Republic of Iraq Ministry of Higher Education & Scientific Research Supervision and Scientific Evaluation Directorate Quality Assurance and Academic Accreditation

Academic Program Specification Form For The Academic

University: University of Anhar

College: College of Education for Pure Science

Department: Chemistry

Date Of Form Completion: 10/6/2021

Prof. Dr. Abdul Rahman

Salman, Juma

Assist. Prof. Dr. Harith Kamil

Buniya

Dean's Name

Date: / /

Signature

Dean's Assistant ForScientific

Affairs

Date: 10/6 /2023

Signature

Prof.Dr. Hameed Khaled Jankeel

> Head of Department

Date: 10/6/2023

Assist. Prof. Dr. Feras Shaker Mahmoud Batah

Quality Assurance And University Performance Manager

Date: 10/6/2023

Signature

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

PROGRAMME SPECIFICATION

This Programme Specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the programme.

1. Teaching Institution	University of Anbar
2. University Department/Centre	College of education for pure science- Department of Chemistry
3. Programme Title	Education Chemistry Sciences
4. Title of Final Award	Bachelor of Education Chemistry Sciences
5. Modes of Attendance offered	Quarterly
6. Accreditation	Nothing
7. Other external influences	School application - practical graduation research projects
8. Date of production/revision ofthis	2023/6/10
specification	

9. Aims of the Programme

- 1. Achieving the specified standards for the quality of material, human, technical and financial resources.
- 2. Providing an efficient administrative staff that knows its duties and powers according to the work structures and regulations, in which the requirements of the job description are fulfilled.

- 3. Providing a specialized teaching staff who is fluent in using modern techniques and methods in education with good job satisfaction.
- 4. Preparing academic programs in accordance with international academic standards and providing their knowledge, training and technical requirements.
- 5. Preparing students with scientific, practical and educational knowledge that meets the needs of the labor market.
- 6. Paying attention to scientific research in terms of laboratory, research and researcher in order to achieve a distinguished research reputation locally and globally.
- 7. Research and professional openness to community institutions to meet their needs and aspirations.
- 8. Evaluate all individuals and processes to ensure quality performance and continuous improvement.

10. Learning Outcomes, Teaching, Learning and Assessment Methods

A1. Knowledge and Understanding

- A1. Enable the student to acquire theoretical knowledge of chemistry.
- A2. Empowering the student how to teach and ways of communicating scientific information to students.
- A3. The student's knowledge of the methods of measurement and evaluation and methods of modern teaching methods in chemistry.
- A4. The student is acquainted with the educational material by providing it electronically in the virtual classroom. In addition to enabling the student to know the learning theories related to the ages of students for the secondary school stage.

B. Subject-specific kills

- B1. Gaining knowledge and enriching the student with the methods of laboratory work.
- B2. Orienting the student to the scientific method in solving all scientific problems.
- B3. Knowing the objectives and origins of the art of teaching chemistry.
- B4. Enabling students to acquire the skills of using virtual classrooms

Teaching and Learning Methods

- 1. The method of listening and thinking deeply in order to understand the problem to solve it.
- 2. The method of scientific discussion and meaningful dialogue.
- 3. Adopting the method of monthly and final exams and submitting weekly reports.

Assessment methods

- 1. The treatment method using final scores.
- 2. Random and surprise tests.
- 3. Teaching tasks in the virtual classroom.

C. Thinking Skills

- C1. Adopting the method of dialogue between the student and the professor.
- C2. Interest in research projects and preparing organized reports
- C3. Adopt the method of discussion. (Performance tests and seminars).
- C4. Adopting e-learning to provide an interesting and flexible learning environment.

Teaching and Learning Methods

- 1. Method of application in research laboratories
- 2. Adopting the method of constructive dialogue and discussion
- 3. Adopt the trial-and-error method.
- 4. The adoption of multimedia in the virtual classes (image, text, audio, video)

Assessment methods

- 1. Preparation of the seminar (graduation research)
- 2. Adoption of the grading method as a basis in the evaluation process.
- 3. Adoption of the test method.
- 4. Adopting the method of discussions and dialogues between the students and the professor.
- 5. Create a test task in the virtual classes.
- D. General and Transferable Skills (other skills relevant to employability and personal development)
- D1- That the student benefit from his learning and embody this in his personal and professional development.
- D2- That the student is able to employ the knowledge he receives during the study stage.
- D3- That the student benefit from theoretical knowledge in employing the teaching profession and mastering it in a concept-based manner.

Fundamentals of teaching chemistry.

D4 - Skills of modern technologies in communication, documentation and communication.

Teaching and Learning Methods

- 1. Field visits in laboratories.
- 2. Scientific application in laboratories.
- 3. Take advantage of graduation research.
- 4. Presentation and presentation of educational content in virtual classes using multimedia (video, recorded lecture).

Assessment Methods

- 1. Articles and periodical research
- 2. The interview
- 3. Final exams
- 4. Determining study tasks and duties periodically and regularly in the virtual classroom

11. Progran	ıme Structure			
Level/	Course or		Weekly	hours
Year	Module Code	Course or ModuleTitle	Lec.	Lab.
	CHEM111	Analytical Chemistry 1	2	2
	CHEM121	organic chemistry 1	2	2
	CHEM131	inorganic chemistry 1	2	0
	CHEM181	Chemical safety and security	2	-
	CHEM112	Analytical Chemistry 2	2	2
	CHEM122	organic chemistry 2	2	2
	CHEM132	inorganic chemistry 2	2	0
	BIO120	Biology	2	2
First	EPS101	educational psychology	2	-
	EPS102	Education principles	2	-
	UOA140	English language 1	2	-
	UOA135	Human rights and democracy	2	-
	UOA137	Arabic language 1	2	-
	UOA141	Computer	1	2
	MAT105	Calculus 1	2	-
	MAT113	Calculus 2	2	-
	CHEM213	Analytical Chemistry 3	2	2
	CHEM223	Organic Chemistry 3	2	2
	CHEM233	Inorganic Chemistry 3	2	2
	CHEM241	Physical Chemistry 1	2	2
	CHEM214	Analytical Chemistry 4	2	2
	CHEM224	Organic Chemistry 4	2	2
	CHEM234	Inorganic Chemistry 4	2	2
Second	CHEM242	Physical Chemistry 2	2	2
	EPS202	Developmental Psychology	2	-
	EPS201	Educational Management	2	-
	EPS211	Scientific Research Methodolgy	2	-
	UOA240	Arabic Language 2	2	-
	UOA241	Computer	1	2
	MAT	Mathematics	2	-

