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Abstract—In this paper, multi-classifier of K-Nearest Neighbor
and Support Vector Machine (SVM) classifiers with multi-domain
features are employed, as a proposed methodology for recognizing
the normality status of the heart sound recordings (so-called
Phonocardiogram - PCG). The PhysioNet/CinC Challenge 2016
offers the dataset used in this paper. Heart sounds are complex
signals and required trained clinicians for diagnosis, which
motivated us to develop an algorithm for automatic classification
of heart sounds into two classes normal and abnormal. Entropy,
high-order statistics, Cyclo-stationarity, cepstrum, the frequency
spectrum of records, energy, state amplitude, the frequency
spectrum of states, and time interval, are the nine-domain
features employed. These domain features are extracted to a total
of 527 features. These features have been used to train the K-
Nearest Neighbor and Support Vector Machine (SVM) classifiers.
Fine-KNN classifier outperformed types of SVM classifiers by
achieving the accuracy of 93.5% while Cubic-SVM classifier
achieved 90.9% which is the highest accuracy of all SVMs. The
Fine-KNN classifier and the proposed features are both efficient
and significant for PCG recognition.

Index Terms—SVM, KNN, Phonocardiogram, PCG, Heart
sound Recognition, Multi-domain features.

I. INTRODUCTION

During the cardiac cycle, the process of recording all the

sounds generated by the heart is called Phnocardiography

[1]. These sounds are created, due to the interaction between

the heart valves and chambers and the blood flow, as a

series of mechanical vibrations [2], [3]. They offer significant

early hints in the evaluation of the heart disease for extra

analytic testing [4]. Moreover, one of the important roles

in the detection of heart diseases in advance is achieved by

listening to the heart sounds. Therefore, it is almost desirable

to exploit the analysis of the heart sounds based computer.

In the last 50 years, automated recognition of pathology in

heart sounds is an interesting problem. Nevertheless, exact

recognition is still a continuous challenge question. From the

research view, Gerbarg, et al [5], were the first published in

the field of automated heart sound classifications. Abnormal

heart sounds seem to have high frequencies as shown in Fig. 1

while normal heart sounds seem to have regular beats as

shown in Fig. 2. Fig. 3 shows the difference between normal

and abnormal heart sounds. Automated PCG recognition in

the clinical application usually involves four steps. These

steps are: preprocessing, segmentation, feature extraction, and

classification, respectively. Feature extraction and classifica-

tion methods are extensively examined over the last decades.

Feature extraction methods include joint time-frequency do-

main, complexity-based, frequency domain, and time-domain

features while classification methods include clustering such

random forest [13], [14], [15], [16] support vector machine

[11], [12] and artificial neural networking [6], [7], [8], [9],

[10]. In the PhysioNet/CinC Challenge 2016, several methods
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were introduced, such as support vector machine [21], [22]

tensor [20].The performance efficiency has been boosted by

using FPGA [47]. In the task of heart classification, FPGA

was used to speed up the process of classification in real time

[48]. Deep learning has shown a great performance in medical

image classification [39], [42], [46], [49] as well as heart

sound classification [17], [19], [23], [40], [41], [43]. However,

Deep learning methods required a lot of data for training and

there is a lack of standardized PCG datasets. Machine learning

algorithms have shown a great performance in medical images

and health care [44], [45]. In general, frequency domain

features were employed in these papers [27], [28], [29]. Also,

the top general scores of PhysioNet/CinC Challenge 2016 were

reported as 89% by Whitaker, et al. [27], 86% by Potes, et al.

[28], and 85.9% by Zabihi, et al [29]. The authors of this paper

[38][38] enhance their previous work [31] by extracting 515

features for PCG recognition which inspired us to find more

features. The PhysioNet/CinC Challenge organizers collected

a high number of PCG recording samples from a variety of

research groups in the world.

Fig. 1. Abnormal heart sounds.

In our work, the extracted features are from multiple do-

mains, like, entropy, cyclostationarity, frequency spectrum,

cepstrum, high-order statistics, energy, state amplitude, and

time interval. Then, we trained different KNN and SVM

classifiers for automated heart sound classification task.

The contributions of our work are: (i) Extract features from

multi-domain. These features used to distinguish between

heart sound classes. (ii) Train multi-classifier of K-Nearest

Neighbor and Support Vector Machine (SVM) classifiers with

a different set of features that we extracted. (iii) We improved

the accuracy of heart sound classification and outperformed

state-of-the-art methods by achieving 93.5%.

II. METHODOLOGY

Initially, this paper utilized the dataset is offered by the

worldwide challenge PhysioNet/CinC 2016, which provided

Fig. 2. Normal heart sounds.

