial institutions, and nuclear plants. The increasingly

complicated embedded systems require extensive design automation

and optimization tools.

Modern embedded systems are often based on microcontrollers,

such as Central Processing Units (CPU) with integrated memory or

Mobile Applications Development Dr. Mazin A. Mohammed

88

peripheral interfaces, but ordinary microprocessors, which use external

chips for memory, and peripheral interface circuits are still common.

Embedded systems are commonly used in telecommunication systems,

consumer electronics, transportation systems, and medical equipment.

Telecommunication Systems

Telecommunication systems employ numerous embedded

systems, from telephone switches to cell phones.

Consumer Electronics

Consumer electronics include personal digital assistants (PDAs),

such as audio players, mobile phones, videogame consoles, digital

cameras, video players, and printers. Embedded systems are used

to provide flexibility, efficiency, and features.

Home Automation

Embedded devices are used for sensing and controlling in-home

automation using wired and wireless networks. Embedded devices

can be used to control lights, climate, security, audio/visual, and

surveillance.

Transportation Systems

Embedded systems are increasingly used from flight to automo-

Mobile Applications Development Dr. Mazin A. Mohammed

89

biles in transportation systems. New airplanes contain advanced

avionics, such as Inertial Guidance Systems (IGS) and Global

Positioning System (GPS) receivers that also have considerable

safety requirements. Various electric motors use electric motor

controllers. Automobiles, electric vehicles, and hybrid vehicles

increasingly use embedded systems to maximize efficiency and

reduce pollution.

Medical Equipment

Medical equipment uses embedded systems for vital signs moni-

toring, electronic stethoscopes for amplifying sounds, and various

medical imaging for non invasive internal inspections. Embedded

systems within medical equipment are often powered by indus-

trial computers.

Besides the usages mentioned above, embedded systems are also

widely used in a new kind of technology, which is wireless sensor

networking (WSN). The WSN consists of spatially distributed au-

tonomous sensors to monitor physical or environmental conditions.

Commonly monitored parameters are temperature, humidity, pressure,

wind direction and speed, illumination intensity, vibration intensity,

sound intensity, power-line voltage, chemical concentrations, pollutant

Mobile Applications Development Dr. Mazin A. Mohammed

90

levels, and vital body functions. WSN enables people and companies

to measure myriad things in the physical world and acts on this

information under the help of embedded Wi-Fi systems. Furthermore,

the network wireless sensors, using optimization technologies of em-

bedded systems, are completely self-contained and will typically run

off a battery source for years before the batteries need to be changed

or charged.

Embedded systems also can be defined as computers purchased as

part of some other piece of equipment. They always have a dedicated

software in them, and the software may be customizable to users. There

are often no “keyboard” and limited display or no general purpose

display in an embedded system.

Embedded systems are important for three kinds of reasons:

Engineering reasons. Any device that needs to be controlled can

be controlled by a microprocessor. In many situations, it is impossible

or unnecessary for the devices to being a complete computer. McDon-

ald‟s POS (Point of Sale) terminal is only in charge of recording pur-

chases, calculating and showing price, collecting money, giving change,

and printing receipts. This kind of functions is simple, so the POS ter-

minals have little calculating resources. It is unnecessary for the POS

terminal to be complete as a general computer, because it is really a

Mobile Applications Development Dr. Mazin A. Mohammed

91

waste.

Market reasons. The general-purpose computer market worths

billions of dollars; meanwhile the embedded systems market is also

worths billions of dollars. Although the price of an embedded sys-

tem may be much lower than that of a general-purpose computer, the

amount of embedded systems are much larger than that of general-

purpose computers. In 2009, about 200 embedded systems were used

in every new car. There are more than 80 million personal computers

were sold every year. While over 3 billion embedded CPUs were sold

annually. Furthermore, the personal computer market is mostly

saturated, but the embedded market is still growing.

Pedagogical reasons. Embedded system designers often need to

know hardware, software, and some combination of networking, con-

trol theory, and signal processing. This makes the teaching methods of

designing embedded systems different from that for designing general-

purpose systems.

In this section, we introduce the overview of embedded systems, an-

alyze their usages, explain their importance, list some real applications

of embedded systems, and give a high-level of the design of embedded

system. We introduce deeper knowledge after introducing the design of

embedded system. The first and the most important thing is schedul-

Mobile Applications Development Dr. Mazin A. Mohammed

92

ing.

5.2 SCHEDULING ALGORITHMS

5.2.1 Basic Concepts

First of all, some basic concepts must be introduced and explained.

Scheduling is central to operating system design. The success of CPU

scheduling depends on two executions. The first one is the process

execution consisting of a cycle of CPU execution and Input/ Output

(I/O) wait. The second one is the process execution, which begins with

a CPU processing, followed by I/O processing, then followed by another

CPU processing, then another I/O processing, and so on. The CPU

I/O Processing Cycle is the basic concept of processor technology.

The processing time is the actual time that is required to complete

some job.

The CPU scheduler selects from among the processes in memory

that are ready to execute, and allocates the CPU to one of them. CPU

scheduling decisions take place when a process is switching from run-

ning to waiting state; switching from running to ready state; switching

from waiting to ready and terminating.

