Republic of Iraq
Ministry of Higher Education \& Scientific Research Supervision and Scientific Evaluation Directorate Quality Assurance and Academic Accreditation

Academic Program Specification form for The Academic

University: Anbar College: Education for Pure Science Department: Mathematics
Date Of Form Completion: 10/6/2021

Prof. Dr. Abdul Rahman Salian. Juma Dean's Name

Date:
signature

Assist. Prof. Dr. Harith Kamil Buniya

Dean's Assistant For Scientific Affairs
Date: $10 / 6 / 2023$
Signature

Date: \% / 6/2023
signature

Assist. Prof. Dr. Feras Shaker Mahmood
Quality Assurance And University Performance
Manager

$$
\text { Date: } 10 / 6 / 2023
$$

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

PROGRAMME SPECIFICATION

This Programme Specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the programme.

1. Teaching Institution	University of Anbar
2. University Department	College of education for pure science- Mathematics
3. Programme Title	Education Mathematic Sciences
4. Title of Final Award	Bachelor of Education Mathematic Sciences
5. Modes of Attendance offered	Quarterly
6. Accreditation	Nothing
7. Other external influences	School application - practical graduation research projects
8. Date of production	$10 / 6 / 2023$
9. Aims of the Programme	

2. Providing an efficient administrative staff that knows its duties and powers according to the work structures and regulations, in which the requirements of the job description are fulfilled.
3. Providing a specialized teaching staff who is fluent in using modern techniques and methods in education with good job satisfaction.
4. Preparing academic programs in accordance with international academic standards and providing their knowledge, training and technical requirements.
5. Preparing students with scientific, practical and educational knowledge that meets the needs of the labor market.
6. Paying attention to scientific research in terms of laboratory, research and researcher in order to achieve a distinguished research reputation locally and globally.
7. Research and professional openness to community institutions to meet their needs and aspirations.
8. Evaluate all individuals and processes to ensure quality performance and continuous improvement.

10. Learning Outcomes, Teaching, Learning and Assessment Methods

A1. Knowledge and Understanding

A1. Enable the student to acquire theoretical knowledge of Mathematics.
A2. Empowering the student how to teach and ways of communicating scientific information to students.

A3. The student's knowledge of the methods of measurement and evaluation and methods of modern teaching methods in Mathematics.

A4. The student is acquainted with the educational material by providing it electronically in the virtual classroom. In addition to enabling the student to know the learning theories related to the ages of students for the secondary school stage.

B. Subject-specific skills

B1. Gaining knowledge and enriching the student with the methods of laboratory work.

B2. Orienting the student to the scientific method in solving all scientific problems.
B3. Knowing the objectives and origins of the art of teaching chemistry.
B4. Enabling students to acquire the skills of using virtual classrooms

Teaching and Learning Methods

1. The method of listening and thinking deeply in order to understand the problem to solve it.
2. The method of scientific discussion and meaningful dialogue.
3. Adopting the method of monthly and final exams and submitting weekly reports.

Assessment methods

1. The treatment method using final scores.
2. Random and surprise tests.
3. Teaching tasks in the virtual classroom.

C. Thinking Skills

C1. Adopting the method of dialogue between the student and the professor.
C2. Interest in research projects and preparing organized reports
C3. Adopt the method of discussion. (Performance tests and seminars).
C 4 . Adopting e-learning to provide an interesting and flexible learning environment.

Teaching and Learning Methods

1. Method of application in research laboratories
2. Adopting the method of constructive dialogue and discussion
3. Adopt the trial-and-error method.
4. The adoption of multimedia in the virtual classes (image, text, audio, video)

Assessment methods
Preparation of the seminar (graduation research)
2. Adoption of the grading method as a basis in the evaluation process.
3. Adoption of the test method.
4. Adopting the method of discussions and dialogues between the students and the professor.
5. Create a test task in the virtual classes.

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1- That the student benefit from his learning and embody this in his personal and professional development.

D2- That the student is able to employ the knowledge he receives during the study stage.

D3- That the student benefit from theoretical knowledge in employing the teaching profession and mastering it in a concept-based manner.
Fundamentals of teaching chemistry.
D4 - Skills of modern technologies in communication, documentation and communication.

Teaching and Learning Methods

1. Field visits in laboratories.
2. Scientific application in laboratories.
3. Take advantage of graduation research.
4. Presentation and presentation of educational content in virtual classes using multimedia (video, recorded lecture).

Assessment Methods

1. Articles and periodical research
2. The interview
3. Final exams
4. Determining study tasks and duties periodically and regularly in the virtual classroom
5. Programme Structure

Level/ Year	Course or Module Code	Course or ModuleTitle	Weekly hours	
			Lec.	Lab.
First	MAT105	Calculus1	2	3
	MAT106	Fundamental of mathematics1	2	2
	MAT107	Linear of Algebra 1	2	2
	UOA141	Computer 1	1	2
	PHY105	Physics 1	2	2
	MAT113	Calculus2	2	3
	MAT114	Fundamental of mathematics2	2	2
	MAT115	Linear of Algebra 2	2	2
	UOA142	Computer 2	1	2
	PHY110	Physics 2	2	2
	EPS101	Educational psychology	2	-
	EPS120	Education principles	2	-
	UOA135	Arabic language	2	
	UOA140	English language	2	
	UOA135	Human rights	1	-
	UOA136	freedom and democracy	2	-
Second	MAT201	Advance Calculus1	2	2
	MAT202	Ordinary differential equation 1	2	2
	MAT203	Groups Algebra1	2	2
	MAT204	Geometry 1	2	2
	MAT205	Advance Computer1	2	2
	MAT206	Advance Calculus2	2	2
	MAT207	Ordinary differential equation 2	2	2
	MAT208	Groups Algebra2	2	2
	MAT209	Geometry 2	2	2
	MAT210	Advance Computer2	2	2
	EPS 211	Scientific Research Methodolgy	2	-
	EPS 202	Childhood psychology	2	-
	EPS 201	Educational administration	2	-
	UOA240	English language	2	-

Third	MAT301	Analysis Mathematical1	2	2
	MAT302	Partial differential equations1	2	2
	MAT303	Rings Algebra 1	2	2
	MAT304	Probability1	2	2
	MAT305	Numerical analysis1	2	2
	MAT306	Analysis Mathematical1	2	2
	MAT307	Partial differential equations2	2	2
	MAT308	Rings Algebra 2	2	2
	MAT309	Probability2	2	2
	MAT310	Numerical analysis2	2	2
	EPS 311	Curriculum and teaching methods	2	-
	EPS312	Educational guidance	2	-
	UOA340	English language	2	-
Fourth	MAT401	Analysis complex 1	2	2
	MAT402	Topology 1	2	2
	MAT403	Statistic Mathematical1	2	2
	MAT404	Analysis Fumctionall	2	2
	MAT405	Modules 1	2	2
	MAT406	Analysis complex2	2	2
	MAT407	Topology 2	2	2
	MAT408	Statistic Mathematical2	2	2
	MAT409	Analysis Fumctional2	2	2
	MAT410	Modules 2	2	2
	EPS411	Measuring and evaluating	2	-
	EPS412	Teaching apps	2	-
	EPS413	School apps	2	-
	EPS414	Graduation Project	2	-
	UOA440	English language	2	-

13. Personal Development Planning

1. Using modern scientific sources.
2. Using rapid communication networks to transfer information such as the Internet. 3. Visits and practical practices in service laboratories.
3. Acquisition of scientific and modern experiences and skills in the field of modern technical communication

14. Admission criteria

1. Admission according to the general and central average system.
2. Admission to departments is according to the student's desire and is modified.
3. It is a condition for a graduate of the preparatory school and the scientific stream exclusively.
4. The accepted student's personal and mental integrity and freedom from physical impairments

15. Key sources of information about the programmers

1. Curriculum books approved by the Sectorial Committee of the Faculties of Education for Pure Sciences.
2. Helping books.
3. Books and archaeological resources / sources in the English language.
4. Additional sources from the Internet.
5. The training courses held by the university on e-learning platforms.

Curriculum Skills Map																			
Year/ Level	Course Code			Programmers Learning Outcomes															
		CourseTitle	Core (C) or Option (O)	Knowledge and understanding				Subject-specificskills				Thinking Skills				General and Transferable Skills (or) Other skills relevant to employability and personal development			
				A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4	D1	D2	D3	D4
First	MAT105	Calculus1	Core	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
	MAT106	Fundamental of Mathematics 1	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT107	Linear of Algebra 1	Core	\checkmark		\checkmark		\checkmark	$\sqrt{ }$			\checkmark				\checkmark			
	UOA141	Computer 1	Core	$\sqrt{ }$		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	PHY105	Physics 1	Core	\checkmark		\checkmark		\checkmark	$\sqrt{ }$			\checkmark				\checkmark			
	MAT113	Calculus2	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT114	Fundamental of Mathematics2	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT115	Linear of Algebra 2	Core	$\sqrt{ }$		\checkmark		\checkmark	$\sqrt{ }$			\checkmark				\checkmark			
	UOA142	Computer 2	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	PHY110	Physics 2	Core	$\sqrt{ }$		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	EPS101	Educational psychology	Core			\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	EPS120	Education principles	Core			\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	UOA135	Arabic language	Core			\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	UOA140	English language	Core			\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	UOA135	Human rights	Core	\checkmark		\checkmark		$\sqrt{ }$	$\sqrt{ }$			\checkmark				\checkmark			
	UOA136	freedom and democracy	Core	\checkmark		\checkmark		\checkmark	$\sqrt{ }$			\checkmark				\checkmark			

Curriculum Skills Map

				Programme Learning Outcomes															
Year/	Course	CourseTitle	Core (C) or Option	Knowledge and understanding				Subject-specific skills				Thinking Skills				General and Transferable Skills (or) Other skills relevant to employability and personal development			
				A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4	D1	D2	D3	D4
Second	MAT201	Advance Calculus1	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	Mat202	Ordinary differential	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT203	Groups Algebral	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT204	Geometry 1	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT205	Advance Computer 1	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT206	Advance Calculus2	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT207	Ordinary y differential	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT208	Groups Algebra2	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT209	Geometry 2	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT210	Advance Computer2	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	EPS 211	Scientific Research Methodolgy	Core			\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			

Curriculum Skills Map																			
Year/ Level				Programme Learning Outcomes															
	Course Code	CourseTitle	Core (C) or Option (O)	Knowledge and understanding				Subject-specificskills				Thinking Skills				General and Transferable Skills (or) Other skills relevant to employability and personal development			
				A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4	D1	D2	D3	D4
Third	MAT301	Analysis Mathematical1	Core	$\sqrt{ }$		\checkmark		$\sqrt{ }$	\checkmark			\checkmark				\checkmark			
	MAT302	Partial differential equations 1	Core	$\sqrt{ }$		\checkmark		$\sqrt{ }$	\checkmark			\checkmark				\checkmark			
	MAT303	Rings Algebra 1	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT304	Probability 1	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT305	Numerical analysis1	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT306	Analysis Mathematical1	Core	\checkmark		\checkmark		$\sqrt{ }$	$\sqrt{ }$			\checkmark				\checkmark			
	MAT307	Partial differential equations 2 equations2	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT308	Rings Algebra 2	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT309	Probability2	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT310	Numerical analysis2	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	EPS 311	Curriculum and teaching methods	Core			\checkmark		$\sqrt{ }$	\checkmark			\checkmark				\checkmark			
	EPS312	Educational guidance	Core			\checkmark		$\sqrt{ }$	\checkmark			\checkmark				\checkmark			
	UOA340	English language	Core			\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			

Curriculum Skills Map																			
Year / Level	Course Code			Programme Learning Outcomes															
		CourseTitle	Core (C) or Option (O)	Knowledge and understanding				Subject-specificskills				Thinking Skills				General and Transferable Skills (or) Other skills relevant to employability and personal development			
				A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4	D1	D2	D3	D4
Fourth	MAT401	Analysis complex 1	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT402	Topology 1	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT403	Statistic Mathematical1	Core	\checkmark		\checkmark		$\sqrt{ }$	\checkmark			$\sqrt{ }$				\checkmark			
	MAT404	Analysis Fumctional1	Core	\checkmark		\checkmark		$\sqrt{ }$	\checkmark			$\sqrt{ }$				\checkmark			
	MAT405	Modules 1	Core	\checkmark		\checkmark		$\sqrt{ }$	\checkmark			\checkmark				\checkmark			
	MAT406	Analysis complex2	Core	\checkmark		\checkmark		$\sqrt{ }$	\checkmark			$\sqrt{ }$				\checkmark			
	MAT407	Topology 2	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	MAT408	Statistic Mathematical2	Core	\checkmark		\checkmark		$\sqrt{ }$	\checkmark			$\sqrt{ }$				\checkmark			
	MAT409	Analysis Fumctional2	Core	\checkmark		$\sqrt{ }$		\checkmark	$\sqrt{ }$			\checkmark		\checkmark		\checkmark			
	MAT410	Modules 2	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	
	EPS411	Measuring and evaluating	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	
	EPS412	Teaching apps	Core			\checkmark		\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	
	EPS413	School apps	Core			\checkmark		\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	
	EPS414	Graduation Project	Core			$\sqrt{ }$		\checkmark	$\sqrt{ }$			\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	
	UOA440	English language	Core			\checkmark		$\sqrt{ }$	\checkmark			$\sqrt{ }$				\checkmark	$\sqrt{ }$		

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Course Description Form
 Course description

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

Ministry education High And search Scientific / university Anbar / College Education For science Pure	1. Enterprise Educational
mathematics	2. Section University / Center
(MAT210 Computers 1)	3. name / Code The decision
Electronically	4. shapes the audience Available
course the first	5. the chapter / the year
60 hours	6. number hours Scholarship (total)
2022-2023	7. date Preparation this the description
8. Goals The decision :A course concerned with teaching the student the history of computers and the extent of their development over the years along with operating systems	
9. Outputs The decision And methods education And learning And evaluation	
A- Objectives Cognitive 1. Identify on Generations Calculators . 2. Identify on Species Calculators . 3. Identify on Systems Numerical.	

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

B - Objectives Marathi Private By decision. sharing requester With issues Intellectual with finding the solution For this matters.

Methods education And learning

1- Electronically on some Programs Learning Electronic like Google form and others on appearance
2- :means Different Of which an offer Lecturer on a screen an offer And use Calculator

Methods Evaluation

- Pursuit (10 degrees Presence , 5 degrees duty my house, 5 degrees Exam daily, 20 degrees Exam Monthly 60 total degree Exam ultimate100)
- on road questions Direct during lecture
- on road Exams Monthly
- on road performance Duties
- on road Exams Final
- on road Discipline And commitment By regulations And the laws

C- Objectives Sentimentality And value

- thinking critic (a question And Answer)

4- Skill the job

Methods education And learning

Discussion, Lectures
Methods Evaluation

1. Discussion
2. the exams Editorial

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Dr -Skills the public And qualifying Movable (Skills The other Related Capable recruitment And evolution Personal).