	CHEM351	Biochemistry 1	2	2
	CHEM325	Organic Chemistry 5	2	2
	СНЕМ331	Inorganic Chemistry 5 (Coordination)	2	2
	CHEM341	Physical Chemistry 3	2	2
	CHEM361	Industrial Chemistry 1	2	-
	CHEM352	Biochemistry2	2	2
Third	CHEM326	Organic Chemistry 6	2	2
	СНЕМ332	Inorganic Chemistry 6 (Coordination)	2	2
	СНЕМ342	Physical Chemistry 4	2	2
	СНЕМ362	Industrial Chemistry 2	2	-
	EPS311	Curriculum and teaching method	2	-
	EPS312	Counseling and mental healt	2	-
	UOA340	English Language 3	2	-
	CHEM453	Biochemistry 3	2	-
	CHEM427	Organic identification	2	2
	CHEM415	Instrumental Analysis 1	2	2
	CHEM445	Physical Chemistry (Quantum)	2	-
	CHEM463	Industrial Chemistry 3	2	2
	CHEM454	Biochemistry 4	2	-
F 41	CHEM428	Organic identification 2	2	2
Fourth	CHEM416	Instrumental Analysis 2	2	2
	CHEM446	Physical Chemistry (Quantum)	2	-
	CHEM464	Industrial Chemistry 4	2	2
	EPS411	measuring and evaluating	2	-
	EPS412	teaching apps	2	-
	EPS413	school apps	-	4
	СНЕМ491	Graduation Project	2	

13. Personal Development Planning

- 1. Using modern scientific sources.
- 2. Using rapid communication networks to transfer information such as the Internet.
- 3. Visits and practical practices in service laboratories.
- 4. Acquisition of scientific and modern experiences and skills in the field of modern technical communication

14. Admission criteria

- 1. Admission according to the general and central average system.
- 2. Admission to departments is according to the student's desire and is modified.
- 3. It is a condition for a graduate of the preparatory school and the scientific stream exclusively.
- 4. The accepted student's personal and mental integrity and freedom from physical impairments

15. Key sources of information about the programme

- 1. Curriculum books approved by the Sectorial Committee of the Faculties of Education for Pure Sciences.
- 2. Helping books.
- 3. Books and archaeological resources / sources in the English language.
- 4. Additional sources from the Internet.
- 5. The training courses held by the university on e-learning platforms.

						C	Curricu	lum Sk	ills Ma	ap									
										Pro	gramm	e Learn	ing Outo	omes					
Year / Level	Course Code	CourseTitle	Core (C) or Option (O)]	Knowle unders	edge and standing	l g		Subjec	t-specifi skills	c		Thin	king Ski	ills	(or)	ral and Tra Other skil ployability develo	lls relevan and perso	t to
			(0)	A1	A2	A3	A4	B 1	B2	В3	B4	C1	C2	С3	C4	D1	D2	D3	D4
	CHEM111	Analytical Chemistry 1	core	√	√	V		√				√	√			√			
		organic chemistry 1	core	$\sqrt{}$	$\sqrt{}$	√		$\sqrt{}$				√	√			√			
	CHEM131	inorganic chemistry 1	core	√	$\sqrt{}$	\checkmark		√				√	√			√			
	CHEM181	Chemical safety and security	Option	V	1	V		1				1	√			1			
	CHEM112	Analytical Chemistry 2	core	√	√	V		√				V	√			V			
	CHEM122	organic chemistry 2	core	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$				$\sqrt{}$	$\sqrt{}$			$\sqrt{}$			
	CHEM132	inorganic chemistry 2	core	V	√	V		V				V	V			V			
First	BIO120	Biology	core		√	√		√					V			√		$\sqrt{}$	
	EPS101	educational psychology	core				√			V				√		1		V	
	EPS120	Education principles	core				√			V				V		√		√	
	UOA140	English language 1	core		√						√			V		V			
	UOA135	Human rights and democracy	core				V			V				V					
	UOA137	Arabic language 1	core				√				V			V					
	UOA141	Computer	core		√		√				√				V				
	METH	Calculus 1	core		√	√			√								√		
	METH	Calculus 2	core		√	√			√								√		

						(Curricu	ılum Sl	kills M	ap									
										Pro	gramm	e Learn	ing Out	comes					
Year / Level	C. 1.		Core (C) or Option (O)	K	Knowledge and understanding			Subject-specific skills			-	Γhinking	Skills		(or	General and TransferableSkills (or) Other skills relevant to employability and personal development		t to	
				A1	A2	A3	A4	B1	B2	В3	B4	C1	C2	С3	C4	D1	D2	D3	D4
	CHEM213	Analytical Chemistry 3	core	V	V	V		V				V	V				$\sqrt{}$		
	CHEM223	Organic Chemistry 3	core	V	V	V		√				V	√				$\sqrt{}$		
	CHEM233	Inorganic Chemistry	core	V	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$				V	$\sqrt{}$				$\sqrt{}$		
	CHEM241	Physical Chemistry 1	core	$\sqrt{}$		٧		V				V	V				V		
	CHEM214	Analytical Chemistry 4	core	V	V	V		V				V	V				V		
	CHEM224	Organic Chemistry 4	core	$\sqrt{}$	V	$\sqrt{}$		$\sqrt{}$				$\sqrt{}$	$\sqrt{}$				$\sqrt{}$		
Second	CHEM234	Inorganic Chemistry 4	core		$\sqrt{}$			$\sqrt{}$					$\sqrt{}$				$\sqrt{}$		
Second		Physical Chemistry	core	$\sqrt{}$				$\sqrt{}$					$\sqrt{}$				$\sqrt{}$		
		Developmental Psychology	core							$\sqrt{}$		$\sqrt{}$			$\sqrt{}$			\checkmark	
	W DS 1711	Educational Management	core				V			$\sqrt{}$					V		$\sqrt{}$	$\sqrt{}$	
		Scientific Research Methodolgy	core				√						√						V
	UOA240	English Language 2	core								V								
	UOA241	Computer	core					√ 	V				$\sqrt{}$				$\sqrt{}$		

Curriculum Skills Map please tick in the relevant boxes where individual Programmed Learning Outcomes are being assessed **Programmed Learning Outcomes** General and TransferableSkills Knowledge and Subject-specific Course Core (C) Thinking Skills CourseTitle Year / skills (or) Other skills relevant to understanding Code or Option Level employability and personal (O) development **A4 A3 A1 A2 B1** B2 **B3 B4 C1 C2 C3 C4** D1 D2 **D3 D4** CHEM351 Biochemistry 1 core CHEM325 **Organic Chemistry 5** core CHEM331 Inorganic Chemistry 5 core (Coordination) **Physical Chemistry 3** CHEM341 core CHEM361 Industrial Chemistry 1 core CHEM352 Biochemistry2 core CHEM326 Organic Chemistry 6 core Third CHEM332 Inorganic Chemistry 6 core (Coordination) CHEM342 Physical Chemistry 4 core CHEM362 Industrial Chemistry 2 core Curriculum and EPS311 core teaching methods EPS312 Counseling and mental core health **UOA340 English Language 3** core

