Republic of Iraq Ministry of Higher Education & Scientific Research Supervision and Scientific Evaluation Directorate Quality Assurance and Academic Accreditation

## Academíc Program Specífication Form For The Academíc

University: Anbar College : Education for Pure Science Department : Physics Date Of Form Completion : 10/6/2023

Prof. Dr. Abdul Rahman

Salman Juma

haveill

Assist. Prof.Dr. Harith Kamil

**Buniya** 

Prof. Dr. Bilal Kamal Ahmed

Dean's Name

Dean's Assistant ForScientific Affairs Date:10/6 /2023 Signature Head of Department

Date: lº /b / 20 3 Signature

Date: // Sígnature

Assist. Prof. Dr. Feras Shaker Mahmood

*Quality Assurance And University Performance Manager* 

Date: 10/6/2023 Signature

5 العل عد الصرفة

### **TEMPLATE FOR PROGRAMME SPECIFICATION**

### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

### **PROGRAMME SPECIFICATION**

This Programmer Specification provides a concise summary of the main features of the programmer and the learning outcomes that a typical student might reasonably beexpected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the programmer.

| University of Anbar                                            |
|----------------------------------------------------------------|
| College of Education for Pure Sciences \ Department of Physics |
| Education in Physical Science                                  |
| Bachelor of Science in Physics Education                       |
| Semester                                                       |
| Nothing                                                        |
| Late start of the academic year for first-year students        |
| 10/6/2022                                                      |
|                                                                |

### 9. Aims of the Programmer

1. Achieving the specified standards for the quality of material, human, technical and financial resources.

2. Providing an efficient administrative cadre that knows its duties and powers in accordance with the work structures and regulations, in which the requirements of the job description are fulfilled.

3. Providing a specialized teaching staff who is fluent in using modern techniques and methods in education with good job satisfaction.

4. Preparing academic programs in accordance with international academic standards and providing their knowledge, training and technical requirements.

5. Preparing students with scientific, practical and educational knowledge that meets the needs of the labor market.

6. Paying attention to scientific research in terms of laboratory, research and researcher in order to achieve a distinguished research reputation locally and globally.7. Research and professional openness to community institutions to meet their needs and aspirations.

8. Evaluate all individuals and processes to ensure quality performance and continuous improvement

### **10. Learning Outcomes, Teaching, Learning and Assessment Methods**

### A. Knowledge and Understanding

- A 1- That the student understand physics and its theoretical and applied branches
- A2- That the student can teach physics to the intermediate and preparatory stages
- A 3- The student understands the individual differences between students
- A4- That the student understand the correct foundations of scientific research

### **B.** Subject-specific skills

- B1 That the student be able to work on qualifying himself to become a successful educational and scientific leader
- B 2 to teach the student the correct foundations in order to become a successful teacher of physics

B 3 - That the student learn the correct scientific method in scientific research.

B4 - Enabling students to acquire the skills of using virtual classrooms

### **Teaching and Learning Methods**

- Classroom lectures.
- Reports and research.
- Using a variety of modern teaching methods.
- Practical laboratories

### Assessment methods

- The treatment methods using final scores.
- Random and surprise tests.
- Monthly theoretical and practical tests in the taught curriculum.

### C. Thinking Skills

C-1. Adopting the method of dialogue between the student and the professor.

C-2.- loving their assigned work

C-3. loving knowledge acquired by them

C-4. Adopting e-learning to provide an interesting and flexible learning environment..

### **Teaching and Learning Methods**

- Classroom lectures.
- Reports and research.
- Using a variety of modern teaching methods.
- Practical laboratories

### Assessment methods

- 1. Monthly theoretical and practical tests in the taught curricula.
- 2. Duties
- 3. Class participation

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1- That the student benefit from his learning and embody this in his personal and professional development.

D2- That the student is able to employ the knowledge he receives during the study stage.

D3- That the student benefit from theoretical knowledge in employing the

teaching profession and mastering it in a concept-based manner.

Fundamentals of teaching physics.

D4 - Skills of modern technologies in communication, documentation and communication.

### **Teaching and Learning Methods**

1. Field visits to laboratories.

2. Scientific applications in laboratories.

- 3. Take advantage of graduation research.
- 4. Present educational contents in virtual classes using multimedia (video, recorded lecture)

### Assessment Methods

- 1. Articles and periodical research
- 2. The interview
- 3. Final exams
- 4. Determining study tasks and duties periodically and regularly in the virtual classroom

| 11. Progra | mmer Structure          |                                   |        |       |   |
|------------|-------------------------|-----------------------------------|--------|-------|---|
| Level/     | <b>Course or Module</b> | Course or Module                  | Weekly | hours |   |
| Year       | Code                    | Title                             | Lec.   | Lab.  |   |
|            | PHE121                  | Electricity                       | 2      | 3     |   |
|            | PHE122                  | Magnetism                         | 2      | -     |   |
|            | PHE123                  | Mechanic 1                        | 3      | 3     |   |
|            | PHE124                  | Mechanic 2                        | 3      | 3     |   |
|            | PHE125                  | Optical engineering               | 3      | 3     |   |
|            | PHE126                  | Heat and Properties of Matter     | 2      | -     |   |
|            | PHE127                  | Mathematics 1                     | 2      | -     |   |
| First      | PHE128                  | Liner algebra                     | 2      | -     |   |
|            | EPS101                  | Educational Psychology            | 2      | -     |   |
|            | EPS102                  | Fundamentals of Education         | 2      | -     |   |
|            | UOA135                  | Human rights                      | 1      | -     |   |
|            | UOA136                  | 1                                 | -      |       |   |
| [          | UOA137                  | UOA137 Computer science           |        | 2     | - |
|            | UOA141                  | UOA141 Computer science           |        | -     |   |
|            | UOA104                  | English language                  | 2      | -     |   |
|            | PHE221                  | Optical physics                   | 3      | 3     |   |
|            | PHE222                  | Advance Electric                  | 3      | 3     |   |
|            | PHE223                  | Advance magnetic                  | 3      | 3     |   |
|            | PHE224                  | Sound and wave motion             | 2      | -     |   |
|            | PHE225                  | Advance calculus                  | 3      | -     |   |
|            | PHE226                  | Deferential equation              | 3      | -     |   |
| Second     | EPS202                  | Growth psychology                 | 2      | -     |   |
|            | EPS201                  | Educational administration        | 2      | -     |   |
|            | EPS211                  | Methods of Scientific<br>Research | 2      | -     |   |
|            | PHE227                  | Healthy physics                   | 2      | -     |   |
|            | PHE228                  | Astronomy physics                 | 2      | -     |   |
|            | PHE229                  | Space physics                     | 2      | -     |   |
|            | UOA214                  | Programming                       | 2      | -     |   |
|            | UOA240                  | English language 2                | 2      | -     |   |

|        | PHE321  | Atomic physics                                      | 3 | 3 |
|--------|---------|-----------------------------------------------------|---|---|
|        | PHE322  | Molecular physics                                   | 3 | 3 |
|        | PHE323  | Electronics                                         | 3 | 3 |
|        | PHE324  | Electronic circuit                                  | 3 | 3 |
|        | PHE325  | Quantum mechanics 1                                 | 2 | - |
|        | PHE326  | Analytical mechanics                                | 2 | - |
|        | PHE327  | Complex function                                    | 2 | - |
| Third  | PHE328  | Statistical mechanic                                | 3 | - |
|        | PHE329  | New and renew energy                                | 2 | - |
|        | PHE330  | Crystals                                            | 2 | - |
|        | PHE331  | Sets theory                                         | 2 | - |
|        | EPS 311 | Curricula and Methodology                           | 2 |   |
|        | EPS 312 | Educational Counselling and<br>Psychological Health | 2 |   |
|        | UOA340  | English language 3                                  | 2 |   |
|        | PHE421  | Solid state physics 1                               | 3 | - |
|        | PHE422  | Solid state physics 2                               | 3 | - |
|        | PHE423  | Quantum mechanics 2                                 | 2 | - |
|        | PHE424  | Nuclear physics                                     | 3 | 3 |
|        | PHE425  | Radiation physics                                   | 3 | 3 |
|        | PHE426  | Electromagnetic                                     | 3 | 3 |
|        | PHE427  | Electrodynamics                                     | 3 | 3 |
| Fourth | PHE428  | Laser physics 1                                     | 2 | - |
|        | PHE429  | Classroom Observation                               | - | 2 |
|        | PHE430  | Nanotechnology                                      | 2 | - |
|        | EPS411  | Measurement and Evaluation                          | 2 | - |
|        | EPS412  | Teaching Practicum                                  | 2 | - |
|        | EPS413  | Classroom Observation                               | - | 4 |
|        | EPS414  | Graduation Research Project                         | 2 | - |
|        | UOA440  | English language 4                                  | 2 | - |