Beside the CPU scheduler, dispatcher is also a basic and important

Mobile Applications Development Dr. Mazin A. Mohammed

93

concept in processor technology. The dispatcher module gives control

of the CPU to the process selected by the short-term scheduler, and

this involves: switching context, switching to user mode, and jumping

to the proper location in the user program to restart that program.

Most dispatchers have dispatch latency, which is the time they take for

the dispatcher to stop one process and start another running.

Then we discuss some criteria of scheduling.

CPU Utilization. The CPU utilization refers to a computer‟s

usage of processing resources, or the amount of work handled by a CPU,

and it is used to gauge system performance. Actual CPU utilization

varies depending on the amount and type of managed computing tasks.

The first aim of processor technology is increasing the CPU utilization

by keeping the CPU as busy as possible.

Throughput. The throughput means the amount of processes

that complete their execution per time unit.

Turnaround Time. The turnaround time means the amount

of time to execute a particular process, and it can be calculated as the

sum of the time waiting to get into memory, waiting in the ready

queue, and executing on the CPU and the I/O.

Waiting Time. The waiting time means the amount of time a

process has been waiting in the ready queue.

Mobile Applications Development Dr. Mazin A. Mohammed

94

Response Time. The response time means the amount of time it

takes from when a request was submitted until the first response is

produced.

Completion Time. The completion time of one job means the

amount of time needed to complete it, if it is never preempted, inter-

rupted, or terminated.

Figure 5.1 The diagram of the process states.

As shown in Fig. 5.1, processes have five types of states. At the

new state, the process is in the stage of being created. At the ready

state, the process has all the resources available that it needs to run,

but the CPU is not currently working on this process‟s instructions. At

the running state, the CPU is working on this process‟s instructions.

At the waiting state, the process cannot run at the moment, because it

is waiting for some resource to become available or for some event to

Mobile Applications Development Dr. Mazin A. Mohammed

95

occur. At the terminate state, the process was completed.

5.2.2 First Come, First Served Scheduling Algorithm

An important measurable indicator of processor is the average com-

pletion time of jobs. Fig. 5.2 represents an example of the schedule for

k jobs. As shown in the figure, there are k jobs, marked as jk, to be

completed in the processor. The first job j1 requires t1 time units so

that the job j1 can be finished by time t1. The second job j2 starts

after the fist job j1 is finished, and the required length of time is t2.

Therefore, the second job j2 can be accomplished by the time t1 + t2.

Repeat this procedure until the last job jk is done.

The total completion time:

A = t1 + (t1 + t2) + (t1 + t2 + t3) + ... + (t1 + t2 + t3 + ... + tk)

= k ∗ t1 + (k − 1) ∗ t2 + (k − 2) ∗ t3 + ... + tk

(5.1)

Mobile Applications Development Dr. Mazin A. Mohammed

96

Figure 5.2 A schedule for k jobs.

One of the simplest scheduling algorithm is First Come, First

Served (FCFS). The FCFS policy is widely used in daily life. For ex-

ample, it is the standard policy for the processing of most queues, in

which people wait for a service that was not prearranged or preplanned.

In the processor technology field, it means the jobs are handled in the

orders.

For instance, there are four jobs, j1, j2, j3, and j4, with different

processing times, which are 7, 4, 3, and 6 respectively. These jobs

arrive in the order: j1, j2, j3, j4. In FCFS policy, they are handled by

the order of j1, j2, j3, j4, as shown in Fig. 5.3. The waiting time for

j1 is 0, for j2 is 7, for j3 is 11, and for j4 is 14. The average

waiting time is (0+7+11+14)/4 = 8. The average completion time

is [7 + (7+4) + (7+4+3) + (7+4+3+6)] / 4 = 13.

Suppose that the jobs arrive in the order j2, j3, j4, j1; the result

produced by using FCFS is shown in Fig. 5.4. The waiting time for

j1 is 13, for j2 is 0, for j3 is 4, and for j4 is 7. The average waiting

time is (13+0+4+7)/4 = 6. The average completion time is [4 +

Mobile Applications Development Dr. Mazin A. Mohammed

97

(4+3) + (4+3+6) + (4+3+6+7)] / 4 = 11. Both the average

waiting time and the average completion time of this scheduling is

less than the previous one.

Figure 5.3 An example of FCFS scheduling.

Figure 5.4 Another FCFS result if changing arrival sequence.

5.2.3 Shorted Job First Scheduling Algorithm

Then we will introduce another scheduling policy, which is Shortest Job

First (SJF). SJF is a scheduling policy that selects the waiting process

with the smallest execution time to execute first. SJF is advantageous

because of its simplicity, and it minimizes the average completion time.

Each process has to wait until its execution is complete.

Using the example mentioned in Section 2.2, while ignoring their

arrival time, we first sort these jobs by their processing time, as

j3, j2, j4, j1. The SJF scheduling result is shown in Fig. 5.5. The

Mobile Applications Development Dr. Mazin A. Mohammed

98

waiting time for j1 is 13, j2 is 3, j3 is 0, and j4 is 7. The

average waiting time is (13+3+0+7) = 5.75. The completion

time for j1 is (13+7), j2 is (3+4), j3 is (0+3), j4 is (7+6). The

average completion time is (20+7+3+13)/4 = 10.75. This

scheduling has lower average waiting time and average completion

time than the previous two schedules.

Figure 5.5 An example of SJF scheduling.

Theorem: SJF scheduling has the lowest total completion time

with a single processor.