> sharing requester With issues Intellectual with finding the solution For this matters from Include it The derivative And integration .
$>$ Duties addition to questions during lectur

10.structure The decision					
road Evaluation	road education	name Unit / Course or the topic	Outputs Learning required	$\underset{\mathrm{s}}{\text { hour }}$	the week
the audience And the questions Motivatio nal	a lecture Video with a lecture Textual with broadcast direct	Computer basics	fundamentals of computer	4	the first
the audience And the questions Motivatio nal	a lecture Video with a lecture Textual with broadcast direct	Definition of computer	Definition of Computer	4	the second
the audience And the questions Motivatio nal	a lecture Video with a lecture Textual with broadcast direct	computer components	Components of Computer	4	the third
the audience And the questions Motivatio nal	a lecture Video with a lecture Textual with broadcast direct	Material components	Hardware	4	the fourth
the audience And the questions Motivatio	a lecture Video with a lecture Textual with broadcast	Software components	Software	4	Fifth

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

nal	direct				
the audience And the questions Motivatio nal	a lecture Video with a lecture Textual with broadcast direct	Learn about numerical systems	Numerical systems		VI
the audience And the questions Motivatio nal	Videc with a lecture Textual with broadcast direct	Conversion between numerical systems	Changing Between Numerical Systems	4	Seventh
the audience And the questions	Video with a lecture Motivatio nal	Textual with broadcast direct	Learn about the binary system	Arithmetic operation in Binary system	4

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

the audience And the questions Motivatio nal	a lecture Video with a lecture Textual with broadcast direct	Learn about operating systems	Introducti	onDos	4	the third ten
the audience And the questions Motivatio nal with Class	a lecture Video with a lecture Textual with broadcast direct with Questions Editorial immanence	Win-7	Intro	ductionWindows	4	the fourth ten
Class	a lecture Video with a lecture Textual with broadcast direct with Questions Editorial immanence	Word 2010		troduction Word	4	Fifth ten
11.Structure Infrastructure						
Computer principles Course of the Ministry of Higher Education for computer principles				Readings required : books The decision Other		
some Books And lectures e To support Subject Scientific And for its chain of transmission				requirements especially		
Services Social (Include on way Example Lectures guests)						
10. plan development The decision Academic						
maybe Accreditation on some Books Modern And keeping up Developments Research in a lot from aspects structure The decision and more And update structure Vocabulary For the decision in the rate of 20% annually						

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Course description form

Reviewing the performance of higher education institutions ((academic program review))

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program
\(\left.\left.$$
\begin{array}{|c|c|}\hline \text { University of Anbar } & \text { Educational institution [1] } \\
\hline \begin{array}{c}\text { College of Education for Pure } \\
\text { Sciences/Department of Mathematics }\end{array} & \begin{array}{c}\text { University [2] } \\
\text { department/center }\end{array} \\
\hline \text { Numerical analysis 1 } & \text { Course name/code [3] } \\
\hline \text { The programs in which he [4] } \\
\text { participates }\end{array}
$$\right] \begin{array}{c}Available forms of [5]

attendance\end{array}\right]\)| Semester/year [6] |
| :---: |
| First semester/third academic year |
| 60 |
| $\mathbf{2 0 2 2 - 2 0 2 3}$ |
| Number of study hours [7]
 ((total |
| Date this description was [8]
 prepared |
| Those who deal with approximate measurements and calculations in their |
| research. |

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

- The importance of approximation is extremely important, as many topics depend on it, such as various statistics on population numbers. Temperatures and humidity levels

Devise approximate means and methods for addressing solutions to a number of problems

10 .Learning outcomes and methods of teaching, learning and evaluation
A- Knowledge and understanding 1-The student will gain a simple overview of errors in numerical calculations and how they accumulate. 2-The student acquires the concept of a numerical solution when arriving at the exact solution is more or less difficult Sometimes impossible. 3-The student obtains experience in dealing with numerical methods and common algorithms and analyzing them 4-Giving the student experience in dealing with solutions of nonlinear equations and linear systems, as well as inclusion and interpolation.

A- Subject-specific skills 1-Scientific reports Research 2-

Teaching and learning methods

Sudden daily and continuous weekly tests.
Exercises and activities in the classroom.
.Guiding students to some sources that contain examples and exercises to benefit from them.
Evaluation methods
--Participation in the classroom
--Providing activities
-Semester and final tests and activities

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

C- Thinking skills
Teaching and learning methods
-Managing the lecture in an applied manner linked to the reality of daily life to attract the student to the topic of the lesson without straying from the core of the topic, the material is flexible and can be understood and analysed Assigning the student to some group activities and duties.- -Allocate a percentage of the grade to daily assignments and tests
Evaluation methods
-Active participation in the classroom is evidence of the student's commitment and responsibility -Commitment to the specified deadline for submitting assignments and research -Semester and final tests express commitment and cognitive and skill achievement Applications, exercises and daily assignments
D - General and transferable skills (other skills related to employability and personal development. (1-Developing the student's ability to deal with technical means 2-Developing the student's ability to deal with the Internet 3-Developing the student's ability to deal with multimedia 4-Developing the student's ability to dialogue and discuss

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

10-Course structure					
Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	Hours	The Week
General questions and discussion	Theoretical + practical	Elementary numerical analysis	0The concept of Numerical analysis	2theoretical +2 practical	the first
General questions and discussion	Theoretical + practical	The numerical error types	Absalute error, Relative errors + operation of error	2theoretical +2 practical	$\begin{gathered} \text { the } \\ \text { second } \end{gathered}$
General questions and discussion	Theoretical + practical	Numerical solution of Nonlinear equation	Half interval method	2theoretical +2 practical	the third
General questions and discussion	Theoretical + practical	Numerical solution of Nonlinear equation	False position method	2theoretical +2 practical	the fourth
General questions and discussion	Theoretical + practical	Numerical solution of Nonlinear equation	secant mrthod	2theoretical +2 practical	Fifth
General questions and discussion	Theoretical + practical	Numerical solution of Nonlinear equation	Newton_raphson method	2theoretical +2 practical	Seventh
General questions and discussion	Theoretical + practical	Numerical solution of Nonlinear equation	Fixed point method	2theoretical +2 practical	eighth
			Test first		Ninth
General questions and discussion	Theoretical + practical	Numerical Solution of System of Linear equations	The concept of system linear equation	2theoretical +2 practical	The tenth
General questions and discussion	Theoretical + practical	Numerical Solution of System of Linear equations	Gaussian Elimination method	2theoretical +2 practical	eleventh
General questions and discussion	Theoretical + practical	Numerical Solution of System of Linear equations	Gauss-Jordan Reduced Method	2theoretical +2 practical	twelveth
General questions and discussion	Theoretical + practical	Numerical Solution of System of Linear equations	Jacobi Method	2theoretical +2 practical	Thirteent h
General questions and discussion	Theoretical + practical	Numerical Solution of System of Linear equations	Gauss-Seidel Method	2theoretical +2 practical	fourteent h
General questions and discussion	Theoretical + practical	Numerical Solution of System of Linear equations	Eigenvalue : The Power Method	2theoretical +2 practical	Fifteenth
	Theoretical + practical		Second test		sixteen

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

	.- Infrastructure 10
Introduction to numerical analysis S. Baskar 2010 Introduction To Numerical Analysis Froberg C. E 1969	Required readings: - Course books - Other
Follow up on electronic references and the Internet -Discreet websites- -Virtual library- -Library locations in some international universities.	Special requirements
	Social services (including, for example, guest lectures, vocational training, and field studies(

10-Acceptance\quad Prerequisites	
25	The smallest number of students
50	The largest number of students

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Course description form

Reviewing the performance of higher education institutions ((academic program review))

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program

University of Anbar	Educational institution [10]
College of Education for Pure Sciences/Department of Mathematics	University $\quad[11]$ department/center
Numerical analysis 2	Course name/code [12]
	The programs in which [13] he participates
Electronically	Available forms of [14] attendance
Second semester/third academic year	Semester/year [15]
60	Number of study hours [16] (total
2022-2023	Date this description was [17] prepared
	:Course objectives [18]
- The need of most researchers in various branches of knowledge, especially those who deal with approximate measurements and calculations in their research.	

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

- The importance of approximation is extremely important, as many topics depend on it, such as various statistics on population numbers. Temperatures and humidity levels

Devise approximate means and methods for addressing solutions to a number of problems

10 .Learning outcomes and methods of teaching, learning and evaluation
A- Knowledge and understanding 1-The student will gain a simple overview of errors in numerical calculations and how they accumulate. 2-The student acquires the concept of a numerical solution when arriving at the exact solution is more or less difficult Sometimes impossible. 3-The student obtains experience in dealing with numerical methods and common algorithms and analyzing them 4-Giving the student experience in dealing with solutions of nonlinear equations and linear systems, as well as inclusion and interpolation.

A- Subject-specific skills 1-Scientific reports Research 2-

Teaching and learning methods

Sudden daily and continuous weekly tests.
Exercises and activities in the classroom.
.Guiding students to some sources that contain examples and exercises to benefit from them.
Evaluation methods
--Participation in the classroom
--Providing activities
Semester and final tests and activities

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department
\(\left.\left.$$
\begin{array}{|r}\hline \text { C- Thinking skills } \\
\hline \text { Teaching and learning methods } \\
\hline \text {-Managing the lecture in an applied manner linked to the reality of } \\
\text { daily life to attract the student to the topic of the lesson } \\
\text { without straying from the core of the topic, the material is flexible and } \\
\text { can be understood and analysed } \\
\text { Assigning the student to some group activities and duties.- } \\
\text { - -Allocate a percentage of the grade to daily assignments and tests }\end{array}
$$ \right\rvert\, \begin{array}{r}Evaluation methods

-Active participation in the classroom is evidence of the student's

commitment and responsibility\end{array}\right\}\)| research |
| ---: |
| -Commitment to the specified deadline for submitting assignments and |
| -Semester and final tests express commitment and cognitive and skill |
| achievement |$|$| Applications, exercises and daily assignments. |
| ---: |

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

10-Course structure					
Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	Hours	The Week
General questions and discussion	Theoretical + practical	Interpolation and Polynomial Approximation	Concept of interpolation and approximation	2theoretical +2 practical	the first
General questions and discussion	Theoretical + practical	Interpolation method	Interpolation and the Lagrange polynomial	2theoretical +2 practical	$\begin{gathered} \text { the } \\ \text { second } \end{gathered}$
General questions and discussion	Theoretical + practical	Interpolation method	Divided Difference	2theoretical +2 practical	the third
General questions and discussion	Theoretical + practical	Interpolation method	Newton Forward divided difference	2theoretical +2 practical	the fourth
General questions and discussion	Theoretical + practical	Interpolation method	Newton Backward divided difference	2theoretical +2 practical	Fifth
General questions and discussion	Theoretical + practical	Interpolation method	Center divided difference	2theoretical +2 practical	Seventh
General questions and discussion	Theoretical + practical	Approximation with least square method	Simple linear relation Quadrature relation	2theoretical +2 practical	eighth
General questions and discussion	Theoretical + practical	Approximation with least square method	Multi linear relation	2theoretical +2 practical	Ninth
			First test		The tenth
General questions and discussion	Theoretical + practical	Numerical Differentiation Methods	Methods based on finite difference operators	2theoretical +2 practical	eleventh
General questions and discussion	Theoretical + practical	Numerical Differentiation Methods	Methods based on Interpolation, undetermined coefficients	2theoretical +2 practical	twelveth
General questions and discussion	Theoretical + practical	Numerical integral Methods	Rectangular method Trapezoidal method	2theoretical +2 practical	$\begin{gathered} \text { Thirteent } \\ \mathrm{h} \end{gathered}$
General questions and discussion	Theoretical + practical	Numerical integral Methods	Simpson rule	2theoretical +2 practical	fourteent h
General questions and discussion	Theoretical + practical	Numerical integral Methods	Gaussian rule	2theoretical +2 practical	Fifteenth
			Second test		sixteen

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

	.- Infrastructure 10
Introduction to numerical analysis S. Baskar 2010 Introduction To Numerical Analysis Froberg C. E 1969	Required readings: - Course books - Other
Follow up on electronic references and the Internet -Discreet websites- -Virtual library- -Library locations in some international universities.	Special requirements
	Social services (including, for example, guest lectures, vocational training, and field studies(

10-Acceptance\quad Prerequisites	
25	The smallest number of students
50	The largest number of
students	

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation

International Accreditation Department

Course Description Form

This course description provides a summary of the most important characteristics of the course and the learning outcomes that the student is expected to achieve, demonstrating whether he or she has made the most of the learning opportunities available. It must be linked to the program description.

Ministry of Higher Education and Scientific Research / Anbar University / College of Education for Pure Sciences	[19] Educational institution
Mathematics	[20] University department/center
(MAT210 Computers 2)	[21] Course name/code
Electronically	[22] Available forms of attendance
Second course	[23] Semester/year
60hours	[24] Number of study hours (total)
2022-2023	[25] The date this description was prepared
[26] Course objectives: A course concerned with teaching the student the art of programming using the $\mathrm{C}++$ language in addition to MATLAB	

[27] Course outcomes and teaching, learning and evaluation methods
A- Cognitive objectives
.1Learn how to solve problems using a calculator.
.2Issue analysis. .3Practical examples

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

B - The skills objectives of the course.
The student participates in intellectual problems and finds the solution to these problems, including the derivative and integration.

Teaching and learning methods

1- Electronically on some e-learning programs such as Google Form and other forms
2- Various means, including displaying the minutes on a display screen and using a calculator

Evaluation methods

1. Endeavor (10 marks for attendance, 5 marks for homework, 5 marks for daily exam, 20 marks for monthly exam, 60 , total final exam score of 100)
2. Through direct questions during the lecture
3. Through monthly examinations
4. By performing duties. 5. Through final exams.
5. Through discipline and adherence to regulations and laws

C- Emotional and value goals

- Critical thinking (question and answer)
-2Organization skill. -3Interaction skill
4- Work skill

Teaching and learning methods

Discussion, lectures

Evaluation methods

1. Discussion. Written tests

D - Transferable general and qualifying skills (other skills related to employability and personal development).
-The student participates in intellectual problems and finds the solution to these problems, including the derivative and integration.

- Assignments in addition to questions during the lecture

Ministry of Higher Education and Scientific Research
 Scientific supervision and evaluation device
 Department of Quality Assurance and Academic Accreditation International Accreditation Department

[28] Course structure					
Evaluatio n method	Teaching method	$\begin{gathered} \text { Name of the } \\ \text { unit/course or subject } \end{gathered}$	Required learning outcomes	Hour s	The Week
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast	Learn about the algorithm	Algorithms	4	First
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast	History of the algorithm	The origin of algorithms	4	Second
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast	Learn about types of algorithms	Types of algorithms	4	$3^{\text {rd }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast	Characteristics of the algorithms used	Algorithm properties	4	$4^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast	Learn about simple examples of algorithms	Simple flow charts	4	$5^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast	Get to know flowchart	Branching flowchart	4	$6^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast	discussion	Simple rotation flowchart	4	$7^{\text {th }}$
Degree		Test-1		4	$8^{\text {th }}$

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast	Various examples	Various examples of algorithms	4	$9^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast	Various examples	Sequence algorithms	4	$10^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast	Various examples	Array algorithms	4	$11^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast	Various examples	One dimensiona 1 Array	4	$12^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast	Various examples	two dimensiona 1 Array	4	$13^{\text {th }}$
Degree	Test-2			4	$14^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast	review	exercises	4	$15^{\text {th }}$
[29] Infrastructure					

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

- Principles of algorithms	
- Analyzing problems using computers	Required readings: - Written the course Some books and electronic lectures to support and support the scientific material Social services (including, for example, guest lectures)

10. Course development plan

It is possible to rely on some recent books, keep up with research developments in many aspects of the course structure, and increase and update the vocabulary structure of the course by 20% annually.

Ministry of Higher Education and Scientific Research
 Scientific supervision and evaluation device
 Department of Quality Assurance and Academic Accreditation International Accreditation Department

[30] Course structure					
Evaluatio n method	Teaching method	Name of the unit/course or subject	Required learning outcomes	Hour \mathbf{s}	The Week
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast and Attendance inside the hall and Attendance inside the hall	Learn about the algorithm	Algorithms	4	First
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast and Attendance inside the hall	History of the algorithm	The origin of algorithms	4	Second
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast and Attendance inside the hall	Learn about types of algorithms	Types of algorithms	4	$3^{\text {rd }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast and Attendance	Characteristics of the algorithms used	Algorithm properties	4	$4^{\text {th }}$

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

	inside the hall				
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast and Attendance inside the hall	Learn about simple examples of algorithms	Simple flow charts	4	$5^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast and Attendance inside the hall	Get to know flowchart	Branching flowchart	4	$6^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast and Attendance inside the hall	discussion	Simple rotation flowchart	4	$7^{\text {th }}$
Degree		Test-1		4	$8^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast and Attendance inside the hall	Various examples	Various examples of algorithms	4	$9^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast and Attendance inside the hall	Various examples	Sequence algorithms	4	$10^{\text {th }}$

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast and Attendance inside the hall	Various examples	Array algorithms		$11^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast and Attendance inside the hall	Various examples	One dimensiona 1 Array		$12^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast and Attendance inside the hall	Various examples	two dimensiona 1 Array		$13^{\text {th }}$
Degree	Test-2			4	$14^{\text {th }}$
Attendanc e and motivatio nal questions	Video lecture with text lecture with live broadcast and Attendance inside the hall	review	exercises	4	$15^{\text {th }}$

[31] Infrastructure

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

- Principles of algorithms	
- Analyzing problems using computers	Required readings:
	- Written the course
Some books and electronic lectures to support and support the scientific material	Special requirements
Social services (including, for example, guest lectures)	

11. Course development plan

It is possible to rely on some recent books, keep up with research developments in many aspects of the course structure, and increase and update the vocabulary structure of the course by 20% annually.

