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JPEG  “Joint Photographic Experts Group” 

JPEG is an image compression standard that was developed by the “Joint 

Photographic Experts Group”. JPEG was formally accepted as an international 

standard in 1992. It employs a transform coding method using the DCT (Discrete 

Cosine Transform) to yield the spatial domain into the frequency domain. 

Progressive Image compression 

- Progressive compression is an attractive choice when compressed images are 

transmitted over a communications line and are decompressed and viewed in 

real time. When such an image is received and is decompressed, the decoder 

can very quickly display the entire image in a low-quality format, and improve 

the display quality as more and more of the image is being received and 

decompressed.  

- Progressive image compression is like imagine that the encoder compresses 

the most important image information first, then compresses less important 

information and appends it to the compressed stream, and so on. This explains 

why all progressive image compression methods have a natural lossy option; 

simply stop compressing at a certain point.  

- Progressive image compression, in connection with JPEG. JPEG uses the 

DCT to break the image up into its spatial frequency components, and it 

compresses the low-frequency components first. The decoder can therefore 

display these parts quickly, and it is these low-frequency parts that contain the 

principal image information. The high-frequency parts contain image details. 

Thus, JPEG encodes spatial frequency data progressively. 
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JPEG Compression Modes 

The JPEG standard defined four compression modes: Hierarchical, Progressive, 

Sequential and lossless. Figure 0 shows the relationship of major JPEG compression 

modes and encoding processes. 

Figure . JPEG Operation Modes 

JPEG 4 Compression Modes • 

1. Sequential DCT based (Lossy)

2. Progressive DCT based (Lossy)

3. Sequential lossless, DPCM based

4. Hierarchical
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1. Sequential: Sequential-mode images are encoded from top to bottom.

Sequential mode supports sample data with 8 and 12 bits of precision.

- Image components are compressed either individually or in groups (by 

interleaving).  

-  One pass operation.  

-  “Baseline System”: A restricted mode, that must be included in any 

decoder.  

- Color Components Interleaving is done to save buffer size. 

2. Progressive: In progressive JPEG images, components are encoded in multiple

scans.

A sequence of “scans”, each codes a part of the quantized DCT coefficients data.

• Two ways of doing this:

– Spectral selection: coeff. are grouped into spectral bands, and lower-

frequency bands sent first. Takes advantage of the “spectral” (spatial frequency 

spectrum) characteristics of the DCT coefficients: higher AC components 

provide detail information. 
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Scan 1: Encode DC and first few AC components, e.g., AC1, AC2. 

Scan 2: Encode a few more AC components, e.g., AC3, AC4, AC5. 

... 

Scan k: Encode the last few ACs, e.g., AC61, AC62, AC63. 

– Successive Approximation:  Instead of gradually encoding spectral bands, all

DCT coefficients are encoded simultaneously but with their most significant bits 

(MSBs) first. 

Scan 1: Encode the first few MSBs, e.g., Bits 7, 6, 5, 4. 

Scan 2: Encode a few more less significant bits, e.g., Bit 3. 

... 

Scan m: Encode the least significant bit (LSB), Bit 0 

- Note the top-left corner entry with the rather large magnitude. This is the DC 

coefficient (also called the constant component), which defines the basic hue for the 

entire block. (also called the alternating components) 



 Multimedia  - Image Compression 

5

3. Lossless: is a class of data compression algorithms that allows the original data 

to be perfectly reconstructed from the compressed data

4. Hierarchical: JPEG is a super-progressive mode in which the image Is broken

down into a number of subimages called frames. A frame is a collection of one

or more scans. In hierarchical mode, the first frame creates a low-resolution

version of image. The remaining frames refine the image by increasing the

solution. JPEG is a sophisticated lossy/lossless compression method for color or

grayscale still images (not videos). It does not handle bi-level (black and white)
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images very well. It also works best on continuous-tone images, where adjacent 

pixels have similar colors.  
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JPEG Compression:

• JPEG : Joint Photographic Experts Group

• The first international static image compression standard Published in 1992.

• The main reason for JPEG success is the quality of its output for relatively

good compression ratio.

• JPEG is a lossy image compression method. It employs a transform coding

method using the DCT (Discrete Cosine Transform).

• An image is a function of i and j (or conventionally x and y) in the spatial

domain. The 2D DCT is used as one step in JPEG in order to yield a

frequency response which is a function F(u, v) in the spatial frequency

domain, indexed by two integers u and v.

Observations for JPEG Image Compression: 

The effectiveness of the DCT transform coding method in JPEG relies on 3 major 

observations: 

• Observation 1: Useful image contents change relatively slowly across the

image, i.e., it is unusual for intensity values to vary widely several times in a

small area, for example, within an 8×8 image block. much of the information

in an image is repeated, hence “spatial redundancy”.

• Observation 2: Psychophysical experiments suggest that humans are much

less likely to notice the loss of very high spatial frequency components than

the loss of lower frequency components. The spatial redundancy can be

reduced by largely reducing the high spatial frequency contents.
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• Observation 3: Visual acuity (accuracy in distinguishing closely spaced

lines) is much greater for gray (“black and white”) than for color.

Main Steps in JPEG Image Compression:

1. Transform RGB to YIQ or YUV and subsample color

2. Perform DCT on image blocks

3. Apply Quantization

4. Zigzag Ordering

5. DPCM on DC coefficients

6. RLE on AC coefficients

7. Perform entropy coding

The figure below shows the block diagram for JPEG encoder. If we reverse the 

arrows in the figure, we basically obtain a JPEG decoder. 

Figure (2) Block Diagram of JPEG Encoder 

1. Optional Converting RGB to YUV
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• YUV color mode stores color in terms of its luminance (brightness) and

chrominance (hue). 

• The human eye is less sensitive to chrominance than luminance.

• YUV is not required for JPEG compression, but it gives a better compression

rate. 

RGB vs. YUV 

• It’s simple arithmetic to convert RGB to YUV. The formula is based on the

relative contributions that red, green, and blue make to the luminance and 

chrominance factors.  

• There are several different formulas in use depending on the target monitor.

For example: 

  Y = 0.299 * R + 0.587 * G + 0.114 * B 

U = ‐0.1687 * R – 0.3313* G + 0.5 * B + 128 

 V = 0.5 * R – 0.4187 * G – 0.813 * B + 128 
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2. DCT on image blocks

Each image is divided into 8 × 8 blocks each is called data unit. The 2D DCT is 

applied to each block image f(i, j), with output being the DCT coefficients F(u, v) 

for each block. They represent the average pixel value and successive higher-

frequency changes within the group. This prepares the image data for the crucial step 

of losing information. Since DCT involves the transcendental function cosine, it 

must involve some loss of information due to the limited precision of computer 

arithmetic. This means that even without the main lossy step (the quantization step), 

there will be some loss of image quality, but it is normally small. As an example, 

one such 8×8 8-bit subimage might be: 

Before computing the DCT of the 8×8 block, its values are shifted from a positive 

range to one centered on zero. For an 8-bit image, each entry in the original block 

falls in the range {\displaystyle [0,255]}. The midpoint of the range (in this case, the 

value 128) is subtracted from each entry to produce a data range that is centered on 

zero, so that the modified range is {\displaystyle  [-128,127]}. This step reduces the 

dynamic range requirements in the DCT processing stage that follows. This step 

results in the following values: 
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If we perform this transformation on our matrix above, we get the following 

(rounded to the nearest two digits beyond the decimal point): 
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3. Quantization

Each of the 64 frequency components in a data unit is divided by a separate number 

called its quantization coefficient (QC), and then rounded to an integer. This is 

where information is irretrievably lost. Large QCs cause more loss, so the high 

frequency components typically have larger QCs. Each of the 64 QCs is a JPEG 

parameter and can, in principle, be specified by the user. In practice, most JPEG 

implementations use the QC tables recommended by the JPEG standard for the 

luminance and chrominance image components. 

�̂�(𝑢, 𝑣) = 𝑟𝑜𝑢𝑛𝑑 (
𝐹(𝑢, 𝑣)

𝑄(𝑢, 𝑣)
) 

Below is an example of the jpge compression for a smooth image block 

Luminance Quantization Table 

16,  11,  10,  16,  24,  40,  51,  61, 

12,  12,  14,  19,  26,  58,  60,  55, 

14,  13,  16,  24,  40,  57,  69,  56, 

14,  17,  22,  29,  51,  87,  80,  62, 

18,  22,  37,  56,  68, 109, 103,  77, 

24,  35,  55,  64,  81, 104, 113,  92, 

49,  64,  78,  87, 103, 121, 120, 101, 

72,  92,  95,  98, 112, 100, 103,  99 
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Chrominance Quantization Table 

17,  18,  24,  47,  99,  99,  99,  99, 

18,  21,  26,  66,  99,  99,  99,  99, 

24,  26,  56,  99,  99,  99,  99,  99, 

47,  66,  99,  99,  99,  99,  99,  99, 

99,  99,  99,  99,  99,  99,  99,  99, 

99,  99,  99,  99,  99,  99,  99,  99, 

99,  99,  99,  99,  99,  99,  99,  99, 

99,  99,  99,  99,  99,  99,  99,  99 

The human eye is good at seeing small differences in brightness over a relatively 

large area, but not so good at distinguishing the exact strength of a high frequency 

brightness variation. This allows one to greatly reduce the amount of information in 

the high frequency components. This is done by simply dividing each component in 

the frequency domain by a constant for that component, and then rounding to the 

nearest integer. This rounding operation is the only lossy operation in the whole 

process (other than chroma subsampling) if the DCT computation is performed with 

sufficiently high precision. As a result of this, it is typically the case that many of 

the higher frequency components are rounded to zero, and many of the rest become 

small positive or negative numbers, which take many fewer bits to represent. 