Proof by contradiction: Assuming that there are a series of

jobs that were sorted by their completion time from short to long, as

j1, j2, j3, . . . , ji, ji+1, . . . , jk, which also means the completion time of

them can be ordered as t1 < t2 < t3 < · · · < ti < ti+1 < · · · < tk. Using the SJF

scheduling algorithm, the result is exactly the same as the or- der j1, j2,

j3, . . . , ji, ji+1, . . . , jk. Then we suppose that there is another order A that

has lower total completion time than the one produced by SJF, j1, j2,

j3, . . . , ji+1, ji, . . . , jk. Based on Equation 5.1, the total completions

Mobile Applications Development Dr. Mazin A. Mohammed

99

time is T = k ∗ t1 + (k − 1) ∗ t2 + (k − 2) ∗ t3 + · · · + (k − i + 1) ∗ ti + (k − i) ∗

ti+1 + · · · + tk. So, we can get the total completion time of both orders.

The SJF one is Ts = k ∗ t1 + (k − 1) ∗ t2 + (k − 2) ∗ t3 + · · · + (k − i +

1) ∗ ti + (k − i) ∗ ti+1 + · · · + tk. The A one is Ta =

k∗t1+(k−1)∗t2+(k−2)∗t3+· · ·+(k−i+1)∗ti+1+(k−i)∗ti+· · ·+tk. From the

supposing condition, Ts < Ta.

Ts > Ta;

k∗t1+(k−1)∗t2+(k−2)∗t3+· · ·+(k−i+1)∗ti+(k−i)∗ti+1+· · ·+tk

>k∗t1+(k−1)∗t2+(k−2)∗t3+· · ·+(k−i+1)∗ti+1+(k−i)∗ti+· · ·+tk; (k −

i + 1) ∗ ti + (k − i) ∗ ti+1 > (k − i + 1) ∗ ti+1 + (k − i) ∗ ti;

ti > ti+1.

However, ti > ti+1 is contradictory to ti < ti+1, in the assum- ing

condition. As a result, A does not exist, which means there is no

solution that has lower total completion time than the SJF scheduling.

In the end, we can conclude that SJF scheduling has the lowest

average waiting time with a single processor. However, is SJF still

optimal with multiple processors?

5.2.4 Multiprocessors

After discussing the single processor, we will expand the topic into

multiprocessors. There are nine jobs with different completion times

Mobile Applications Development Dr. Mazin A. Mohammed

100

in three processors, as shown in Fig. 5.6, and we first give an opti-

mal schedule using SJF. The average completion time is {(3+5+6)

+ [(6+10)+(5+11)+(3+14)] +

[(3+14+15)+(5+11+18)+(6+10+20)] }

/ 9 = 18.33. There is another optimal schedule, as shown in Fig. 5.7.

The average completion time is {(3+5+6) + [(5+10)+(3+11)+(6+14)]

+ [(5+10+15)+(6+14+18)+(3+11+20)] } / 9 = 18.33.

In multiprocessors, there are three theorems:

Figure 5.6 An SJF schedule to complete nine jobs in three processors.

Theorem 5.1 SJF scheduling has the optimal average waiting time

and completion time in the multiprocessor.

Mobile Applications Development Dr. Mazin A. Mohammed

101

Theorem 5.2 With the same average waiting time, there is more than

one schedule with various final completion time.

Theorem 5.3 The algorithm to find the optimal final completion time is

NP-Hard.

Assuming that the processing time of j1 to j3k is t1 to t3k,

respec- tively, the average completion time in three processors

calculates as Equation 5.2: The average completion time is

{(t1 + t2 + t3) + (t1 + t2 + t3 + t4 + t5 + t6) + · · · + (t1 + t2 +

· · · + t3k)}/3k

= {k(t1 + t2 + t3) + (k − 1)(t4 + t5 + t6) + · · · + (t3k−2 +

t3k−1 + t3k)}/3k.

(5.2)

Mobile Applications Development Dr. Mazin A. Mohammed

102

Then we assign that T1 = t1 + t2 + t3, T2 = t4 + t5 + t6,

. . . ,

Figure 5.7 Another schedule to complete nine jobs in three processors.

Tk = t3k−2 + t3k−1 + t3k. The total completion time in three

processors can be formulated as kT1 +(k−1)T2 +· · ·+Tk. At last, we

can formulate this problem into the one in a single processor. In the

end, we can use

the same method as the one in Section 2.3 to prove that the SJF

schedule has the optimal average completion time in multiprocessors.

From Equation 5.2, we can see that the detailed sequence of j1, j2, j3

does not impact the average waiting time of the whole schedule. As a

result, the two schedules in Fig. 5.6 and Fig. 5.7 have the same average

Mobile Applications Development Dr. Mazin A. Mohammed

103

waiting time. However the time when the last job is completed these

two schedules are different, which are 36 and 38. If there is a time

constraint that is less than 38, the second schedule is not suitable,

while the first schedule can be chosen. Furthermore, there are many

other schedules having the same average waiting time with these two

schedules, because changing the sequence of j3i+1, j3i+2, j3i does not

change the average waiting time. Nevertheless, the time when the last

job is completed is various, and how to find the optimal schedule that

has the least time when the last job is completed is too hard to be solved

by normal algorithms. This problem is a typical NP-Hard problem, and

we will discuss this problem and how to solve it in later chapters.