Course description Sample

Reviewing the performance of higher education institutions ((academic program review((

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

- Educational institution1

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

University department/center	College of Education for Pure Sciences/Department of Mathematics
Course name/code	Mathematical Statistics -1LMAT403
Programs in which it is included	Bachelor of Mathematics
Available attendance forms	Daily
Semester/year	Quarterly
Number of study hours (total)	64
Date this description was prepared	Conerse objectives:
1- For students to become familiar with the types of Mathematical Statistics. 2- Transferring from the description stage to the decision-making stage and logical interpretation of the results. 3- The course is concerned with studying an introduction to estimation theory (by point or by period) and how to obtain it. 4-The concept of hypothesis testing, some probability distributions, sampling distribution theory, finding the critical region, optimal test power, and the Neyman- Pearson theorem.	
5-Informing students about Mathematical Statistics, and to show students the most important applications of mathematical statistics.	

Learning outcomes, teaching, learning and assessment methods
A- Knowledge and understanding
A1- Knowledge of the topics on which understanding of the course depends (functions, differentiation, integration (especially integral by division), exponential functions, logarithm concepts, double integration, and famous series).

A2- Knowing the foundations and basic concepts of probability and statistics in mathematics, the type of distribution required that is appropriate for the data,

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department
and choosing the appropriate method to find its characteristics.
A3- Knowing the foundations and methods of establishing the estimator and how to estimate its two types, point and period.

A4- Bringing the student to a level where he has the ability to interpret the results (research) and turn them into a work reality, from which he will benefit in the future during study and after graduation .

Teaching and learning methods
Blackboard + pen + data show
B- Subject-specific skills
B1 - Developing the student's mathematical and statistical skills and preparing him scientifically to be a successful statistician.
B2 - Developing the skill of estimation, hypothesis testing, and statistical analysis as functions of the statistical analyst.
B3-Developing the student's decision-making skill as it is the essence of the educational and statistical process.

C- Thinking skills
External tests 2- Various and interconnected questions to test the student's skills

Teaching and learning methods
Blackboard + pen + data show +Electronically on some e-learning programs such as Google Form and other forms+ Extrapolation, Analysis+ Conclusion+ The lecture Empowerment+ Discussion.

Evaluation methods
Daily and monthly examinations
General and transferable skills (other skills related to employability and personal development

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

Course structure					
Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	hours	The week
Attendance and motivational questions.	A video lecture with a text lecture with a live broadcast	Some discrete and continuous probability random distributions	The student learns the basic principles of probability distributions and reviews them	16	4
Exams and daily activities	A video lecture with a text lecture with a live broadcast	Nonparametric distributions	The student learns nonparametric distributions such as chi-square, chisquare, and chi-square	16	4
Exams and daily activities	A video lecture with a text lecture with a live broadcast	Distributions of functions of random variables	The student will learn methods of inference for the distribution function of random variables (cumulative function).	16	4
Exams and daily activities	A video lecture with a text lecture with a live broadcast	Distributions of functions of random variables	The student will learn to deduce distributions using the function generating the moments	16	4
Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	Distributions of functions of random variables	The student will learn to derive distributions using the transformation method	16	4
Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	Sampling theory	The student will learn the concept of sampling and restricted distributions	16	4

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	Sampling theory	The student understands the theory of sampling of a natural population and sampling distributions	16	4
Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	Ranked statistics	The student will be familiar with ordered statistics and the distributions of their functions	16	4
Attendance and motivational questions with grade	A video lecture with a text lecture with a live broadcast	Review the subject and conduct a monthly exam	The student learns how to do a comprehensive review of the subject, and the student notices the extent of his understanding of what has been studied by taking the first month's exam.	16	4
Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	Appreciation theory	The student will learn the concept of estimation theory, the estimator and its properties	16	4
Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	Estimate in point	The student will learn the concept of an unbiased and least variable estimator	16	4
Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	Estimate in point	The student will learn the concept of methods for establishing estimators (maximum potential function and moment method).	16	4
Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	Solve the questions and assignments that have been given	The student learns how to know what has been studied	16	4

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

Attendance and motivational questions with grade	A video lecture with a text lecture with a live broadcast	A comprehensive review of the material with the second month exam	To increase the student's awareness through enriching examples and questions	16	4
person written					
questions	a video lecture, a text lecture, a live broadcast.	The final assessment	The student learns the extent of his understanding of the material through a comprehensive review	16	4

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Infrastructure	
$>$ Introduction in Mathematical Statistics., Hogg, R.,	
McKean, J. and Craig, A., , Pearson Education , USA. $>$ Probability and Statistical Inference, Hogg, R., Tanis, E., and Zimmerman, D., Pearson Education , USA.	Required readings:
$>$ Mathematical Statistics with Applications, Dennis	
D. Wackerly, William Mendenhall III and Richard	
L. Scheaffer, SEVENTH EDITION, 2008, USA	

Admissions	
Central admission and academic department plan	Prerequisites
$\mathbf{1 5}$	The smallest number of students
$\mathbf{3 0 - 2 5}$	The largest number of students

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation

Course description Sample

Reviewing the performance of higher education institutions ((academic program review((

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

- Educational institution1	Anbar University - College of Education for Pure Sciences	
University department/center	College of Education for Pure Sciences/Department of Mathematics	
Course name/code	Mathematical Statistics -2\MAT403	
Programs in which it is included	Bachelor of Mathematics	
Available attendance forms		
Semester/year		
Number of study hours (total)	Quarterly	
Date this description was prepared	2022-2023	
Course objectives:		
1- For students to become familiar with the types of Mathematical Statistics. 2- Transferring from the description stage to the decision-making stage and logical interpretation of the results. 3- The course is concerned with studying an introduction to estimation theory (by point or by period) and how to obtain it. 4-The concept of hypothesis testing, some probability distributions, sampling distribution theory, finding the critical region, optimal test power, and the Neyman- Pearson theorem.		

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

3-Informing students about Mathematical Statistics, and to show students the most important applications of mathematical statistics.

Learning outcomes, teaching, learning and assessment methods

A- Knowledge and understanding
A1- Knowledge of the topics on which understanding of the course depends (functions, differentiation, integration (especially integral by division), exponential functions, logarithm concepts, double integration, and famous series.

A2- Knowing the foundations and basic concepts of probability and statistics in mathematics, the type of distribution required that is appropriate for the data, and choosing the appropriate method to find its characteristics.

A3- Knowing the foundations and methods of establishing the estimator and how to estimate its two types, point and period.

A4- Bringing the student to a level where he has the ability to interpret the results (research) and turn them into a work reality, from which he will benefit in the future during study and after graduation.

$$
\begin{array}{r}
\text { Teaching and learning methods } \\
\hline \text { Blackboard + pen + data show }
\end{array}
$$

B- Subject-specific skills

B1 - Developing the student's mathematical and statistical skills and preparing him scientifically to be a successful statistician.
B2 - Developing the skill of estimation, hypothesis testing, and statistical analysis as functions of the statistical analyst.
B3 - Developing the student's decision-making skill as it is the essence of the educational and statistical process.

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

C- Thinking skills

External tests 2- Various and interconnected questions to test the student's skills

Teaching and learning methods
Blackboard + pen + data show +Electronically on some e-learning programs such as Google Form and other forms+ Extrapolation, Analysis+ Conclusion+ The lecture Empowerment+ Discussion.

> Evaluation methods

Daily and monthly examinations
General and transferable skills (other skills related to employability and personal development (

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

Course structure					
Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	hours	The week
Attendance and motivational questions.	A video lecture with a text lecture with a live broadcast	estimation theory Point Estimation	The student to learn the basic principles of estimation theory	16	4
Exams and daily activities	A video lecture with a text lecture with a live broadcast	Interval Estimation	The student learns confidence intervals for the mean or variance of a normal population	16	4
Exams and daily activities	A video lecture with a text lecture with a live broadcast	Hypothesis testing	The student will learn an introduction to hypothesis testing	16	4
Exams and daily activities	A video lecture with a text lecture with a live broadcast	Hypothesis testing	The student learns to extract the critical region and test the hypothesis	16	4
Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	Hypothesis testing	The student learns to infer errors of the first and second types	16	4
Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	Sampling theory	The student learns the concept of optimal tests That the student realizes which test is more robust or regular	16	4

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	Sampling theory	The student should know the NeymanPearson theorem	16	4
Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	Sampling theory	The student learns how to do a comprehensive review of the subject, and the student notices the extent of his understanding of what has been studied by taking the first month's exam.	16	4
Attendance and motivational questions with grade	A video lecture with a text lecture with a live broadcast	Review the subject and conduct a monthly exam	The student will learn the concept of Bayesian statistics	16	4
Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	Bayesian estimation theory	The student will learn the concept of test power	16	4
Attendance and motivational questions	A video lecture with a text lecture with a live broadcast A	Hypothesis testing Quality tests	The student learns the Chi-square quality tests	16	4
Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	Solve the questions and assignments that have been given	The student learns how to know what has been studied	16	4
Attendance and motivational questions	A video lecture with a text lecture with a live broadcast	A comprehensive review of the material with the second month exam	To increase the student's awareness through enriching examples and questions With an assessment	16	4

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

			exam		
Attendance and motivational questions with grade	A video lecture with a text lecture with a live broadcast	Final evaluation	The student learns the extent of his understanding of the material through a comprehensive review	16	4

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Infrastructure	
$>$ Introduction in Mathematical Statistics., Hogg, R. McKean, J. and Craig, A., , Pearson Education USA. > Probability and Statistical Inference, Hogg, R. Tanis, E., and Zimmerman, D., Pearson Education , USA. Mathematical Statistics with Applications, Dennis D. Wackerly, William Mendenhall III and Richard L. Scheaffer, SEVENTH EDITION, 2008, USA	Required readings: 1-Course books 2-Other
Nothing	Special requirements
Graduation research projects	Social services (including, for example, guest lectures, vocational training, and field studies(

Admissions Central admission and academic department plan\quad Prerequisites	
15	The smallest number of students
$30-25$	The largest number of
students	

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Course description Sample

Reviewing the performance of higher education institutions ((academic program review((

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

- Educational institution1	$\begin{array}{c}\text { Anbar University - College of } \\ \text { Education for Pure Sciences }\end{array}$		
University department/center	$\begin{array}{c}\text { College of Education for Pure } \\ \text { Sciences/Department of Mathematics }\end{array}$		
Course name/code	General Topology -1\MAT402		
Programs in which it is included	Bachelor of Mathematics		
Available attendance forms	daily		
Semester/year	quarterly		
Number of study hours (total)	2022-2023		
Date this description was prepared	Course objectives:		
1- Emphasizing the importance of the topic of topological spaces in relation to other			
sciences..			
2- For students to become familiar with the types of topological spaces			

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

Course structure					
Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	hours	The week
Exams and daily activities		1-Definition (Examples) of a Topological Space. 2- Types (Examples) of Topological Spaces.	Understand the prescribed material correctly and know its applications	16	4
Exams and daily activities		1- Definition of a closed subsets of a topological spaces - Examples Intersection and union of a closed sets 2-Neighborhoods: Definition of a neighborhood Definition of a neighborhood system -Examples- Properties neighborhood Characterizations of open sets.	Understand the prescribed material correctly and know its applications	16	4
Exams and daily activities		1-Closure of a Set: Definition - Examples - Properties of closure of a set.	Understand the prescribed material correctly and know its applications	16	4
$\begin{gathered} \text { Exams and } \\ \text { daily } \\ \text { activities } \end{gathered}$		1-Interior of a Set: Definition - Examples - Theorems.	Understand the prescribed material correctly and know its applications	16	4

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Infrastructure

> General topology, by: J.L., Kelley's.
$>$ General topology, by: Bourbaki's.
Required readings:
1-Course books
2-Other
General topology, by: R. S. Aggarwal. A Text Book On Topology.

Nothing	Special requirements
Graduation research projects	Social services (including, for example, guest lectures, vocational training, and field studies(

Admissions	
Central admission and academic department plan	Prerequisites
15	The smallest number of students
$30-25$	The largest number of
students	

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Course description Sample

Reviewing the performance of higher education institutions ((academic program review((

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

- Educational institution1	$\begin{array}{c}\text { Anbar University - College of } \\ \text { Education for Pure Sciences }\end{array}$
University department/center	$\begin{array}{c}\text { College of Education for Pure } \\ \text { Sciences/Department of Mathematics }\end{array}$
Course name/code	General Topology -1\MAT402
Programs in which it is included	Bachelor of Mathematics
Available attendance forms	daily
Semester/year	
Number of study hours (total)	64
Date this description was prepared	2022-2023
1- Emphasizing the importance of the topic of topological spaces in relation to other	
sciences..	
2- For students to become familiar with the types of topological space	

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Learning outcomes, teaching, learning and assessment methods
A- Knowledge and understanding 1-That the student understands what is meant by topological space 2-The student should distinguish between types of topological spaces 3-For the student to recognize the relationship between continuous functions and isomorphism 4-For the student to become familiar with the types of separation axioms 5-For the student to become familiar with the concept of compact spaces and interconnected spaces and their applications
Teaching and learning methods
Blackboard + pen + data show
B- Subject-specific skills
1-That the student can distinguish between different topological spaces 2-That the student can distinguish between continuous, open, and closed functions. 3-That the student can distinguish between the axioms of separation and reach the relationships between these spaces 4-The student must have the necessary skill to solve problems using basic concepts. 5-That the student is able to understand compact and interconnected spaces and their connections to other spaces
C- Thinking skills External tests 2- Various and interconnected questions to test the student's skills
Teaching and learning methods
Blackboard + pen + data show
Evaluation methods
Daily and monthly examinations
General and transferable skills (other skills related to employability and personal development(

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

Course structure					
Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	hours	The week
Scientific and educational visits		Application period for fourth stage students	Successfully completing the application period and benefiting from this period and applying the largest number of information that the student acquired during the study period	16	4
Exams and daily activities		1- Open and Closed mappings: ExamplesResults on open \& closed mappings. 2- Homeomorphisms: Examples- Results 3- Homeomorphisms Topological and Hereditary Property: Definition - Examples - Theorems.	Understand the prescribed material correctly and know its applications	16	4
Exams and daily activities		1- Separation Axioms: \mathbf{T}_{0} Property, T_{1} - Property and T_{2} - Property: Definitions - Examples - and study relationships between them. 2-Regular Space and T_{3} Property and Normal Space and T_{4} - Property: Definitions - Examples and study relationships between them.	Understand the prescribed material correctly and know its applications	16	4
Exams and daily activities		1- Compact Spaces: Definitions of a cover of a set - Open cover - Finite cover - Subcover with	Understand the prescribed material correctly and know its applications	16	4

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

		examples. 2-Definition of a compact space - Examples - Properties of compactness. 3-Connected Spaces: Separated sets - Properties of separated sets - Connected spaces- Definitions, examples and properties about connected spaces. 4-Theorems and properties about connected spaces.		

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Infrastructure

> General topology, by: J.L., Kelley's.
$>$ General topology, by: Bourbaki's.
Required readings:
1-Course books
2-Other
$>$ General topology, by: R. S. Aggarwal. A Text Book On Topology.