The elements in the quantization matrix control the compression ratio, with larger 

values producing greater compression. A typical quantization matrix (for a quality 

of 50% as specified in the original JPEG Standard), is as follows: 

https://en.wikipedia.org/wiki/Brightness
https://en.wikipedia.org/wiki/Quantization_matrix
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Notes that changing the compression ratio simply by multiplicatively scaling the 

numbers in the Q(u,v) matrix. In fact, the quality factor, a user choice offered in 

every JPEG implementation, is essentially linearly tied to the scaling factor. 
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Now note how the 𝝐(𝒊, 𝒋) = 𝒇(𝒊, 𝒋) − �̃�(𝒊, 𝒋) is differ in the examples above, why? 

In the first example the pixel values in the block contain few high –spatial frequency 

changes. i.e.  JPEG dose introduce more loss if the image has quickly changing 

details. 
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4. Zig-zag ordering and run-length encoding

The 64 quantized frequency coefficients (which are now integers) of each data unit 

are encoded using a combination of RLE and Huffman coding. To make it most 

likely to hit a long run of zeros: a zig-zag scan is used to turn the 8×8 matrix �̂�(𝑢, 𝑣)  

into a 64-vector. 

−26 

−3 0 

−3 −2 −6 

2 −4 1 −3 

1 1 5 1 2 

−1 1 −1 2 0 0 

0 0 0 −1 −1 0 0 
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0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 

0 0 0 

0 0 

0 

RLC aims to turn the �̂�(𝑢, 𝑣) values into sets {#-zeros-to skip , next non-zero value}. 

From the above example 

(32,6,-1,-1,0,-1,0,0,0,-1,0,0,1,0,0,……….,0) 

First do not treat the DC component and the rest (AC component) will be 

(0, 6)(0,-1)(0,-1)(1,-1)(3,-1)(2, 1)(0, 0) 

A special pair (0,0) indicates the end of blocks after the last nonzero AC coefficient 

is reached. 

1. DPCM on DC coefficients

DPCM Differential Pulse Code Modulation is a member differential encoding 

family. Differential Encoding methods calculates the difference between two 

consecutive data items, and encode the difference. It is depends on the concept that 

correlated values are generally similar, so their differences are small.   

DC values reflects the average intensity of each block, but these coefficient in 

unlikely to change hardly within a short distance. This makes DPCM Differential 

Pulse Code Modulation an ideal scheme for coding the DC coefficients. 

If the DC coefficients for the first 5 image blocks are  
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150, 155, 149, 152, 144 

Then the DPCM would produce 

150, 5, -6, 3, -8, 

Assuming   𝑑𝑖 = 𝐷𝐶𝑖+1 − 𝐷𝐶𝑖    𝑎𝑛𝑑   𝑑0 = 𝐷𝐶0

2. Huffman Coding of DC coefficients

Use DC as an example: each DPCM coded DC coefficient is represented by (SIZE, 

AMPLITUDE), where SIZE indicates how many bits are needed for representing 

the coefficient, and AMPLITUDE contains the actual bits. For the negative values, 

one's complement scheme is used. SIZE is Huffman coded since smaller SIZEs 

occur much more often. AMPLITUDE is not Huffman coded; its value can change 

widely so Huffman coding has no appreciable benefit. 

In the example we’re using, codes 

150, 5, −6, 3, −8 

Will be turned into 

(8, 10010110), (3, 101), (3, 001), (2, 11), (4, 0111) 

3. Huffman coding for AC coefficients

AC coefficients are run-length encoded (RLC). RLE pairs (Runlength, Value) are 

Huffman coded as with DC only on Value. So we get a triple: (Runlength, Size, 

Amplitude). However, Runlength, Size allocated 4-bits each (both will be one byte) 

and put into a single byte with is then Huffman coded. Again, Amplitude is not 

coded. So only Runlength an size are Huffman coded. 
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JPEG Image Decompression System 

The JPEG decompression system is inverse of the JPEG compression system. 

Figure 10. The JPEG decompression structure 

As soon the code streams entered the decompression system, the all the received 

quantization and Huffman tables are reconstructed. The frame headers are also 

decoded to determine the size and precision of the image. The compressed stream 

for each 8×8 block is split into two parts. The DC code is decoded using the DC 

Huffman tables. The value output from DC decoder is, indeed, the difference 

between the DC value of the current and the previous 8×8 blocks. The IDPCM 

restores back the true DC value by adding the value obtained from the DC decoder 

with the DC value decoded from the previous block. The AC part is decoded using 

the AC Huffman tables to get the AC coefficients, which are organized in zig-zag 

order. Therefore, the unzigzag stage reorganizes the coefficients into 8×8 block. The 
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dequantization stage performs the multiplications between the coefficients with the 

The IDCT performs the invert discrete cosine transform for each 8×8 block. Since 

the quantization generates quantization errors, the reconstructed block data is no 

longer identical to that of original image.  

The data obtained at the IDCT output form the chrominance and luminance images, 

adding with the level offset and finally are converted into the RGB image before 

displaying on the screen. 

Figure 3. Color invert transformation at the decoder 

The color invert transformation scheme is illustated in Figure 3. 
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JPEG-LS 

The lossless mode of JPEG is inefficient and often is not even implemented. As a 

result, the ISO decided to develop a new standard for the lossless (or near-lossless) 

compression of continuous-tone images. The result became popularly known as 

JPEG-LS. This method is not simply an extension or a modification of JPEG. It is a 

new method, designed to be simple and fast. It does not use the DCT, does not use 

arithmetic coding, and uses quantization in a limited way, and only in its near-

lossless option.  

JPEG-LS examines several of the previously seen neighbors of the current pixel, 

uses them as the context of the pixel, uses the context to predict the pixel and to 

select a probability distribution out of several such distributions, and uses that 

distribution to encode the prediction error with a special Golomb code. There is also 

a run mode, where the length of a run of identical pixels is encoded. 

Vector Quantization 

This is a generalization of the scalar quantization method. It is used for both image 

and sound compression. In practice, vector quantization is commonly used to 

compress data that has been digitized from an analog source, such as sampled sound 

and scanned images (drawings or photographs). Such data is called Digitally 

Sampled Analog Data (DSAD). It is a lossy compression method. 

Vector quantization is based on two facts: 

i. We know that compression methods that compress strings, rather than

individual symbols, can, in principle, produce better results.

ii. Adjacent items in an image and in digitized sound are correlated. There is a

good chance that the near neighbors of a pixel P will have the same values as
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P or very similar values. Also, consecutive audio samples rarely differ by 

much. 

The basic vector quantization procedure is illustrated in the following figure says 

that the encoder finds the closest code vector to the input vector and outputs the 

associated index. On the decoder side, exactly the same codebook is used. When the 

code index of the input vector is received, a simple table lookup is performed to 

determine the reconstruction vector.  

Figure (3) Basic vector quantization procedure 

Now how to build this codebook, there are many ways, LBG algorithm is the basis 

of many vector quantization methods for the compression of images and sound.  

Its main steps are the following: 

Step 0: Select a threshold value 𝜖 and set k = 0 and 𝐷(−1) = ∞. Start with an initial

codebook with entries 𝐶𝑖
(𝑘)

(where k is currently zero, but will be incremented in each
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iteration). Denote the image blocks by𝐵𝑖 (these blocks are also called training

vectors, since the algorithm uses them to find the best codebook entries). 

Step 1: Pick up a codebook entry 𝐶𝑖
(𝑘)

. Find all the image blocks 𝐵𝑚that are closer

to 𝐶𝑖than to any other 𝐶𝑗 . Phrased more precisely; find the set of all 𝐵𝑚 that satisfy

𝑑(𝐵𝑚, 𝐶𝑖) < 𝑑(𝐵𝑚, 𝐶𝑗)𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖 ≠ 𝑗

This set (or partition) is denoted by 𝑃𝑖
(𝑘)

. Repeat for all values of i. It may happen

that some partitions will be empty, and we deal with this problem below. 