Fig. 3. The difference between Normal and Abnormal heart sounds.

a free download of the dataset from their website [32]. It

involved a variety of PCG records of normal/abnormal heart

conditions, collected from clinical/non-clinical locations. The

dataset includes 3240 PCG records, which have a ′.wav′

format and enduring 5-120 seconds. Preprocessing is the first

step in the process of PCG classification. It involves high-pass

filtering to each PCG record. The filter has a cutoff frequency

of 10 Hz for removing the baseline drift. Then, the filter output

is processed by a spike removal algorithm. Subsequently, the

normalization process is applied based on zero mean and unit

standard deviation.

The second step is the heart sound segmentation. Each

record is segmented into four states by utilizing Springer

algorithm, or so-called Hidden Semi-Markov model (HSMM)

technique [33]. These four states are S1, systole, S2, and

diastole, respectively. The third step is the feature extraction

process, which is distributed in nine domains with a total of

527 extracted features. These features are stated in descending
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order; 320 frequency features, 65 Cepstrum features, 47 energy

features, 27 spectrum features, 20 time features, 16 high-

order statistics features, 16 entropy features, 12 normalized

amplitude features, and 4 Cyclostationary features. Based on

the available studies, the entropy and Cyclostationary are

original for PCG recognition. The nine domains are listed as

follows:

Frequency-domain features: For each cardiac cycle, the

frequency spectrum of the state of S1 is estimated by applying

a discrete Fourier transform and Gaussian window. Also, for

the whole cycles, the mean frequency spectrum is calculated.

The spectrum range is 30-790 Hz, with 10 Hz frequency

interval. Hence, for the state of S1, 80 features are obtained.

The same procedure is applied to the other three states, systole,

S2, and diastole. Therefore, for the complete cardiac cycle, the

total features are 320 = 80× 4.

Cepstrum-domain features: After calculating the PCG

records Cepstrum, the Cepstral coefficients of the first thirteen

is considered as features [34]. In addition, a new digital

sequence is generated by joining together all the states of

S1 from the PCG record. Next, the Cepstrum of the new

sequence is computed and again the Cepstral coefficients of the

first thirteen are considered as features. The same procedure

is applied to the other three states, systole, S2, and diastole.

Therefore, additional 13× 3 = 39 features are added. Hence,

for the complete cardiac cycle, the total Cepstrum features

are 65. It should be noted that the Cepstrum coefficients

decompose rapidly. Thus, it is reasonable to consider the

features as only the first thirteen coefficients.

Energy-domain features: These features comprise two ele-

ments; the energy ratio of one state to another and the energy

ratio of a band-pass signal to the original signal. The first

element is obtained between any two states, which gets 20

features. In Eq 1 , the energy ratio of S1 state to the whole

cycle is:

Where n = discrete time index, and N = number of cycles in

PCG record. Note that the standard deviation and the average

energy ratio are considered as two features. Considering the

second element, a range of frequency bands are investigated

(actually 27 bands). The starting value is 10 Hz and the

bandwidth is 30 Hz. More specifically, the starting band is

(10-40) Hz and the 27th band (last band) is (790-820) Hz.

The murmurs frequency is less than 800 Hz as the previous

studies disclosed. So, in this domain, the maximum frequency

investigated for reflecting the murmurs properties is 820 Hz.

Note that the frequency band less than 200 Hz represents the

normal heart sound signal. If this frequency band contains

murmurs, then, it can be extended to 800 Hz. Hence, the

energy ratio indicates the distribution of the signal energy on

the length of the frequency band. And these features are very

useful for discriminating the presence of murmurs in the PCG

records. The total is 47 proposed features.

Spectrum-domain features: Initially, Fast Fourier Transform

is applied to each PCG record. As mentioned in (c), there are

27 frequency bands. Therefore, there are 27 features for each

PCG record in this domain. These features are valuable for

discriminating the presence of murmurs in the PCG records,

because murmurs, in general, have a high frequency as com-

pared to the normal PCG records.

Time-domain features: After the completion of the segmen-

tation process, each PCG record is partitioned into several

parts (states). These states are in sequence S1, systole, S2,

diastole. Next, the time interval measuring is applied to each

state by computing the time difference between the starting

of each state with the starting of the next state. The time

interval of the whole cycle is calculated as the time difference

between the starting of two neighboring S1 states. From the

heart physiological point of view, these time intervals have

several physiological significances. The total is 20 features.

High-order statistics features: A measure of the real-valued

random numbers around its average with an asymmetry prob-

ability distribution is called Skewness, as in probability theory

and statistics. Skewness is a three-order statistics, while Kur-

tosis is a four-order statistics. Kurtosis is defined as a measure

of real-valued random numbers concerning the ’tailedness’

of the probability distribution. Both measures are taken into

consideration.