Nothing

Graduation research projects

Special requirements

Social services (including, for example, guest lectures, vocational training, and field studies(
\(\left.\begin{array}{|c|r|}\hline \& Admissions

\hline Central admission and academic department plan \& Prerequisites

\hline 15 \& The smallest number of

students\end{array}\right\}\)| The largest number of |
| ---: |
| students |

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Course description Sample

Reviewing the performance of higher education institutions ((academic program review((

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

- Educational institution1	Anbar University - College of Education for Pure Sciences	
University department/center	College of Eucation for Pure Sciences/Department of Mathematics	
Course name/code	General Topology - 1\MAT402	
Programs in which it is included	Bachelor of Mathematics	
Available attendance forms	daily	
Semester/year	quarterly	
Number of study hours (total)	2022-2023	
Date this description was prepared	Course objectives:	
1-Identify real numbers and their mathematical properties -2-Identify applications of real numbers in different fields		
3-To learn about sequences and some of their different types		
4-Identify real sequences and calculate their limits		

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department
convergence
7-The ability to deal with some concepts in real analysis, such as sequences, limits, and complete dusty spaces

Learning outcomes, teaching, learning and assessment methods
A- Knowledge and understanding -Gaining experience and knowledge in sports analysis Linking the different topics of mathematics and their relationship to each other, where each topic is considered complementary to the other. Teaching the student to master the skills acquired over time and to have sound intuitive perception to a reasonable extent

B- Subject-specific skills -Scientific reports

- Graduation research

Teaching and learning methods
.- - - Readings, self-learning, seminars
.Activities in the classroom - -
-Directing students to some websites to benefit from them -Giving examples and questions that stimulate the student's thinking

Evaluation methods
Participation in electronic classes Provide activities
Semester and final exams C- Thinking skills
-1External tests 2- Various and interconnected questions to test the student's skills
Developing the student's ability to work on performing assignments and submitting them on the scheduled date To think logically and mathematically in finding solutions to problems Analyze the problem, solve it mathematically, and find solutions using the available information and theorems
Developing the student's ability to dialogue and discuss

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

Teaching and learning methods

Managing the lecture in an applied manner linked to the reality of daily life to attract the student to the topic of the lesson without straying from the core of the topic so that the material is flexible and amenable to understanding and analysis
Assigning the student to some group activities and duties
Allocate a percentage of the grade to daily assignments and tests Manage the lecture in a way that makes time feel important

Evaluation methods
Active participation in class is evidence of the student's commitment and responsibility Commitment to the deadline for submitting assignments and research Semester and final exams express commitment and cognitive and skill achievement . D - General and transferable skills (other skills related to employability and personal development (Developing the student's ability to recognize types of groups

Developing the student's ability to deal with the Internet Developing the student's ability to find solutions and evidence Developing the student's ability to dialogue and discuss Developing the student's ability to recognize types of functions

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Course structure [32]					
Evaluat ion method	Teaching method	Name of the unit/course or subject	Required learning outcomes	الساعات	The week
	My theory/ my presence	Axioms of arithmetic axioms of order - axioms of perfection with examples.	Axioms of real numbers	4	the first
	My theory/ my presence	Definition - examples - some theorems - trigonometric inequality	absolute value	4	the second
Group assign ments	My theory/ my presence	The highest constraint - the smallest top constraint - the bottom constraint the largest bottom constraint examples - theories	Restrictions	4	the third
General question s and electroni discussio n	My theory/ my presence	Definition with examples and basic theories	Rational numbers and irrational numbers	4	the fourth
Exam	My presence	-----------	Exam	4	Fifth

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

General question s and electroni discussio n	My theory/ my presence	Its definition and examples - semidusty spaces Euclidean spaces equivalent metric spaces	Metric spaces	4	Sixth
Reports	My theory/ my presence	Definitions examples - union and intersection of a finite or infinite number of such groups.	Open and closed groups	4	Seventh
General question s and electroni discussio n	My theory/ my presence	Some basic principles in topology and its relationship to metric space, with examples and theories.	Metric and biological space	4	Eighth
General question s and electroni discussio	My theory/ my presence	Definitions with examplesDerived and closed sets and the relationship between them	Points of purpose and closure	4	Ninth
$\begin{gathered} \hline \text { General } \\ \text { question } \\ \text { s and } \\ \text { electroni } \\ \text { c } \\ \text { discussio } \\ \quad \mathbf{n} \end{gathered}$	My theory/ my presence	Stacked groups - examples some important theorems in stacking	Lined spaces	4	The tenth
Group assign ments	My theory/ my	Its definition, examples, and some special infinite series, harmonic-	Infinite series and convergence	4	Eleventh

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

	presence	geometricalternating series - the concept of convergence examples theorems.			
Genera 1 questio ns and electro nic discussi on + exam	My theory/ my presence	Comparison test - P test - Root comparison test - Ratio test Root test Definition of number - Basic theorems about the number E	Series test number e	4	Twelveth
$\begin{array}{\|c} \hline \text { General } \\ \text { question } \\ \text { s and } \\ \text { electroni } \\ \text { c } \\ \text { discussio } \\ \text { n } \\ \hline \end{array}$	My theory/ my presence	Definitions examples and some theorems to clarify the relationship between them	Absolute convergence and conditional convergence	4	Thirteent h
$\begin{gathered} \hline \text { General } \\ \text { question } \\ \text { s and } \\ \text { electroni } \\ \text { c } \\ \text { discussio } \\ \hline \mathbf{n} \\ \hline \end{gathered}$	My theory/ my presence	Definition examples and basic theorems	Multiplying Series - Power Series	4	Fourteent h
Compr ehensiv e exam	My presence	----------	Review exam	4	Fifteenth

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Infrastructure
1Adel Ghassan Naoum, "Introduction to Mathematical Analysis," University of Baghdad, Iraq, 1986, first edition.
-2Anwar Badraneh and others: Introduction to Real Analysis, Dar AlAwal for Publishing and Distribution, Jordan, 1992.
3-Apostol. T.M., "Mathematical Analaysis"2nd, 1974, London.

4-Ash, R. B. ,"Real analysis and probability", 1972. New York.

5-Royden. H. L.,"Real Analysis", 1988.
London.

Nothing	Special requirements
Graduation research projects	Social services (including, for example, guest lectures, vocational training, and field studies(

	Acceptance [34]
Nothing	Prerequisites
15	The smallest number of students
$\mathbf{3 0 - 2 5}$	The largest number of students

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Course description Sample

Reviewing the performance of higher education institutions ((academic program review((

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

- Educational institution1	Anbar University - College of Education for Pure Sciences
University department/center	College of Education for Pure Science/Department of Mathematics
Course name/code	General Topology - 1LMAT402
Programs in which it is included	Bachelor of Mathematics
Available attendance forms	daily
Semester/year	quarterly
Number of study hours (total)	2022-2023
Date this description was prepared	Course objectives:

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

$\left.$| 3-Identify function sequences, their dotted and regular convergence, and
 how to replace limits with integration |
| ---: |
| 4-The identifier for measuring subsets of the set of real numbers |$\left|\begin{array}{r}\text { 5-Identify measurable functions and their properties }\end{array}\right|$| 6-Identify the Riemann-Esteljets integral and compare it with the |
| ---: |
| Riemann integral | \right\rvert\, | 7-Identify the Riemann integral and its most important properties and |
| ---: |
| compare it with the Riemann integral. |

Learning outcomes, teaching, learning and assessment methods
A- Knowledge and understanding -Gaining experience and knowledge in sports analysis Linking the different topics of mathematics and their relationship to each other, where each topic is considered complementary to the other.
Teaching the student to master the skills acquired over time and to have sound intuitive perception to a reasonable extent

B- Subject-specific skills -Scientific reports

- Graduation research

Teaching and learning methods
.- - Readings, self-learning, seminars
.Activities in the classroom -
-Directing students to some websites to benefit from them -Giving examples and questions that stimulate the student's thinking

Evaluation methods
Participation in electronic classes
Provide activities Semester and final exams

C- Thinking skills
-1External tests 2- Various and interconnected questions to test the student's skills

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department
Developing the student's ability to work on performing assignments and submitting them on the scheduled date To think logically and mathematically in finding solutions to problems Analyze the problem, solve it mathematically, and find solutions using the available information and theorems Developing the student's ability to dialogue and discuss Teaching and learning methods
Managing the lecture in an applied manner linked to the reality of daily life to attract the student to the topic of the lesson without straying from the core of the topic so that the material is flexible and amenable to understanding and analysis
Assigning the student to some group activities and duties Allocate a percentage of the grade to daily assignments and tests Manage the lecture in a way that makes time feel important Evaluation methods

Active participation in class is evidence of the student's commitment and responsibility Commitment to the deadline for submitting assignments and research Semester and final exams express commitment and cognitive and skill achievement .
D - General and transferable skills (other skills related to employability and personal development (Developing the student's ability to recognize types of groups

Developing the student's ability to deal with the Internet Developing the student's ability to find solutions and evidence Developing the student's ability to dialogue and discuss Developing the student's ability to recognize types of functions

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Course structure [35]					
Evaluat ion method	Teaching method	Name of the unit/course or subject	Required learning outcomes	اللـاعات	The week
$\begin{gathered} \text { General } \\ \text { question } \\ \text { s and } \\ \text { electroni } \\ \mathbf{c} \\ \text { discussio } \\ \mathbf{n} \end{gathered}$	My theory/ my presence	Axioms of arithmetic axioms of order - axioms of perfection with examples.	Continuity	4	the first
General question s and electroni discussio n	My theory/ my presence	Definition examples - some theorems trigonometric inequality	Continuity	4	the second
Group assign ments	My theory/ my presence	The highest constraint - the smallest top constraint - the bottom constraint the largest bottom constraint examples - theories	Derived	4	the third
General question s and electroni discussio n	My theory/ my presence	Definition with examples and basic theories	Derived	4	the fourth
Exam	My presence	-----------	Riemann integral	4	Fifth

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

General question s and electroni discussio n	My theory/ my presence	Its definition and examples - semidusty spaces Euclidean spaces equivalent metric spaces	Riemann integral	4	Sixth
Reports	My theory/ my presence	Definitions examples - union and intersection of a finite or infinite number of such groups.	Riemann	4	Seventh
General question s and electroni discussio n	My theory/ my presence	Some basic principles in topology and its relationship to metric space, with examples and theories.	Riemann	4	Eighth
General question s and electroni c discussio n	My theory/ my presence	Definitions with examplesDerived and closed sets and the relationship between them	Introduction to measurement theory	4	Ninth
General question s and electroni c discussio n	My theory/ my presence	Stacked groups - examples some important theorems in stacking	Measurable functions	4	The tenth
Group assign ments	My theory/ my	Its definition, examples, and some special infinite series, harmonic-	Integration of Libik	4	Eleventh

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

	presence	geometricalternating series - the concept of convergence examples theorems.			
Genera 1 questio ns and electro nic discussi on + exam	My theory/ my presence	Comparison test - P test - Root comparison test - Ratio test Root test Definition of number - Basic theorems about the number E	Integration of Libik	4	Twelveth
General question s and electroni discussio n	My theory/ my presence	Definitions examples and some theorems to clarify the relationship between them	Integration of Libik	4	Thirteent h
General question s and electroni discussio n	My theory/ my presence	Definition examples and basic theorems	Functions are covariance bound	4	Fourteent h
Compr ehensiv e exam	My presence	----------	Functions are absolutely continuous.	4	Fifteenth

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

	Infrastructure [36]
1Adel Ghassan Naoum, "Introduction to Mathematical Analysis," University of Baghdad, Iraq, 1986, first edition. -2Anwar Badraneh and others: Introduction to Real Analysis, Dar Al-Awal for Publishing and Distribution, Jordan, 1992. 3-Apostol. T.M., "Mathematical Analaysis"2nd, 1974, London. 4-Ash, R. B. ,"Real analysis and probability", 1972. New York. 5-Royden. H. L.,"Real Analysis", 1988. London. 6- Manfred Stoll," Introduction to Real Analysis",1969. , 7- Wilted, Rudin 'Principle of Mathematical Analysis', 1964. 8- Murray R. Spiegel," Real Variables",1969. 9- R.M. Dudley," Real Analysis and Probability",2004. 9- Burrill and Knudsen" Real Variable",1969.	Required readings: Course books
Nothing	Special requirements
Graduation research projects	Social services (including, for example, guest lectures, vocational training, and field studies(

	Acceptance [37]
Nothing	Prerequisites
15	The smallest number of students
$30-25$	The largest number of students

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Course description Sample

Reviewing the performance of higher education institutions ((academic program review()

Abstract

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

- Educational institution1	Anbar University - College of Education for Pure Sciences College of Education for Pure Sciences/Department of Mathematics
University department/center	Partial Differential Equations 1\MAT302
Course name/code	Bachelor of Mathematics
Programs in which it is included	daily
Available attendance forms	quarterly
Semester/year	$\mathbf{6 0}$
Number of study hours (total)	2022-2023
Date this description was prepared	1-Course objectives 1-That the student is familiar with the definition and concept of partial 2-differential equations and how to form them
3-For the student to become familiar with the classification of partial	
differential equations in terms of degree and rank	

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department
-Identify methods for solving partial differential equations 4 Identify the applications of partial differential equations in various fields

Learning outcomes, teaching, learning and assessment methods

A - Teaching and learning methods
.1Lectures. .2Classroom discussion from a scientific perspective.
.3Directing students to some websites to benefit from them.
.4Mini-discussions.
.5 Training students on how to prepare scientific research.
B - Evaluation methods
.1Participation in the classroom.
.2Daily, semester and final written tests.
.3Oral exams in class.
.4Research activities
C- Thinking skills
-1Developing the student's ability to work on performing assignments and submitting them on the scheduled date.
-2The ability to think scientifically.
-3 The ability to participate effectively in quarterly activities.
-4 Skill in carrying out research activities and using useful sources to support the main idea required.

D - General and transferable skills (other skills related to employability and personal development.(
-1Learn how to form partial differential equations.
-2Employing several methods to solve partial differential equations.
-3The student acquires general skills to solve partial differential equations that carry scientific meanings

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Evalua tion metho d	Teaching method	Name of the unit/course or subject	Required learning outcomes	hours	The week
General questio ns and discussi on	Lecture and discussion	introduction to partial differential equations	Partial differential equations1	4	the first
General questio ns and discussi on	Lecture and discussion	How to get the equation	Partial differential equations1	4	the second
General questio ns and discussi on	Lecture and discussion	Methods for solving firstorder and first-order equations	Partial differential equations1	4	the third
General questio ns and discussi on	Lecture and discussion	Nonlinear partial differential equations of the first order	Partial differential equations1	4	the fourth
General questio ns and discussi on	Lecture and discussion	Review and test	Partial differential equations1	4	Fifth
General questio ns and discussi on	Lecture and discussion	Using some transformations to solve first-order partial differential equations	Partial differential equations1	4	sixth
General questio ns and discussi on	Lecture and discussion	Garbit method	Partial differential equations1	4	Seventh

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

General questio ns and discussi on	Lecture and discussion	Partial differential equations1	4	eighth	
General questio ns and discussi on	Lecture and discussion	Features method	Partial differential equations1	4	Ninth
General questio ns and discussi on	Lecture and discussion	Review and test			
General questio ns and discussi on	Lecture and discussion	Direct integration method	Partial differential equations1	4	eleventh
General questio ns and discussi on	Lecture and discussion	Linear partial differential equations with homogeneous terms and constant higher-order coefficients	Partial differential equations1	4	The tenth
General questio ns and discussi on	Lecture and discussion	Linear partial differential equations with homogeneous terms and non-homogeneous constant coefficients of higher order	Partial differential equations1	4	twelveth
General questio ns and discussi on	Lecture and discussion order	Linear partial differential equations with homogeneous terms and non-homogeneous constant coefficients of higher	Partial differential equations1	4	The Conduc ting theoreti cal testsLecture and discussion
Review and test	Partial differential equations1	4	Fifteenth		
fourteenth					

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

	Infrastructure
- 1Ordinary differential equations - written by Atallah Thamer Al-Ani. -2Theory of Differential Equations written by Amjad Ibrahim -3Differential Equations - Part Two, written by Hussein Mustafa Al-Awadhi	Required readings: \square Course books nothing
	Special requirements
	Social services (including, for example, guest lectures, vocational training, and field studies

Admissions	
Calculus, ordinary differential equations	Prerequisites
60	The smallest number of students
70	The largest number of students

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Course description Sample

Reviewing the performance of higher education institutions ((academic program review((

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.
\(\left.$$
\begin{array}{|c|c|}\hline \text { - Educational institution1 } & \begin{array}{c}\text { Anbar University - College of } \\
\text { Education for Pure Sciences } \\
\text { College of Education for Pure } \\
\text { Sciences/Department of } \\
\text { Mathematics }\end{array} \\
\hline \text { University department/center } & \begin{array}{c}\text { Partial Differential Equations } \\
\text { 2\MAT302 }\end{array} \\
\hline \text { Course name/code } & \text { Bachelor of Mathematics } \\
\hline \text { Programs in which it is included } & \text { daily } \\
\hline \text { Available attendance forms } & \text { quarterly } \\
\hline \text { Semester/year } & \mathbf{6 0} \\
\hline \text { Number of study hours (total) } & \text { 2022-2023 } \\
\hline \text { Date this description was prepared } & \begin{array}{c}\text { 1-Course objectives } \\
\text { 1-That the student is familiar with the definition and concept of partial } \\
\text { 2-differential equations and how to form them }\end{array}
$$

3-For the student to become familiar with the classification of partial

differential equations in terms of degree and rank\end{array}\right\}\)| -Identify methods for solving partial differential equations4 |
| ---: |

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Learning outcomes, teaching, learning and assessment methods

A - Teaching and learning methods
.1Lectures.
.2Classroom discussion from a scientific perspective.
.3Directing students to some websites to benefit from them.
.4Mini-discussions.
.5 Training students on how to prepare scientific research.