Step 2: Select an i and calculate the distortion 𝐷𝑖
(𝑘)

 between codebook entry 𝐶𝑖
(𝑘)

and the set of training vectors (partition) 𝑃𝑖
(𝑘)

found for it in Step 1. Repeat for all i,

then calculate the average 𝐷(𝑘)of all the 𝐷𝑖
(𝑘)

. A distortion 𝐷𝑖
(𝑘)

 for a certain i is

calculated by computing the distances 𝑑(𝐶𝑖
(𝑘)

, 𝐵𝑚) for all the blocks 𝐵𝑚in partition

𝑃𝑖
(𝑘)

, then computing the average distance.

Step 3: If (𝐷(𝑘−1) − 𝐷(𝑘)) 𝐷(𝑘)⁄  ≤ 𝜖 halt. The output of the algorithm is the last set

of codebook entries 𝐶𝑖
(𝑘)

. This set can now be used to (lossy) compress the image

with vector quantization. In the first iteration k is zero,                              so 𝐷(𝑘−1) =

𝐷(−1) = ∞ > 𝜖. This guarantees that the algorithm will not stop at the first iteration.

Step 4: Increment k by 1 and calculate new codebook entries 𝐶𝑖
(𝑘)

; each equals the

average of the image blocks (training vectors) in partition 𝑃𝑖
(𝑘−1)

 that was computed

in Step 1. (This is how the codebook entries are adapted to the particular image.) Go 

to Step 1. 

Example: 
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Our example assumes an image consisting of 24 pixels, organized in the 12 blocks 

(each has 2 pixels that can be plotted on paper as 2D points) 

B1 = (32, 32), 

B2 = (60, 32), 

B3 = (32, 50), 

 B4 = (60, 50), 

 B5 = (60, 150), 

B6 = (70, 140), 

B7 = (200, 210), 

 B8 = (200, 32), 

B9 = (200, 40), 

B10 = (200, 50), 

B11 = (215, 50), 

and B12 = (215, 35). 

It is clear that the 12 points are concentrated in four regions. We select an initial 

codebook with the four entries 

𝐶1
(0)

= (70, 40),

𝐶2
(0)

 = (60, 120),

𝐶3
(0)

= (210, 200),
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and 𝐶4
(0)

= (225, 50)

(shown as × in the diagram). These entries were selected more or less at random but 

we show later how the LBG algorithm selects them methodically, one by one. 

Because of the graphical nature of the data, it is easy to determine the four initial 

partitions. They are 

𝑃1
(0)

= (B1,B2,B3,B4),

𝑃2
(0)

=  = (B5,B6),

𝑃3
(0)

=  = (B7), and

𝑃4
(0)

=  (B8,B9,B10,B11,B12).
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The table below to compute the  𝐷𝑖
(0)

The Table above shows how the average distortion 𝐷(0)is calculated for the first

iteration (we use the Euclidean distance function). The result is  

Step 3 indicates no convergence, since D(−1) = ∞, so we increment k to 1 and 

calculate four new codebook entries C(1)i (rounded to the nearest integer for 

simplicity) 

They are shown in the Figure below. 
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Differential Lossless Compression 

The principle is to compare each pixel p to a reference pixel, which is one of its 

previously-encoded immediate neighbors, and encode p in two parts: a prefix, which 

is the number of most-significant bits of p that are identical to those of the reference 

pixel, and a suffix, which is the remaining least-significant bits of p. For example, if 

the reference pixel is 10110010 and p is 10110100, then the prefix is 5, because the 

five most-significant bits of p are identical to those of the reference pixel, and the 

suffix is 00. Notice that the remaining three least-significant bits are 100 but the 

suffix does not have to include the 1. 

The prefix part is Huffman coded and since we expect most suffixes to be small, it 

makes sense to write the suffix on the output stream un-coded. 

So for the above example the code of p will be the five bits 010|00. 

A simple black and white digitized image consists of a rectangular or square array 

of pixels (say 256 by 256). Each of these pixels is assigned a number that indicates 

how light or dark that particular pixel is in the image; usually there are 256 gray 

levels, with 0 corresponding to black (no brightness on your screen) and 255 to white 

(maximum brightness). This means that one pixel uses 8 bits; for the whole 256x256 

image this gives 256 * 256 * 256 = 16777216 bits, which is 16777216/256 = 65536 

bytes or 65536/1024 = 64 KB. Color images of course use a bit more memory and 

movies, with 18-25 images per second, use much more memory. 

That is why it is very important to be able to compress images. In many cases, you 

can obtain images that are so close to the original image as to be virtually 

indistinguishable, but that are in fact stored on only a fraction of the space originally 
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needed. For some applications, you may even be happy with a noticeable distortion 

if the image still looks pretty good, provided the memory savings are really huge. 

There exist several types of algorithms that compress images. We shall illustrate one 

of them in this lab, called "subband filtering"; it is related to a mathematical concept 

called the "wavelet transform". 

1D Haar Wavelet Transform: Recursive Definition 

The Haar wavelet is also the simplest possible wavelet. The technical 

disadvantage of the Haar wavelet is that it is not continuous, and therefore 

not differentiable. This property can, however, be an advantage for the analysis of 

signals with sudden transitions, such as monitoring of tool failure in machines. 

Two iterations of the 2D Haar wavelet decomposition on the Lenna image. The 

original image is high-pass filtered, yielding the three detail coefficients subimages 

(top right: horizontal, bottom left: vertical, and bottom right: diagonal). It is then 

low-pass filtered and downscaled, yielding an approximation coefficients subimage 

(top left); the filtering process is repeated once again on this approximation image 

https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Lenna
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Horizontal Differencing and Averaging 

The basic principle is very simple. Imagine taking out just one horizontal line from 

the black and white image. The gray levels for the pixels in this line form a sequence 

of numbers between 0 and 255. In this sequence many values are very close to their 

neighbors - sudden jumps only occur if there was a sudden transition there in 

brightness (say from a light object to a dark wall) in the image. So a piece of this 

sequence could look like: 

45 45 46 46 47 48 53 101 104 105 106 106 107 106 106 106. 

If you are given any 2 numbers a and b then you completely characterize them by 

giving their average s = (a+b)/2 and their difference d = a-b. (Because a = s+d/2, b 

= s-d/2). The averages and differences for successive pairs in our sequence are: 

s: 45 46 47.5 77 104.5 106 106.5 106 

d: 0 0 -1 -48 -1 0 1 0 
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The sequence of differences has many more really small entries than large entries, 

and such sequences are easy to compress. Moreover, we can now easily make a small 

change to the d-sequence that would make it even more compressible. For instance, 

if we replace in the d-sequence every entry that is a 0 or 1 or -1 by 0:  

d': 0 0 0 -48 0 0 0 0 

then this d'-sequence is highly compressible. 

If we now recomputed the original sequence (rounding off if necessary, so that we 

get integers) by a' = s+d'/2 , b' = s-d'/2, then we get:  

45 45 46 46 47 47 53 101 104 104 106 106 106 106 106 106 

which is very close to the original. 

Vertical Differencing and Averaging 

Since images are 2-dimensional, we have to do this averaging and differencing in 

two dimensions as well. We can first do it within every row, transforming our 

256x256 image into two arrays (one of averages, one of differences) of 256x128 

entries each; for each of these we can then do the same vertically, so that in the end 

we have four arrays of 128x128. Here is a simple example: 

45 47 101 101 

46 46 103 103 

47 47 103 101 

48 48 55 55 
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After averaging and differencing within every row: 

averages differences 

46 101 -2 0 

46 103 0 0 

47 102 0 2 

48 55 0 0 

After averaging and differencing in two directions: 

horizontal 

averages 

horizontal  

differences 

vertical 

averages 

46 102 -1 0 

47.5 78.5 0 1 

vertical  

differences 

0 -2 -2 0 

-1 47 0 2 

In these four little arrays, the top left one corresponds to averaging in both directions; 

this array typically has sizeable entries for all pixels. The other three arrays typically 

have most of their entries very small, and can thus be highly compressed. 



 Multimedia  - Image Compression 

1

Averaging and Differencing 

For simplicity to describe the   Averaging and differencing process we take only the 

first row of an 8*8 matrix. This row is shown below. Because our matrix is 8*8 the 

process will involve three steps  (23 =8) 

[ 3   5   4   8   13   7   5   3] 

Step 1 

For the first step we take the average of each pair of components in our original 

string and place the results in the first four positions of our new string. The remain 

four numbers are differences of the first element in each pair and its corresponding 

average e.g. 3-4=-1, 4-6=-2, these numbers are called detail coefficients. Our result 

of the first step therefore contains four averages and four detail coefficients (bold) 

as shown  

[ 4   6   10   4    -1   -2   3   1] 

Step 2 

We then apply this same method to the first four components of our new string 

resulting in two new averages and their corresponding details coefficients. The 

remain   four detail coefficients are simply carried directly down from our previous 

step. And the result for step two is as follow. 