						C	Curricu	ılum Sk	ills Ma	ap									
										Pro	gramme	Learı	ning Out	comes					
Year / Level	Course Code	CourseTitle	Core (C) Or Option		Knowledge and Subject-specific understanding skills Thinking Skills					General and TransferableSkills (or) Other skills relevant to employability and personal development									
			(O)	A1	A2	A3	A4	B 1	B2	В3	B4	C1	C2	С3	C4	D1	D2	D3	D4
	CHEM453	Biochemistry 3	Core		$\sqrt{}$	$\sqrt{}$			$\sqrt{}$			√	$\sqrt{}$				$\sqrt{}$		
	CHEM427	Organic identification 1	Core	√	V	√		V	$\sqrt{}$			√	√				$\sqrt{}$		
	CHEM415	Instrumental Analysis 1	Core	√	V	V		√	√			√	√				V		V
	СНЕМ445	Physical Chemistry (Quantum)	Core	1	√	V		√	√			√	√				√	V	V
	CHEM463	Industrial Chemistry 3	Core	$\sqrt{}$	√	V		√	√			√	1				V	√	
	CHEM454	Biochemistry 4	Core		V	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$			√	1				$\sqrt{}$	$\sqrt{}$	
	CHEM428	Organic identification 2	Core	1	V	V		1	√			√	√				V		
Fourth	CHEM416	Instrumental Analysis 2	Core	1	V	V		1	√			√	√				$\sqrt{}$		
	CHEM446	Physical Chemistry (Quantum)	Core	1	V	V		1	√			√	√				V		
	CHEM464	Industrial Chemistry 4	Core	$\sqrt{}$	$\sqrt{}$	√		√	√			√	√				V		
	UOA440	English language	Core		$\sqrt{}$	√										V			
	EPS411	measuring and evaluating	Core			V					√			1		V	√		
	EPS412	teaching apps	Core			√				$\sqrt{}$	√		√	√		V	√		
	EPS413	school apps	Core								√		$\sqrt{}$	$\sqrt{}$		√	√		
	CHEM491	Graduation Project	Core					$\sqrt{}$			√		$\sqrt{}$			1	$\sqrt{}$		

Reviewing the performance of higher education institutions

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve. Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

1. Educational institution	College of Education for Pure Sciences / Anbar University
2. University department/center	Chemistry
3. Course name/code	Organic Chemistry / Third Stage Chem304/ Chem303,
4. The programs he participates in	Bachelor of Science in Chemistry
5. Available forms of attendance	Daily, at the time specified in the schedule, and at full time
6. Semester/year	Courses – first and second semester
7. Number of study hours (total)	2 hours
8. Date this description was prepared	2022-2023
0 Course objectives	

9. Course objectives:

- 10. Learning outcomes and methods of teaching, learning and evaluation
- a. Cognitive objectives
- 1. Enable the student to obtain theoretical scientific knowledge of organic chemistry.
- 2. Introducing the student to methods of preparing chemical compounds.
- 3. The student's understanding of how chemical reactions occur through reaction mechanics.
- B. Course-specific skills objectives
- 1. The student is proficient in conducting experiments and using equipment efficiently.
- 2. The student must master the nomenclature of organic compounds.
- 3. Distinguish between nucleophilic and electrophilic attack.

4. Study the role of functional groups and their role in interaction.

Teaching and learning methods

1. Lectures

D - General and transferable skills (other skills related to employability and personal development.(

1. Adopting the method of dialogue between the student and the professor

Preparing organized reports2.

Adopting the discussion method3.

				11. Co	urse structure
The week	hours	Required learning outcomes	Name of the unit/course or subject	Teaching method	Evaluation method
1	theoretica l+3 practical	Acids and bases	Acids and bases Factors affecting the origin of acidity and basicity	Lecture + laboratory	Weekly and monthly exams And laboratory reports
2	theoretica l+3 practical	Carbonium ion	Effective organic intermediates Carbonium ion, methods of preparation, stability factors and interactions	Lecture + laboratory	Weekly and monthly exams
3	theoretica 1+3 practical	Carbanion	Carbanion ion, preparation	Lecture + laboratory	And laboratory reports

4	theoretica 1+3 practical	Carbene and nitrene	methods, stabilization factors and interactions Carbene and nitrene Methods of their preparation, stability factors and interactions	Lecture + laboratory	Weekly and monthly exams
5	theoretica 1+3 practical	Free radical	Free radical Preparation methods, stability factors and interactions	Lecture + laboratory	And laboratory reports

				11. Cour	se structure
6	theoretical + 3 practical	Benzyne	Benzyne intermediate Methods of its preparation and interactions	Lecture + laboratory	Weekly and monthly exams
7	theoretical + 3 practical	Stereochemistry	Stereochemistry Chiral carbon atom Naming spatial shapes according to the system (R, S)	Lecture + laboratory	And laboratory reports
8	2 theoretical	Reactions of chiral molecules	Interactions of	Lecture + laboratory	Weekly and

	+ 3 practical		chiral molecules		monthly exams
9	theoretical + 3 practical	Nucleophilic substitution on a saturated carbon atom	Nucleophilic substitution on a saturated carbon atom SN2, SN1 mechanics	Lecture + laboratory	And laboratory reports
10	theoretical + 3 practical	Nucleophilic substitution on a saturated carbon atom.	The effect of structure and solvent leaving group on the mechanism of SN2 and SN1	Lecture + laboratory	Weekly and monthly exams
11	theoretical + 3 practical	Elimination reactions	Elimination reactions are mechanical E2, E1 Orientation in E according to Saytsov and Hoffman	Lecture + laboratory	And laboratory reports

				11. Co	urse structure
12	2 theoretical	Polycyclic aromatic	Polycyclic aromatic	Lecture + laboratory	Weekly and monthly

				_		
		+ 3	compounds	compounds		exams
		practical				
				Name it		
	- 12		7.1	D 1 11	-	***
	13	2	Polycyclic aromatic	Polycyclic	Lecture +	Weekly and
		theoretical	compounds	aromatic	laboratory	monthly
		+ 3		compounds		exams
		practical		•		
				Methods of		
				obtaining them		
				and their		
				interactions		
				interactions		
	14	2	Heterocyclic compounds	Heterocyclic	Lecture +	Weekly and
		theoretical		compounds	laboratory	monthly
		+ 3		00111P 0 011100		exams
		practical		Its types,		
		_		names and		
				physical		
				properties		
	15	2	Heterocyclic compounds	Heterocyclic	Lecture +	Weekly and
		theoretical		compounds	laboratory	monthly
		+ 3		compounds	v	exams
		practical		Methods of		
		_		obtaining them		
				and their		
				interactions		
- 1						l l