B - Evaluation methods

.1Participation in the classroom.
.2Daily, semester and final written tests.
.3Oral exams in class.
.4Research activities.

C- Thinking skills
-1Developing the student's ability to work on performing assignments and submitting them on the scheduled date.
-2The ability to think scientifically.
-3 The ability to participate effectively in quarterly activities.
-4 Skill in carrying out research activities and using useful sources to support the main idea required.

D - General and transferable skills (other skills related to employability and personal development.(
-1Learn how to form partial differential equations.
-2Employing several methods to solve partial differential equations.
-3The student acquires general skills to solve partial differential equations that carry scientific meanings

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department
.1Course structure

Evalu ation metho d	Teaching method	Name of the unit/course or subject	Required learning outcomes	hours	The week
General questio ns and discussi on	Lecture and discussion	Partial differential equations with nonhomogeneous terms and constant coefficients	Partial differential equations 1	4	the first
General questio ns and discussi on	Lecture and discussion	Irreducible partial differential equations	Partial differential equations1	4	the second
General questio ns and discussi on	Lecture and discussion	Second-order linear partial differential equations with variable coefficients	Partial differential equations1	4	the third
General questio ns and discussi on	Lecture and discussion	Cauchy's linear partial differential equation	Partial differential equations1	4	the fourth
General questio ns and discussi on	Lecture and discussion	Review and test	Partial differential equations1	4	Fifth
General questio ns and discussi on	Lecture and discussion	Separation of variables	Partial differential equations1	4	sixth
General questio ns and discussi	Lecture and discussion	Garbit method	Partial differential equations1	4	Seventh

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

on					
General questio ns and discussi on	Lecture and discussion	Fourier series	Partial differential equations1	4	eighth
General questio ns and discussi on	Lecture and discussion	Fourier series	Partial differential equations1	4	Ninth
General questio ns and discussi on	Lecture and discussion	Review and test		4	The tenth
General questio ns and discussi on	Lecture and discussion	Heat conduction equation	Partial differential equations1	4	eleventh
General questio ns and discussi on	Lecture and discussion	One dimensional wave equation	Partial differential equations1	4	twelfth
General questio ns and discussi on	Lecture and discussion	Laplace equation	Partial differential equations 1	4	The thirteenth
General questio ns and discussi on	Lecture and discussion	Solving partial differential equations using Laplace transforms	Partial differential equations1	4	fourteenth
Conduc ting theoreti cal tests	Lecture and discussion	Review and test	Partial differential equations1	4	Fifteenth

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Infrastructure	
- 1Ordinary differential equations written by Atallah Thamer Al-Ani. -2Theory of Differential Equations written by Amjad Ibrahim -3Differential Equations - Part Two, written by Hussein Mustafa Al-Awadhi	Required readings: \square Course books Other
nothing	Special requirements
	Social services (including, for example, guest lectures, vocational training, and field studies

Admissions	
Calculus, ordinary differential equations	Prerequisites
60	The smallest number of students
70	The largest number of students

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Course description form

education Reviewing the performance of higher ((academic program review))institutions

Analysis Real is one of the most important branches of mathematics and is such as)considered the basis for most other branches of mathematics numerical ,functional analysis ,nodal analysis ,theory Measurement dynamic ,erential equations topology Diff ,general topology ,analysis It gives the student a broad mathematical and logical base . (.etc ,systems that allows him the opportunity to determine And absorb Many branches but calculus is ,It is the natural extension of calculus .of mathematics As for analysis .d with answering questions of the "how" typeconcerne The athlete takes care of answering "why" type questions.

College of Education for /Anbar University Pure Sciences	Educational institution [38]
mathematics	University [39] center/department
/2Mathematical Analysis MAT301	code/name Course [40]
No D	Programs in which it is [41] included
Electronic lectures	Available attendance [42] forms
third academic year/Second semester	year/Semester [43]
60 hour	Number of study hours [44] (total)
2022-2023	Date this description was prepared [45]
	: Course objectives [46]

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Learn about the basic concepts of the derivative and how to find them .using the definition And its applications	
Learn about the Riemann integral of functions and how to find them using . its definition and properties	
and how ,their point and regular convergence ,Identify function sequences to replace limits with integration	
.The identifier of the measure of subsets of the set of real numbers	-
Identify measurable functions and their properties	
Estelligs integral and compare it with the Riemann -nnIdentify the Riema integral	-
Identify the Riemann integral and its most important properties and compare it with the Riemann integral	-

learning and assessment methods, teaching ,Learning outcomes [47]

Understanding Knowledge and-A .
-- Knowing the derivatives of functions and how to find the derivatives of .functions using the definition and some of its applications Knowing the Riemannian integral of functions and its most important ntinuity and derivativeproperties and relationships By co
. Knowing the measure of a partial group of the set of real numbers -
clarifying its importance in ,Knowing and understanding the Libeck integral -
. and comparing it with the Rheiman integral ,other sciences .nowledge in analysis The athleteGain experience and k -
Binding to bin Different mathematics topics and their relationships With each each position is considered complementary to the other ,other .
specific skills-Subject -B
Reports Scientific -
Graduation research-
Teaching and learning methods

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

. seminars ,learning-self ,Readings . Activities in the classroom . Directing students to some websites to benefit from them Giving examples and questions that stimulate the student's thinking . and activities Semester and final tests	- - - - -
Evaluation methods	
Participation in electronic classes Provide activities Semester and final exams	-
Thinking skills - C	
Developing the student's ability to work on performing assignments and . submitting them on the scheduled date .Logical and mathematical thinking in finding solutions to problems and find solutions using the ,solve it mathematically ,Analyze the problem . available information and theorems . Developing the student's ability to dialogue and discuss	- - - - -
learning methods Teaching and	
Managing the lecture in an applied manner linked to the reality of daily life to attract the student to the topic of the lesson without straying from the core of the topic so that the material is flexible and amenable to understanding and analysis ing the student to some group activities and dutiesAssign	$-$

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Allocating a percentage of the grade to daily assignments and tests \qquad . Manage the lecture in a way that makes time feel important
participation in the electronic class is evidence of the student's commitment and responsibility.

Commitment to the specified deadline for submitting assignments and research .

Semester and final exams express commitment and cognitive and skill achievement.
other skills related to employability and)neral and transferable skills Ge -D .(personal development
. Developing the student's ability to recognize types of groups
. Developing the student's ability to deal with the Internet .Finding solutions and evidence to s ability'Developing the student
. Developing the student's ability to dialogue and discuss . Developing the student's ability to recognize types of functions
-

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

Course structure [48]					
Evaluation method	Teaching method	Name of the course or/unit subject	Required learning outcomes	hours	the week
General questions and electronic discussion	Theoretica electroni/1 c	Definition of continuity with some examples that achieve and do not achieve -continuity theories that represent equivalent definitions of .continuity	Continuity	4	the first
General questions and electronic discussion	Theoretica electroni/l c	The relationship of continuity and -packed spaces regular the -continuity theory of the the -mean value theory of the -intervals theory of the .solid point	Continuity	4	the second
Group assignments	Theoretica electroni/l c	How to calculate derivatives of functions using recognition and study of the properties of	A derivative	4	the third

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation
International Accreditation Department

		differentiable functions and their relationships With continuity			
General questions and electronic discussion	Theoretica electroni/l c	,Theorem Rolle the mean value ,theorem s mean 'Cauchy ,value theorem applications of these theorems	A derivative	4	the fourth
Exam	electronic	Define Riemann integral and give examples explaining how Finding the Riemann integral ,of functions properties of Riemann integrable functions	Riemann integral	4	Fifth
General questions and electronic discussion	Theoretica electroni/l c	The relationship of the size of discontinuity points and their Riemannian susceptibility and related General .results theoretical questions and The .discussion fifth Riemann integral	Riemann integral	4	VI

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

		Rhymanian integrable function sequences and how to replace the limit with integration for regularly convergent .sequences			
Reports	Theoretica electroni/l c	Definition of the -Riemann Esthelijs integral with some examples	-Kamel Rayman Estellations	4	Seventh
General questions and electronic discussion	Theoretica electroni/l c	Studying the most important E properties of and comparing E with the Riemann integral	-Kamel Rayman Estellations	4	VIII
General and questions electronic discussion	Theoretica electroni/l c	Defining measurable groups and studying their properties	Introduction to theory Measurement	4	Ninth
General questions and electronic discussion	Theoretica electroni/l c Theoretica electroni/l c	Define measurable functions and give some examples Simple functions distinct and (functions	Measurable functions	4	The tenth

Ministry of Higher Education and Scientific Research
Scientific supervision and evaluation device
Department of Quality Assurance and Academic Accreditation International Accreditation Department

		studying their properties.			
Group assignments	Theoretica electroni/ c	Definition of Libeck integral with some -examples Properties of Libeck integral	Integration of Libik	4	eleventh
General questions and electronic +discussion exam	electronic	A comparison between the Libeck integral the Riemann and integral	Integration of Libik	4	twelveth
General questions and electronic discussion	Theoretica electroni/l c	Liebeck integrable function sequences	Integration of Libik	4	Thirteenth
General questions and electronic discussion	Theoretica electroni/ c	Definition of bound functions covariance with some examples and important properties	Functions are covariance bound	4	fourteenth
Comprehensiv e exam	Theoretica electroni/l c	Define absolute continuity functions with some examples and important properties	Functions are absolutely continuous.	4	Fifteenth

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

	Infrastructure [49]
ot noitcudortnI" ,Adel Ghassan Naoum -1 Riyadh " University of -1A ".Analysis Baghdad- . first edition ,1986Iraq :Anwar Badrana and others -2 Haqiqi" Dar-Introduction to analysis Al ,Awal for Publishing and Distribution -Al 1992Jordan . 3-Apostol. TM, "Mathematical Analysis"2nd, 1974, London. 4-Ash, R. B., "Real analysis and probability", 1972. New York. 5-Royden. H.L. , "Real Analysis", 1988. London. 6- Manfred Stoll," Introduction to Real Analysis", 1969. , 7- Wilted, Rudin "Principle of Mathematical Analysis", 1964. 8- Murray R. Spiegel, "Real Variables", 1969. 9- R. M. Dudley, "Real Analysis and Probability," 2004 9 - Burrill and Knudsen, "Real Variable", 1969.	: readings Course books Other
Nothing	Special requirements
Graduation research projects.	for ,including)Social services ,lectures guest ,example and field ,vocational training (studies

Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

admissions [50]	
Nothing	Prerequisites
10	The smallest number of students
45	The largest number of students

Course description form

education Reviewing the performance of higher ((academic program review))institutions

He provides a description The decision this Briefly required For the most important features The decision And outputs Learning Expected from requester Achieve it
Proven About what if He was may be Achieve Benefit Maximum from Opportunities Learning Available. And it must from Connectivity Between them And between a description The program.

-College of Education for A1/Anbar University Sarafa-Atoum Al	Educational institution [51]
mathematics	University [52] center/department
1Topology	code/Course name [53]
No D	Programs in which it is [54] included
Lectures	Available attendance [55] forms

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

2021-2022First semester	year/Semester [56]
hours for the first semester 60	Number of study hours [57] (total)
2022-2023	description was Date this [58] prepared
	: Course objectives [59]
and how to form a topology, its theories ,Identifying the topological space open and ,Study of topological concepts related to the study of continuous . closed sets and functions	
-The student should know that topological properties are properties that are . invariant under the influence of isomorphic functions	
The student should know that genetic properties are constant properties under the influence of subspaces	
student should know that topological development is an extension of set The theory	

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Knowledge and understanding -A Gaining experience and knowledge in dealing with groups -A knowledge in dealing with types of functions Gain experience and -2 Gain experience and knowledge in dealing with groups -3 . Gain experience and knowledge in using Data and axioms in proof Theories -4.
specific skills-Subject -B Graduation research
methods Teaching and learning
Evaluation methods
classes Participation in electronic Provide activities Semester and final exams
Thinking skills -C
Developing the student's ability to work on performing assignments and . submitting them on the scheduled date . Logical and mathematical thinking in finding solutions to problems and find solutions using the ,solve it mathematically, Analyze the problem . available information and theorems . Developing the student's ability to dialogue and discuss
Teaching and learning methods

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Managing the lecture in an applied manner linked to the reality of daily life to attract the student to the topic of the lesson Without straying from the material will be flexible and capable of being ,the core of the topic . understood and analysed . ing the student to some group activities and dutiesAssign Allocate a percentage of the grade to daily assignments and electives . Manage the lecture in a way that makes time feel important

Evaluation methods

Active participation in The electronic class is a guide to the student's commitment and responsibility.
Commitment to the specified deadline for submitting assignments and research 1 Semester and final tests express commitment and cognitive and skil achievement.
other skills related to employability and)General and transferable skills -D .(personal development
. Developing the student's ability to recognize types of groups
. Developing the student's ability to deal with the Internet . Finding solutions and evidence s ability to'the student Developing

Developing the student's ability to dialogue and discuss . Developing the student's ability to recognize types of functions

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Course structure [61]					
Evaluati on method	Teach ing metho d	course /the unit Name of or subject	Required learning outcomes	hours	the week
General questions and discussio n A	theore tical	Definitions, examples, some types of topological spaces such as: indiscrete, discrete, usual topology and co finite topology	Topological spaces	4	the first
General questions and discussio n	theore tical	Definition of open and closed set, some examples, definition of neighborhood and relationship between them.	Open, closed sets and neighborhoods	4	the second
Group assignme nts	theore tical	Definition of basis and sub basis, find topology generated from basis or sub basis, some examples and theorems	Basis and subbases	4	the third
General discussio n and discussio n	theore tical	Definitions, some examples and theorems about interior points	Interior points and interior set	4	the fourth
General questions and discussio n	theore tical	Definitions, examples, some theorems and relationships between this points and interior points	Exterior points, exterior set, boundary points and boundary set.	4	Fifth
Reports	theore tical	Definition of derived set, examples with some theorems	Derived sets	4	VI

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

General acetylati on and discussio n	theore tical	Some properties, definitions and examples about closure of a set and relationship with derived sets	Close of a set	4	Seventh
Group assignme nts	theore tical	Definition of dense set and study the topological space which is generated by metric space with some properties and theorems	Dense set and topological space generated by metric space.	4	VIII
General discussio n and discussio n	theore tical	Definition of continuity, image and invers image for topological spaces, study the relationship between continuity and interior, closure sets	Continuity, derived topological spaces and continuous at a point.	4	Ninth
Group assignme nts	theore tical	Definition of open and closed functions, some examples and theorems, relationship between open and closed function with continuous function.	Open and closed functions	4	The tenth
General discussio n and discussio n	theore tical	Definition of Homeomorphic topology , examples, theorems and topological property.	Homeomorphic topology	4	eleventh
Monthly exam	theore tical	Definition and subspace, examples, remarks and some theorems.	Subspace or induced space	4	twelveth
General discussio n and discussio	theore tical	Definition of restriction function, examples and some theorems, relationship with	Restriction function	4	Thirteenth

n		continuous function			
General discussio n and discussio n	theore tical	Definition of Cartesian product, product space, quotient topology, some examples and theories	Product space	4	fourteenth
Compreh study relations ensive		between topics .	-----------	Review exam	4

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Infrastructure

1-JN . Sharma, Topology, Krishna :Required readings Prakashan Media, 2003.
2- N. Bourbaki, General topology, part1, Addison Wesley, Reading, Mass, 1996. 3- R. Englking , Outline of general topology, Amsterdam, 1989. 4-C. Kuratowski, Topologies, Warsaw, 1952.