[ 5   7   -1   3    -1   -2   3   1] 

Step 3 
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Performing the same averaging and differencing to the remaining pair of averages 

completes step three.  The last six components have again been carried down from 

the previous step. We know have as our string. One row average in the first position 

followed by seven detail coefficient  

[ 6   -1   -1   3    -1   -2   3   1] 

Haar Wavelet Transform model 

The easiest of all discrete wavelet transformations is the Discrete Haar Wavelet 

Transformation (HWT). Analysis of the Two-Dimensional HWT You can see why 

the wavelet transformation is well-suited for image compression. The two-

dimensional HWT of the image has most of the energy conserved in the upper left-

hand corner of the transform - the remaining three-quarters of the HWT consists 

primarily of values that are zero or near zero. The transformation is local as well - it 

turns out any element of the HWT is constructed from only four elements of the 

original input image. If we look at the HWT as a block matrix product, we can gain 

further insight about the transformation. 

Suppose that the input image is square so we will drop the subscripts that indicate 

the dimension of the HWT matrix. If we use H to denote the top block of the HWT 

matrix and G to denote the bottom block of the HWT, we can express the 

transformation as: 

We now see why there are four blocks in the wavelet transform. Let's look at each 

block individually. Note that the matrix H is constructed from the lowpass Haar filter 

and computes weighted averages while G computes weighted differences. The upper 
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left-hand block is HAHT - HA averages columns of A and the rows of this product 

are averaged by multiplication with HT. Thus the upper left-hand corner is an 

approximation of the entire image. In fact, it can be shown that elements in the upper 

left-hand corner of the HWT can be constructed by computing weighted averages 

of each 2 x 2 block of the input matrix. Mathematically, the mapping is 

The upper right-hand block is HAGT - HA averages columns of A and the rows of 

this product are differenced by multiplication with GT. Thus the upper right-hand 

corner holds information about vertical in the image - large values indicate a large 

vertical change as we move across the image and small values indicate little vertical 

change. Mathematically, the mapping is 

The lower left-hand block is GAHT - GA differences columns of A and the rows 

of this product are averaged by multiplication with HT. Thus the lower left-hand 

corner holds information about horizontal in the image - large values indicate a 

large horizontal change as we move down the image and small values indicate little 

horizontal change. Mathematically, the mapping is 

The lower right-hand block is differences across both columns and rows and the 

result is a bit harder to see. It turns out that this product measures changes along 

45-degree lines. This is diagonal differences. Mathematically, the mapping is 
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To summarize, the HWT of a digital image produces four blocks. The upper-left 

hand corner is an approximation or blur of the original image. The upper-right, 

lower-left, and lower-right blocks measure the differences in the vertical, horizontal, 

and diagonal directions, respectively. 

Iterating the Process 

If there is not much change in the image, the difference blocks are comprised of 

(near) zero values. If we apply quantization and convert near-zero values to zero, 

then the HWT of the image can be effectively coded and the storage space for the 

image can be drastically reduced. We can iterate the HWT and produce an even 

better result to pass to the coder. Suppose we compute the HWT of a digital image. 

Most of the high intensities are contained in the blur portion of the transformation. 

We can iterate and apply the HWT to the blur portion of the transform. So in the 

composite transformation, we replace the blur by itstransformation! The process is 

completely invertible - we apply the inverse HWT to the transform of the blur to 

obtain the blur. Then we apply the inverse HWT to obtain the original image. We 

can continue this process as often as we desire (and provided the dimensions of the 

data are divisible by suitable powers of two). The illustrations below show two 

iterations and three iterations of the HWT. 

𝑥 = [
𝑎 𝑏
𝑐 𝑑

] 
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𝑥 = 1
√2

⁄ [
𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 − 𝑏 + 𝑐 − 𝑑
𝑎 + 𝑏 − 𝑐 − 𝑑 𝑎 − 𝑏 − 𝑐 + 𝑑

] 

Top left: a+b+c+d = 4-point average or 2-D low pass (L0-L0) filter. 

Top right  : a-b+c-d = average horizontal gradient or horizontal highpass and vertical 

lowpass (Hi-L0) filter. 

Lower left : a+b-c-d = Average vertical gradient or horizontal lowpass and vertical 

high pass (L0-Hi) filter. 

Lower right a-b-c+d =diagonal curvature or 2-D highpass (Hi-Hi) filter  

To apply this transform to  a complete image, we group the pixels into 2*2 blocks 

and apply (3) to each block. The result (after reordering )is shown in figure 1(b). to 

view the result sensibly we have grouped all the top left sub image in figure 1(b) and 

done the same for the components in the other 3 positions  to form the corresponding 

other 3 sub images.   

E.g. (1). 

𝑥 = [
12 −2
−2 0

] 

𝑥′ = [
4 6
6 8

] 

E.g. (2). 

𝑥 = [
2 3
4 5

] 

𝑥′ = [
7 −1

−2 0
] 
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Video Compression MPEG: Motion Picture Expert Group 

This is the standard designed by the Motion Picture Expert Group, including the 

updated versions MPEG-1, MPEG-2, MPEG-4, and MPEG-7. 

Most popular standards include the ISO's MPEG-1 and the ITU's H.261. 

It is built upon the three basic common analogue television standards: NTSC, PAL 

and SECAM. 

There are two sizes of SIF (Source Input Format): SIF-525 (with NTSC video) and 

SIF-625 (for PAL video). 

 The H.261 standard uses CIF (Common Intermediate Format) and QCIF (Quarter 

Common Intermediate Format). 

Video compression is based on two types of redundancies among the video data, 

namely spatial redundancy and temporal redundancy. 

1.Spatial redundancy means the correlation among neighbouring pixels in each

frame of image. This can be dealt with by the techniques for compressing still

images.

2. Temporal redundancy means the similarity among neighbouring frames, since a

video frame tends to be similar to its immediate neighbours. 

We have studied the theory of encoding now let us see how this is applied in practice. 

We need to compress video (and audio) in practice since: 

1. Uncompressed video (and audio) data are huge. In HDTV, the bit rate easily

exceeds 1 Gbps. -- big problems for storage and network communications.

For example:
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One of the formats defined for HDTV broadcasting within the United States 

is 1920 pixels horizontally by 1080 lines vertically, at 30 frames per second. 

If these numbers are all multiplied together, along with 8 bits for each of the 

three primary colors, the total data rate required would be approximately 1.5 

Gb/sec. Because of the 6 MHz. channel bandwidth allocated, each channel 

will only support a data rate of 19.2 Mb/sec, which is further reduced to 18 

Mb/sec by the fact that the channel must also support audio, transport, and 

ancillary data information. As can be seen, this restriction in data rate means 

that the original signal must be compressed by a figure of approximately 83:1. 

This number seems all the more impressive when it is realized that the intent 

is to deliver very high quality video to the end user, with as few visible 

artifacts as possible. 

2. Lossy methods have to employed since the compression ratio of lossless

methods (e.g., Huffman, Arithmetic, LZW) is not high enough for image and

video compression, especially when distribution of pixel values is relatively

flat.

The following compression types are commonly used in Video compression: 

 Spatial Redundancy Removal - Intraframe coding (JPEG)

 Spatial and Temporal Redundancy Removal - Intraframe and

Interframe coding (H.261, MPEG) 

These are discussed in the following sections. 

H. 261 Compression 
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H. 261 Compression has been specifically designed for video telecommunication 

applications: 

 Developed by CCITT in 1988-1990

 Meant for videoconferencing, video telephone applications over ISDN

telephone lines. 

 Baseline ISDN is 64 kbits/sec, and integral multiples (px64)

Overview of H.261 

The basic approach to H. 261 Compression is summarised as follows: 

 Decoded Sequence

 Frame types are CCIR 601 CIF (352x288) and QCIF (176x144) images with

4:2:0 subsampling.

 Two frame types: Intraframes (I-frames) and Interframes (P-frames)

 I-frames use basically JPEG

 P-frames use pseudo-differences from previous frame (predicted), so frames

depend on each other.

 I-frame provide us with an accessing point.
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Intra Frame Coding 

The term intra frame coding refers to the fact that the various lossless and lossy 

compression techniques are performed relative to information that is contained only 

within the current frame, and not relative to any other frame in the video sequence. 

In other words, no temporal processing is performed outside of the current picture 

or frame. This mode will be described first because it is simpler, and because non-

intra coding techniques are extensions to these basics. Figure below shows a block 

diagram of a basic video encoder for intra frames only. It turns out that this block 

diagram is very similar to that of a JPEG still image video encoder, with only slight 

implementation detail differences. 