		12. Infrastructure	
:	Graham Solomon	USA	Organic Chemistry
Required readings			
*Course			
books			
*Other			
Special	Jerry March	USA	Advanced Organic Chemistry
requirements	gerry waren		
Social services (including, for example, guest lectures,			If conditions exist, lecturers will be
•	vocational training, and fie	invited as guests	

Prof. Dr. Abdallah hussien kshash

Course description form

Reviewing the performance of higher education institutions

(and and anothern)

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve. Demonstrating whether they have made the most of the learning opportunities available. It must be

College of Education for Pure Sciences / Anbar University	Educational institution				
Chemistry	University .2				
Learning outcomes and methods of teaching, le	earning and evaluation .10				
	a. Cognitive objectives				
.1Enable the student to obtain scientific knowledge	e in diagnosing organic compounds.				
.2Introducing the student to spectroscopic methods					
Introducing the student to chemical method					
	Course-specific skills objectives				
.1The student is proficient in conducting ex					
.2The student must master chemical methods in .3The possibility of diagnosing unknown	organic compounds by chemical				
The possibility of diagnosing unknown organic	methods. compounds using spectroscopic methods.				
יַ	reaching and learning methods				
	.1Lectures				
.2Using educational programs to give th program and explain it to students thro					
	Evaluation methods				
.10ral exams (curr	ently replaced by Quiz questions).				
	.2Monthly exams.				
	Quarterly exams.				

C- Thinking skills
.1The student's ability to work within the educational and
professional work team
.2Positive thinking and utilizing the knowledge you have
received.
.3The ability to deal with parties outside the university and
train with them.
That the student can learn and master the teaching
profession.

Teaching and learning methods

.1Lectures .2Display slides

Use of laboratory materials and laboratory equipment

Evaluation methods

.1Oral exams .2Monthly exams For quarterly exams

D - General and transferable skills (other skills related to employability and personal development).

.1Adopting the method of dialogue between the student and the professor.

.2Preparing organized reports.

Adopting the discussion method.

				.11Course	structure
Evaluation	Teaching	Name of the unit/course or	Required	hours	the
method	method	subject	learning		week
			outcomes		

Weekly	Lecture +	- the introduction	Infrared	2theoretical +	5 - 1
and	laboratory	- the introduction	spectroscopy	3 practical	3-1
monthly	iaboi atoi y	- Mechanical absorption of	(I.R)	5 practical	
exams		infrared radiation	(1.K)		
CAMIIS					
And		Types of vibrations in			
laboratory		organic molecules			
reports					
		- Device parts			
		- Sample preparation			
		Important notes and rules			
		about the IR spectrum and			
		the factors affecting the			
		location of the beams,			
		including:			
		S			
		(Aromatic compounds,			
		aliphatic compounds,			
		alkanes, alkenes, alkynes,			
		alcohols and phenols,			
		amines, ethers, carbonyl			
		compounds, sulfonyl			
		compounds, mercaptans,			
		nitriles, aromatic systems)			
		- Effective groups and their			
		locations in the IR spectrum			
		- Applications of IR in the			
		diagnosis of organic			
		compounds			
		Towns in ID			
		- Issues in IR spectrum			

			.11Course	e structure (cor	ntinuation)
Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	hours	the week
Weekly and monthly exams And laboratory reports	Lecture + laboratory	1-1H-NMR - the introduction - Device parts - Sample preparation How does nuclear resonance occur? - Blocking and non-blocking - Chemical displacement - Measurements of the signal location in the 1H-NMR spectrum - Important notes on 1H-NMR spectrum - Benefits and conclusions from signals in the 1H-NMR spectrum - Splitting of resonance signals and its causes - Aromatic systems - Chemical displacement locations of protons in the 1H-NMR spectrum - Applications of (1H-NMR) in the diagnosis of organic compounds	Nuclear magnetic resonance (NMR) spectroscopy	2theoretical + 3 practical	10 - 6

		- Issues in 1H-NMR spec	trum		
		issues in 111 twite spec		urse structure (continuation
			.1100	urse siructure (Continuation
طريقة التقييم	طريقة التعليم	اسم الوحدة / المساق أو الموضوع	مخرجات التعلم المطلوبة	الساعات	الأسبوع
Weekly and monthly exams And laboratory reports	Lecture + laboratory	C-NMR13 – 2 the introduction - Important notes in the 13C NMR spectrum Chemical displacement sites - of some 13C atoms Examples of 13C-NMR - spectrum Issues in 13C-NMR - spectrum	Nuclear magnetic resonance (NMR) spectroscopy	2theoretical + 3 practical	11
Weekly and monthly exams And laboratory reports	Lecture + laboratory	- the introduction - Benefits and conclusions of using the UV spectrum in diagnosing organic compounds - Device parts - Mechanism of absorption of ultraviolet radiation by organic molecules - Important terms in the UV spectrum - Factors affecting the positions of the beams in the ultraviolet spectrum (oxochrome, hydrogen bonding, sequence, steric obstruction) - Benzene, its derivatives, and other aromatic compounds - Interpretation of ultraviolet spectra.	Ultraviolet spectroscopy (UV)	2theoretical + 3 practical	13 - 12
Weekly and monthly exams And laboratory	Lecture + laboratory	- the introduction - Device parts - Initialize the form	Mass spectrometry (MS)	2theoretical + 3 practical	15 - 14

Infrastructure.11	
1 – Spectrometric Identification Of Organic	Required readings:
Compounds, Seventh Edition, Robert	2 Course books
M. Silverstein , New York , 2005	Other
2 - Organic Chemistry ,Third Edition , Janice	
Gorzynski Smith , New York , 2011	

reports	- Conclusions from the mass spectrum	
	- The general shape of the mass spectrum	
	- Applications and examples of mass spectrum in diagnosing organic compounds	
	* Issues in the spectroscopic diagnosis of organic compounds	

Absorption spectra of organic molecules, translated by: Prof. Dr. Abdul Hussein Khudair Abbas Al Sharba, Jassim Muhammad Ali Al-Rawi, Muhammad Ahmed Al-Iraqi, University of Mosul, 1985.	Special requirements
If conditions exist, guest lecturers will be invited.	Social services (including, for example, guest lectures, vocational training, and field studies)

admissions .12	
Completing the course means that the student must	Prerequisites
obtain a passing grade	
25students	The smallest number of students
120students	The largest number of students

Dr. Ali Sami

Course description form

Reviewing the performance of higher education institutions

(andomia munama mariare)

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve. Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

Anbar University/ College of Educational Sciences for Pure Sciences	Educational institution .13
chemistry department	University department/center .14

Industrial Chemistry practical / CHEM 361	Course name/code .15
	Programs in which it is .16 included
Attendance and on time	Available attendance forms .17
Chapter one/academic year Fourth	Semester/year .18
6	Number of study hours (total) .19
2022-2023	Date this description was .20 prepared

Course objectives: .21

Preparation A generation of students with knowledgeable qualifications in chemistry.