Entropy features: The complexity of a random sequence

can be measured by fuzzy measure entropy (FuzzyMEn) or

Sample entropy (SampEn) [36], [37]. Each state is segmented

by Springers algorithm for measuring its complexity using

both Fuzzy measure and Sample entropy. Next, the standard

deviation and the average are utilized as features. References

[36] and [37] have a detailed algorithm for calculating the

fuzzy measure and sample entropy.

Normalized amplitude features: According to the physiolog-

ical conclusions in heart sound amplitude, there is an effective

relation between the heart hemodynamics and the amplitude

[1], [3]. Hence, it is valuable for extracting features from the

heart sound amplitude. Also, there is not an absolute ampli-

tude, as a reference, for eliminating the difference between

records and objects.

Cyclostationary features: This domain contains four features.

The first feature represents the mean value cyclostationary

degree. It shows the degree of signal repetition. Ref. [35]

involves the definition of the ”cyclostationary degree”. This

feature has an infinite value if the actions which happened

during heart beating were accurately cyclic. While it has minor

value if the actions are arbitrarily alike. The PCG signal is

uniformly partitioned into subsequence. Next, the mean value

and the standard deviation are evaluated. Hence, the first two

features are obtained. The third feature is the mean value of

the sharpness degree. It represents the peak sharpness of the

cycle frequency spectral density. So, as the peak be sharper,
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the feature is greater. In a similar manner, for each PCG

subsequence, the feature can be evaluated, and after that, the

mean value and the standard deviation are obtained.

The last step is the classification process. Typically, the sig-

nal quality classification is categorized into two-class process

namely normal and abnormal classes. We divided the data into

70% for training and 30% for testing. We have trained different

KNN and SVM classifiers. Both KNN and SVM classifiers

have shown outstanding results in several tasks for binary

classification. KNN is classifying objects based on closest

training examples in the feature space. An object is classified

by a majority of its neighbors. We have trained four types of

KNN classifiers namely Cubic KNN, Cosine KNN, Weighted

KNN, and Fine KNN. A support vector machine (SVM) is a

hyperplane that separates two different sets of samples with

the maximum distance of hyperplane to nearest samples from

both sets. Four types of SVM classifiers which are Linear

SVM, Quadratic SVM, Medium Gaussian SVM, and Cubic

SVM have been used to classify heart sound.

III. EXPERIMENTAL RESULTS

The classification performance was evaluated using the

challenge score (MAcc) defined as the arithmetic mean of

sensitivity and specificity [32]. We consider binary classifica-

tion into ’normal’, ’abnormal’ ignoring the quality of labels.

We trained and tested different types of SVM and KNN

classifiers as reported in Table I. 30% of the dataset used for

testing. Fine-KNN achieved the highest accuracy of 93.5%

while Weighted KNN achieved the second highest accuracy

of 92.2%. Cubic SVM scored the third highest accuracy

of 90.9% which is higher than Cubic KNN, Cosine KNN.

90.5% and 90.7% are accuracies of Cubic KNN, Cosine KNN,

respectively. Lastly, linear SVM, Quadratic SVM, Medium

Gaussian SVM achieved the lowest accuracies of 87.1%,

89.9%, 90.4%, respectively. Fine-KNN outperformed different

methods that applied to The PhysioNet/CinC Challenge 2016

dataset as shown in Table 2. The experiment has been done

using Matlab2018a and the processor specifications used in

this experiment are Intel (R) Core TM i7-5829K CPU @ 3.30

GHz, the RAM was 16 GB and the GPU was 8 GB.

TABLE I
EXPERIMENTAL RESULTS OF KNN & SVM CLASSIFIERS

Classifier MAcc(%)
Linear SVM 87.1

Quadratic SVM 89.9
Medium Gaussian SVM 90.4

Cubic SVM 90.9
Cubic KNN 90.5
Cosine KNN 90.7

Weighted KNN 92.2
Fine KNN 93.5

IV. CONCLUSION & FUTURE WORK

In this paper, we extracted features from multiple domains,

i.e., time interval, state amplitude, energy, high-order statistics,

cepstrum, frequency spectrum, cyclostationarity, and entropy

TABLE II
COMPETITIVE RESULTS

Methods MAcc(%)
B. M. Whitaker [27] 89

Potes, et al [28] 86
Zabihi, et al [29] 85.9

Fine KNN 93.5

with a total of 527 features. These features used to train

different KNN and SVM classifiers. The results show the

overall score reaches 93.5% using Fine-KNN with proposed

features, which is superior to the previous best classification

methods. Furthermore, the KNN classifier has a very good

performance with even a small number of features for training

and has stable output regardless of randomly selected features

for training. As a future work, we aim to compare the

performance of machine learning methods as applied in this

paper to performance of deep learning model. We also aim to

classify heart beats in real time using FPGA.
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