5.2.5 Priority Scheduling Algorithm

The next scheduling algorithm is Priority Scheduling algorithm. In

priority scheduling, a priority number, which can be an integer, is as-

sociated with each process. The CPU is allocated to the job with the

highest priority, and the smallest integer represents the highest prior-

ity. The priority scheduling can be used in the preemptive and nonpre-

emptive schemes. The SJF scheduling is a priority scheduling, where

priority is the predicted next CPU processing time. The following is a

given example about the implementation of the priority scheduling in

Mobile Applications Development Dr. Mazin A. Mohammed

104

preemptive schemes, as shown in Fig. 5.8. The priority of each job is in-

verse with its processing time. As a result, the result using the priority

scheduling algorithm is the same as the result from SJF scheduling.

The priority scheduling has the potential restrictions deriving from

process starvations. The Process Starvation is the processes that re-

quire a long completion time, while processes requiring shorter com-

pletion times are continuously added. A scheme of “Aging ” is used to

solve this problem. As time progresses, the priority of the process in-

creases. Another disadvantage is that the total execution time of a job

must be known before the execution. While it is not possible to exactly

predict the execution time, a few methods can be used to estimate the

execution time for a job, such as a weighted average of previous exe-

cution times.

At last, we will introduce the Round Robin (RR) scheduling. In RR

scheduling, each job gets a small unit of CPU time, called time quantum,

usually 10 - 100 milliseconds. After this time has elapsed, the job is

preempted and added to the end of the ready queue. If there are n jobs

in the ready queue and the time quantum is q, then each job gets 1/n

of the CPU time in chunks of at most q time units at once. No job waits

more than (n − 1) time units. If the q is large, the RR scheduling will

be the FCFS scheduling. Nevertheless, if the q is small, the overhead

Mobile Applications Development Dr. Mazin A. Mohammed

105

may be too high because of the too-often context switch.

Figure 5.8 An example of the priority scheduling.

Actually, there are two kinds of scheduling schemes that are non-

preemptive and preemptive.

Nonpreemptive.

The nonpreemptive scheduling means that once the CPU has

been allocated to a process, the process keeps the CPU resource

until it releases the CPU either by terminating or switching to a

waiting state.

Preemptive.

In the preemptive schemes, a new job can preempt CPU re-

Mobile Applications Development Dr. Mazin A. Mohammed

106

sources, if its CPU processing length is less than the remaining

time of the current executing job. This scheme is known as the

Shortest-Remaining-Time-First (SRTF).

In computer science, preemption is the act of temporarily interrupting

a job being carried out by a computer. It is normally carried out by a

privileged job on the system that allows interruptions. Fig. 5.5 shows

SJF scheduling in the situation when all the jobs arrive at the same

time, but situation will be complicated when considering their different

arrival times, especially in preemptive scheme.

Figure 5.9 An example of the nonpreemptive SJF solution.

Still taking the example mentioned in Section 5.2.2, add arrival

times to them, j1 arriving at time 0.0; j2 arriving at time 2.0; j3

ar- riving at time 4.0; j4 arriving at time 5.0. The SJF scheduling

in a nonpreemptive scheme is shown in Fig. 5.9. At time 0, j1

arrives, and there are no other jobs competing with it, so j1 is in the

running list. At time 2, 4, and 5, j2, j3, and j4 arrive,

respectively.

Mobile Applications Development Dr. Mazin A. Mohammed

107

However, they cannot interrupt j1 and grab the resource j1 is using,

so they are all in the waiting list. At time 7, j1 is finished, and

now there are three jobs in the waiting list. Among these three

jobs, j3 needs the shortest processing time, so it gets the resource

and turns into the running list. At time 10, j3 is finished, and now

there are two jobs in the waiting list, which are j2 and j4. Since j2

needs a shorter processing time than j4 does, j2 gets the resource

and turns into the running list. At time 14, j2 is finished, and now

there is only one job in the waiting list, which is j4. So j4 gets the

resource and turns into the running list. Finally, j4 is finished at

time 20. In this scheduling, the waiting time for j1 is 0, j2 is (10-

2), j3 is (7-4), and j4 is (14-5). The average waiting time is

(0+8+3+9)/4 = 5. The completion time for j1 is 7, j2 is (14-2), j3

is (10-4), and j4 is (20-5). The average completion time is

(7+12+6+15)/4 = 10.

Figure 5.10 Example of the preemptive SJF solution.

The SJF scheduling in a preemptive scheme is shown in Fig.

5.10. At time 0, j1 arrives, and there are no other jobs competing

with it, so j1 is in the running list. At time 2, j2 arrives, and j2 has

Mobile Applications Development Dr. Mazin A. Mohammed

108

shorter processing time than j1, so it preempts j1. j1 goes to the

waiting list, while j2 in the running list. At time 4, j3 arrives. j3

needs 3 time to be completed, while j2 needs 2 time. So j3 cannot

preempt j2 and stays in the waiting list. At current stage, j1 and j3

are both in the waiting list.

Next, at time 5, j4 arrives, but it has longer processing time

than j2, so it cannot preempts j2. j4 joins in the waiting list. At

time 6, j2 is finished, and now there are three jobs in the waiting list.