Preparation Teachers with advanced knowledge of chemistry and its sections and branches.

Development Skills for students through practical training -

Expand Students' scientific knowledge and enriching them with modern theoretical information

10- Learning outcomes and methods of teaching, learning and evaluation Cognitive objectives -a

Enabling the student to obtain theoretical knowledge of chemistry
Empowering students in teaching methods and methods of delivering scientific
information to students

The student's knowledge of measurement and evaluation methods and modern ***** teaching methods in chemistry

Course-specific skills objectives -b

Directing the student towards the scientific method in solving all scientific problems
Knowing the goals and principles of the art of teaching chemistry
Enabling students to acquire skills in using virtual classrooms

Teaching and learning methods -c

A method of listening and thinking deeply in order to understand the problem ***** to solve it

The method of scientific discussion and purposeful dialogue *

Evaluation methods -d

Participation in the classroom *

Provide activities *

Adopting the method of daily examinations and submitting weekly reports and *

Course structure .11					
Evaluatio n method	Teaching method	Name of the unit/course or subject	Required learning outcomes	hours	the week
General questions and discussion	practical	Preparation of phthalic alkyd resin	Introducing students to chemistryIndustrial and polymers	6	the first
General questions and discussion or exam	practical	Preparation of cellulose acetate	ProcedureAn experiment related to the preparation of a type of polymer	6	the second
General questions and discussion or exam	practical	Labels	ProcedureAn experiment related to the preparation of a class of industrially important polymers	6	the third
General questions and discussion or exam	practical	Determination of the molecular weight of the polymer from intrinsic viscosity measurements	ProcedureAn experiment related to determining polymer specifications	6	the fourth
General questions, discussion or exam	practical	Determine the amount of fatty acids in soap	ProcedureAn experience related to identifying the quality of an industrial product	6	Fifth
General questions, discussion or exam	practical	Preparation of indigo tincture	ProcedureAn experiment related to the preparation of a commercial industrial compound	6	VI

monthly and final examinations

Ī	Practical industrial chemistry written by Dr. Salwa Abdel	Required readings:
	Qader	Course books •

admissions .13		
Nothing	Prerequisites	
15	The smallest number of students	
25	The largest number of students	

Zeyad Khudhur Abdullrazzaq

Course description form

Reviewing the performance of higher education institutions

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve. Demonstrating whether they have made the most of the learning opportunities available. It must be

College of Education for Pure Sciences /	.1Educational institutio
Anbar University	University
Chemistry	.2department/center
Pollution EC 3302	.3Course name/code
Bachelor of Science in Chemistry	.4The programs he participates
	in
Daily, at the time specified in the schedule, and at full time	.5Available forms of attendance

2020 / 2021	Date this description was. 8
	prepared

22. Course objectives:

- 1- Introducing the student to the concept of the environment in its broad sense, knowing the ecosystem and the importance of balance in it, learning about the concept of pollution, as well as knowing the layers of the atmosphere and learning about the basic components of the air.
- 2- Identify the sources of air pollution, gaseous air pollutants, and knowledge of the ozone layer.
- 3- Identify the preventive methods necessary to control air pollution.
- 4- Identify the sources of water pollution and know the stages of wastewater treatment
- 5- Identify the sources of soil pollution and how to treat them
- 6- Knowledge of noise pollution, pollution, sources of radioactive pollution, and how to prevent and treat them.
- 23. Learning outcomes and methods of teaching, learning and evaluation

a. Cognitive objectives

.1Enabling the student to obtain theoretical scientific knowledge of environmental pollution and how to treat it.

.2Introducing the student to methods of preventing contamination of living organisms.

- a. Course-specific skills objectives
- 1. The student will master the knowledge of the effects of pollution on living organisms and how to avoid them.
- 2. The student must master how to use proper methods to avoid contamination

Teaching and learning methods

1. Lectures

Using educational programs to give the lecture through one program and explain it to students through another program.

Evaluation methods

- 1. Oral exams (currently replaced by Quiz questions).
- 2. Monthly exams.
- Quarterly exams.

C- Thinking skills

- .1The student's ability to work within the educational and professional work team
- .2Positive thinking and utilizing the knowledge you have received.
- .3The ability to deal with parties outside the university and train with them on eliminating air pollution.

That the student can learn and master the teaching profession

Teaching and learning methods

- .1Lectures
- .2Display slides
- .3Use laboratory materials

Evaluation methods

- 1. Oral exams
- 2. Monthly exams
- 3. For quarterly exams
- D General and transferable skills (other skills related to employability and personal development).
- 1. Adopting the method of dialogue between the student and the professor.
- 2. Preparing organized reports.

Adopting the discussion method.

11. Course structure						
Evaluation method	Teaching method	Name of the unit/course or subjectIdentify the concept of the environment, its balance, pollution and its classifications	Required learning	hours	the week	
Weekly and monthly exams And reports	lecture	Layers of atmospheric feed, its most	outcomes	2 Theoretical	1	
Weekly and monthly exams And reports	lecture	important external components, and classification of existing gases	the environment	2 Theoretical	3	
Weekly and monthly exams And reports	lecture	Gaseous air pollutants, physical pollutants and secondary pollutants Factors affecting the density of atmospheric	Atmosphere Air	Theoretical	4	
Weekly and monthly exams And reports	lecture	pollutants and the effect of these pollutants on temperature	pollutants Air	2 Theoretical	5	
Weekly and monthly exams And reports	lecture	Methods and treatments for controlling atmospheric air pollutants	pollutants Control of air pollutants	2 Theoretical	6	
Weekly and monthly exams And reports	lecture	Water pollutants and methods of treating water pollution	Water Pollution	2 Theoretical	7	
Weekly and	lecture	Soil pollutants and methods of	Methods of	2	8	

Establishing an integrated laboratory for the environment and pollution	Special requirements Social services (including, for example, guest lectures, vocational training, and field studies)
If conditions exist, guest lecturers will be invited.	

monthly exams And reports		controlling and treating soil	treating soil pollutants Noise	Theoretical	
Weekly and monthly exams And reports	lecture	pollution Identify noise pollution, its effects, and ways to control it	Pollution Radioactive pollution	2 Theoretical	9
Weekly and monthly exams And reports	lecture	Identify radioactive contamination, its sources, effects, and methods of controlling it		2 Theoretical	10

Acceptance	
Completing the course means that the student must	Prerequisites
obtain a passing grade	
50 students	The smallest number of students
170 students	The largest number of students

Dr.muthana mohammed sarhan

Course description form

Reviewing the performance of higher education institutions

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve.