### **13. Personal Development Planning**

- 1. Using modern scientific sources.
- 2. Using rapid communication networks to transfer information such as the Internet.
- 3. Visits and practical practices in service laboratories.
- 4. Acquisition of scientific and modern experiences and skills in the field of modern technical communication

### 14. Admission criteria

- 1. Admission according to the general and central grade system.
- 2. Admission to departments is according to the student's desire and is modified.
- 3. The condition for graduating middle school and the scientific background must be exclusively
- 4. To require a personal interview with the department.
- 5. The grade of high school.
- 6. The carrying capacity of the college

### 15. Key sources of information about the programmer

- 1. Curriculum books approved by the Scientific Committee of the Faculties of Education for Pure Sciences.
- 2. Helping books.
- 3. Books and archaeological resources / sources in the English language.
- 4. Additional sources from the Internet.
- 5. The training courses held by the university on e-learning platforms.

|       |                |                                     |                              |              |                                | Cur          | ricul        | um S                       | kills        | Мар       |                 |              |              |              |                                                                                                               |              |              |              |              |
|-------|----------------|-------------------------------------|------------------------------|--------------|--------------------------------|--------------|--------------|----------------------------|--------------|-----------|-----------------|--------------|--------------|--------------|---------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|
|       |                |                                     |                              |              |                                |              |              |                            | Pro          | gram      | mer 🛛           | Learı        | ning O       | utcon        | nes                                                                                                           |              |              |              |              |
| Year/ | Course<br>Code | CourseTitle                         | Core (C)<br>or Option<br>(O) |              | Knowledge and<br>understanding |              | S            | Subject-specific<br>skills |              |           | Thinking Skills |              |              |              | General and Transferable<br>Skills (or) Other skills<br>relevant to employability<br>and personal development |              |              |              |              |
| Level |                |                                     | (0)                          | A1           | A2                             | A3           | A4           | <b>B1</b>                  | <b>B2</b>    | <b>B3</b> | <b>B4</b>       | C1           | C2           | <b>C3</b>    | C4                                                                                                            | D1           | D2           | D3           | D4           |
|       | PHE121         | Electricity                         | Core                         | $\checkmark$ | $\checkmark$                   |              | $\checkmark$ |                            | V            |           |                 |              |              |              |                                                                                                               |              | $\checkmark$ |              |              |
|       | PHE122         | Magnetism                           | Core                         | V            | $\checkmark$                   |              | $\checkmark$ |                            |              |           |                 | $\checkmark$ |              |              |                                                                                                               |              | $\checkmark$ |              |              |
|       | PHE123         | Mechanic 1                          | Core                         | $\checkmark$ | $\checkmark$                   |              | $\checkmark$ |                            |              |           |                 | $\checkmark$ |              |              |                                                                                                               |              | $\checkmark$ |              |              |
|       | PHE124         | Mechanic 2                          | Core                         | V            | $\checkmark$                   |              | $\checkmark$ |                            | $\checkmark$ |           |                 | $\checkmark$ |              |              |                                                                                                               |              | $\checkmark$ |              |              |
|       | PHE125         | Optical engineering                 | Core                         | V            | V                              |              | V            |                            | $\checkmark$ |           |                 | V            |              |              |                                                                                                               |              |              |              |              |
|       | PHE126         | Heat and<br>Properties of<br>Matter | Core                         | V            | V                              |              | V            |                            | $\checkmark$ |           |                 | V            |              |              |                                                                                                               |              | V            |              |              |
|       | PHE127         | Mathematics 1                       | Core                         | V            | $\checkmark$                   |              | V            |                            | V            |           |                 | V            |              |              |                                                                                                               |              | $\checkmark$ |              |              |
| st    | PHE128         | Liner algebra                       | Core                         | V            | V                              |              | V            |                            |              |           |                 | V            |              |              |                                                                                                               |              | $\checkmark$ |              |              |
| First | EPS101         | Educational<br>Psychology           | Core                         |              |                                | V            |              | V                          |              |           |                 |              | V            | V            |                                                                                                               | V            |              | V            |              |
|       | EPS102         | Fundamentals of<br>Education        | Core                         |              |                                | V            |              | V                          |              |           |                 |              |              |              |                                                                                                               | $\checkmark$ |              | $\checkmark$ |              |
|       | UOA135         | Human rights                        | Core                         |              |                                | $\checkmark$ |              |                            |              |           |                 | $\checkmark$ | $\checkmark$ | $\checkmark$ |                                                                                                               |              |              | $\checkmark$ |              |
|       | UOA136         | Democracy                           | Core                         |              |                                | $\checkmark$ |              | V                          |              |           |                 |              | V            |              |                                                                                                               | $\checkmark$ |              | $\checkmark$ |              |
|       | UOA137         | Computer<br>science                 | Core                         |              | V                              |              | V            |                            |              |           |                 |              |              |              |                                                                                                               |              |              | $\checkmark$ |              |
|       | UOA141         | Computer<br>science                 | Core                         |              |                                |              | V            | V                          |              | V         | V               |              |              |              | $\checkmark$                                                                                                  |              |              |              | $\checkmark$ |
|       | UOA140         | English language                    | Core                         |              |                                |              | V            | V                          |              |           |                 |              |              |              | V                                                                                                             |              |              |              | V            |

|        |                |                                   |                       |              |                                | Cur          | ricul                      | um S      | kills        | Map             |           |              |        |                                                                                                               |              |              |              |              |              |
|--------|----------------|-----------------------------------|-----------------------|--------------|--------------------------------|--------------|----------------------------|-----------|--------------|-----------------|-----------|--------------|--------|---------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|
|        |                |                                   |                       |              |                                |              |                            |           | P            | rogra           | mme       | Learı        | ning O | utcon                                                                                                         | ies          |              |              |              |              |
| Year/  | Course<br>Code | CourseTitle                       | Core (C)<br>or Option |              | Knowledge and<br>understanding |              | Subject-specific<br>skills |           |              | Thinking Skills |           |              |        | General and Transferable<br>Skills (or) Other skills<br>relevant to employability<br>and personal development |              |              |              |              |              |
| Level  |                |                                   | (0)                   | A1           | A2                             | A3           | A4                         | <b>B1</b> | <b>B2</b>    | <b>B3</b>       | <b>B4</b> | <b>C1</b>    | C2     | <b>C3</b>                                                                                                     | C4           | D1           | D2           | D3           | D4           |
|        | PHE221         | Optical physics                   | Core                  | $\checkmark$ | $\checkmark$                   |              |                            |           |              |                 |           |              |        |                                                                                                               |              |              | $\checkmark$ | V            |              |
|        | PHE222         | Advance Electric                  | Core                  | V            | V                              |              |                            |           | V            |                 |           | V            |        |                                                                                                               |              |              | $\checkmark$ | √<br>        |              |
|        | PHE223         | Advance magnetic                  | Core                  | V            |                                |              |                            |           |              |                 |           | V            |        |                                                                                                               |              |              | $\checkmark$ | V            |              |
|        | PHE224         | Sound and wave motion             | Core                  | V            | $\checkmark$                   |              |                            |           | $\checkmark$ |                 |           | V            |        |                                                                                                               |              |              |              | $\checkmark$ |              |
|        | PHE225         | Advance calculus                  | Core                  | $\checkmark$ | $\checkmark$                   |              |                            |           |              |                 |           |              |        |                                                                                                               |              |              | $\checkmark$ | $\checkmark$ |              |
|        | PHE226         | Deferential equation              | Core                  | V            | $\checkmark$                   |              |                            |           |              |                 |           |              |        |                                                                                                               |              |              |              | $\checkmark$ |              |
| T      | EPS202         | Growth psychology                 | Core                  |              |                                | $\checkmark$ |                            | V         | $\checkmark$ |                 |           | $\checkmark$ |        |                                                                                                               |              | $\checkmark$ |              |              |              |
| Second | EPS201         | Educational administration        | Core                  |              |                                | V            |                            | V         |              |                 |           | $\checkmark$ |        |                                                                                                               | $\checkmark$ | $\checkmark$ |              |              |              |
| Ň      | EPS211         | Methods of<br>Scientific Research | Core                  |              |                                |              | V                          | V         |              | $\checkmark$    |           |              |        |                                                                                                               |              |              | $\checkmark$ |              |              |
|        | PHE227         | Healthy physics                   | Option                | $\checkmark$ | $\checkmark$                   |              |                            |           |              |                 |           |              |        |                                                                                                               |              |              |              |              |              |
|        | PHE228         | Astronomy<br>physics              | Option                | V            | V                              |              |                            |           | $\checkmark$ |                 |           | $\checkmark$ |        |                                                                                                               |              |              | $\checkmark$ |              |              |
|        | PHE229         | Space physics                     | Option                | V            | $\checkmark$                   |              |                            |           |              |                 |           | $\checkmark$ |        |                                                                                                               |              |              |              |              |              |
|        | UOA214         | Programming                       | Core                  |              |                                |              | V                          | V         |              | V               |           |              |        |                                                                                                               | V            |              |              |              | $\checkmark$ |
|        | UOA240         | English language 2                | Core                  |              |                                |              | V                          |           |              |                 |           |              |        |                                                                                                               | $\checkmark$ |              |              |              | V            |