The potential ramifications of this similarity will be discussed later. The basic 

processing blocks shown are the video filter, discrete cosine transform, DCT 

coefficient quantizer, and run-length amplitude/variable length coder. These blocks 
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are described individually in the sections below or have already been described in 

JPEG Compression. 

This is a basic Intra Frame Coding Scheme is as follows: 

 Macroblocks are 16x16 pixel areas on Y plane of original image.

A macroblock usually consists of 4 Y blocks, 1 Cr block, and 1 Cb block.

In the example HDTV data rate calculation shown previously, the pixels were 

represented as 8-bit values for each of the primary colors red, green, and blue. 

It turns out that while this may be good for high performance computer 

generated graphics, it is wasteful in most video compression applications. 

Research into the Human Visual System (HVS) has shown that the eye is 

most sensitive to changes in luminance, and less sensitive to variations in 

chrominance. Since absolute compression is the name of the game, it makes 

sense that MPEG should operate on a color space that can effectively take 

advantage of the eyes different sensitivity to luminance and chrominance 

information. As such, H/261 (and MPEG) uses the YCbCr color space to 

represent the data values instead of RGB, where Y is the luminance signal, Cb 

is the blue color difference signal, and Cr is the red color difference signal.  A 

macroblock can be represented in several different manners when referring to 

the YCbCr color space. Figure below shows 3 formats known as 4:4:4, 4:2:2, 

and 4:2:0 video. 4:4:4 is full bandwidth YCbCr video, and each macroblock 

consists of 4 Y blocks, 4 Cb blocks, and 4 Cr blocks. Being full bandwidth, 

this format contains as much information as the data would if it were in the 

RGB color space. 4:2:2 contains half as much chrominance information as 

4:4:4, and 4:2:0 contains one quarter of the chrominance information. 

Although MPEG-2 has provisions to handle the higher chrominance formats 
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for professional applications, most consumer level products will use the 

normal 4:2:0 mode. 

Macroblock Video Formats 

Because of the efficient manner of luminance and chrominance 

representation, the 4:2:0 representation allows an immediate data reduction 

from 12 blocks/macroblock to 6 blocks/macroblock, or 2:1 compared to full 

bandwidth representations such as 4:4:4 or RGB. To generate this format 

without generating color aliases or artifacts requires that the chrominance 

signals be filtered. 

The Macroblock is coded as follows: 

o Many macroblocks will be exact matches (or close enough). So send

address of each block in image -> Addr

o Sometimes no good match can be found, so send INTRA block -> Type
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o Will want to vary the quantization to fine tune compression, so send

quantization value -> Quant

o Motion vector -> vector

o Some blocks in macroblock will match well, others match poorly. So

send bitmask indicating which blocks are present (Coded Block Pattern,

or CBP).

o Send the blocks (4 Y, 1 Cr, 1 Cb) as in JPEG.

 Quantization is by constant value for all DCT coefficients (i.e., no

quantization table as in JPEG). 

Inter-frame (P-frame) Coding 

The previously discussed intra frame coding techniques were limited to processing 

the video signal on a spatial basis, relative only to information within the current 

video frame. Considerably more compression efficiency can be obtained however, 

if the inherent temporal, or time-based redundancies, are exploited as well. Anyone 

who has ever taken a reel of the old-style super-8 movie film and held it up to a light 

can certainly remember seeing that most consecutive frames within a sequence are 

very similar to the frames both before and after the frame of interest. Temporal 

processing to exploit this redundancy uses a technique known as block-based motion 

compensated prediction, using motion estimation. A block diagram of the basic 

encoder with extensions for non-intra frame coding techniques is given in 

Figure below. Of course, this encoder can also support intra frame coding as a subset. 

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node249.html#fig:Pframe
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P-Frame Coding 

Starting with an intra, or I frame, the encoder can forward predict a future frame. 

This is commonly referred to as a P frame, and it may also be predicted from other 

P frames, although only in a forward time manner. As an example, consider a 

group of pictures that lasts for 6 frames. In this case, the frame ordering is given as 

I,P,P,P,P,P,I,P,P,P,P, 

Each P frame in this sequence is predicted from the frame immediately preceding 

it, whether it is an I frame or a P frame. As a reminder, I frames are coded spatially 

with no reference to any other frame in the sequence. 

P-coding can be summarised as follows: 
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 An Coding Example (P-frame)

 Previous image is called reference image.

 Image to code is called target image.

 Actually, the difference is encoded.

 Subtle points:

1. Need to use decoded image as reference image, not original. Why?

2. We're using "Mean Absolute Difference" (MAD) to decide best block. Can

also use "Mean Squared Error" (MSE) = sum(E*E) 
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Need to delineate boundaries between pictures, so send Picture Start Code

-> PSC

Need timestamp for picture (used later for audio synchronization), so send

Temporal Reference -> TR

Is this a P-frame or an I-frame? Send Picture Type -> PType

Picture is divided into regions of 11x3 macroblocks called Groups of

Blocks -> GOB

Might want to skip whole groups, so send Group Number (Grp #)

Might want to use one quantization value for whole group, so send Group

Quantization Value -> GQuant

Overall, bitstream is designed so we can skip data whenever possible

while still unambiguous.

The overall H.261 Codec is summarised in Fig below. 

The H.261 Bitstream structure may be summarised as follows: 

The H.261 Bitstream Structure 
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Hard Problems in H.261

There are however a few difficult problems in H.261:

Motion vector search

Propagation of Errors

Bit-rate Control
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Motion Vector Search

C(x+k,y+i) - pixels in the macro block with upper left corner (x,y) in the

Target.

R(X+i+k,y+j+l) - pixels in the macro block with upper left corner (x+i,y+j)

in the Reference.

Cost function is:

Where MAE stands for Mean Absolute Error.

Goal is to find a vector (u, v) such that MAE (u, v) is minimum

Full Search Method:

1. Search the whole searching region.

2. Cost is:
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operations, assuming that each pixel comparison needs 3 operations 

(Subtraction, Absolute value, Addition).

Two-Dimensional Logarithmic Search:

Similar to binary search. MAE function is initially computed within a 

window of at nine locations as shown in the figure.

Repeat until the size of the search region is one pixel wide:

1. Find one of the nine locations that yields the minimum MAE.

2. Form a new searching region with half of the previous size and centered

at the location found in step 1.

Hierarchical Motion Estimation:
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1. Form several low resolution version of the target and reference

pictures

2. Find the best match motion vector in the lowest resolution version.

3. Modify the motion vector level by level when going up.

Performance comparison:

-----------------------------------------------------------------

Search Method Operation for 720x480 at 30 fps 

p = 15                 p=7

-----------------------------------------------------------------

Full Search  29.89 GOPS  6.99 GOPS

Logarithmic   1.02 GOPS  777.60 MOPS

Hierarchical  507.38 MOPS  398.52 MOPS

-----------------------------------------------------------------

Propagation of Errors 

Send an I-frame every once in a while

Make sure you use decoded frame for comparison

Bit-rate Control 

Simple feedback loop based on "buffer fullness"

If buffer is too full, increase the quantization scale factor to reduce the data.
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MPEG Compression 

The acronym MPEG stands for Moving Picture Expert Group, which worked to 

generate the specifications under ISO, the International Organization for 

Standardization and IEC, the International Electrotechnical Commission. What is 

commonly referred to as "MPEG video" actually consists at the present time of two 

finalized standards, MPEG-11 and MPEG-22, with a third standard, MPEG-4, was 

finalized in 1998 for Very Low Bitrate Audio-Visual Coding. The MPEG-1 and 

MPEG-2 standards are similar in basic concepts. They both are based on motion 

compensated block-based transform coding techniques, while MPEG-4 deviates 

from these more traditional approaches in its usage of software image construct 

descriptors, for target bit-rates in the very low range, < 64Kb/sec. Because MPEG-

1 and MPEG-2 are finalized standards and are both presently being utilized in a large 

number of applications, this paper concentrates on compression techniques relating 

only to these two standards. Note that there is no reference to MPEG-3. This is 

because it was originally anticipated that this standard would refer to HDTV 

applications, but it was found that minor extensions to the MPEG-2 standard would 

suffice for this higher bit-rate, higher resolution application, so work on a separate 

MPEG-3 standard was abandoned. 

The current thrust is MPEG-7 "Multimedia Content Description Interface" whose 

completion is scheduled for July 2001. Work on the new standard MPEG-21 

"Multimedia Framework" has started in June 2000 and has already produced a Draft 

Technical Report and two Calls for Proposals. 

MPEG-1 was finalized in 1991, and was originally optimized to work at video 

resolutions of 352x240 pixels at 30 frames/sec (NTSC based) or 352x288 pixels at 
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25 frames/sec (PAL based), commonly referred to as Source Input Format (SIF) 

video. It is often mistakenly thought that the MPEG-1 resolution is limited to the 

above sizes, but it in fact may go as high as 4095x4095 at 60 frames/sec. The bit-

rate is optimized for applications of around 1.5 Mb/sec, but again can be used at 

higher rates if required. MPEG-1 is defined for progressive frames only, and has no 

direct provision for interlaced video applications, such as in broadcast television 

applications. 