Educational institution .1	College of Education for Pure Sciences / Anbar
	University

Learning outcomes and methodologies of instruction, assessment, and learning .10

Cognitive objectives: .A

- 1. Enabling the student to know the English language and its grammar
- 2. Teach the student how to write and read in a simple way in English
- 3. Improving knowledge of how to pronounce words and their pronunciations

Course-specific skills objectives: .B

- 1. The student masters how to use English grammar according to the required tenses
- 2. The student must master how to read in English and understand and translate some important words
- 3. Distinguishing between the use of tenses as required due to similarities in the solution
- 4. Knowledge of many important vocabularies, especially with regard to specialization

Teaching and learning methods

- 1. Lectures
- 2. Using educational programs to give the lecture through one program and explain it to students through another program.

Evaluation methods

- 1. Oral exams (currently replaced by Quiz questions).
- 2. Monthly exams.
- 3. Semester exams.

- C- Thinking skills
- 1. The student's ability to work within the educational and professional work team
- 2. Positive thinking and utilizing the knowledge you have received.
- 3. The ability to deal with parties outside the university and train with them.
- 4. That the student is able to learn and master the teaching profession and how to deal with it

Teaching and learning methods

Lectures .1

The curriculum is customized according to the stage (Beginner Student's Book) .2

Use a Workbook with key .3

Evaluation methods

- 1. Oral exams
- 2. Monthly exams
- 3. For semester exams
- D General and transferable skills (other skills related to employability and personal development).
- 1. Adopting the method of dialogue between the student and the teacher.
- 2. Ask questions during the lecture.
- 3. Adopting the discussion method.

				Cor	urse plan .11
Week	hours	Required learning	Name of the unit/course or	Teaching	Evaluation
		outcomes	subject	method	method
1	2	Hello!	Am/ are/is/my/you. What's	lectures	Quiz and
_	_	Tiono.		icciares	
			this in English? Number 1-		exam
			10. Plurals		
2	2	Your World	Countries / he/	lectures	Quiz and
			she/they/his/her/. Where's		exam
			he from?		
3	2	All about you	Jobs. Negatives and	lectures	Quiz and
			questions. Personal		exam
			information. Social		VIIIIII
			expressions (1)		
4	2	Family and friends	Our/ their. Possessive's. The	lectures	Quiz and
			family. Has/have. The		exam
			alphabet.		
5	2	The way I live	Sport/food/ drinks. Present	lectures	Quiz and
		-			

			simple- I /you/we/they. (a/an) languages and nationalities		exam
6	2	Every day	The time / present simple- he/she/ always/ sometimes/never. Words that go together.	lectures	Quiz and exam
7	2	My favorites	Questions words / me/him/us/ them / this / that. Adjectives. Can I	lectures	Quiz and exam
8	2	Where I live	Room and furniture. There is/are. prepositions. directions	lectures	Quiz and exam
9	2	Times past	Saying year / was/were born / past simple – irregular verbs / have/do/go	lectures	Quiz and exam
10	2	We had a great time!	Past simple- regular verbs. Questions and negatives. Sport and leisure.	lectures	Quiz and exam
11	2	I can do that	Can/can't. adverb. adjective+ noun. Everyday problems	lectures	Quiz and exam
12	2	Please and thank you	I'd like some/any. In a restaurant. Sings all around	lectures	Quiz and exam
13	2	Here and now	Colours and clothes. Present continuous. Opposite verbs	lectures	Quiz and exam
14	2	It's time to go	Future plans. Grammar revision vocabulary revision	lectures	Quiz and exam
15	2	Past, present, and future	Education, work, and ambitions. Reading and speaking	lectures	Quiz and exam
16	2	Grammar revision	Tenses. Social expressions (2)	lectures	Quiz and

exam			
			AVam

Required readings: .1 Coursebook.2 Other.3	Beginner Student's Book New Headway Plus (John and Liz Soars) Oxford Beginner Workbook with key
Special requirements	Grammar in use with answer
Social services (including, for example, guest lectures, vocational training, and field studies)	If conditions exist, guest lecturers will be invited.

	12. Admissions
Prerequisites	To successfully complete the course, the
	student must get a grade that meets the
	prerequisite requirements.
The fewest number of students	45 Students
The largest number of students	150 students

Dr. Hamied Khalid Ali

Course description form

Reviewing the performance of higher education institutions (academic program review)

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve. Demonstrating whether they have made the most of the learning opportunities available. It must be

1. Educational institution	College of Education for Pure Sciences			
2. University department/center	chemistry department			
3. Course name/code	Physical Chemistry (Quantum			
9-Learning outcomes and methods of teaching, learning and evaluation				
Cognitive objectives 1. The student's knowledge of the concepts of ancient quantum theory. 2. The student's knowledge of the basic concepts and principles of modern quantum theory (wave mechanics). 3. Knowledge of the quantitative model of atomic structure. Course-specific skills objectives 1. The student will master the use of wave and matrix quantization methods to obtain the energy levels and wave functions of the system.				
obtain the energy levels and wave functions .2Quantitative processing of spectral data.	of the system.			
	•			
.2Quantitative processing of spectral data3Quantitative interpretation of the structure and s	•			
.2Quantitative processing of spectral data3Quantitative interpretation of the structure and s	tability of matter.			
.2Quantitative processing of spectral data3Quantitative interpretation of the structure and s -Tea 2. Using educational programs to give the lec	tability of matter. ching and learning methods10 1. Lectures			

Emotional and value goals

- 1. Adopting the method of dialogue between the student and the professor.
- 2. Preparing organized reports.
- 3. Adopting the method of discussion.
- 4. Interest in research projects.

Teaching and learning methods

- 1. Lectures
- 2. Display slides smart board
- 3. Use laboratory materials and measuring devices

Evaluation methods

- 1. Oral exams. 2. Monthly exams
- 3. For quarterly exams

General and transferable skills (other skills related to employability and personal development).