|       |         |                                                           |           |                             |              | Cur          | ricul | um S                       | kills        | Мар       |           |                 |        |           |              |                                                                                                               |              |              |    |
|-------|---------|-----------------------------------------------------------|-----------|-----------------------------|--------------|--------------|-------|----------------------------|--------------|-----------|-----------|-----------------|--------|-----------|--------------|---------------------------------------------------------------------------------------------------------------|--------------|--------------|----|
|       |         |                                                           |           |                             |              |              |       |                            | Pro          | ogram     | mer ]     | Learn           | ning O | utcom     | ies          |                                                                                                               |              |              |    |
| Year/ |         |                                                           | or Option | Knowledge and understanding |              |              |       | Subject-specific<br>skills |              |           |           | Thinking Skills |        |           |              | General and Transferable<br>Skills (or) Other skills<br>relevant to employability<br>and personal development |              |              |    |
| Level | Coue    |                                                           | (0)       | A1                          | A2           | A3           | A4    | <b>B1</b>                  | <b>B2</b>    | <b>B3</b> | <b>B4</b> | C1              | C2     | <b>C3</b> | C4           | D1                                                                                                            | D2           | D3           | D4 |
|       | PHE321  | Atomic physics                                            | Core      |                             | $\checkmark$ |              |       |                            | V            |           |           | V               |        |           |              |                                                                                                               |              |              |    |
|       | PHE322  | Molecular<br>physics                                      | Core      | V                           | V            |              |       |                            | V            |           |           | V               |        |           |              |                                                                                                               | $\checkmark$ |              |    |
|       | PHE323  | Electronics                                               | Core      | $\checkmark$                | $\checkmark$ |              |       |                            |              |           |           | $\checkmark$    |        |           |              |                                                                                                               |              |              |    |
|       | PHE324  | Electronic circuit                                        | Core      | $\checkmark$                | $\checkmark$ |              |       |                            | V            |           |           | $\checkmark$    |        |           |              |                                                                                                               |              |              |    |
|       | PHE325  | Quantum<br>mechanics 1                                    | Core      | V                           | V            |              |       |                            | V            |           |           | V               |        |           |              |                                                                                                               | V            |              |    |
|       | PHE326  | Analytical mechanics                                      | Core      | V                           | V            |              |       |                            | V            |           |           | V               |        |           |              |                                                                                                               | $\checkmark$ |              |    |
|       | PHE327  | Complex<br>function                                       | Core      | V                           | V            |              |       |                            | V            |           |           | $\checkmark$    |        |           |              |                                                                                                               | $\checkmark$ |              |    |
| Third | PHE328  | Statistical mechanic                                      | Core      | V                           | V            |              |       |                            | $\checkmark$ |           |           | V               |        |           |              |                                                                                                               |              |              |    |
| H     | PHE329  | New and renew energy                                      | Option    | V                           | V            |              |       |                            | $\checkmark$ |           |           | V               |        |           |              |                                                                                                               | V            |              |    |
|       | PHE330  | Crystals                                                  | Option    |                             | $\checkmark$ |              |       |                            | $\checkmark$ |           |           | $\checkmark$    |        |           |              |                                                                                                               |              |              |    |
|       | PHE331  | Sets theory                                               | Option    |                             | $\checkmark$ |              |       |                            |              |           |           | $\checkmark$    |        |           |              |                                                                                                               | $\checkmark$ |              |    |
|       | EPS 311 | Curricula and<br>Methodology                              | Core      |                             | V            | $\checkmark$ |       | $\checkmark$               | $\checkmark$ |           |           | V               | V      |           | $\checkmark$ | V                                                                                                             |              | $\checkmark$ |    |
|       | EPS 312 | Educational<br>Counselling and<br>Psychological<br>Health | Core      |                             |              | $\checkmark$ |       |                            | V            |           |           |                 | V      |           | V            | V                                                                                                             | $\checkmark$ |              |    |
|       | UOA340  | English language<br>3                                     | Core      |                             |              |              | V     | V                          |              |           |           |                 |        |           |              |                                                                                                               |              |              | V  |

|        |                |                                |                       |              |              | Cur                    | ricul        | um S      | kills        | Мар               |           |               |              |         |              |                |                                                  |                      |                |
|--------|----------------|--------------------------------|-----------------------|--------------|--------------|------------------------|--------------|-----------|--------------|-------------------|-----------|---------------|--------------|---------|--------------|----------------|--------------------------------------------------|----------------------|----------------|
|        |                |                                |                       |              |              |                        |              |           |              | Pr                | 0         | nmer<br>Jutco | Learı<br>mes | ning    |              |                |                                                  |                      |                |
| Year/  | Course<br>Code | CourseTitle                    | Core (C)<br>or Option |              | a            | vledge<br>nd<br>tandir |              | S         | ubjec        | t-speci<br>skills | fic       |               | Thinl        | king Sk | tills        | Skil<br>releva | ral and 7<br>ls (or) C<br>ant to er<br>ersonal c | Other ski<br>nployab | ills<br>oility |
| Level  |                |                                | (0)                   | A1           | A2           | A3                     | A4           | <b>B1</b> | <b>B2</b>    | <b>B3</b>         | <b>B4</b> | C1            | C2           | C3      | C4           | D1             | D2                                               | D3                   | D4             |
|        | PHE421         | Solid state physics<br>1       | Core                  | V            | V            |                        |              |           | V            |                   |           | V             |              |         |              |                | V                                                |                      |                |
|        | PHE422         | Solid state physics 2          | Core                  | V            | V            |                        |              |           | V            |                   |           | V             |              |         |              |                | V                                                |                      |                |
|        | PHE423         | Quantum<br>mechanics 2         | Core                  | V            | V            |                        |              |           | V            |                   |           | V             |              |         |              |                | V                                                |                      |                |
|        | PHE424         | Nuclear physics                | Core                  | $\checkmark$ | V            |                        |              |           | V            |                   |           | V             |              |         |              |                | V                                                |                      |                |
|        | PHE425         | Radiation physics              | Core                  | $\checkmark$ | V            |                        |              |           | V            |                   |           | V             |              |         |              |                | $\checkmark$                                     |                      |                |
|        | PHE426         | Electromagnetic                | Core                  | $\checkmark$ | V            |                        |              |           | V            |                   |           | V             |              |         |              |                | V                                                |                      |                |
| -      | PHE427         | Electrodynamics                | Core                  | $\checkmark$ | V            |                        |              |           | V            |                   |           |               |              |         |              |                | $\checkmark$                                     |                      |                |
| urt]   | PHE428         | Laser physics 1                | Core                  | $\checkmark$ | $\checkmark$ |                        |              |           | V            |                   |           | $\checkmark$  |              |         |              |                | $\checkmark$                                     |                      |                |
| Fourth | PHE429         | Classroom<br>Observation       | Core                  | V            | V            |                        |              |           | V            |                   | V         |               |              |         |              |                | V                                                |                      |                |
|        | PHE430         | Nanotechnology                 | Option                | $\checkmark$ | $\checkmark$ |                        |              |           | V            |                   |           | $\checkmark$  |              |         | $\checkmark$ |                | $\checkmark$                                     |                      |                |
|        | EPS411         | Measurement and<br>Evaluation  | Core                  |              | V            | $\checkmark$           | V            |           | V            |                   |           |               |              |         |              |                | V                                                | $\checkmark$         | $\checkmark$   |
|        | EPS412         | <b>Teaching Practicum</b>      | Core                  |              | $\checkmark$ |                        | $\checkmark$ |           | V            |                   |           |               |              |         | $\checkmark$ | $\checkmark$   | $\checkmark$                                     | $\checkmark$         |                |
|        | EPS413         | Classroom<br>Observation       | Core                  |              | V            | $\checkmark$           | V            |           | V            |                   |           | $\checkmark$  | V            |         | $\checkmark$ |                | V                                                | $\checkmark$         | $\checkmark$   |
|        | EPS414         | Graduation<br>Research Project | Core                  | V            |              |                        | V            |           | V            | $\checkmark$      |           |               | $\checkmark$ |         | $\checkmark$ |                |                                                  |                      | $\checkmark$   |
|        | UOA440         | English language 4             | Core                  | $\checkmark$ |              |                        |              |           | $\checkmark$ |                   |           |               |              |         |              |                |                                                  |                      |                |

Review the performance of higher education institutions ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve.