5-S. Willard, General topology, AddisonWesley Publishing Company, Inc , USA, 1970.
6- S. Michael, Elementary topology Second edition, Gemidnami, 1972. translated by Atallah, William Pervin -7 .Basics ,Ani-Thamer Al General ,Iraq -University of Baghdad ,Topology 1986.

1999 ,ad AslimAbd Rabh Muhamm -8 ,Palestine ,jurisprudence of topology
Nothing

Nothing
M
for ,including)Social services vocational ,guest lectures ,example (and field studies ,training

admissions [63]	
Nothing	Prerequisites
15	The smallest number of students
40	The largest number of students

Course description form

Reviewing the performance of higher education ((academic program review))institutions

He provides a description The decision this Briefly required For the most important features decision The And outputs Learning Expected from requester Achieve it
Proven About what if He was may be Achieve Benefit Maximum from Opportunities Learning Available. And it must from Connectivity Between them And between a description The program.

College of Education for /Anbar University Pure Sciences	Educational institution [64]
mathematics	University [65] center/department code/Course name [66]
2Topology	Programs in which it is [67] included
No D	Available attendance [68] forms
Lectures	year/Semester [69]
semester Second 2021-2022	Number of study hours [70] (total)
hours for the second semester 60	Date this description was [71] prepared
2022-2023	

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department
$\left.\begin{array}{|l|ll|}\hline & & \\ \hline & \text { and how to form a topology, its theories ,Identifying the topological space } & - \\ \text { open and ,topological concepts related to the study of continuous Study of } \\ \text {. closed sets and functions }\end{array}\right]$
learning and assessment methods ,teaching ,Learning outcomes [73]
understanding Knowledge and -A
Gaining experience and knowledge in dealing with groups -A
Gain experience and knowledge in dealing with types of functions -2
Gain experience and knowledge in dealing with groups -3 .
ms in proof TheoriesGain experience and knowledge in using Data and axio -4 . specific skills-Subject -B

Graduation research

Teaching and learning methods

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

. seminars, learning-self,Readings . Activities in the classroom . Instruct students to use The Internet to gain interest Giving examples and questions that stimulate the student's thinking	-
Evaluation methods	
Participation in electronic classes Provide activities Semester and final exams	-
Thinking skills -C	
Developing the student's ability to work on performing assignments and . submitting them on the scheduled date . Logical and mathematical thinking in finding solutions to problems and find solutions using the ,solve it mathematically, Analyze the problem . available information and theorems . Developing the student's ability to dialogue and discuss	- - - -
Teaching and learning methods	
Managing the lecture in an applied manner linked to the reality of daily life to attract the student to the topic of the lesson Without straying from the material will be flexible and capable of being, the core of the topic . understood and analysed . ing the student to some group activities and dutiesAssign Allocate a percentage of the grade to daily assignments and electives . Manage the lecture in a way that makes time feel important	-
Evaluation methods	

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Active participation in The electronic class is a guide to the student's commitment and responsibility.
Commitment to the specified deadline for submitting assignments and research -
1 Semester and final tests express commitment and cognitive and skil achievement.
other skills related to employability and)General and transferable skills -D .(personal development
. Developing the student's ability to recognize types of groups
. Developing the student's ability to deal with the Internet . Finding solutions and evidence s ability to'the student Developing

Developing the student's ability to dialogue and discuss . Developing the student's ability to recognize types of functions

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Course structure					
Evaluation method	Teaching method	Name of the course or /unit subject	Required learning outcomes	hours	the week
General questions and discussion	theoretical	Definitions and examples for	Compact space	4	the first
General questions and discussion	theoretical	compact and not compact space, topological property	Definition of compact subspace, some examples and theorems, also	Compact subspace and hereditary property.	4

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

		theorems, relationship with T_{0}-space and T_{1} space, hereditary and topological property.	topological space and convergent sequences.		
General discussion and discussion	theoretical	Some properties, definitions and examples, relationship with T_{0}-space, T_{1}-space and T_{2}-space, hereditary and topological property.	Regular space and T_{3}-space	4	Seventh
Group assignments	theoretical	Definitions and examples, relationship with T_{0}-space, T_{1}-space, T_{2}-space and $T_{3}-$ space, hereditary and topological property. With some properties and theories	Normal space and T_{4}-space	4	VIII
Exam	theoretical	Quiz	--------	4	Ninth
Group assignments	theoretical	Definition of Connected spaces and disconnected spaces, some examples and theorems .	Connected spaces	4	The tenth
General	theoretical	Some properties,	Basic theorems	4	eleventh

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

discussion and discussion		examples and theorems such as hereditary and	of connected and disconnected spaces		
Group assignments topological property	theoretical	Definition, examples, remarks and some theories.	Component of a point	4	twelveth
General acetylation and discussion	theoretical	Definition of locally connected space,	Locally connected space examples and some theorems,	4	Thirteenth
General acetylation and discussion	theoretical	Definition of Comb space , product relationship with	Comb space	4	fourteenth
space, some examples and					
Comprehensi ve exam		Qeorems and study relations between connected and			

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Infrastructure [74]	
1-JN . Sharma , Topology , Krishna Prakashan Media, 2003. 2- N. Bourbaki, General topology, part1, Addison Wesley, Reading, Mass, 1996. 3- R. Englking, Outline of general topology, Amsterdam, 1989. 4-C. Kuratowski, Topologies, Warsaw, 1952. 5-S. Willard, General topology, AddisonWesley Publishing Company, Inc , USA, 1970. 6- S. Michael, Elementary topology Second edition, Gemidnami, 1972. translated by Atallah ,William Pervin -7 .Basics ,Ani-Thamer Al ,General Topology 1986 ,Iraq -University of Baghdad . 1999 ,h Muhammad AslimAbd Rab -8 ,Palestine ,jurisprudence of topology	:Required readings Course books Other
Nothing	Special requirements
Nothing	for ,including)Social services ,guest lectures ,example and field ,vocational training (studies

admissions [75]	
Nothing	Prerequisites
15	The smallest number of students
40	The largest number of students

Academic program description form

Reviewing the performance of higher education ((academic program review))institutions

This academic program description provides a necessary summary of important characteristics of the program and the learning the most demonstrating, outcomes that the student is expected to achieve It .whether he or she has made the most of the available opportunities amis accompanied by a description of each course within the progr

College of Education for Pure Sciences/Anbar University	$\begin{gathered} \text { Educational } .1 \\ \text { institution } \end{gathered}$
mathematics	University .2 center/department
class rom	Name of the .3 academic program
s degree'Bachelor	Name of the final .4 certificate
quarterly	School system . 5
Electronic lectures	Accredited .6 accreditation program
Nothing	Other external .7 influences
2022-2023	Date the description . 8 was prepared
Objectives of the academic program . 9	
Do not know the real numbers And its mathematical properties -	
Identify the applications of real numbers in different fields	

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

To learn about sequences and some of their different types -
learning and assessment methods ,Required learning outcomes and teaching. 10
Knowledge and understanding 1
and knowledge in analysis The athlete Gaining experience - 1A
Linking to Bin Different mathematics topics and their relationships With -2A each position is considered complementary to the other ,each other .
nd to have Teaching the student to master the skills acquired over time a -3A
sound intuitive perception to a reasonable extent
The following are the program 's skill objectives -B
Reports Scientific - 1B
Graduation research - 2B
Duties - 3B
Teaching and learning methods
. seminars ,learning-self ,Readings -
. Activities in the classroom
. Directing students to some websites to benefit from them . Give examples and questions that provoke thought The student

Evaluation methods

Participation in electronic classes
.Emotional and value goals -C
Developing the student's ability to work on performing assignments and -1 C submitting them on the scheduled date
.Logical and mathematical thinking in finding solutions to problems -2C and finding solutions, solving it mathematically, Analyzing the problem -3C

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department
. for it using the available information and theorems
Developing the student's ability to dialogue and discuss -4 C .

Teaching and learning methods

Managing the lecture in an applied manner linked to the reality of daily life to attract the student to the topic of the lesson without straying from the core of the topic so that the material is flexible and amenable to understanding and . analysis
. ing the student to some group activities and dutiesAssign . Allocating a percentage of the grade to daily assignments and tests
. Manage the lecture in a way that makes time feel important

Evaluation methods
participation in the electronic class is evidence of the student's commitment and responsibility.
Commitment to the specified deadline for submitting assignments and research -. Semester and final exams express commitment and cognitive and skill achievement.
other skills related to)General and qualifying transferable skills - D
. (employability and personal development
Developing the student's ability to recognize types of groups -1D
Developing the student's ability to deal with the Internet -2D.
Finding solutions and evidence g the student's ability toDevelopin -3D
Developing the student's ability to dialogue and discuss -4D
Teaching and learning methods

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Conduct the lecture in an applied manner linked to the reality of daily life to attract the student to the topic of the lesson without straying from the core of the topic so that the material is flexible and amenable to understanding and . analysis
. ng the student to some group activities and dutiesAssigni Allocating a percentage of the grade to daily assignments and tests

Manage the lecture in a way that makes time feel important

Evaluation methods

Active participation in the electronic class is evidence of the student's commitment and responsibility.
Commitment to the specified deadline for submitting assignments and research -. chievementSemester and final exams express commitment and cognitive and skill a.

Certificates and . 12 credit hours	Program structure. 11				
	Hours and credit units		Name of the course or course	Course or course code	year/Level
	practical	theoretica 1			
60 hour	60 hour		Mathematical 1analysis	MAT301	First t/semester hird academic year

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Planning for personal development. 13
establishing regulations related to admission to the college or)Admission standard . 14 (institute

The most important sources of information about the program. 15

description form Course

Course description

He provides a description The decision this Briefly required For the most important features The decision And outputs Learning Expected from requester Achieve it
Proven About what if He was may be Achieve Benefit Maximum from Opportunities Learning Available. And it must from Connectivity
itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Between them And between a description
 The program.

College of Education for /Anbar University Pure Sciences	Educational institution [76]
mathematics	University [77] center/department
/1Mathematical analysis MAT301	code/name Course [78]
Electronic lectures	Available attendance [79] forms
third academic year/First semester	year/Semester [80]
hours 60	Number of study hours [81] (total)
2022-2023	Date this description was [82] prepared
	: Course objectives [83]
not know the real numbers And its	athematical properties Do
Identify applications of real numbers in	ifferent fields -.
To learn about sequences and	me of their different types
- Identify real sequences and calculate their limits .	

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

about sequences and some of their different types To learn -

 partment of Quality Assurance and Academic Accreditation n Department

Emotional and value goals -C
Developing the student's ability to work on performing assignments and -1 C . submitting them on the scheduled date
.Logical and mathematical thinking in finding solutions to problems - 2 C and finding solutions ,solving it mathematically ,Analyzing the problem -3C Developing the student's . for it using the available information and theorems ability to dialogue and discuss
Teaching and learning methods

Managing the lecture in an applied manner linked to the reality of daily life to attract the student to the topic of the lesson without straying from the core of the topic so that the material is flexible and amenable to understanding and . analysis
. ing the student to some group activities and dutiesAssign
Allocating a percentage of the grade to daily assignments and tests . Manage the lecture in a way that makes time feel important

Evaluation methods

Active participation in the electronic class is evidence of the student's commitment and responsibility.
Commitment to the specified deadline for submitting assignments and research -. Semester and final exams express commitment and cognitive and skill achievement.
other skills related to employability)General and qualifying transferable skills -D .(and personal development
. Developing the student's ability to dialogue and discuss -1D -
.Finding solutions and evidence ...Developing the student's ability to -2D -

Developing the student's ability to deal with the Internet -3D -

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Course structure [85]					
Evaluat ion method	Teaching method	Name of the course or /unit subject	Required learning outcomes	hours	the week
General questio ns and electron ic discussi on	Theoretica electroni/l c	Axioms of -arithmetic -axioms of order axioms of perfection with examples	Axioms of real numbers	4	the first
$\begin{aligned} & \text { General } \\ & \text { questio } \\ & \text { ns and } \\ & \text { electron } \\ & \text { ic } \\ & \text { discussi } \\ & \text { on } \end{aligned}$	Theoretica electroni/l c	$\begin{aligned} & \text {-Definition } \\ & \text { some -examples } \\ & \text {-theorems } \\ & \text { trigonometric } \\ & \text { inequality } \end{aligned}$	absolute value	4	the second
Group assignm ents	Theoretica electroni/l c	The highest the -constraint smallest top the - constraint bottom the -constraint largest bottom -constraint -examples .theories	Restrictions	4	the third
General questio ns and electron	Theoretica electroni/l c	Definition with examples and basic theories	Rational numbers and irrational numbers	4	the fourth

ic discussi on					
Exam	electronic	-----------	Exam	4	Fifth
General questio ns and electron ic discussi on	Theoretica electroni/l c	dariff Examples dusty -are semi -spaces Euclidean spaces equivalent - metric spaces	Metric spaces	4	VI
Reports	Theoretica electroni/l c	-Definitions union -examples and intersection of an infinite or infinite number of such groups	and closed groups	4	Seventh
General questio ns and electron ic discussi on	Theoretica electroni/l c	Some basic principles in topology and its relationship to	Metric and biological space	4	VIII
General questio ns and electron ic discussi on	Theoretica space electroni/l c	Dith examples and theories	Definitions with -examples Derived and closed sets and the relationship between them	Points of purpose and closure	4
General questio ns and electron ic	Theoretica electroni/l c	are Groups Theoretica electroni/l -stacked some -examples theorems in	Lined spaces	4	Ninth

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

discussi on	c	stacking			
Group assignm ents	Theoretica electroni/l c	,Its definition and ,examples some special ,infinite series -harmonic -geometric alternating series the concept of --convergence -examples .theorems	series Infinite and convergence	4	eleventh
General questio ns and electron ic discussi +on exam	electronic	Comparison test -p root -test -comparison test root -ratio test definition -test -of number basic theorems about the numbere	-Series test numbere	4	twelveth
General questio ns and electron ic discussi on	Theoretica electroni/l c	-Definitions examples and some theorems to clarify the relationship between them	Absolute convergence and conditional convergence	4	Thirteenth
General questio ns and electron ic discussi on	Theoretica electroni/l c	-Definition examples and basic theorems	Multiplying Power -Series Series	4	fourteenth

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Course development plan. 12

Adding topics that can be more practical than just theoretical

Academic program description form

Reviewing the performance of higher education institutions ((academic program review))

> This academic program description provides a necessary summary of the most important characteristics of the program and the learning outcomes that the student is expected to achieve, demonstrating whether he has made the most of the available opportunities. It is accompanied by a description of each course within the program

College of Education for Pure Sciences - Anbar University	Educational institiution
Department of mathematics	Ceniversity department .16 Center
MAT308 -Ring2	Name academic/ .17 program
Bachelor	Name of the final certificate
Season	School system .18

-9 Learning and learning outputs and evaluation

Knowledge and understanding
1 -Knowledge important teaching aids
2-Learn the types of teaching methods
B - Program specific skill objecives
The student can solve the exercises. -1
-The student is able to apply the topics with close topics. -2
3-The student manages to connect the topic with reality.