- 1. The student's ability to work within the educational and professional work team.
 - 2. Positive thinking and utilizing the knowledge you have received.
- 3. The ability to deal with parties outside the university and train with them.
 - 4. That the student is able to learn and master the teaching profession

11. Course structure

Evaluation method	Teaching method	Name of unit/course or subject	Required learning outcomes	Hours	Week
Monthly exams	lecture	Ancient	Ancient quantum theory	4	1
		quantum		Theoretical	
		theory			

Monthly exams	lecture	Introduction	Mathematical introduction	4 Theoretical	2
Monthly exams	lecture	Introduction	Classic mechanics	4 Theoretical	3
Monthly exams	lecture	Basic hypotheses of quantum mechanics	Wave equation (time- independent Schrödenker equation)	4 Theoretical	4
Monthly exams	lecture	Basic hypotheses of quantum mechanics	Quantum mechanical hypotheses (wave function)	4 Theoretical	5
Monthly exams	lecture	Basic hypotheses of quantum mechanics	Influences	4 Theoretical	6
Monthly exams	lecture	Basic hypotheses of quantum mechanics	Eigenvalue equation	4 Theoretical	7
Monthly exams	lecture	Basic hypotheses of quantum mechanics	The time-independent Schrodenker equation	4 Theoretical	8
Monthly exams	lecture	Basic hypotheses of quantum mechanics	Dirac representation of quantum mechanics	4 Theoretical	9
Monthly exams	lecture	Basic hypotheses of quantum mechanics	Particle system in a box	4 Theoretical	10
Monthly exams	lecture	Basic hypotheses of quantum mechanics	Quantum tunneling effect	4 Theoretical	11
Monthly exams	lecture	Basic hypotheses of quantum mechanics	The waveform of a harmonic oscillator	4 Theoretical	12
Monthly exams	lecture	Basic hypotheses of quantum mechanics	Matrix formula for harmonic oscillator	4 Theoretical	13

12-Infrastructure	
Salem Muhammad Khalil, Principles of Quantum Chemistry, University of Mosul 1982. Qais Abdul Karim, Quantum Chemistry and Molecular Spectroscopy, University of Basra, 1988. Nouri Al-Mashhadani, Physical Chemistry, University of Baghdad 1988.	1- Required prescribed books
quantum mechanics	2- Main references (sources)

Monthly exams	lecture	Basic	Hard rotor	4	14
		hypotheses of		Theoretical	
		quantum			
		mechanics			
Monthly exams	lecture	Basic	Complete solution of the	4	15
		hypotheses of	hydrogen atom	Theoretical	

I. Levine, Quantum Chemistry, 5 th edition, Prentic Hall 2000	A- Recommended books and
Y. Peleg, Schaum outline of Quantum Mechanics, Mechanics,	references (scientific journals,
McGraw Hill 1977.	reports,)
D. Rogers, Concise Physical Chemistry, Wiley 2011.	
R. Blumel, Foundation of Quantum Mechanics from Photons	B - Electronic references,
to Quantum Computers, Jaus & Bartett 2011.	Internet sites.
R. Prasad, Quantum Chemistry, 3 rd edition, New Age Ltd.	
Publishers, New Delhi 2007	

Dr. Bashar Abdulazeez Mahmood

Course description form

Reviewing the performance of higher education institutions (academic program review)

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve. Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

inked to a describtion the brogram.	Ior
	Pure Sciences
2-University department or center	Chemistry department
3-Course Name	Analytical Chemistry, The first stage
	CHEM111
4-Available attendance forms	Daily and on time
5-Season of the year	First semester
6-Number of study hours	44hours
7-Date this description was prepared	2022-2023

8-Course objectives: Knowing chemistry as a knowledge science and getting to know its specializations, especially chemical analysis in action, especially in preparing the required amount of material. Knowing and studying ways to express different types of discrimination and studying descriptive analysis methods

1- Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives

- 1- Introducing the student to methods of laboratory detection of substances
- 2- Enable the student to obtain scientific knowledge in analytical chemistry
- B Course-specific skills.
- 1-The student must be proficient in conducting practical experiments and using devices efficiently.
- 2-To master the methods of detecting the required chemical compounds

Teaching and learning methods

1-Conduct laboratory experiments

2-Using educational programs to give the lecture through one program and explain it to students through another program

Evaluation methods

- 1- Oral exams (currently replaced by Quiz questions)
- 2-Monthly exams.

3- Quarterly exams.

C- Educational and evaluation objectives

The student's ability to work within the educational work team.

Thinking in a way that leads to the student acquiring knowledge.

The ability to deal with outside the university and facilitate this.

The student must learn and master the teaching profession.

Teaching and learning methods

- 1-Laboratory experiments
- 2-Slide show
- 3- Use laboratory materials

Evaluation methods

- 1- Oral exams ... 2-monthly exams
- 3-For quarterly exams

- D-General and qualifying skills (other skills related to employability and personal development)
- 1-Relying on the method of dialogue between the student and the professor.
- 2-Record organized reports.
- 3-Relying on discussion

9-Course	9-Course structure						
The week	The number of the hours	Required learning outcomes	Subject name	Teaching method	Evaluation methods		
1	2 hours	Learn about analytical chemistry and its branches	Initial laboratory information The general outline of the descriptive analysis	Laboratory	Oral exams monthly exams For quarterly exams		
2	2 hours	Positive ion analysis	The first group	Laboratory	Oral exams monthly exams For quarterly exams		
		Docitivo ion	The coord		Oral exams monthly		

11-Course development plan

If conditions exist, guest lecturers will be invited for the purpose of vocational training and field studies

1	10-Infrastructure						
			anaiysis	6	Analytica	l Chemistry -Fu	undamentals of
1	1-Required prescribed books				Analytical Chemistry- Douglas A.		
				_	-Skoog- 8 edition - USA		
	5	2 hours	Positive ion	Four	Analytical Chemistry" by Gary D.		
2	2- Main references		Foui	t Christian, Purnendu K. (Sandy) Dasgupta, Kevin A. Schug, 7th		. ,	
					Edition, 2014.		
			Positive ion				
	6	2 hours	analysis	Fift	fth group Laboratory		
3	- Recomme	nded books ar	nd references (scienti	fic	Analytical Chemistry -Fundamentals of		
jo	ournals, rep	orts,)			Analytical		
					_		
	4- Electronic references, Internet sites			Practical experiments on the Internet			

Dr. Ahmed dhary saleh

Course description form

Reviewing the performance of higher education institutions

(acadamia nuaram mariare)

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve. Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program

1. Educational institution	College of Education for Pure Sciences / Anbar University
2. University department/center	Chemistry
3. Course name/code	Instrumental Analysis / Forth Stage chem415,
4. The programs he participates in	Bachelor of Science in Chemistry
5. Available forms of attendance	Daily, at the time specified in the schedule, and at full time
6. Semester/year	Courses – first second semester
7. Number of study hours (total)	4 Theoretical + 3 Practical
8. Date this description was prepared	2020-2021
	9. Course objectives:

This course aims to teach the student what is the meaning of automated analysis, what are its advantages, what are the most important techniques of automated analysis, and to know the components of all the devices of these techniques and how to use them in quantitative and qualitative analysis.