Proving whether he has made the most of the available learning opportunities. It must be linked to the description of program.

| University Of Anbar                                               | 1. Educational institution                        |
|-------------------------------------------------------------------|---------------------------------------------------|
| College of Education for Pure Sciences /<br>Department of Physics | 2. University Department /<br>Center              |
| Advanced quantum mechanics                                        | 3. Course Name/Code                               |
| B.Sc. (Third Stage)                                               | 4. Programs in which it enters                    |
| Presence                                                          | 5. Available Attendance<br>Forms                  |
| First Semester / 2022-2023                                        | 6. Semester / Year                                |
| 2hours                                                            | 7. Number of Credit Hours<br>(Total)              |
| 1March. 2022                                                      | 8. The history of preparation of this description |
| 9. Course Objectives:                                             | •                                                 |

The student knows The Physical Foundations of Quantum mechanics , What is the quantum mechanics Why quantum mechanics is important

why quantum mechanics is important

### 10. Learning outcomes and methods of teaching, learning and evaluation

### A. Knowledge and understanding

The student may understands The paradox between classical physics and experimental physics and how quantum mechanics solving them

| B. Su                | bject-speci                                              | fic skills               |                                         |                 |         |  |  |  |  |
|----------------------|----------------------------------------------------------|--------------------------|-----------------------------------------|-----------------|---------|--|--|--|--|
| —                    | Development of understand to students in mathematics and |                          |                                         |                 |         |  |  |  |  |
| quantum mechanics    |                                                          |                          |                                         |                 |         |  |  |  |  |
|                      | • Teaching                                               | g and learning metho     | ds                                      |                 |         |  |  |  |  |
| - Leo                | cture, discus                                            | sion, short reports, pro | blem solving                            |                 |         |  |  |  |  |
|                      | • Evaluati                                               | on methods               |                                         |                 |         |  |  |  |  |
|                      | •                                                        | ay and topical)          |                                         |                 |         |  |  |  |  |
| -Activit             |                                                          |                          |                                         |                 |         |  |  |  |  |
| -Short of<br>-Report | questions                                                |                          |                                         |                 |         |  |  |  |  |
| -Report<br>-Duties   |                                                          |                          |                                         |                 |         |  |  |  |  |
| -Final H             |                                                          |                          |                                         |                 |         |  |  |  |  |
|                      |                                                          |                          |                                         |                 |         |  |  |  |  |
| C. Th                | inking skill                                             | S                        |                                         |                 |         |  |  |  |  |
| - As                 | - Ask various questions and brainstorm                   |                          |                                         |                 |         |  |  |  |  |
|                      | Teaching and learning methods                            |                          |                                         |                 |         |  |  |  |  |
| -                    | Discussion                                               | , lecture, questioning   |                                         |                 |         |  |  |  |  |
|                      | • Evaluati                                               | on methods               |                                         |                 |         |  |  |  |  |
| 1. Ac                | hievement T                                              | ests                     |                                         |                 |         |  |  |  |  |
|                      |                                                          | nterview and observation | n)                                      |                 |         |  |  |  |  |
|                      | dent feedbac                                             |                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                 |         |  |  |  |  |
|                      |                                                          |                          |                                         |                 |         |  |  |  |  |
|                      |                                                          |                          |                                         |                 |         |  |  |  |  |
| D. Ge                | neral and t                                              | ransferable Skills (otł  | ner skills related                      | to employab     | oility  |  |  |  |  |
| an                   | d personal o                                             | levelopment).            |                                         |                 | -       |  |  |  |  |
| Q.1                  | M. needs to                                              | mathematical and un      | nderstanding to                         | all laws in cla | assical |  |  |  |  |
|                      |                                                          |                          | -                                       | ph              | ysics . |  |  |  |  |
|                      |                                                          |                          |                                         |                 |         |  |  |  |  |
|                      |                                                          | 11. Course St            | ructure                                 |                 |         |  |  |  |  |
|                      |                                                          |                          |                                         |                 |         |  |  |  |  |
|                      | Method                                                   |                          |                                         |                 |         |  |  |  |  |
| Evaluati             | of                                                       | Name of the              | Required                                | TT              | The     |  |  |  |  |
| on<br>the d          | educatio                                                 | unit/course or           | Learning                                | Hours           | week    |  |  |  |  |
| method               | n                                                        | topic                    | Outcomes                                |                 |         |  |  |  |  |
|                      |                                                          |                          |                                         |                 |         |  |  |  |  |

| Short<br>questions | Lecture | The paradox<br>between classical<br>physics and<br>experimental<br>physics                                                                                                   | 2 | 1 |
|--------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| Short<br>questions | Lecture | The Physical<br>Foundations of<br>Quantum<br>mechanics<br>What is the<br>quantum<br>mechanics<br>Why quantum<br>mechanics is<br>important                                    | 2 | 2 |
| Short<br>questions | Lecture | Wave-particle<br>duality<br>Heisenberg<br>uncertainty<br>principle<br>Correspondence<br>Principle                                                                            | 2 | 3 |
| Short<br>questions | Lecture | Elementary<br>Properties of<br>Quantum<br>Mechanics                                                                                                                          | 2 | 4 |
| Short<br>questions | Lecture | Introduction,<br>Wave function in<br>quantum<br>mechanics<br>Normalization<br>condition,<br>Orthogonality<br>condition and<br>orthonormal<br>condition of wave<br>functions. | 2 | 5 |
|                    |         | Test 1                                                                                                                                                                       | 2 | 6 |
| Short<br>questions | Lecture | Normalized<br>functions                                                                                                                                                      | 2 | 7 |

|                 |          | Figanyaluas          |   |    |
|-----------------|----------|----------------------|---|----|
|                 |          | Eigenvalues          |   |    |
|                 |          | Eigenfunctions       |   |    |
|                 |          | Expected Value       |   |    |
|                 |          | Eigenfucntions and   |   |    |
|                 |          | constants of         |   |    |
| Short           | <b>.</b> | motion               | 0 | 0  |
| questions       | Lecture  | Solution of          | 2 | 8  |
|                 |          | dependent            |   |    |
|                 |          | Schrodinger          |   |    |
|                 |          | equation             |   |    |
|                 |          | Characteristics of   |   |    |
| Short           | Lecture  | energy levels and    | 2 | 9  |
| questions       | Lecture  | wave function        | 2 | ,  |
|                 |          |                      |   |    |
|                 |          | Schrodinger          |   |    |
|                 |          | equation             |   |    |
|                 |          | Types of             |   |    |
| Short           |          | Schrodinger          |   |    |
| questions       | Lecture  | equations            | 2 | 10 |
| questions       |          | How one get of any   |   |    |
|                 |          | type of              |   |    |
|                 |          | Schrodinger          |   |    |
|                 |          | equation             |   |    |
|                 |          | One-dimensional      |   |    |
| Chort           |          | solution of          |   |    |
| Short questions | Lecture  | Schrodinger          | 2 | 11 |
| questions       |          | equation to free     |   |    |
|                 |          | particle             |   |    |
|                 |          | One-dimensional      |   |    |
|                 |          | solution of          |   |    |
|                 |          | Schrodinger          | 2 | 12 |
|                 |          | equation to Infinite |   |    |
|                 |          | square well          |   |    |
|                 |          | One-dimensional      |   |    |
| Classic         |          | solution of          |   |    |
| Short           | Lecture  | Schrodinger          | 2 | 13 |
| questions       |          | equation to finite   |   |    |
|                 |          | square well          |   |    |
| Short           | Lecture  | Examples             | 2 | 14 |
| questions       | Lecture  | -                    | 2 | 14 |
|                 |          | Test 2               | 3 | 15 |
|                 |          |                      |   |    |

| 10 J. C                                                                                                                                                                 | _                                                                                  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| 12. Infrastructur                                                                                                                                                       | e                                                                                  |  |  |  |
| Principles of Quantum Mechanics , by<br>Salim AlSHamaya , University of Mosul<br>, 1988.<br>Quantum Mechanics by L. I. Schif<br>Quantum Mechanics by S. Allayani , KSA. | Required readings :<br>1. Course Books<br>2. Other                                 |  |  |  |
| • PowerPoint                                                                                                                                                            | Special Requirements                                                               |  |  |  |
| Attending scientific seminars                                                                                                                                           | Social services (e.g. guest<br>lectures, vocational training and<br>field studies) |  |  |  |
| 13. Accep                                                                                                                                                               | ance                                                                               |  |  |  |
|                                                                                                                                                                         | Prerequisites                                                                      |  |  |  |
| 25                                                                                                                                                                      | Minimum number of studen                                                           |  |  |  |
| 50                                                                                                                                                                      | The largest number of studer                                                       |  |  |  |