MPEG-2 was finalized in 1994, and addressed issues directly related to digital 

television broadcasting, such as the efficient coding of field-interlaced video and 

scalability. Also, the target bit-rate was raised to between 4 and 9 Mb/sec, resulting 

in potentially very high quality video. MPEG-2 consists of profiles and levels. The 

profile defines the bitstream scalability and the colorspace resolution, while the level 

defines the image resolution and the maximum bit-rate per profile. Probably the most 

common descriptor in use currently is Main Profile, Main Level (MP@ML) which 

refers to 720x480 resolution video at 30 frames/sec, at bit-rates up to 15 Mb/sec for 

NTSC video. Another example is the HDTV resolution of 1920x1080 pixels at 30 

frame/sec, at a bit-rate of up to 80 Mb/sec. This is an example of the Main Profile, 

High Level (MP@HL) descriptor. A complete table of the various legal 

combinations can be found in reference2. 

MPEG Video

MPEG compression is essentially a attempts to over come some shortcomings of 

H.261 and JPEG: 

Basic steps used in Video Compression 
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The Video Compression algorithm utilized in numerous standards (such as MPEG 

1, 2 H.263) usually consists of the following steps: 

1. Motion Estimation

2. Motion Compensation and Image Subtraction

3. Discrete Cosine Transform

4. Quantization

5. Run Length Encoding

6. Entropy Coding – Huffman Coding

 Recall H.261 dependencies:

 The Problem here is that many macroblocks need information is not in the

reference frame.

 For example:

 The MPEG solution is to add a third frame type which is a bidirectional

frame, or B-frame

 B-frames search for macroblock in past and future frames.

 Typical pattern is IBBPBBPBB IBBPBBPBB IBBPBBPBB
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Actual pattern is up to encoder, and need not be regular. 

MPEG Video Layers 

MPEG video is broken up into a hierarchy of layers to help with error handling, 

random search and editing, and synchronization, for example with an audio 

bitstream. From the top level, the first layer is known as the video sequence layer, 

and is any self-contained bitstream, for example a coded movie or advertisement. 

The second layer down is the group of pictures, which is composed of 1 or more 

groups of intra (I) frames and/or non-intra (P and/or B) pictures that will be defined 

later. Of course the third layer down is the picture layer itself, and the next layer 

beneath it is called the slice layer. Each slice is a contiguous sequence of raster 

ordered macroblocks, most often on a row basis in typical video applications, but 

not limited to this by the specification. Each slice consists of macroblocks, which 

are 16x16 arrays of luminance pixels, or picture data elements, with 2 8x8 arrays of 

associated chrominance pixels. The macroblocks can be further divided into distinct 

8x8 blocks, for further processing such as transform coding. Each of these layers has 

its own unique 32 bit start code defined in the syntax to consist of 23 zero bits 

followed by a one, then followed by 8 bits for the actual start code. These start codes 

may have as many zero bits as desired preceding them. 



 Multimedia  - Image Compression 

5

B-Frames 

The MPEG encoder also has the option of using forward/backward interpolated 

prediction. These frames are commonly referred to as bi-directional interpolated 

prediction frames, or B frames for short. As an example of the usage of I, P, and B 

frames, consider a group of pictures that lasts for 6 frames, and is given as 

I,B,P,B,P,B,I,B,P,B,P,B, As in the previous I and P only example, I frames are coded 

spatially only and the P frames are forward predicted based on previous I and P 

frames. The B frames however, are coded based on a forward prediction from a 

previous I or P frame, as well as a backward prediction from a succeeding I or P 

frame. As such, the example sequence is processed by the encoder such that the first 

B frame is predicted from the first I frame and first P frame, the second B frame is 

predicted from the second and third P frames, and the third B frame is predicted from 

the third P frame and the first I frame of the next group of pictures. From this 

example, it can be seen that backward prediction requires that the future frames that 

are to be used for backward prediction be encoded and transmitted first, out of order. 

This process is summarized in Figure below. There is no defined limit to the number 

of consecutive B frames that may be used in a group of pictures, and of course the 

optimal number is application dependent. Most broadcast quality applications 

however, have tended to use 2 consecutive B frames (I,B,B,P,B,B,P,) as the ideal 

trade-off between compression efficiency and video quality. 

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node258.html#fig:bframe
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B-Frame Encoding 

The main advantage of the usage of B frames is coding efficiency. In most cases, B 

frames will result in less bits being coded overall. Quality can also be improved in 

the case of moving objects that reveal hidden areas within a video sequence. 

Backward prediction in this case allows the encoder to make more intelligent 

decisions on how to encode the video within these areas. Also, since B frames are 

not used to predict future frames, errors generated will not be propagated further 

within the sequence. 

One disadvantage is that the frame reconstruction memory buffers within the 

encoder and decoder must be doubled in size to accommodate the 2 anchor frames. 

This is almost never an issue for the relatively expensive encoder, and in these days 

of inexpensive DRAM it has become much less of an issue for the decoder as well. 

Another disadvantage is that there will necessarily be a delay throughout the system 

as the frames are delivered out of order as was shown in Figure . Most one-way 

systems can tolerate these delays, as they are more objectionable in applications such 

as video conferencing systems. 

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node258.html#fig:brame
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Motion Estimation 

The temporal prediction technique used in MPEG video is based on motion 

estimation. The basic premise of motion estimation is that in most cases, consecutive 

video frames will be similar except for changes induced by objects moving within 

the frames. In the trivial case of zero motion between frames (and no other 

differences caused by noise, etc.), it is easy for the encoder to efficiently predict the 

current frame as a duplicate of the prediction frame. When this is done, the only 

information necessary to transmit to the decoder becomes the syntactic overhead 

necessary to reconstruct the picture from the original reference frame. When there is 

motion in the images, the situation is not as simple. Figure Below shows an example 

of a frame with 2 stick figures and a tree. The second half of this figure is an example 

of a possible next frame, where panning has resulted in the tree moving down and to 

the right, and the figures have moved farther to the right because of their own movement 

outside of the panning. The problem for motion estimation to solve is how to adequately 

represent the changes, or differences, between these two video frames.

Motion Estimation Example 

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node259.html#fig:motest
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The way that motion estimation goes about solving this problem is that a 

comprehensive 2-dimensional spatial search is performed for each luminance 

macroblock. Motion estimation is not applied directly to chrominance in MPEG 

video, as it is assumed that the color motion can be adequately represented with the 

same motion information as the luminance. It should be noted at this point that 

MPEG does not define how this search should be performed. This is a detail that the 

system designer can choose to implement in one of many possible ways. This is 

similar to the bit-rate control algorithms discussed previously, in the respect that 

complexity vs. quality issues need to be addressed relative to the individual 

application. It is well known that a full, exhaustive search over a wide 2-dimensional 

area yields the best matching results in most cases, but this performance comes at an 

extreme computational cost to the encoder. As motion estimation usually is the most 

computationally expensive portion of the video encoder, some lower cost encoders 

might choose to limit the pixel search range, or use other techniques such as 

telescopic searches, usually at some cost to the video quality.  

Figure 7.18 shows an example of a particular macroblock from Frame 2 of 

Figure 7.17, relative to various macroblocks of Frame 1. As can be seen, the top 

frame has a bad match with the macroblock to be coded. The middle frame has a fair 

match, as there is some commonality between the 2 macroblocks. The bottom frame 

has the best match, with only a slight error between the 2 macroblocks. Because a 

relatively good match has been found, the encoder assigns motion vectors to the 

macroblock, which indicate how far horizontally and vertically the macroblock must 

be moved so that a match is made. As such, each forward and backward predicted 

macroblock may contain 2 motion vectors, so true bidirectionally predicted 

macroblocks will utilize 4 motion vectors. 

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node259.html#fig:motcode
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node259.html#fig:motest
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Motion Estimation Macroblock Example 

Figure 7.19 shows how a potential predicted Frame 2 can be generated from Frame 

1 by using motion estimation. In this figure, the predicted frame is subtracted from 

the desired frame, leaving a (hopefully) less complicated residual error frame that 

can then be encoded much more efficiently than before motion estimation. It can be 

seen that the more accurate the motion is estimated and matched, the more likely it 

will be that the residual error will approach zero, and the coding efficiency will be 

highest. Further coding efficiency is accomplished by taking advantage of the fact 

that motion vectors tend to be highly correlated between macroblocks. Because of 

this, the horizontal component is compared to the previously valid horizontal motion 

vector and only the difference is coded. This same difference is calculated for the 

vertical component before coding. These difference codes are then described with a 

variable length code for maximum compression efficiency. 