10. Learning outcomes and methods of teaching, learning and evaluation	1
a. Cognitive objective	S

- 1. Enabling the student to obtain theoretical scientific knowledge of automated analysis.
 - 2. Introducing the student to methods of automated analysis.
- 3. The student's understanding of how to use these techniques and their applications in different areas of life with regard to quantitative and qualitative analysis
 - **B.** Course-specific skills objectives
 - 1. The student is proficient in conducting experiments using different techniques.
 - 2. Enable the student to work on different devices
 - 3. Training the student to calculate or estimate an unknown using various automated analysis techniques

Teaching and learning methods

1. Lectures

D - General and transferable skills (other skills related to employability and personal development.(
1. Adopting the method of dialogue between the student and the professor. 2-Preparing organized reports
3-Adopting the discussion method

				11. C	ourse structure
The week	Hours 4 theoretical + 3 practical	Analytical chemistry and the concept of instrumental chemical analysis	Name of the unit/course or subject Analytical chemistry is the science concerned with diagnosing the identity and composition of substances and determining their proportions.	Teaching method Lecture + laboratory	Evaluation method Weekly and monthly exams And laboratory reports
2	theoretical + 3 practical	The photoelectric effect and the electromagnetic spectrum	What is meant by this phenomenon is the release or	Lecture + laboratory	Weekly and monthly exams

			emission of electrons from the surfaces of some sensitive metals when radiation with sufficient energy falls to release them. Such as the release of electrons from the surfaces of some metals when radiation from the visible or violet region falls on them, while the electromagnetic spectrum can be divided into multiple regions according to the		
3	4 theoretical + 3 practical	Polarization of light and optical efficiency	Polarization is of great importance in chemistry, as some crystals and liquids that do not have a center of symmetry (asymmetric) can rotate the plane of the polarized light that passes through them, as it undergoes rotation, either to the right (clockwise), which is called right (+ Dextrorotatory),	Lecture + laboratory	And laboratory reports

			or to the left, which is called Levorotatory, - This phenomenon is known as the optical activity of the material		
4	4 theoretical + 3 practical	Radiation absorption and radiation emission	Absorption means the disappearance of a portion of the wave frequencies when it passes through a medium (gas, liquid, solid.(Lecture + laboratory	Weekly and monthly exams
5	4 theoretical + 3 practical	Quantitative analysis by absorption of electromagnetic radiation	If a radiation beam is passed through a glass container containing a solution, the light beam emerging from the container will be less than the power of the original incident beam.	Lecture + laboratory	And laboratory reports

				11	1. Course structure
6	theoretical + 3 practical	Applications of Beer's law to multicomponent systems	When a solution contains more than one substance that has the ability to absorb the beam. What the solution absorbs is the	Lecture + laboratory	Weekly and monthly exams

			product of the		
			sum of the		
			absorption of the		
			individual		
			materials at a		
			specific		
			wavelength.		
7	4	Spectrophotometers and	The	Lecture +	And laboratory
	theoretical	their components	spectrophotometer	laboratory	reports
	+ 3		consists of five		
	practical		basic components:		
			a radiation source,		
			a cell color		
			combiner for		
			setting the model,		
			a detector, and a		
			recorder		
8	4	Applications of	The ultraviolet	Lecture +	Weekly and
	theoretical	absorption	and visible regions	laboratory	monthly exams
	+ 3	measurements in	constitute a very		
	practical	spectroscopy in the	small area of the		
		ultraviolet and visible	electromagnetic		
		regions	spectrum, in the		
		regions	range (10-780		
			nm). The		
			radiation energy		
			of these two		
			regions has the		
			ability to excite		
			valence electrons		
			in atoms or		
			molecules, so the		
			two regions are		
			studied together		
			under the name		
			ultraviolet and		
			visible		
9	4	Analytical uses of	It has little	Lecture +	And laboratory
	theoretical	absorption	importance for the	laboratory	reports
	+ 3	measurements	purposes of		
	practical		qualitative but		
			=		
			important in		

			Quantitative analysis		
10	4 theoretical + 3 practical	Analysis by measuring scattering and measuring turbidity	Scattering and turbidity measurements are used to study and analyze plankton systems. These two methods are based on the scattering and scattering of radiation by suspended particles,	Lecture + laboratory	Weekly and monthly exams
11	theoretical + 3 practical	Infrared absorption spectroscopy	Absorption of infrared radiation leads to vibrational excitation of the atoms that make up the molecule. The vibrational movement of atoms relative to each other results in a change in the length of the bonds and the angles between them	Lecture + laboratory	And laboratory reports

				11.	Course structure
12	theoretical + 3 practical	Atomic absorption	Atomic absorption is a sophisticated analytical technique for identifying most	Lecture + laboratory	Weekly and monthly exams

			elements		
14	theoretical + 3 practical 4 theoretical + 3 practical	Interferometers in atomic measurement Analysis by electrochemical methods	There are a number of interferences that affect the results of analysis using the atomic absorption technique, including spectral interferences, ionization interferences, and chemical interferences. Electroanalytical chemistry is concerned with the study of quantitative analysis methods that are based on the electrical properties of materials (elements or compounds) when they are part of an electrochemical cell	Lecture + laboratory	Weekly and monthly exams Weekly and monthly exams
15	theoretical + 3 practical	Reference electrodes are commonly used	Standard calomel electrode, silver- silver chloride electrode standard hydrogen electrode	Lecture + laboratory	Weekly and monthly exams

			12. Infrastructure
:	principles of	UK	Instrumental analysis
Require	Instrumental Analysis,		
d	Skoog, Douglas A. West		
readings	Donald M, UK		
*Course			
books			
*Other			

Special requirements			
·	ncluding, for example, gue vocational training, and fic	· ·	If conditions exist, lecturers will be invited as guests
			12. Admissions
	Pro	erequisites	Completing the course means that the student must obtain a passing grade
	The smallest number of	of students	45 Students
	The largest number of	of students	150 students