Review the performance of higher education institutions ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve. Proving whether he has made the most of the available learning opportunities. It must be linked to the description of program.

| Ministry of Higher Education and Scientific                                                                | 14. Educational institution                                   |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Research / Anbar University         College of Education for Pure Sciences /         Department of Physics | 15. University Department<br>/ Center<br>16. Course Name/Code |
| Nuclear Physics                                                                                            | 16. Course Name/Code                                          |
| Bachelor / First Level                                                                                     | 17. Programs in which it enters                               |
| Presence                                                                                                   | 18. Available Attendance<br>Forms                             |
| First Semester /fourth / 2022-2023                                                                         | <b>19.</b> Semester / Year                                    |
| 3 hours theoretical + 3 hours practical / week *<br>15 weeks = 90 hours / semester                         | 20. Number of Credit<br>Hours (Total)                         |
| 22-6-2022                                                                                                  | 21. The history of preparation of this description            |
| 22. Course Objectives:                                                                                     |                                                               |

(a) The student knows the nature of the nucleus and nuclear force and studies its properties

(b) The student should know the behavior and nature of the nucleus

(c) Study of the most important nuclear models

(d) The student gets to know the types of nuclear radiation

(e) Study of nuclear reactions and the types and forms of these reactions

### 23. Learning outcomes and methods of teaching, learning and evaluation

### E. Knowledge and understanding

- 1. The student understands the different uses of nuclear rays
- 2. The student distinguishes between nuclear rays

### F. Subject-specific skills

1-. Lectures 2. Duties and exercises 3. discussion

### • Teaching and learning methods

- Lecture, discussion, short reports, problem solving

### • Evaluation methods

Monthly test (essay and topical)Activity. -Short questions. -Reports .. Duties-Final Exam

### G. Thinking skills

- Ask various questions and brainstorm

### • Teaching and learning methods

- Discussion, lecture, questioning

### • Evaluation methods

- 4. Achievement Tests. Test methods (interview and observation)
- 5. Student feedback
- H. General and transferable Skills (other skills related to employability and personal development).
- 1. Verbal teaching behavior skills such as discussion, dialogue, explanation and interpretation.
- 2. Non-verbal teaching behavior skills, such as visual contact between the teacher and the student, and use of illustrations such as educational videos and pictures
- 3. Planning skill: such as the skill of determining the subject of the lesson, using appropriate means, preparing questions
- 4. Implementation skills: such as stimulating students' motivation, controlling and managing the classroom
- 5. Evaluation skills: such as preparing monthly tests, essays, objective

|                                                     | 24. Course Structure          |                                                                                                                                  |                                                             |                                   |             |  |
|-----------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------|-------------|--|
| Evaluation<br>method                                | Method<br>of<br>educati<br>on | Name of the<br>unit/course or<br>topic                                                                                           | Required<br>Learning<br>Outcomes                            | Hours                             | The<br>week |  |
| Short<br>questions<br>with<br>homework<br>solving   | Lecture +<br>Lab              | Basic concepts in nuclear physics                                                                                                | The force that<br>binds the<br>components of<br>the nucleus | 3 theoretical<br>3 Practical      | 1           |  |
| Short<br>questions<br>with<br>homework<br>solving   | Lecture +<br>Lab              | Kinetic properties of<br>the nucleus -<br>terminology - solving<br>problems in the first<br>chapter                              | Distinguish<br>between nuclei                               | 3 theoretical<br>3 Practical      | 2           |  |
| <sup> </sup> Short<br>questions                     | Lecture +<br>Lab              | Chapter Two // Nuclear<br>structure: nuclear<br>binding energy -<br>average binding energy<br>- separation energy<br>systematics | Nuclear<br>programmes                                       | 3 theoretical<br>3 Practical      | 3           |  |
| <sup> </sup> Short<br>questions                     | Lecture +<br>Lab              | Nuclear models (liquid<br>drop model - shell<br>model                                                                            | Nuclear models                                              | 3 theoretical<br>3 Practical      | 4           |  |
| Short<br>questions in<br>addition to<br>assignments | Lecture +<br>Lab              | Other nuclear models)<br>mass parabola -<br>stability line                                                                       | Stable nuclei                                               | 3 theoretical<br>3 Practical      | 5           |  |
| solving<br><b>question</b> s                        |                               | solving equations                                                                                                                | Solve the<br>problems of the<br>second chapter              | 3 theoretical<br>3 Practical      | 6           |  |
| Attendance<br>test (various<br>questions)           |                               | Semester Exam                                                                                                                    | Second month exam                                           | 2hr<br>theoretical<br>3 Practical | 7           |  |
| Short<br>questions                                  | Lecture +<br>Lab              | Chapter Three /<br>Nuclear Reactions -<br>Application of<br>conservation laws -<br>Types of nuclear<br>reactions                 | Types of interactions                                       | 3 theoretical<br>3 Practical      | 8           |  |
| Show video                                          | Lecture +<br>Lab              | Composite nuclei-<br>Cross-sectional area -<br>reactions                                                                         | Complex<br>nucleus                                          | 3 theoretical<br>3 Practical      | 9           |  |

| Short<br>questions and<br>show video                                                         | Lecture +<br>Lab | Nuclear fission -The<br>energy released in<br>fission                                                                  | Nuclear fission                                                                                                                                   | 3 theoretical<br>3 Practical | 10 |
|----------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----|
| show video                                                                                   | Lecture +<br>Lab | Definition of nuclear<br>fusion - article                                                                              | Nuclear fusion                                                                                                                                    | 3 theoretical<br>3 Practical | 11 |
| Presentation<br>of a diagram<br>of nuclear<br>reactor with<br>an<br>explanatory<br>film      | Lecture +<br>Lab | Chapter Four/ Nuclear<br>reactors - their types -<br>their composition -<br>their uses                                 | Types of reactors                                                                                                                                 | 3 theoretical<br>3 Practical | 12 |
| Presentation<br>of a diagram<br>of particle<br>accelerator<br>with an<br>explanatory<br>film | Lecture +<br>Lab | Chapter Five: Charged<br>particle accelerators -<br>their types - their<br>composition - how they<br>work - their uses | Nuclear<br>accelerators                                                                                                                           | 3 theoretical<br>3 Practical | 13 |
| Attendance<br>test (various<br>questions)                                                    |                  | Semester Exam                                                                                                          |                                                                                                                                                   |                              | 14 |
| Drawing an<br>illustration of<br>the material<br>studied<br>during the<br>class              |                  | Review                                                                                                                 | *Thestudent's<br>understanding of<br>the material<br>tucked during<br>the semester<br>* The student's<br>knowledge to<br>link all of the<br>above |                              | 15 |

| 25. Infrastructure                                                                                                                                                                                                                 |                                                                                    |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| <ol> <li>Principles of Nuclear Physics, written<br/>by Meyerhof</li> <li>Introduction to Atomic and Nuclear<br/>Physics, written by Anka, translated by<br/>Assem Azouz</li> <li>-Internet - periodicals and references</li> </ol> | Required readings :<br>3. Course Books<br>4. Other                                 |  |  |  |
| Power Point ,Various radioactive sources,<br>Giger- Miler counter                                                                                                                                                                  | Special Requirements                                                               |  |  |  |
| A comparative study of student projects<br>submitted to complete the prescribed<br>curriculum through reports on specialized<br>topics, and Attending scientific seminars                                                          | Social services (e.g. guest<br>lectures, vocational training and<br>field studies) |  |  |  |

| 26. Acceptance                                  |                                |  |  |  |
|-------------------------------------------------|--------------------------------|--|--|--|
| Atomic physics Prerequisites                    |                                |  |  |  |
| Theoretical: 30 students Practical: 20 students | Minimum number of students     |  |  |  |
| Theoretical: 50 students Practical: 20 students | The largest number of students |  |  |  |

Review the performance of higher education institutions ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve. Proving whether he has made the most of the available learning opportunities. It must be linked to the description of program.