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node259.html#fig:motfin
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Final Motion Estimation Prediction 

Of course not every macroblock search will result in an acceptable match. If the encoder 

decides that no acceptable match exists (again, the "acceptable" criterion is not MPEG 

defined, and is up to the system designer) then it has the option of coding that particular 

macroblock as an intra macroblock, even though it may be in a P or B frame. In this 

manner, high quality video is maintained at a slight cost to coding efficiency. 

Coding of Predicted Frames: Coding Residual Errors 

After a predicted frame is subtracted from its reference and the residual error frame 

is generated, this information is spatially coded as in I frames, by coding 8x8 blocks 

with the DCT, DCT coefficient quantization, run-length/amplitude coding, and 
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bitstream buffering with rate control feedback. This process is basically the same 

with some minor differences, the main ones being in the DCT coefficient 

quantization. The default quantization matrix for non-intra frames is a flat matrix 

with a constant value of 16 for each of the 64 locations. This is very different from 

that of the default intra quantization matrix which is tailored for more quantization 

in direct proportion to higher spatial frequency content. As in the intra case, the 

encoder may choose to override this default, and utilize another matrix of choice 

during the encoding process, and download it via the encoded bitstream to the 

decoder on a picture basis. Also, the non-intra quantization step function contains a 

dead-zone around zero that is not present in the intra version. This helps eliminate 

any lone DCT coefficient quantization values that might reduce the run-length 

amplitude efficiency. Finally, the motion vectors for the residual block information 

are calculated as differential values and are coded with a variable length code 

according to their statistical likelihood of occurrence. 

Differences from H.261 

 Larger gaps between I and P frames, so expand motion vector search range.

 To get better encoding, allow motion vectors to be specified to fraction of a

pixel (1/2 pixels).

 Bitstream syntax must allow random access, forward/backward play, etc.

 Added notion of slice for synchronization after loss/corrupt data. Example:

picture with 7 slices:
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 B frame macroblocks can specify two motion vectors (one to past and one to

future), indicating result is to be averaged.

Compression performance of MPEG 1 

------------------------------ 

Type  Size     Compression 

------------------------------ 
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I  18   KB  7:1 

P  6   KB  20:1 

B  2.5 KB  50:1 

Avg  4.8 KB   27:1 
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The MPEG Video Bitstream 

The MPEG Video Bitstream is summarised as follows: 

 Public domain tool mpeg_stat and mpeg_bits will analyze a bitstream.

 Sequence Information

1. Video Params include width, height, aspect ratio of pixels, picture rate.

2.Bitstream Params are bit rate, buffer size, and constrained parameters

flag (means bitstream can be decoded by most hardware)

3. Two types of QTs: one for intra-coded blocks (I-frames) and one for

inter-coded blocks (P-frames). 

Group of Pictures (GOP) information 
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1. Time code: bit field with SMPTE time code (hours, minutes, seconds,

frame).

2. GOP Params are bits describing structure of GOP. Is GOP closed?

Does it have a dangling pointer broken?

 Picture Information

1. Type: I, P, or B-frame?

2. Buffer Params indicate how full decoder's buffer should be before starting

decode. 

3. Encode Params indicate whether half pixel motion vectors are used.

 Slice information

1. Vert Pos: what line does this slice start on?

2. QScale: How is the quantization table scaled in this slice?

 Macroblock information

1. Addr Incr: number of MBs to skip.

2. Type: Does this MB use a motion vector? What type?

3. QScale: How is the quantization table scaled in this MB?

4. Coded Block Pattern (CBP): bitmap indicating which blocks are coded.

Decoding MPEG Video in Software 

Software Decoder goals: portable, multiple display types 

Breakdown of time 

------------------------- 
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Function      % Time 

Parsing Bitstream  17.4% 

IDCT    14.2% 

Reconstruction     31.5% 

Dithering    24.5% 

Misc. Arith.    9.9% 

Other    2.7% 

------------------------- 

 Intra Frame Decoding 

To decode a bitstream generated from the encoder of Figure 7.20, it is necessary to 

reverse the order of the encoder processing. In this manner, an I frame decoder consists 

of an input bitstream buffer, a Variable Length Decoder (VLD), an inverse quantizer, 

an Inverse Discrete Cosine Transform (IDCT), and an output interface to the required 

environment (computer hard drive, video frame buffer, etc.). This decoder is shown in 

Figure. 

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node264.html#fig:icode
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Intra Frame Encoding 

Intra Frame Decoding 
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The input bitstream buffer consists of memory that operates in the inverse fashion 

of the buffer in the encoder. For fixed bit-rate applications, the constant rate 

bitstream is buffered in the memory and read out at a variable rate depending on the 

coding efficiency of the macroblocks and frames to be decoded. 

The VLD is probably the most computationally expensive portion of the decoder 

because it must operate on a bit-wise basis (VLD decoders need to look at every bit, 

because the boundaries between variable length codes are random and non-aligned) 

with table look-ups performed at speeds up to the input bit-rate. This is generally the 

only function in the receiver that is more complex to implement than its 

corresponding function within the encoder, because of the extensive high-speed bit-

wise processingnecessary. 

The inverse quantizer block multiplies the decoded coefficients by the corresponding 

values of the quantization matrix and the quantization scale factor. Clipping of the 

resulting coefficients is performed to the region 2048 to +2047, then an IDCT 

mismatch control is applied to prevent long term error propagation within the 

sequence. 

The IDCT operation is given in Equation 2, and is seen to be similar to the DCT 

operation of Equation 1. As such, these two operations are very similar in 

implementation between encoder and decoder. 

Non-Intra Frame Decoding 

It was shown previously that the non-intra frame encoder built upon the basic building 

blocks of the intra frame encoder, with the addition of motion estimation and its 

associated support structures. This is also true of the non-intra frame decoder, as it 

contains the same core structure as the intra frame decoder with the addition of motion 
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compensation support. Again, support for intra frame decoding is inherent in the 

structure, so I, P, and B frame decoding is possible. The decoder is shown in Figure 24. 

MPEG-2, MPEG-3, and MPEG-4 

MPEG-2 target applications 

------------------------------------------------------------------- 

Level    size     Pixels/sec   bit-rate      Application 

(Mbits) 

-------------------------------------------------------------------- 

Low   352 x 240       3 M   4    consumer tape equiv. 

Main        720 x 480    10 M  15    studio TV 

High 1440  1440 x 1152     47 M  60    consumer HDTV 

High       1920 x 1080     63 M  80    film production 

-------------------------------------------------------------------- 

Differences from MPEG-1 

1. Search on fields, not just frames.

2. 4:2:2 and 4:4:4 macroblocks

3. Frame sizes as large as 16383 x 16383

4. Scalable modes: Temporal, Progressive,...

5. Non-linear macroblock quantization factor

6. A bunch of minor fixes (see MPEG FAQ for more details)
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 MPEG-3: Originally for HDTV (1920 x 1080), got folded into

MPEG-2 

MPEG-4: Originally targeted at very low bit-rate communication (4.8 to 64 

kb/sec). Now addressing video processing... 
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Identification Codes 

The purpose of this article is to learn about some of the most common identification 

numbers and check digit algorithms involved in the verification of these 

identification numbers. We will not be covering all of the identification numbers as 

there are a lot many out there to be covered in this article. However, once you go 

through this article you will understand the most common algorithms involved. 

Many products that we use have an identification number that may or may not have 

a bar-code. Some examples are books, electronics, grocery items, credit cards, 

money orders, driver’s license, etc. The identification number helps encode the 

information about the product. These numbers are usually separated by a space or a 

hyphen and each part holds specific information about the product. We will cover 

the most common ones in this article but before that we should have some basic 

understanding of how the identification number is verified.  

Check Digits 

A check digit is added to the identification number (usually the last digit). This digit 

is used to verify the identification number for its legitimacy. Check digit is added to 

the number to detect any errors made while typing the number into the system. The 

check digit is calculated with an algorithm. Some most common algorithms are 

mod9, mod10, and mod11. We will further notice that the mod10 algorithm is the 

most common and is used in most of the identification numbers. 

Now will discuss some of the common identification numbers used. 

IMEI (International Mobile Equipment Identity) 
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The IMEI number is a unique 15 digit number used to identify mobile phones as 

well as some of the satellite phones. The IMEI number can be found on the box in 

which the phone was packed, inside the phone in the battery compartment, and you 

can even find the IMEI by typing *#06# or *#0000# on some phones. The IMEI 

number is used by the GSM network to identify a valid device. 

Structure of IMEI 

The IMEI number is a 15 digit number (14 digit plus the last digit which is the check 

digit). The IMEI contains the origin, model, and the serial number of the device plus 

the check digit for validation. The first eight digits, known as the TAC (Type 

Allocation Code), hold the information about the origin and model. The next six 

digits are the serial number defined by the manufacturer. The last digit is the check 

digit. Figure 1.1 illustrates the structure of an IMEI number. 