Among them, j3 needs the shortest processing time, so j3 get the

resource, while others are still waiting. At time 9, j3 is finished, and

now there are two jobs in the waiting list. Since j1 needs a shorter

processing time, which is 5, than j4 does, which is 6. j1 gets the

resource and turns into the running list. At time 14, j1 is finished,

and now there is only one job in the waiting list, which is j4. As a

result, j4 get the resource and is finally finished at time 20. In this

scheduling, the waiting time for j1 is 9-2, j2 is (0), j3 is (6-4), and

j4 is (14-5). he average waiting time is (7+0+2+9)/4 = 4.5. The

completion time for j1 is 14, j2 is (6-2), j3 is (9-6), and j4 is

(20-5). The average completion time is (14+4+3+15)/4

= 9.

5.2.6 ASAP and ALAP Scheduling Algorithm

Mobile Applications Development Dr. Mazin A. Mohammed

109

First, we will introduce the Directed Acyclic Graphs (DAG) to model

the scheduling problem about the delay in processors. A DAG is a

directed graph with no directed cycles. It is formed by a collection of

vertices and directed edges, each edge connecting one vertex to another.

There is no way to start at some vertex and follow a sequence of edges

that eventually loop back to this vertex. We create a DAG with a

source node and a sink node, as shown in Fig. 5.11. The source node

is V0, and the sink node is Vn. The solid lines refer to the execution

delay between nodes. Broken lines mean there is no execution delay

between nodes. For example, neither source node nor sink node has

the execution time.

Moreover, students need to understand two concepts before intro-

ducing the algorithm, including Predecessor and Successor. A Prede-

cessor refers to the node that needs to be finished before the current

node. For example, in Fig. 5.11, v2 and v3 are the predecessors of

v5.

A Successor refers to the node that succeeds the current node. In Fig.

5.11, v4 is v1‟s successor.

As exhibited in Fig. 5.11, we define V = {v0, v1 , . . . vn} in which

v0 and vn are pseudo nodes denoting the source node and sink node,

respectively. D = {d0, d1, . . . , dn} where di denotes the execution

Mobile Applications Development Dr. Mazin A. Mohammed

110

delay of vi;

Figure 5.11 A sample of the directed acyclic graph.

Then we use a topological sorting algorithm to produce a legal

sequence, which is scheduling for uniprocessor. A topological sorting of

a directed acyclic graph is a linear ordering of its vertices, such that for

every directed edge {u, v} from vertex u to vertex v, u comes before v

in the ordering. First, finding a list of nodes whose indegree = 0, which

means they have no incoming edges, inserting them into a set S, and

removing them from V . Then starting the loop that keeps removing

the nodes without incoming edges until V is empty. The output is the

result of topological sorting and the scheduling for the uniprocessor.

Referring to Fig. 5.11, we can get three results: {v0, v1, v4, v7, vn },

Mobile Applications Development Dr. Mazin A. Mohammed

111

{ v0, v2, v5, v7, vn }, and { v0, v3, v6, vn }.

To eliminate the latency, we assign values to di and simplify the

problem. We set d1, d2, d3, d4, and d5 as 1. We use two scheduling

algorithms, which are As-Soon-As-Possible (ASAP) and As-Late-As-

Possible (ALAP) Scheduling Algorithms.

5.2.6.1 ASAP

Figure 5.12 A simple ASAP for minimum latency scheduling.

As shown in Fig. 5.12, first, set t
s
 = 1, and v0 has no

predecessors, and d0 is 0. Thus, v0 has the same latency as its

successors, v1, v2 , and v3. In this step, v0 is scheduled. Then because

v1‟s predecessor v0 is scheduled, it can be selected at the 1 latency

Mobile Applications Development Dr. Mazin A. Mohammed

112

time. The same operations can be implemented with v2 and v3 at the

first latency time unit. In this step, v1, v2, and v3 are scheduled. Then

v4 can be selected at the 2 latency, because its predecessors, v1 and

v2, are scheduled. However, v5 cannot be selected at the 2 latency,

because one of its predecessors, v4, is not scheduled before the 2

latency. Then after v4 is scheduled, v5 can be selected at the 3 latency,

because its predecessors, v3 and v4, are scheduled. At last, vn is

selected at 4 latency, because its predecessor, v5 is scheduled.

In ASAP for minimum latency scheduling algorithm:

Step 1: schedule v0 by setting t
s
 = 1. This step is for launching

the calculation of the algorithm.

Step 2: select a node vi whose predecessors are all scheduled. This

process will be repeated until the sink node Vn is selected.

Step 3: schedule vi by setting t
s
 = max t

s
 +dj. The equation

represents the current node status at the exact timing unit. It represents

the latency time at the current node is summing up the maximum

latency time of the predecessors‟ nodes.

i j:vj→vi∈E j

Step 4: repeat Step 2 until vn is scheduled.

Mobile Applications Development Dr. Mazin A. Mohammed

113

5.2.6.2 ALAP

Figure 5.13 ALAP scheduling for latency-constraint scheduling.

As shown in Fig. 5.13, first, schedule the button node vn at the

time latency 3+1, and set t
L
 = 4. In this step, vn is scheduled. Then

v3 and v5 can be selected at the 3 time latency, because their successor,

vn, is scheduled. In this step, v3 and v5 are scheduled. Then v4 can be

selected at the 2 time latency, because its successor, v5, is scheduled.