| 1.Educational institution                                                                 | Ministry of Higher       |  |  |  |  |
|-------------------------------------------------------------------------------------------|--------------------------|--|--|--|--|
|                                                                                           | Education and Scientific |  |  |  |  |
|                                                                                           | Research / Anbar         |  |  |  |  |
|                                                                                           | University               |  |  |  |  |
| 2.University Department/Center                                                            | College of Education for |  |  |  |  |
|                                                                                           | Pure Sciences /          |  |  |  |  |
|                                                                                           | Department of Physics    |  |  |  |  |
| 3.Course Name/Code                                                                        | Statistical Mechanics    |  |  |  |  |
|                                                                                           |                          |  |  |  |  |
| 4.Programs in which it enters.                                                            | Bachelor degree          |  |  |  |  |
| 5.Available Attendance Forms                                                              | Weekly / Theoretical     |  |  |  |  |
| 6.Semester/Year                                                                           | Quarterly                |  |  |  |  |
| 0.Semester/Tear                                                                           | Quarterry                |  |  |  |  |
| 7.Number of credit hours (total)                                                          | 2                        |  |  |  |  |
|                                                                                           |                          |  |  |  |  |
| 8.Date of preparation of this                                                             | 2022-2023                |  |  |  |  |
| description                                                                               |                          |  |  |  |  |
| 27. Course Objectives:                                                                    |                          |  |  |  |  |
| <b>9</b>                                                                                  |                          |  |  |  |  |
| (f) The student should be fluent in dealing mathematically and physically with statistics |                          |  |  |  |  |

(g) The student must be fluent in describing the motion of a system containing the number of Afkadro particles

(h) The student should distinguish between statistical events

(i) The student should know the statistical variables

(j) The student must be fluent in calculating value, meanness, dispersion and standard

deviation

## 28. Learning outcomes and methods of teaching, learning and evaluation

### I. Knowledge and understanding

. 1. The student should know the basic laws in statistics .2The student should learn how to describe the motion of the number of particles .3The student should distinguish between events and statistical variables

# J. Skills of the subject: that the student can deal with statistical concepts to consolidate the physical result.

### • Teaching and learning methods

The theoretical aspect uses the presentation of the material theoretically with the help of the presentation tool (data show) as well as drawings and illustrations.

### • Evaluation methods

Theoretical tests in the curriculum taught.

### K. Thinking skills

-How to answer theoretical questions. -Provide a curriculum to support the materials received by students. -Introducing the concepts of mechanics and their practical applications.

• Teaching and learning methods

- Knowledge of mathematical equations and rules of statistical thermodynamics and how to use them in solving questions and Issues related to the prescribed curriculum

• Evaluation methods

Daily tests in addition to the assignments related to the subject, as well as monthly tests to know what students acquire from knowledge.

| 2. Course Structure |       |                               |                                        |                     |                          |
|---------------------|-------|-------------------------------|----------------------------------------|---------------------|--------------------------|
| The<br>week         | Hours | Required Learning<br>Outcomes | Name of the<br>unit/course or<br>topic | Method of education | Evaluatio<br>n<br>method |

| 1  | 2 hours<br>theoretical | To know the statistical events                                  | Random and chasing events                                        | theoretical | 1  |
|----|------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-------------|----|
| 2  | 2 hours<br>theoretical | To be fluent in<br>distinguishing between<br>statistical events | Independent<br>events and then a<br>comparison<br>between events | theoretical | 2  |
| 3  | 2 hours<br>theoretical | To be fluent in<br>calculating probability<br>for all events    | Probability<br>theory                                            | theoretical | 3  |
| 4  | 2 hours<br>theoretical | To distinguish the full set of events                           | Complete Set                                                     | theoretical | 4  |
| 5  | 2 hours theoretical    | To know the statistical variables                               | Discrete<br>variables                                            | theoretical | 5  |
| 6  | 2 hours theoretical    | To distinguish between statistical variables                    | Continuous<br>variables                                          | theoretical | 6  |
| 7  | 2 hours<br>theoretical | First month exam                                                | Questions &<br>issues                                            | theoretical | 7  |
| 8  | 2 hours<br>theoretical | To be able to calculate the average value                       | Median value                                                     | theoretical | 8  |
| 9  | 2 hours<br>theoretical | To be able to calculate the dispersion                          | Dispersion                                                       | theoretical | 9  |
| 10 | 2 hours<br>theoretical | To be able to calculate the standard deviation                  | Standard deviation                                               | theoretical | 10 |
| 11 | 2 hours<br>theoretical | To know the theory of randomness                                | Stochastic theory                                                | theoretical | 11 |
| 12 | 2 hours<br>theoretical | To be fluent in entropy calculation                             | Entropy                                                          | theoretical | 12 |
| 13 | 2 hours<br>theoretical | To recognize statistical density                                | Statistical density                                              | theoretical | 13 |
| 14 | 2 hours<br>theoretical | Comprehensive review<br>and enrichment<br>exercises             | Review and solve exercises                                       | theoretical | 14 |
| 15 | 2 hours<br>theoretical | Second month exam                                               | Questions &<br>Issues                                            | theoretical | 15 |

| 29. Infrastructure                                                              |           |           |  |  |  |
|---------------------------------------------------------------------------------|-----------|-----------|--|--|--|
| Required readings:<br>Course Books.<br>.Other                                   |           |           |  |  |  |
| Special Requirements                                                            | Dita Shaw |           |  |  |  |
| Social services (e.g. guest lectures,<br>vocational training and field studies) |           |           |  |  |  |
| 30.                                                                             | Ac        | cceptance |  |  |  |
| Prerequisites                                                                   |           |           |  |  |  |
| Minimum number of students                                                      |           | 20        |  |  |  |
| The largest number of students                                                  |           | 30        |  |  |  |

### **Review the performance of higher education institutions** ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve.

Proving whether he has made the most of the available learning opportunities. It must be linked to the description of program.

| University Of Anbar                                               | <b>31. Educational institution</b>                       |
|-------------------------------------------------------------------|----------------------------------------------------------|
| College of Education for Pure Sciences /<br>Department of Physics | 32. University Department<br>/ Center                    |
| Advanced quantum mechanics                                        | 33. Course Name/Code                                     |
| B.Sc. (Fourth Stage)                                              | 34. Programs in which it enters                          |
| Presence                                                          | 35. Available Attendance<br>Forms                        |
| First Semester / 2022-2023                                        | 36. Semester / Year                                      |
| 2hours                                                            | 37. Number of Credit<br>Hours (Total)                    |
| 1Sept. 2022                                                       | 38. The history of<br>preparation of this<br>description |
| <b>39</b> . Course Objectives:                                    |                                                          |

The student knows operators and commutators of operators so how to solve Schrodinger equation to hydrogen atom and approximation methods in quantum mechanics

#### Learning outcomes and methods of teaching, learning and evaluation **40**.

### L. Knowledge and understanding

The student may understands how can use operators in quantum mechanics and how can applied schrodinger equation in polar coordinates and how can applied it in perturbed

systems,

### M. Subject-specific skills

## Development of understand to students in mathematics and quantum mechanics

- Teaching and learning methods
- Lecture, discussion, short reports, problem solving

### • Evaluation methods

- Monthly test (essay and topical)
- -Activity. -Short questions. -Reports. -Duties
- -Final Exam

### N. Thinking skills

- Ask various questions and brainstorm

### • Teaching and learning methods

Discussion, lecture, questioning

### • Evaluation methods

- 6. Achievement Tests
- 7. Test methods (interview and observation)
- 8. Student feedback

# **0**. General and transferable Skills (other skills related to employability and personal development).

Q.M. needs to mathematical and understanding to all laws in classical physics .

| 41. Course Structure     |                               |                                                                                                                                    |                                  |       |             |
|--------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|-------------|
| Evaluati<br>on<br>method | Method<br>of<br>educatio<br>n | Name of the<br>unit/course or<br>topic                                                                                             | Required<br>Learning<br>Outcomes | Hours | The<br>week |
| Short<br>questions       | Lecture                       | Operators ,<br>Eigenvalue<br>equation and<br>commutator of<br>operators                                                            |                                  | 2     | 1           |
| Short<br>questions       | Lecture                       | Hermitian<br>operator : Define ,<br>conditions and<br>examples                                                                     |                                  | 2     | 2           |
| Short<br>questions       | Lecture                       | Orthonormality<br>condition of wave<br>functions, Super<br>position principle<br>in quantum<br>mechanics and<br>expectation value. |                                  | 2     | 3           |
| Short<br>questions       | Lecture                       | Angular<br>momentum<br>operators ,<br>commutators of<br>Angular<br>momentum<br>operators and<br>Examples                           |                                  | 2     | 4           |
|                          |                               | Test 1                                                                                                                             |                                  | 2     | 5           |
| Short<br>questions       | Lecture                       | Spherically<br>Symmetrical<br>Systems : Central<br>Force and<br>Hydrogen atom.                                                     |                                  | 2     | 6           |
| Short                    | Lecture                       | Probability                                                                                                                        |                                  | 2     | 7           |