Teaching and learning methods
Blackboard and pen

Evaluation methods
1 -Questions with quick exams
2- Monthly exams

- Emotional and value goals -C.
- Love of learning- C1
- Love of communicating with the material -C2
- Interaction with the professor-

Teaching and learning methods

1 -Questions with quick exams
Monthly exams-2

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

General and qualifying transferable skills (other skills related to employability and personal development).
1 -Tests are as off-topic as possible
2-Diverse and interconnected questions

Teaching and learning methods

Using the board - using the pen

Evaluation methods

Daily tests
Monthly tests

11.Certificates and credit hours	10. Program structure				
	Hours and credit units		Name of the course or course	Course or course code	Level/year
	practical	theoretical			
4	4		Ring 2	MAT308 -	quarterly

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

7 .Planning for personal development
Planning to acquire skills in learning, communicating with society, and applying vocabulary

8 .Admission standard (setting regulations related to admission to the college or institute)

Central admission
9 The most important sources of information about the program

The most important sources of information about the program.-2
3. A First Course in Abstract Algebra By J.B.F.raleigh.
4. Intoduction to Modern Algebra (Group theory), By David Burton.
se description form

Course description

> This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve

Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

	1 Educational institution
	University-2 department/center
	Course name/code-1

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

| 1. Semester/year | Available forms of-2 attendance |
| :---: | :---: | :---: |
| 2. Number of study hours (total) | |
| 3. The date this description was prepared is $\mathbf{6 - 1 7}-$
 (total) | |
| 3. The date this description
 was prepared is 6-17-2021 | |
| Objectives of the academic program: Training and qualifying the student
 for a course concerned with studying the field, the partial field - isotopes
 of the field - types of fields - the primary field - perfect squares and the
 field and some applied examples. We also study the definition of ideals
 and their types, such as the greatest ideal and the primary ideal, and their
 relationship to the perfect arena. At the end of these topics, we give the
 definition of the polynomial ring and the elementary ring | |

[^0]
itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

A- Cognitive objectives
First: knowledge
Understanding
A4-
B - The skills objectives of the course.
C- Emotional and value goals
C1- Developing the spirit of thinking
C2-Development of learning
C3-
Cransferable general and qualifying skills (other skills related to employability and personal development). D1- Developing the mind to accept ideas

Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

2- Main references (sources) - Introduction to Modern	2- Main references (sources) -
Abstract Algebra, written by: David M. Burton - Translated	Introduction to Modern Abstract
by: M.D. Abdul Ali Jassim Mohammed - M.D. Sanaa Abdel	Algebra, written by: David M.
Muhammad.-	Burton - Translated by: M.D. Abdul Ali Jassim Mohammed - M.D. Sanaa Abdel Muhammad.- sites...

10 .Course development plan

It is possible to develop new vocabulary that contributes to enhancing understanding of the material more clearly

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Academic program description form

Academic program description form Reviewing the performance of higher education institutions ((academic program review))

This academic program description provides a necessary summary of the most important characteristics of the program and the learning outcomes that the student is expected to achieve, demonstrating whether he has made the most of the available opportunities. It is accompanied by a description of each course within the program

College of Education for Pure Sciences - Anbar University	Educational institiution. 22
Department of mathematics	/ University department. 23 Center
MAT203 -Ring 1	Name academic/ . 24 program
Bachelor	Name of the final .25 certificate
Season	School system. 26
Daily	Approved preparation . 27 program
Community	Other external influences. 28
2022-2023	Date preparation of .29 description
Objectives of the academic program: Training and qualifying the student for a . 30 course concerned with studying the field, the partial field - isotopes of the field types of fields - the primary field - perfect squares and the field and some applied examples. We also study the definition of ideals and their types, such as the greatest ideal and the primary ideal, and their relationship to the perfect arena. At the end of these topics, we give the definition of the polynomial ring ..and the elementary ring	

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department
\square
Knowledge and understanding
1 -Knowledge important teaching aids
2-Learn the types of teaching methods
B - Program specific skill objecives
The student can solve the exercises. -1
-The student is able to apply the topics with close topics. -2
3 -The student manages to connect the topic with reality.

Teaching and learning methods
Blackboard and pen

Evaluation methods
1 -Questions with quick exams
2- Monthly exams

- Emotional and value goals -C.
- Love of learning- C1
- Love of communicating with the material -C2
- Interaction with the professor-

Teaching and learning methods

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department
\square

General and qualifying transferable skills (other skills related to employability and personal development).
1 -Tests are as off-topic as possible
2-Diverse and interconnected questions

Teaching and learning methods

Using the board - using the pen

Evaluation methods

Daily tests
Monthly tests

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

credit hours	Hours and credit units		$\begin{array}{l}\text { Name of the } \\ \text { course } \\ \text { cor }\end{array}$	$\begin{array}{l}\text { Course or } \\ \text { course code }\end{array}$	Level/year
	practical	theoretical			

10 .Planning for personal development
Planning to acquire skills in learning, communicating with society, and applying vocabulary
11.Admission standard (setting regulations related to admission to the college or institute)

Central admission

REFERENCES PROGRAM-10

. The most important sources of information about the program.-2
3. A First Course in Abstract Algebra By J.B.F.raleigh. 4. Intoduction to Modern Algebra (Group theory), By David Burton.
itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve
Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

	1 Educational institution
	University-2 department/center
	Course name/code-1
	Available forms of-2 attendance
1. Semester/year	1. Semester/year [90]
2. Number of study hours (total)	2. Number of study hours [91]
3. The date this description was prepared is 5 - 17-2022	3. The date this description [92] was prepared is 6-17-2021
	4. Course objectives [93]
Objectives of the academic program: Training course concerned with studying the field, the p field - types of fields - the primary field - perfe some applied examples. We also study the defi such as the greatest ideal and the primary ideal, perfect arena. At the end of these topics, we gi ..polynomial ring and the elementary ring	d qualifying the student for a .31 ial field - isotopes of the squares and the field and ion of ideals and their types, nd their relationship to the the definition of the

Course outcomes and teaching, learning and evaluation methods- 5

A- Cognitive objectives

First: knowledge

Understanding

A4-
B - The skills objectives of the course.

C- Emotional and value goals

C1- Developing the spirit of thinking
C2-Development of learning

C3-
-Transferable general and qualifying skills (other skills related to employability and personal development).
D1-Developing the mind to accept ideas
D2- Training the student to accept difficult issues-3

Course structure					
Week Hours Required learning outcomes Name of unit/cours e or subject Teaching method Evaluatio n method	Week Hours Required learning outcomes Name of unit/course or subject Teaching method Evaluation method	Week Hours Required learning outcomes Name of unit/course or subject Teaching method Evaluation method	Week Hours Required learning outcomes Name of unit/course or subject Teaching method Evaluation method	Week Hours Required learning outcomes Name of unit/cour se or subject Teaching method Evaluatio n method	Week Hours Required learning outcomes Name of unit/course or subject Teaching method Evaluation method

1. Infrastructure	
1- Required textbooks 3. A First Course in Abstract Algebra By J.B.F.raleigh.	1- Required textbooks 3. A First Course in Abstract Algebra By J.B.F.raleigh.
2- Main references (sources) - Introduction to Modern Abstract Algebra, written by: David M. Burton - Translated by: M.D. Abdul Ali Jassim Mohammed - M.D. Sanaa Abdel Muhammad.-	2- Main references (sources) - Introduction to Modern Abstract Algebra, written by: David M. Burton - Translated by: M.D. Abdul Ali Jassim Mohammed - M.D. Sanaa Abdel Muhammad.-
	B - Electronic references, Internet sites...

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

10 .Course development plan

It is possible to develop new vocabulary that contributes to enhancing understanding of the material more clearly

Course description form

Reviewing the performance of higher education institutions ((academic program review()

> This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve
> Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.
$\left.\begin{array}{|r|r|}\hline \text { 1. Educational institution } & \begin{array}{r}\text { College of Education for Pure } \\ \text { Sciences - Anbar University } \\ \text { Mathematics department }\end{array} \\ \hline \text { 2. University department/center } & \begin{array}{r}\text { Advanced differentiation1 }\end{array} \\ \hline \text { 3. Course name/code } & \text { Bachelor's } \\ \hline \text { 4. The programs he participates in } & \text { Through classrooms } \\ \hline \text { 5. Available forms of attendance } & \begin{array}{r}\text { q. Semester/year }\end{array} \\ \hline \text { 7. Number of study hours (total) } & 5 \text { * 15 = 75 hours, where 5 } \\ \text { hours per week }\end{array}\right\}$

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department
9. Course objectives: Understanding the types of conic sections, how to derive equations for rotating axes, understanding the meaning of polar coordinates, how to draw polar equations, finding areas and the length of their curves, as well as understanding sequences (series) and knowing when sequences (series) are convergent or divergent, with knowledge of the two most famous series, which are Taylor and McLaurin prepared these topics for use in the third grade.the most famous Taylor.

1.Learning outcomes and methods of teaching, learning and evaluation

The student will be able to distinguish between types of conic sections and can draw any second-degree equation with two variables by rotating the axes.
The student will be able to draw polar coordinates, find their area and length, and learn their applications in reality The student can also distinguish between the concept of series and sequence and the concept of convergence and divergence

Teaching and learning methods

-Lecture method.
-Using modern illustrative means such as Google Meet and audio recording of the lecture, as well as explaining the lecture in the classroom in person and conducting extensive discussions.
Asking students a set of thinking questions during lectures, such as what, how, when, and why for specific topics.
Giving students homework
Lecture and conclusion
Evaluation methods

Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

By giving assignments and questions during lectures and monthly exams
C- Thinking skills Through external questions
Teaching and learning methods
Evaluation methods
- Questions during lecture and daily assignments. - Daily Quizes. - Discussions during the lecture. - Monthly exam
D - General and transferable skills (other skills related to employability and personal development. (D1- Cognition: Understanding meaning and formulating new concepts. D2- Application: Using information extracted from the course in new situations. D3-Analysis: The ability to analyze the text and extract moral lessons from D4-Synthesis: Assembling scattered ideas to form new concepts that keep pace with reality.

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Course structure					
The week	hours	Required learning outcomes	Required learning outcomes	Teaching method	Evaluation method
the first	5	Definitions of quadratic equations in the plane	Definitions of quadratic equations in the plane	theory	Daily questions with assignments
the second	5	Sectional equations	Sectional equations	theory	Daily questions with assignments
the third	5	Sectional equations	Sectional equations	theory	Daily questions with assignments
the fourth	5	Sectional equations	Sectional equations	theory	Daily questions with assignments
Fifth	5	Sectional equations	Sectional equations	theory	Daily questions with assignments
VI	5	Polar coordinates	Polar coordinates	theory	Daily questions with assignments
Seventh	5	Polar coordinates	Polar coordinates	theory	Daily questions with assignments
VIII	5	Polar coordinates	Polar coordinates	theory	Daily questions with assignments
Ninth	5	Polar coordinates	Polar coordinates	theory	Daily questions with assignments
The tenth	5	Follow-ups	Follow-ups	theory	Daily questions with assignments
eleventh	5	Sequences	Sequences	theory	Daily questions with assignments
twelveth	5	finite series	finite series	theory	Daily questions with assignments
Thirteenth	5	finite series	finite series	theory	Daily questions with assignments
fourteenth	5	theoretical	5 theoretical exams, questions and answers	theory	5 theoretical exams, questions and answers
Fifteenth	5	Review of previous topics	Definitions of quadratic equations in the plane	theory	Daily questions with assignments

Course description form

Reviewing the performance of higher education institutions ((academic program review((

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.	
1. Educational institution	College of Education for Pure Sciences - Anbar University
2. University department/center	Mathematics department
3. Course name/code	Advanced differentiation2
4. The programs he participates in	Bachelor's
5. Available forms of attendance	Through classrooms
6. Semester/year	quarterly
7. Number of study hours (total)	$5 * 15=75$ hours, where 5 hours per week
8. Date this description was prepared	2022-2023
9 Course objectives: The student's understanding of fu one variable, understanding the concept of their objectiv their applications, understanding double and triple integ areas and volumes, benefiting from what he learned in the the second subject, as well as studying cylindrical and sp integration on Path and C	nctions that depend on more than and their partial derivatives and als and their applications such as first stage and applying them to herical coordinates and studying ane's theory and its applications..

Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department
10. Learning outcomes, teaching, learning and assessment methods

The student will be able to distinguish between functions that depend on one variable and those that depend on more than one variable in terms of the function's domain, its corresponding domain, graphing, and differentiation.

Teaching and learning methods
-Lecture method.
-Using modern illustrative means such as Google Meet and audio recording of the lecture, as well as explaining the lecture in the classroom in person and conducting extensive discussions.
Asking students a set of thinking questions during lectures, such as what, how, when, and why for specific topics.
Giving students homework
Lecture and conclusion

Evaluation methods
By giving assignments and questions during lectures and monthly exams

C- Thinking skills
Through external questions

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

- Questions during lecture and daily assignments.
- Daily Quizes.
- Discussions during the lecture.
- Monthly exam

D - General and transferable skills (other skills related to employability and personal development. (

D1- Cognition: Understanding meaning and formulating new concepts. D2- Application: Using information extracted from the course in new situations.
D3-Analysis: The ability to analyze the text and extract moral lessons from it.
D4-Synthesis: Assembling scattered ideas to form new concepts that keep pace with reality.

[95] Course structure							
The week	hours	Required learning outcomes	Name of the unit/course or subject	Teaching method	Evaluation method		
the first	5	Vectors and parametric equations	Definition of parametric equations in the Cartesian plane	Vectors and parametric equations	Definition of vectors in the plane and operations on them	theory	theory
:---							

				limits for functions of three variables	
Ninth	5	Partial derivatives	Calculate the partial derivatives of functions with assignments or more variables using the definition	theory	Daily questions with assignments
The tenth	5	Partial derivatives	Calculating partial derivatives for countries with two or more variables using mathematical laws and relationships	theory	Daily questions with assignments
eleventh	5	Partial derivatives	Calculating partial derivatives of functions with more than two variables using the chain rule	theory	Daily questions with assignments
twelveth	5	Double integrals	Calculating double integrals for functions with two variables	theory	Daily questions with assignments
Thirteenth	5	Triple integrals	Calculating double integrals for functions of three variables	theory	Daily questions with assignments
Fifteenth	5	review	Exams	Monthly exams A general review of previous topics	theory
fourteenth	5		exams, questions and answers		
	Daily questions with assignments				

Course description form

Reviewing the performance of higher education institutions ((academic program review(()

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve
Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.
$\left.\left.\begin{array}{|r|r|}\hline \text { 1. Educational institution } & \begin{array}{r}\text { College of Education for Pure } \\ \text { Sciences - Anbar University }\end{array} \\ \hline \text { 2. University department/center } & \begin{array}{r}\text { Functional analysis 1 }\end{array} \\ \hline \text { 3. Course name/code } & \text { Bachelor's }\end{array}\right\} \begin{array}{r}\text { quarterly }\end{array}\right\}$

Course objectives: 9
Functional analysis aims to increase the knowledge of undergraduate students in the Department of Mathematics regarding mathematics topics Purely, which relies on previous topics such as linear traction and mathematical analysis, and opens horizons for students Knowledge of types of spaces and their related applications

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department
10.Learning outcomes and methods of teaching, learning and evaluation
a. 1. Teach the student how to think about solving engineering problems
a. 2. Motivating students on how to formulate special proofs in mathematics, as well as expanding their mental perceptions and how to think about solving problems.