In this step, v4 is scheduled. In this time latency, although v0 is the

Mobile Applications Development Dr. Mazin A. Mohammed

114

predecessor of v3, it cannot be selected at the 2 time latency, because

v0‟s other successors, v1 and v2, are not scheduled. Then v1 and v2

can be selected at the 1 time latency, because their successor, v4, is

scheduled. In this step, v1 and v2 are scheduled. At last, v0 can be

selected at 1 time latency, because its successor, v1, v2, and v3, are

scheduled, and d0 is 0.

In ALAP for latency-constraint (λ) scheduling algorithm:

Step 1: schedule vn by setting t
L
 = λ + 1. This step means the

first scheduled node is vn.

Step 2: select a node vi whose successors are all scheduled. It

means the selected node must be a node whose successors must

be scheduled. This process will be repeated until the source node

v0 is selected.

Step 3: schedule vi by setting tL = min tL+dj. The

equation represents the current node status at the exact timing

unit. It represents that the latency time at the current node is

subtracting the sum of minimum latency times from the sink

node‟s latency- constraint.

i j:vj→vi∈E j

Step 4: repeat Step 2 until v0 is scheduled. Fig. 5.13 exhibits an

Mobile Applications Development Dr. Mazin A. Mohammed

115

ALAP scheduling for latency-constraint scheduling.

Comparing ASAP and ALAP scheduling as shown in Fig. 5.12 and

Fig. 5.13, we can find that v3 can be completed at several time latencies.

It can be completed at 1 time latency as soon as possible, and 3 time

latency as late as possible.

In this section, we introduce some basic concepts, such as CPU

utilization, waiting time, response time, and completion time. Then

we introduce some scheduling algorithms, including First-Come, First

Server, Shortest-Job-First, priority scheduling, Round Robin, As-Soon- As-

Possible, and As-Late-As-Possible. In the next section, we introduce the

processor technology about scheduling algorithm in single processor and

multi-processor.

5.3 MEMORY TECHNOLOGY

Memory is one of the fastest evolving technologies in embedded systems

over the recent decade. No matter how fast processors can run, there is

one unchanged fact so that every embedded system needs memory to

store data. Furthermore, with the rapid development of the processor,

more and more data pass back and forth between the processor and

the memory. The bandwidth of a memory, which is the speed of the

Mobile Applications Development Dr. Mazin A. Mohammed

116

memory, becomes the major constraint impacting the system‟s perfor-

mance.

When building an embedded system, the designers should consider

the overall performance of the memory in the system. There are two

key metrics for memory performance: write ability and storage per-

manence. Writing in memory can be various in different memory tech-

nologies. Some kinds of memories, such as Random-Access Memory

(RAM), require special devices or techniques for writing. A RAM

de- vice allows data items to be read and written in roughly the same

amount of time regardless of the order in which data items are ac-

cessed. The two main forms of modern RAM are Static RAM (SRAM)

and Dynamic RAM (DRAM). In SRAM, a bit of data is stored using

the state of a six transistor memory cells. This form of RAM is more

expensive to produce, but it is generally faster and requires less power

than DRAM and, in modern computers, is often used as cache mem-

ory for the CPU. DRAM stores a bit of data using a transistor and

capacitor pair, which together comprise a DRAM memory cell. The

capacitor holds a high or low charge (1 or 0, respectively), and the

transistor acts as a switch that lets the control circuitry on the chip

read the capacitor‟s state of charge or change it. As this form of mem-

ory is less expensive to produce than static RAM, it is the predominant

Mobile Applications Development Dr. Mazin A. Mohammed

117

form of computer memory used in modern computers.

At the high end of the memory technology, we can select the mem-

ory that the processor can write to simply in a short time. There are

some kinds of memories that can be accessed by setting address lines,

or data bits, or control lines appropriately. At the middle of the range

of memory technology, some slow written memory can be chosen. At

the low end are the types of memory that require special equipment

for writing.

Besides the write ability, we also need to take storage permanence

into consideration. How long the memory can hold the written bits in

themselves can have a key impact on the reliability of the system. In

the aspect of storage permanence, there are two kinds of memory

technologies: nonvolatile and volatile. The major difference is that the

nonvolatile memory can hold the written bits after power is no longer

supplied, but volatile cannot. The nonvolatile memory is typically

used for the task of secondary storage, or long-term persistent

storage. Meanwhile, the most widely used form of primary storage to-

day is volatile memory. When the computer is shut down, anything

contained in the volatile memory is lost. The advanced memory

technology needs to attach to the operating system. Dynamic

programming is an option for heterogeneous memories‟ optimizations,

Mobile Applications Development Dr. Mazin A. Mohammed

118

which will be discussed later.

5.4 MOBILE EMBEDDED SYSTEMS

5.4.1 Embedded Systems in Mobile Devices

A mobile device is a typical embedded system, which is formed by

a group of electronic components, such as mobile processors, storage,

memory, graphics, sensors, camera, battery, and other chips. Integrat-

ing these electronic parts is to achieve a variety of desired functions

for different purposes. In this section, we will use the smartphone to

represent an example of a mobile embedded system. A smart phone is

one of the most adopted mobile devices in contemporary people‟s lives.