| questions          |         | Density of single  |   |     |
|--------------------|---------|--------------------|---|-----|
|                    |         | electron atom and  |   |     |
|                    |         | Selection rules of |   |     |
|                    |         | Hydrogen atom      |   |     |
|                    |         | with Examples      |   |     |
|                    |         | Approximations     |   |     |
|                    |         | methods in         |   |     |
|                    |         | quantum            |   |     |
|                    |         | mechanics:         |   |     |
|                    |         | Perturbation       |   |     |
| Class of           |         | method             |   |     |
| Short<br>questions | Lecture | First              | 2 | 8   |
| questions          |         | Approximation (    |   |     |
|                    |         | Solution of        |   |     |
|                    |         | perturbed          |   |     |
|                    |         | Schrodinger        |   |     |
|                    |         | equation ) - First |   |     |
|                    |         | order              |   |     |
|                    |         | Solution of second |   |     |
| <b>C1</b>          |         | order of           |   |     |
| Short              | Lecture | perturbed          | 2 | 9   |
| questions          |         | Schrodinger        |   |     |
|                    |         | equation           |   |     |
|                    |         | Solution of second |   |     |
| <b>G1</b>          |         | order of           |   |     |
| Short              | Lecture | perturbed          | 2 | 10  |
| questions          |         | Schrodinger        |   |     |
|                    |         | equation           |   |     |
| Short              | Lecture | Examples           | 2 | 11  |
| questions          |         | _                  |   | 11  |
|                    |         | Test 2             | 2 | 12  |
| Short              | Lecture | Virial Method      | 2 | 13  |
| questions          |         |                    | - |     |
| Short questions    | Lecture | WKB Method         | 2 | 14  |
| 44050000           |         | Examples           | 2 | 1 Г |
|                    |         | p.co               | 3 | 15  |

| 42. Infrastructure                                                                                                                                                      |                                                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|
| Principles of Quantum Mechanics , by<br>Salim AlSHamaya , University of Mosul<br>, 1988.<br>Quantum Mechanics by L. I. Schif<br>Quantum Mechanics by S. Allayani , KSA. | Required readings :<br>5. Course Books<br>6. Other                                 |  |
| • PowerPoint                                                                                                                                                            | Special Requirements                                                               |  |
| Attending scientific seminars                                                                                                                                           | Social services (e.g. guest<br>lectures, vocational training and<br>field studies) |  |
| 43. Acceptance                                                                                                                                                          | 2                                                                                  |  |
|                                                                                                                                                                         | Prerequisites                                                                      |  |
| 25                                                                                                                                                                      | Minimum number of students                                                         |  |
| 50                                                                                                                                                                      | The largest number of students                                                     |  |

### **Review the performance of higher education institutions** ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve.

Proving whether he has made the most of the available learning opportunities. It must be linked to the description of program.

| 1. Educational Institution               | College Of Education For Pure Sciences/University<br>Of Anbar |
|------------------------------------------|---------------------------------------------------------------|
| 2. Scientific Department/Center          | Physics                                                       |
| 3. Course Name/Code                      | Solid State Physics                                           |
| 4. Programs in which it enters           | Bachelor / First Level                                        |
| 5. Available Forms Of Attendance         | Direct Attendance In The Classroom                            |
| 6. Semester/Year                         | Academic Year: 2022-2023                                      |
| 7. Number Of Study Hours (Total)         | 60 Theoretical Hours + 60 Practical Hours                     |
| 8. Date This Description Was<br>Prepared | 2/10/2022                                                     |
|                                          | 9. Course Objectives:                                         |

A- Providing The Student With Knowledge Of The Types Of States Of Matter. B- Providing The Student With Knowledge Of The Crystalline Structure Of Solid Materials. C- Providing The Student With Knowledge Of The Debye Model Of Specific Heat. D- Providing The Student With Knowledge Of Incompatible Crystal Reactions. E- Providing The Student With Knowledge In The Field Of Hall. F- Providing The Student With Practical Experience In Identifying The X-Ray Device And How To Use It. G- Providing The Student With Scientific Experience In Identifying The UV Visible Device And How To Use It. H- Providing The Student With Knowledge Of The Theory Of Beams In Solid Materials.

I- Providing The Student With Knowledge Of Semiconductors.

### **10.** Course outcomes and teaching, learning and evaluation methods

- A. Cognitive objectives
- 1) Introducing the student to the structure of solids.
- 2) Introducing the student to states of matter.
- 3) Introducing the student to models and forms related to the composition of materials.
- 4) Introducing the student to the field of hall.
- 5) Introducing the student to special equipment for structural and optical examinations of solid materials.

### **B** - The skills objectives of the course.

- 1) Giving students the skill of using mathematical equations.
- 2) Providing the student with the skill of using laboratory equipment for measuring the physical properties of solids.
- 3) Giving the student the skill of preparing and writing scientific reports on the experiments he performs in the laboratory.

### **Teaching and learning methods**

- 1) Giving lectures and solving mathematical problems on the blackboard.
- 2) Using modern technologies and electronic presentation tools (Data Show) to illustrate shapes, drawings, and diagrams.
- 3) Divide students into small groups for laboratory work.
- 4) Use the role-exchange method in the practical laboratory.
- 5) Focus on students' participation in the lecture by asking questions and devising new ideas.
- 6) Assigning the student to prepare scientific reports on laboratory experiments.
- 7) Adopting the homework method for students to solve exercises while evaluating their solutions in the classroom.

### **Evaluation methods**

- 1) Monthly tests.
- 2) Rapid daily tests.
- 3) Oral questions, class contributions.
- 4) Evaluation of scientific reports.
- 5) Practical tests.

### **C-Emotional and value goals**

- 1) Enhancing the ability to deduce and logically analyze scientific issues.
- 2) Consolidating the spirit of joint scientific work and enhancing students' confidence in their abilities by involving students in practical laboratory groups.
- 3) Developing precision and caution in dealing with laboratory equipment.
- 4) Developing the spirit of scientific research in the student.

Teaching and learning methods

- 1) The interactive method of presenting the study material.
- 2) Involving students in deriving scientific ideas and solving mathematical exercises.
- 3) A practical explanation of the device used, how to use it, and how to perform the measurement required in the experiment.
- 4) Assigning students to prepare scientific research and reports.

### **Evaluation methods**

- 1) Testing students directly and orally.
- 2) Daily surprise written tests.
- 3) Scheduled tests.
- 4) Conducting a method of exchanging roles between the teacher and the student in the scientific laboratory and evaluating him on his performance.
- D General and qualifying transferable skills (other skills related to competency Employment and personal development).
  - 1) The ability to analyse, deduce and describe.
  - 2) The ability to understand and comprehend solid materials and study their physical properties.
  - 3) The ability to work in research laboratories.
  - 4) The ability to conduct scientific research.

| 11.Course Structure                                 |                           |                                                                                                                                                 |                                  |       |             |
|-----------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|-------------|
| Evaluation<br>method                                | Method<br>of<br>education | Name of the<br>unit/course or<br>topic                                                                                                          | Required<br>Learning<br>Outcomes | Hours | The<br>week |
| Oral exam<br>with written<br>test exams             | Lecture                   | - Introduction<br>- Phonons and<br>lattice<br>- Inelastic<br>scattering of<br>phonon                                                            |                                  | 2     | 1           |
| Oral exam<br>with written<br>test exams             | Lecture                   | - Group velocity<br>- The structure<br>properties<br>- Optical<br>properties in<br>infrared                                                     |                                  | 2     | 2           |
| Oral exam<br>with written<br>test exams             | Lecture                   | - Thermal<br>properties (heat<br>capacity)<br>- Thermal<br>conductivity<br>- Thermal<br>resistivity                                             |                                  | 2     | 3           |
| Oral exam<br>with written<br>test exams             | Lecture                   | - Free electron<br>model-lorentz<br>model<br>- Hall effect                                                                                      |                                  | 2     | 4           |
| Short<br>questions in<br>addition to<br>assignments | Lecture                   | - Fermi-Dirc<br>statisties<br>- Plasmon<br>Electrical<br>conductivity                                                                           |                                  | 2     | 5           |
| Oral exam<br>with written<br>test exams             | Lecture                   | Effective mass-<br>fermi surface<br>constriction<br>Semiconductors<br>(intrinsic and<br>entrinsic<br>Mobility and<br>electrical<br>Conductivity |                                  | 2     | 6           |
| Attendance<br>test (various<br>questions)           |                           | Semester Exam                                                                                                                                   |                                  |       | 7           |
| Oral exam<br>with written                           | Lecture                   | - Crystal defects<br>and dislocation                                                                                                            |                                  | 2     | 8           |