Calculation of the Check Digit 

The check digit is calculated using the LUHN’s algorithm (mod10 algorithm). The 

LUHN’s algorithm was created by Hans Peter Luhn, a scientist at IBM. Here are the 

steps to calculate the check digit using mod10 algorithm: 

1. Starting from the right, double every second digit.

2. Add the digits together if the doubling gives you a two digit number.

3. Now add the doubled digits with the digits that were not doubled.
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4. Divide the sum by 10 and check if the remainder is zero. If the remainder is zero

then that is the check digit. If the number is not zero, then subtract the remainder

from 10. The resulting number will be the check digit.

Here is an illustration: 

Summary 

 IMEI is a unique 15 digit number assigned to mobile phones.

 It is used by GSM networks to verify the legitimacy of the device.

 First eight digits are known as TAC (Type Allocation Code), next six digits are the

serial number, and the last digit is the check digit.

 IMEI number uses mod10 or LUHN's algorithm to verify the number.

Bank Card numbers 

Bank card number are found on credit, debit, and other cards issued from the bank 

and some gift cards can also be verified with Luhn’s algorithm. The first digit of the 

card number is the Major Industry Identified (MII), which tells us which category 

of the entity issued the card. For example, if the number begins with 1 or 2, it’s 

issued by Airlines industry. If the number begins with 4, 5, or 6, it is issued by the 

financial and banking industry. The first six digits of the card number (including the 
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MII) is known as the Issuer Identification number (IIN). Examples - 4 stands for 

Visa, 51 or 55 stand for MasterCard, and 34 or 37 for American Express. The 

numbers left are issued by the bank and the last digit is the check digit. 

Verifying the card number using mod10 algorithm 

Mod10 algorithm is used to verify bank card numbers. We have already discussed 

this algorithm, so we will not go into the details again. 

Here is an illustration: 

Routing Numbers 

Routing number is a nine digit bank code designed to facilitate the sorting, bundling, 

and shipment of paper checks back to the drawer’s account. The RTN is also used 

by Federal Reserve Bank to process Fedwire fund transfers, and by the Automatic 

Clearing house to process direct deposits and other automatic transfers. 

Routing number format 

Routing number appears in two formats: ) Fraction form and MICR (Magnetic ink 

character recognition) form. Both forms give the same information. Fraction form 

was used when MICR form was not invented, however it is still used as a backup. 
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Calculation of the Check Digit 

The check digit can be calculated by using this formula: 

check digit (d9) = [7x(d1 + d4 + d7) + 3(d2 + d5+ d8) + 9(d3 + d6)] mod 10 

Let's calculate the check digit for this routing number: 2540 7011 6. Here, the check 

digit is 6. According to the formula, check digit (d9) = 7x(2+0+1) + 3x(5+7+1) + 

9x(4+0) 

=> 7x3 + 3x13 + 9x4 => 21 + 39 + 36 => 96. Now, 96 mod 10 => 6. Hence 6 is the 

check digit. 

Here is an illustration: 

USPS money order number 
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USPS money order number 

The US Postal office uses an identification number for postal orders. It’s an 11 

digit number and the last number is the check digit as we have seen in other cases. 

Calculation of the check digit 

To calculate the check digit, add up the first 10 digits and the sum is divided by 

9. The remainder is the check digit. Let's calculate the check digit for

84310325021. Check digit => 8+4+2+1+0+3+2+5+0+2+1 => 28 mod 9 => 1. 

Hence 1 is the check digit. 

International Standard Book Number (ISBN) 

This is a unique number created by Gordon Foster in 1961. The 10 digit format 

was developed by ISO (International Organization for Standardization). An ISBN 

is assigned to each edition of a book. 

 10 digit is assigned before Jan 1, 2007 and 13 digits is assigned after that.

 Three parts:

1. the group identifier

2. the publisher code

3. the item number (title of the book).

 Separated by spaces or hyphen.

 Group Identifier: 1-5 digits (country, language).

 The Publisher code: The national ISBN agency assigns the publisher number.

 The publisher selects the item number.

Example: 9971-5-0210-0, 0-943396-04-2, 0-85131-041-9 

Calculation of the check digit 

 ISBN check digit (10 digits) - mod11 algorithm
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The last digit in an ISBN is the check digit, must range from 0 to 10. The ISBN 

uses a weighted system of checking. Each digit from left to right is assigned a 

weight from ten to one. Each digit is multiplied by its position weight and the 

resulting numbers are summed. 

Let's calculate the check digit for 0-07-063546-3. 

 ISBN check digit (13 digits)

Each digit, starting from the left to right, is multiplied by 1 or 3 alternatively. The 

sum of the products modulo 10 gives us either zero or a number between 1 to 9. 

Subtract the number from 10 and it gives us the checksum. 

Hence 3 is the check digit. 

Here is an illustration: 
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ISSN (International Standard Serial Number) 

An ISSN is a unique eight number used to identify a print or electronic periodical 

publication. The code format is divided by a hyphen into a four digit number. The 

last number is the check digit as in the other codes that we have covered. 

Calculation of the check digit 

Starting from the left, each digit is multiplied by its position in the number. Add 

those numbers and the sum is divided by 11 (mod11). If the remainder is not zero, 

then the remainder is subtracted from 11 and that gives us the check digit. So for 

example, this number – 0378-5955. 

Leave out the last digit because we want to verify this digit: 0x8 + 3x7 + 7x6 + 

8x5 + 5x4 + 9x3 + 5x2 = >160 % 11 = 6. 

Now because the remainder is a non-zero digit, we will subtract it from 11 to get 

the check digit, so 11 - 6 => 5. Hence the check digit is 5. 

Here is an illustration: 

UPC and EAN 

The UPC (Universal Product Code) is a barcode symbol and is used to track 

trade items in stores. The most common form of UPC is the UPC-A which consists 

of 12 digits which is unique for a trade item. It consists of a strip of black and 



 Page 4 of 6  Multimedia  - Image Compression (1)      

4

white spaces which can be scanned. The area that can be scanned in a UPC-A 

follows this pattern: 

SLLLLLLLMRRRRRRE 

Here S -> Start, M -> Middle and E -> End 

L -> Left and R -> Right make the barcode unique. The last digit in the barcode 

is the check digit. 

Calculation and Verification of the check digit 

Verification: To verify the number, we can use this formula: 

 [3.d1 + 1.d2 + 3.d3 + 1.d4 + 3.d5 + 1.d6 + 3.d7 + 1.d8 + 3.d9 + 1.d10 + 3.d11 

+ 1.d12] mod10 = 0````` 

Here d1, d2, d3...etc. are the digits. Starting from the left, we multiply the digits 

with 3 and 1 alternatively. 

Example: 036000 291452 

3x0 + 1x3 + 3x6 + 1x0 + 3x0 + 1x0 + 3x2 + 1x9 + 3x1 + 1x4 + 3x5 + 1x2 

=> 0+3+18+0+0+0+9+3+4+15+2 => 60 => 60mod10 => 0. 

Hence the number is verified: 

Calculation: To calculate the check digit, we use the same formula but subtract 

the remainder from 10 to get the check digit. 

Example: 036000 29145? 

3x0 + 1x3 + 3x6 + 1x0 + 3x0 + 1x0 + 3x2 + 1x9 + 3x1 + 1x4 + 3x5 + x 

=>  0+3+18+0+0+0+9+3+4+15+x => 58 => 58 mod10 => 8 
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10 - 8 => 2 

Hence 2 is the check digit. 

EAN 

The EAN-13 (European Article Number) is a 13 digit barcode which is a 

superset of the UPC (12 digits), and is used worldwide for marking products sold 

at retail points of sale (POS). EAN also indicates the country in which the 

company who sells the product is based in. 

Calculation of the check digit 

Verification: To verify the number, multiply the digits with 1 or 3 with respect to 

the position they have in the digits, starting from the left. 

Example: 8 901526 206056 

1x8 + 3x9 + 1x0 + 3x1 + 1x5 + 3x2 + 1x6 + 3x2 + 1x0 + 3x6 + 1x0 + 3x5+ 1x6 

=> 8 + 27 + 3 + 5 + 6 + 6 + 6 + 18 + 15 + 6 => 100 mod10 => 0. Hence number 

is verified 

Calculation: We use the same method as above, however we will omit the last 

digit from the calculation because that is the digit we want to find. Here if the 

remainder is a non-zero number then it is subtracted from 10. 

Example: 8 901526 206056 

1x8 + 3x9 + 1x0 + 3x1 + 1x5 + 3x2 + 1x6 + 3x2 + 1x0 + 3x6 + 1x0 + 3x5 

=> 8 + 27 + 3 + 5 + 6 + 6 + 6 + 18 + 15 => 94 mod10 => 6. 10 - 4 = > 6. 

Hence 6 is the check digit. 
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