Currently, the hardware structures of most smartphones are two-

processor frameworks. The two processors are the application processor

and the baseband processor, which are shown in Fig. 5.14. The Appli-

cation Processor is in charge of running a mobile operating system and

various kinds of mobile apps. It is the one that controls the whole sys-

tem. Most functions provided by chips, such as the keyboard, screen,

camera, and sensors, are controlled by the application processor.

Meanwhile, the Baseband Processor is responsible for wireless com-

munication. This wireless communication is not the cellular or Wi-Fi

Mobile Applications Development Dr. Mazin A. Mohammed

119

network, and it is the telephone network with Radio Frequency (RF).

The radio frequency is a rate of oscillation, which corresponds to the

frequency of radio waves, and the alternating currents that carry ra-

dio signals. The radio frequency module is used to send signals to the

telephone network. There are two other basic modules in the base-

band processor, which are the Digital Baseband (DBB) and the Ana-

log Baseband (ABB). They modulate and demodulate the voice signal

and the digital signal, encode and decode the communication channel,

Figure 5.14 Hardware structure of a smartphone.

and control the wireless modem (modulator-demodulator). The appli-

cation processor communicates with the baseband processor via the

Mobile Applications Development Dr. Mazin A. Mohammed

120

serial port, USB, and others.

5.4.2 Embedded Systems in Android

After introducing the hardware structure of the smartphone, we will

take Android as an example to explain the Kernel inside Android and

show how the Kernel works. As discussed in Chapter 1, Android is

based on the Linux Kernel, and the Linux Kernel is an abstract layer

between the hardware and the software. The basic functions of An-

droid are provided by the Linux Kernel core system service, such as

file management, memory management, process management, network

stack, and drivers. The Linux Kernel also provides drivers to support

all the hardware related to the mobile embedded system. As shown in

Fig. 5.15, there are display driver, keyboard driver, audio driver, power

management, Wi-Fi driver, camera driver, and other sensor drivers. We

will list some of them and explain what they do.

Display Driver. It is based on the framebuffer driver in Linux.

The framebuffer offers a mechanism that allows the application

to directly control the change of the screen.

Keyboard Driver. It is the driver for buttons on the mobile

device, such as the Home button, the Menu button, the Return

Mobile Applications Development Dr. Mazin A. Mohammed

121

button, and the Power button.

Wi-Fi Driver. It is the driver for Wi-Fi connection based on

IEEE 802.11.

Sensor Driver. Most Android-powered devices have built-in

sen- sors that measure motion, orientation, and various

environmental conditions. These sensors are capable of

providing raw data with high precision and accuracy, and are

useful if you want to monitor three-dimensional device movement

or positioning, or you want to monitor changes in the ambient

environment near a device.

For example, a game might track readings from a device‟s grav-

ity sensor to infer complex user gestures and motions, such as

tilt, shake, rotation, or swing. Likewise, a weather application

might use a device‟s temperature sensor and humidity sensor to

calculate and report the dewpoint, or a travel application might

use the geomagnetic field sensor and accelerometer to report a

compass bearing.

Above the Linux Kernel is the hardware abstraction layer, which

provides an easy way for applications to discover the hardware on the

system. The “abstract” of the hardware abstraction layer does not

Mobile Applications Development Dr. Mazin A. Mohammed

122

mean the real operations of the hardware, and the operations of the

hardware are still achieved by drivers. However, the interfaces offered

by the hardware abstraction layer make it simple for developers to

“use” the hardware.

Hardware Abstraction Layer Hardware abstraction layer is a

software subsystem for UNIX-based operating systems providing hard- ware

abstraction. The purpose of the hardware abstraction layer is to allow

application to discover and use the hardware of the host system through a

simple, portable, and abstract Application Programming Interface (API),

regardless of the type of the underlying hardware.

Figure 5.15 Linux Kernel of Android.

5.4.3 Power Management of Android

Android supports its own power management (on top of the standard

Linux power management) designed with the premise that the CPU

should not consume power if no applications or services require power.

Mobile Applications Development Dr. Mazin A. Mohammed

123

As shown in Fig. 5.16, Android requires that applications and services

request CPU resources with wake locks through the Android applica-

tion framework and native Linux libraries. If there are no active wake

locks, Android will shut down the CPU. The wake locks are used by

applications and services to request CPU resources. The power man-

agement uses wake locks and time-out mechanism to switch the state

of system power, so that system power consumption decreases.

Currently, Android only supports screen, keyboard, buttons back-

light, and the brightness of the screen. As shown in Fig. 5.17, when a

user application acquires full wake lock or a screen/keyboard touch

activity event occurs, the machine will enter “awake” state. If timeout

happens or the power key is pressed, the machine will enters the “no-

tification” state. If partial wake locks are acquired, it will remain in

“notification”. If all partial locks are released, the machine will go into

“sleep.

Mobile Applications Development Dr. Mazin A. Mohammed

124

Figure 5.16 Power management of Android.

5.4.4 Embedded Systems in Mobile Apps

The mobile embedded systems are under the layer of mobile operating

systems. The mobile embedded systems cannot directly used by mobile

apps, and they only can be used through mobile operating systems,

such as iOS and Android. We will take Android as an example.