Teaching and learning methods

-Lecture method.
-Using modern illustrative means such as Google Meet and audio recording of the lecture, as well as explaining the lecture in the classroom in person and conducting extensive discussions.
Asking students a set of thinking questions during lectures, such as what, how, when, and why for specific topics.
Giving students homework
Lecture and conclusion

Evaluation methods

By giving assignments and questions during lectures and monthly exams

C- Thinking skills
Through external questions

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Course structure					
The week	hours	Required learning outcomes	Required learning outcomes	Teaching method	Evaluation method
the first	4	Definitions of spaces	Definitions of spaces	theory	Daily questions with assignments
the second	4	Applications to spaces	Applications to spaces	theory	Daily questions with assignments
the third	4	Convergent sequences, metric space, theory of public debates	Convergent sequences, metric space, theory of public debates	theory	Daily questions with assignments
the fourth	4	Types of convergent sequences, metric space, theory of public discussions	Types of convergent sequences, metric space, theory of public discussions	theory	Daily questions with assignments
Fifth	4	Perfect spaces, metric space, theory of public debates	Perfect spaces, metric space, theory of public debates	theory	Daily questions with assignments
Sixth	4	Applications to spaces	Applications to spaces	theory	Daily questions with assignments
Seventh	4	Definitions of spaces	Definitions of spaces	theory	Daily questions with assignments
Eighth	4	Applications to spaces	Applications to spaces	theory	Daily questions with assignments
Ninth	4	Banach spaces and their applications, normative space, theory of public discussions	Banach spaces and their applications, normative space, theory of public	theory	Daily questions with assignments

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

			discussions		
The tenth	4	Finite dimensional spaces	Finite dimensional spaces	theory	Daily questions with assignments
eleventh	4	Compact spaces	Compact spaces	theory	Daily questions with assignments
twelveth	4	Linear effects	Linear effects	theory	Daily questions with assignments

12. Infrastructure
$\left.\begin{array}{|l|l|l|}\hline \text { Required readings: } \\ \square \text { Course books }\end{array} \begin{array}{l}\text { Other }\end{array} \begin{array}{l}\text {-Introduction to functional } \\ \text { analysis and its applications } \\ \text {-Introductory of functional } \\ \text { analysis with applications } \\ \text {-Topics in functional analysis } \\ \text { Functional Analysis Problems } \\ \text { with Solutions } \\ \text {-Papers of functional analysis } \\ \text { with applications }\end{array}\right]$

Course description form

Reviewing the performance of higher education institutions ((academic program review(()

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve
Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

1. Educational institution	College of Education for Pure Sciences - Anbar University
2. University department/center	Mathematics department
3. Course name/code	Functional analysis 2
4. The programs he participates in	Bachelor's
5. Available forms of attendance	Through classrooms
6. Semester/year	quarterly
7. Number of study hours (total)	$4 * 15=75$ hours, where 4 hours per week
8. Date this description was prepared	2022-2023
The Functional Analysis Headquarters a undergraduate students in the Depa Purely, which relies on previous topics such as analysis	Course objectives: 9 s to increase the knowledge of ment of Mathematics regarding mathematics topics near traction and mathematical nd opens horizons for students

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Knowledge of types of spaces and their related applications
10.Learning outcomes and methods of teaching, learning and evaluation
a. 1. Teach the student how to think about solving engineering problems a. 2. Motivating students on how to formulate special proofs in mathematics, as well as expanding their mental perceptions and how to think about solving problems.

Teaching and learning methods
-Lecture method.
-Using modern illustrative means such as Google Meet and audio recording of the lecture, as well as explaining the lecture in the classroom in person and conducting extensive discussions.
Asking students a set of thinking questions during lectures, such as what, how, when, and why for specific topics.
Giving students homework
Lecture and conclusion

Evaluation methods

By giving assignments and questions during lectures and monthly exams

C- Thinking skills
Through external questions

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Teaching and learning methods
Evaluation methods
- Questions during lecture and daily assignments. - Daily Quizes. - Discussions during the lecture. - Monthly exam
D - General and transferable skills (other skills related to employability and personal development.(D1- Cognition: Understanding meaning and formulating new concepts. D2- Application: Using information extracted from the course in new situations. D3-Analysis: The ability to analyze the text and extract moral lessons from D4-Synthesis: Assembling scattered ideas to form new concepts that keep pace with reality.

[97] Course structure
$\left.\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { The week } & \text { hours } & \begin{array}{l}\text { Required learning } \\ \text { outcomes }\end{array} & \begin{array}{l}\text { Required learning } \\ \text { outcomes }\end{array} & \begin{array}{l}\text { Teaching } \\ \text { method }\end{array} & \begin{array}{l}\text { Evaluation } \\ \text { method }\end{array} \\ \hline \text { the first } & 4 & \begin{array}{l}\text { Inner multiplication } \\ \text { space }\end{array} & \begin{array}{l}\text { Inner } \\ \text { multiplication } \\ \text { space }\end{array} & \text { theory } & \begin{array}{l}\text { Daily } \\ \text { questions } \\ \text { with } \\ \text { assignments }\end{array} \\ \hline \text { the second } & 4 & \text { space } & \begin{array}{l}\text { Inner multiplication } \\ \text { space multiplication }\end{array} & \begin{array}{l}\text { Inner } \\ \text { multiplication } \\ \text { space }\end{array} & \begin{array}{l}\text { Inner } \\ \text { multiplication } \\ \text { space }\end{array} \\ \hline \text { the third } & 4 & 4 & \begin{array}{l}\text { Inner multiplication } \\ \text { space }\end{array} & \begin{array}{l}\text { Inner } \\ \text { multiplication } \\ \text { space }\end{array} & \begin{array}{l}\text { Daily } \\ \text { questions }\end{array} \\ \text { with } \\ \text { assignments }\end{array} \right\rvert\, \begin{array}{l}\text { theory } \\ \text { Daily } \\ \text { questions } \\ \text { with } \\ \text { assignments }\end{array}\right\}$

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

The tenth	4	Hilbert space	Hilbert space	theory	Daily questions with assignments
eleventh	4	Hilbert space	Hilbert space	theory	Daily questions with assignments
twelveth	4	Hilbert space	Hilbert space	theory	Daily questions with assignments

12. Infrastructure
$\left.\begin{array}{|l|l|l|}\hline \text { Required readings: } \\ \square \text { Course books }\end{array} \begin{array}{l}\text { Other }\end{array} \begin{array}{l}\text {-Introduction to functional } \\ \text { analysis and its applications } \\ \text {-Introductory of functional } \\ \text { analysis with applications } \\ \text {-Topics in functional analysis } \\ \text { Functional Analysis Problems } \\ \text { with Solutions } \\ \text {-Papers of functional analysis } \\ \text { with applications }\end{array}\right]$

Course description form

Reviewing the performance of higher education institutions ((academic program review((

> This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve
> Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.

Anbar University / College of Education for Pure Sciences / Department of Mathematics	[98] Educational institution			
Mathematics department	$[99]$ University department/center			
Ordinary differential equations/1	[100] Course name/code			
Bachelor's	[101] The programs in which it is included			
Regular official time/in-person lectures for the first semester	[102] Available attendance forms			
First semester				[103] Semester/year
60 theory for the first semester.	[104] Number of study hours (total)			
2022-2023	[105] The date this description was prepared			
[106] Course objectives:				

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department
A) Identifying preliminary concepts in ordinary differential equations and how to deal with them.
b) Developing the relationship between ordinary equations and their applications in our daily lives.
C) Identifying several types of ordinary equations that differ in terms of rank, degree, types of coefficients, homogeneity, etc. And how to solve it.
D) Identify the Riccati equation and its role in solving ordinary equations and its various applications in physics.
h) Adding new information to complete the student's knowledge chain.
[107] Course outcomes and teaching, learning and evaluation methods

1. The student acquires knowledge and experience in dealing with Ordinary

Differential Equation

2. Acquiring the ability and skill to distinguish types of ordinary differential equations and how to deal with them.
3. The student gains knowledge and experience in dealing with How to find the ODE

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department
and how to find it.
4. The student acquires knowledge and experience in dealing with Methods of solving ODE and how to solve it in different ways depending on its type.
5. The student acquires knowledge and experience in dealing with the Riccati and Bernoulli equations, linear equations, etc. And how to use it to find the solution to the ordinary differential equation.

Scientific reports.
2. Research.

Teaching and learning methods:

1. Use the deductive method to obtain information.
2. Scientific discussions that aim to consolidate information.
3. Exercises and activities in the classroom (in-person class) or through
4. E-learning.
5. Directing students to some sources that contain examples and exercises to benefit from them.

Evaluation methods:

1. Participation in the classroom (in-person class) or through e-learning.
2. Provide activities.
3. Sudden daily and continuous weekly tests.
4. Semester and final exams
itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Teaching and learning methods

- Lecture method.
-Using modern illustrative methods such as Google Meet, audio recording of the lecture, and .pdf files.
Asking students a set of thinking questions during lectures, such as what, how, when, and why for specific topics.
-Giving students homework.
Evaluation methods
--Questions during lecture and daily assignments.
-Daily Quizes. -Discussions during the lecture.
-Monthly exams.

C- Emotional and value goals
C1- The student's response to the main goal of the course, which is to develop his four skills.
C2- That the student understands and differentiates between various basic concepts, links them together, and benefits from them socially.
C3- Enhancing the student's self-confidence by distinguishing the different topics that were dealt with in the course and choosing those that suit his personality and society.
C4- Developing his ability to listen and learn from others.
Teaching and learning methods
-Lecture method.
-Using modern illustrative methods such as Google Meet, audio recording of the lecture, and .pdf files.
Asking students a set of thinking questions during lectures, such as what, how, when, and why for specific topics.
-Giving students homework.
Evaluation methods
-Questions during lecture and daily assignments.
-Daily Quizes. -Discussions during the lecture.
-Monthly exams.

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

D - Transferable general and qualifying skills (other skills related to employability and personal development.(
D1- Cognition: Understanding meaning and formulating new concepts.
D2- Application: Using information extracted from the course in new situations. D3-Analysis: The ability to analyze the text and extract moral lessons from it. D4-Synthesis: Assembling scattered ideas to form new concepts that keep pace with reality.

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

[108] Course structure					
Evaluation method	Teachi ng method	Name of the unit/course or subject	Required learning outcomes	Hou rs	The week
Daily assignments and exams	Lecture	Basis of classification of ordinary differential equations	Basis of classification of ordinary differential equations	4	1
Daily assignments and exams	Lecture	\checkmark How to find the ODEs	\checkmark How to find the ODEs	4	2
Daily assignments and exams	Lecture	\checkmark The type of solutions and classification of problem according the type of conditions.	\checkmark The type of solutions and classification of problem according the type	4	3
Daily assignments and exams	Lecture	\checkmark Solve the ordinary differential equation. Of Separable type	$\begin{array}{cc}\checkmark & \text { Solve the } \\ \text { ordinary } \\ \text { differential } \\ \text { equation. } \\ \text { Of } \\ \text { Separable type }\end{array}$	4	4
Daily assignments and exams	Lecture	\checkmark Solve the ordinary differential equation. Of Homogeneous type	\checkmark Solve the ordinary differential equation. Of Homogeneous type	4	5
Daily assignments and exams	Lecture	\checkmark Solve the ordinary differential equation. Of Exact type	\checkmark Solve the ordinary differential equation. Of Exact type	4	6

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Daily assignments and exams	Lecture	Solve the ordinary differential equation. Of Exact (by I.F) type	\checkmark Solve the ordinary differential equation. Of Exact (by I.F) type	4	7
		Exam 1		2	8
Daily assignments and exams	Lecture	\checkmark Solve the ordinary differential equation. Of Linear type	$\checkmark \begin{aligned} & \text { Solve the } \\ & \text { ordinary } \\ & \text { differential }\end{aligned}$ equation. Of Linear type	4	9
Daily assignments and exams	Lecture	\checkmark Solve the ordinary differential equation. Of Bernoulli typ	\checkmark Solve the ordinary differential equation. Of Bernoulli type	4	10
Daily assignments and exams	Lecture	\checkmark Solve the ordinary differential equation. Of Recatti type	\checkmarkSolve the ordinary differentialequation.OfRecatti type	4	11
Daily assignments and exams	Lecture	\checkmark Solve the ordinary differential equation. Of Type first order and second degree	\checkmark Solve the ordinary differential equation. Of Type first order and second degree	4	12

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device partment of Quality Assurance and Academic Accreditation n Department

Daily assignments and exams	Lecture	\checkmarkSolve the ordinary differential equation. Of Type second order and first	\checkmark Solve the ordinary differential equation. Of	4	13
Type second order and first					
Daily assignments and exams	Lecture	\checkmarkSome Applications of ODEs in physics.	Some Applications of ODEs in physics.	2	14
	Exam 2		2	15	

[109] Infrastructure

- Differential Equations, Frank Ayres JR, McGRAWHill book company 1952.
- ODEs Lecture Notes, Erich Miersemann, Dep. Of Math, Leipzig University, version Oct. 2012.

ODEs lecture notes, B.Neta, Department of Mathematics, Naval Postgraduate School, Monterey, California 93943, October 10, 2002.

Progress in English through revel ant activities(Al-
shrafa radi)(
English Program(Ian axe lesson)

	A-Recommended books and references) Scientific journals, reports (...,
Google search	B- Electronic references, Internet sites...

[110] Course development plan

- Writing a report on all the details of the course by all students, exchanging these reports and sharing information, and thus the maximum benefit will be achieved from the curriculum as a whole.

Course description Sample

Reviewing the performance of higher education institutions ((academic program review(()

This course description provides a succinct summary of the most important course characteristics and the learning outcomes the student is expected to achieve Demonstrating whether they have made the most of the learning opportunities available. It must be linked to a description the program.
$\left.\begin{array}{|c|c|}\hline \text { - Educational institution1 } & \begin{array}{c}\text { Anbar University - College of } \\ \text { Education for Pure Sciences }\end{array} \\ \hline \text { University department/center } & \begin{array}{c}\text { College of Education for Pure } \\ \text { Sciences/Department of Mathematics }\end{array} \\ \hline \text { Course name/code } & \text { Complex Analysis 1 } \\ \hline \text { Programs in which it is included } & \text { Bachelor of Mathematics } \\ \hline \text { Available attendance forms } & \text { Daily } \\ \hline \text { Semester/year } & \text { Quarterly } \\ \hline \text { Number of study hours (total) } & \text { 2022-2023 } \\ \hline \text { Date this description was prepared } & \text { Course objectives: } \\ \hline \text { 1- Emphasizing the importance of the topic of topological spaces in relation to other } \\ \text { sciences. } \\ \text { 2- For students to become familiar with the types of topological spaces }\end{array}\right\}$
itry of Higher Education and Scientific Research
Scientific supervision and evaluation device Department of Quality Assurance and Academic Accreditation n Department

A- Knowledge and understanding 1-That the student understands what is meant by topological space 2-The student should distinguish between types of topological spaces 3-For the student to recognize the relationship between continuous functions and isomorphism 4-For the student to become familiar with the types of separation axioms 5-For the student to become familiar with the concept of compact spaces and interconnected spaces and their applications
Teaching and learning methods
Blackboard + pen + data show
B- Subject-specific skills
1-That the student can distinguish between different topological spaces 2-That the student can distinguish between continuous, open, and closed functions. 3-That the student can distinguish between the axioms of separation and reach the relationships between these spaces 4-The student must have the necessary skill to solve problems using basic concepts. 5-That the student is able to understand compact and interconnected spaces and their connections to other spaces
C- Thinking skills External tests 2- Various and interconnected questions to test the student's
Teaching and learning methods
Blackboard + pen + data show
Evaluation methods
Daily and monthly examinations
General and transferable skills (other skills related to employability and personal development (

itry of Higher Education and Scientific Research
Scientific supervision and evaluation device Department of Quality Assurance and Academic Accreditation n Department

Course structure					
Evaluation method	Teaching method	Name of the unit/course or subject	Required learning outcomes	hours	The week
Exams and daily activities		Complex numbers, their definition, properties. Geometric representation and polar formula Open sets, closed sets at the level of complex numbers, continuous sets Regions, smooth curves	Understand the prescribed material correctly and know its applications	12	3
Exams and daily activities		Nodal functions and purpose Continuous nodal functions Linear conversion Differentiable complex functions	Understand the prescribed material correctly and know its applications	12	3
Exams and daily activities		The basic principle in developing analytical functions Cauchy-Riemann theorem Some applications of the Cauchy-Riemann theorem Analytical functions	Understand the prescribed material correctly and know its applications	12	3
Exams and daily activities		Harmonic functions and their properties Prime functions, their functions, and their properties Trigonometric and inverse hyperbolic functions	Understand the prescribed material correctly and know its applications	12	3

:ry of Higher Education and Scientific
arch
Scientific supervision and evaluation device
f Quality Assurance and Academic Accreditation
International Accreditation Department

	Infrastructure
$>$Churchill, Nodal Variables and Their Applications, Part Eight, Complex Analysis and	Required readings: 1-Course books 2-Other
Fundamentals of complex functions, Abdul Rahman Salman Jumah, 2017	Special requirements
Graduation research projects	Social services (including, for example, guest lectures, vocational training, and field studies(

Admissions	
Central admission and academic department plan	Prerequisites
15	The smallest number of students
$\mathbf{3 0 - 2 5}$	The largest number of students

[^0]: Course outcomes and teaching, learning and evaluation methods- 5