Android is already an embedded operating system, and its roots are

derived from embedded Linux. The main hardware platform for

Android is the Acorn RISC Machine (ARM) architecture. ARM is a

family of instruction set architectures for computer processors based

on a reduced instruction set computing architecture. An approach that

is based on reduced instruction set reduces costs, heat, and power

Mobile Applications Development Dr. Mazin A. Mohammed

125

consumption. Such reductions are desirable traits for light, portable,

battery-powered devices, and other embedded systems. Android de-

vices incorporate many optional hardware components, including cam-

eras, GPS, orientation sensors, dedicated gaming controls, accelerome-

ters, gyroscopes, barometers, magnetometers, proximity sensors, ther-

mometers, and touch-screens.

Figure 5.17 A finite-state machine of the Android power management.

We can use Android Software Development Kit (SDK) to develop

our own mobile apps, and via the methods that are already imple-

mented to use the embedded systems inside a mobile device. For ex-

ample, developers only can use the camera of a mobile device through

calling methods encapsulated in the Android SDK. This design method

makes the process of developing mobile apps much simper than old

methods. The developers do not need to spend time designing the in-

Mobile Applications Development Dr. Mazin A. Mohammed

126

teraction with embedded systems inside an Android device, and they

only need to know what functions Android SDK can provide. We will

introduce more knowledge about Android SDK and developing tech-

nologies in the next chapter.

5.5 MESSAGING AND COMMUNICATION MECHANISMS

In this section, we will introduce two mechanisms used in Android,

including message and communication mechanisms.

5.5.1 Message Mechanisms

Android provides message mechanisms in three core classes: Looper,

Handler, and Message. Similar to some other operating system, there is

a Message Queue in Android. However, this Message Queue is packaged

in Looper class. This class is mainly used to run a message loop for a

thread. Threads by default do not have a message loop associated

with them. We can call the prepare() method in the thread that is

to run the loop, and then call loop() to process the message queue.

The main function of prepare() method is defining the Looper object

as a ThreadLocal object. After calling the loop() method, the Looper

thread begins to work, and it continually processes the first message

Mobile Applications Development Dr. Mazin A. Mohammed

127

in the message queue. The working mechanism of the prepare() and

loop() method, are shown in Fig. 5.18.

Figure 5.18 prepare() and loop() methods.

Furthermore, we will introduce how to add a message into the

message queue. In Android, a Handler allows us to send and process

Message and Runnable objects associated with the thread‟s Message-

Queue. Each Handler instance is associated with a single thread and

that thread‟s message queue. A Handler has two main functions: (1) to

schedule messages and runnable to be executed as some point in the

future, and (2) to enqueue an action to be performed on a different

thread than our own.

Fig. 5.19 shows the process of adding a message into the message

queue using Handler. First, Handler creates a message. Then, find the

128

Figure 5.19 Use handler to add message into Message Queue.

related message queue based on the looper. Then add the new message

to the end of the message queue.

Message class in Android defines a message containing a description

and arbitrary data object that can be sent to a Handler. Although the

constructor of Message is public, the best way to get one of these is to

call obtain() method or obtainMessage() method of Handler to save

resource costs.

5.5.2 Communication Mechanisms

Android provides the process-unit component model. All Android oper-

ations are expressed as Linux processes eventually. Android runs based

on the Linux Kernel, and the memory, process, and file management

129

are controlled by the Linux Kernel. The system service is isolated by

Linux processes for protection. To support mobile devices, all the de-

fault system functions of Android are provided as the server processes.

Meanwhile, the functions realized by apps belong to application pro-

cesses.

In Android, the server process and the application process are im-

plemented by the class Binder. Binder is the most important part in

Android, and it is the core part of a lightweight Remote Procedure Call

(RPC) mechanism. We can derive directly from Binder to implement

our own custom RPC protocol or simply instantiate a raw Binder ob-

ject directly to use a token that can be shared across processes. RPC is

a form of Inter Process Communication (IPC), which is a set of tech-

niques for the exchange of data among multiple threads in one or more

processes.

Android Interface Definition Language (AIDL) allows us to define

the programming interface that both the client and service agree upon

in order to communicate with each other using IPC. Normally, one

process cannot access the memory of other processes. Processes need

to decompose their objects into primitives that the operating system

can understand and configure the objects across that boundary.

All system functions of Android are provided as a server process,

130

which makes the optimized communication method between processes

extremely important. Binder refers to Kernel memory that is shared

between all processes to minimize the overhead caused by memory

copy. Furthermore, the RPC framework provided by Binder is written

in C++, which is more efficient than Java.

In the RPC framework, the kernel space is a place where all pro-

cesses can share and let each process refer to the memory address. In

the Kernel space, a Binder Driver is implemented to use the kernel

space to convert the memory address that each process has mapped

with the memory address of the kernel space for reference. The Binder

Driver supports the system call Input/Output Control (ioctl) and the

file operations, including open, map, release, and poll. In computer sci-

ence, ioctl is a system call for device-specific input/output operation

and other operations which cannot be expressed by regular system

calls.

Fig. 5.20 shows an example of the process of transmitting data

from process A to process B. The first thing process A must do is to

open the Binder kernel module, and this module uses the descriptor

to identify the initiators and recipients of Binder IPCs. After defining

the transmission (process A) and the reception (process B) of this

operation, process A transmits the data to the Binder Driver first.

131

Then, the Binder Driver converts the memory address of the data to

allow process B to access it.

Figure 5.20 Transmit data via Binder Driver in RPC framework.