| test exams                                                                   |         | - Point, lines<br>defects.<br>- surface, Volume<br>defects               |   |    |
|------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------|---|----|
| Oral exam<br>with written<br>test exams                                      | Lecture | -<br>Superconductors<br>- Uses of<br>superconductors                     | 2 | 9  |
| Oral exam<br>with written<br>test exams                                      | Lecture | - Magnetic<br>properties<br>- Dia-magnetic<br>materials                  | 2 | 10 |
| Oral exam<br>with written<br>test exams                                      | Lecture | - Para-magnetic<br>materials<br>- Experimental<br>diffraction<br>methods | 2 | 11 |
| Oral exam<br>with written<br>test exams                                      | Lecture | Ferromagnetic<br>materials                                               | 2 | 12 |
| Oral exam<br>with written<br>test exams                                      | Lecture | Semiconductors                                                           | 2 | 13 |
| Attendance<br>test (various<br>questions)                                    |         | Semester Exam                                                            |   | 14 |
| Drawing an<br>illustration of<br>the material<br>studied during<br>the class |         | Review                                                                   | 2 | 15 |

| 44. Infrastructure                                                                         |                                                    |  |
|--------------------------------------------------------------------------------------------|----------------------------------------------------|--|
| 4. 1- Solid State Physics / Dr. Moaeed<br>Gabriel.                                         |                                                    |  |
| 5. 2- Electrical and magnetic properties /<br>Dr. Wakaa Al-Jubouri and Dr. Fahd<br>Ghalib. | Required readings :<br>7. Course Books<br>8. Other |  |
| 6. Solid state physics / Dr. Yahya Nouri<br>Al-Jamal/University of Mosul                   | 0. Other                                           |  |
| <ul> <li>PowerPoint</li> </ul>                                                             | Special Requirements                               |  |

| 45. Acceptance                     |                                |  |
|------------------------------------|--------------------------------|--|
| Radioactive Waste Disposal         | Prerequisites                  |  |
| Theoretical: 30 students           | Minimum number of students     |  |
| Theoretical: 50 students Practical | The largest number of students |  |

# Review the performance of higher education institutions ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve. Proving whether he has made the most of the available learning opportunities. It must be linked to the description of

program.

| Ministry of Higher Education and Scientific | 46. Educational institution |
|---------------------------------------------|-----------------------------|
| Research / Anbar University                 |                             |
| College of Education for Pure Sciences /    | 47. University Department   |
| Department of Physics                       | / Center                    |
| English                                     | 48. Course Name/Code        |
|                                             |                             |
| Bachelor / First Level                      | 49. Programs in which it    |
|                                             | enters                      |
| Presence                                    | 50. Available Attendance    |
|                                             | Forms                       |
| First Semester / 2022-2023                  | 51. Semester / Year         |
|                                             |                             |
| 2 hours per week * 15 weeks = 30 hours /    | 52. Number of Credit        |
| semester                                    | Hours (Total)               |
| 2022/2/10                                   | 53. The history of          |
|                                             | preparation of this         |
|                                             | description                 |
|                                             |                             |

#### 54. Course Objectives:

(k) Improvement the level of students in the English language and training them to practice in their academic and learn the basic rules of this international language and using it in all fields.

(l) Learn how to select (simplified) reading material suitable for their level and read on their own.(m)Understand and use tenses like the simple present, the present progressive, the simple past, and

- the past progressive.
- (n) Read examples of different types of readings, including articles, short stories, fact sheets, timetables, instructions, directions, requests, descriptions and conversations.
- (o) be self-reliant in acquiring new vocabulary,
- (**p**) improve their understanding of new vocabulary related to the reading and develop critical

| thinkin | g skills. |
|---------|-----------|
| ummin   | S SKIIIS• |

#### P. Knowledge and understanding

- 3. develop their skills of listening for gist and specific information
- 4. develop their knowledge of vocabulary on a wide range of topics
- 5. develop their understanding of colloquial English.
- 6. develop their spoken English.

#### **Q. Subject-specific skills**

- 1. -look up words in their dictionaries.
- 2. -learn how to select (simplified) reading material suitable for their level and read on.
- 3. ommunicate using the new vocabulary words they learned, and recognize vocabulary words into their own language.

#### • Teaching and learning methods

- Lecture, discussion, short reports, problem solving

#### • Evaluation methods

- Monthly test (essay and topical)
- -Activity
- -Short questions
- -Reports
- -Duties
- -Final Exam

#### R. Thinking skills

- Ask various questions and brainstorm

#### • Teaching and learning methods

Discussion, lecture, questioning

#### • Evaluation methods

- 9. Achievement Tests
- 10. Test methods (interview and observation)
- 11. Student feedback

## S. General and transferable Skills (other skills related to employability and personal development).

- 6. Verbal teaching behavior skills such as discussion, dialogue, explanation and interpretation.
- 7. Non-verbal teaching behavior skills, such as visual contact between the teacher and the student, and use of illustrations such as educational videos and pictures
- 8. Planning skill: such as the skill of determining the subject of the lesson, using appropriate means, preparing questions
- 9. Implementation skills: such as stimulating students' motivation, controlling and managing the classroom
- 10. Evaluation skills: such as preparing monthly tests, essays, objective

|                                                            | 56. Course Structure          |                                                                       |                                  |       |             |  |
|------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------|----------------------------------|-------|-------------|--|
| Evaluati<br>on<br>method                                   | Method<br>of<br>educatio<br>n | Name of the<br>unit/course or<br>topic                                | Required<br>Learning<br>Outcomes | Hours | The<br>week |  |
| Short<br>questions<br>with<br>homework<br>solving          | Lecture +<br>desiccation      | Introduction, Present,<br>past, future tenses -<br>Examples of solved | knowledge and<br>understanding   | 2     | 1           |  |
| Short<br>questions<br>with<br>homework<br>solving          | Lecture +<br>desiccation      | Passive and active,<br>vocabulary                                     | knowledge and<br>understanding   | 2     | 2           |  |
| Short<br>questions<br>with<br>homework<br>solving          | Lecture +<br>desiccation      | Academic writing ,<br>Reading, vocabulary                             | knowledge and<br>understanding   | 2     | 3           |  |
| Short<br>questions<br>with<br>homework<br>solving          | Lecture +<br>desiccation      | Grammar                                                               | knowledge and<br>understanding   | 2     | 4           |  |
| Short<br>questions<br>in addition<br>to<br>assignment<br>s | Lecture +<br>desiccation      | Reading<br>Comprehension                                              | knowledge and<br>understanding   | 2     | 5           |  |
| Short<br>questions                                         | Lecture +<br>desiccation      | Academic Reading ,<br>vocabulary,                                     | knowledge and<br>understanding   | 2     | 6           |  |
| Attendance<br>test<br>(various<br>questions)               |                               | Semester Exam                                                         |                                  |       | 7           |  |
| Short questions                                            | Lecture + desiccation         | Reading<br>Comprehension                                              | knowledge and understanding      | 2     | 8           |  |
| Short<br>Questions<br>+<br>Assignmen                       | Lecture +<br>desiccation      | Grammar                                                               | knowledge and<br>understanding   | 2     | 9           |  |

| ts                                                                                    |                       |                                   |                                                                                                                                                   |   |    |
|---------------------------------------------------------------------------------------|-----------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
| Short<br>questions                                                                    | Lecture + desiccation | Academic Reading ,<br>vocabulary, | knowledge and understanding                                                                                                                       | 2 | 10 |
| Short<br>questions                                                                    | Lecture + desiccation | Reading<br>Comprehension          | knowledge and understanding                                                                                                                       | 2 | 11 |
| Short<br>questions                                                                    | Lecture + desiccation | Academic Reading ,<br>vocabulary, | knowledge and understanding                                                                                                                       | 2 | 12 |
| Short<br>questions                                                                    | Lecture + desiccation | Academic Reading ,<br>vocabulary, | knowledge and understanding                                                                                                                       | 2 | 13 |
| Attendance<br>test<br>(various<br>questions)                                          |                       | Semester Exam                     |                                                                                                                                                   |   | 14 |
| Drawing<br>an<br>illustration<br>of the<br>material<br>studied<br>during the<br>class |                       | Review                            | *Thestudent's<br>understanding of<br>the material<br>tucked during<br>the semester<br>* The student's<br>knowledge to<br>link all of the<br>above |   | 15 |

| 57. Infrastructure                                                                                                                                                                                                     |                                                                                    |       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------|--|--|
| 1. New Headway English Course – Workbook<br>upper intermediate (by: Liz & John Soars)Required readings :2. New Headway English Course – Student<br>Book upper intermediate (by: Liz & John Soars)9.Course Books<br>10. |                                                                                    |       |  |  |
| PowerPoint                                                                                                                                                                                                             | Special Requirements                                                               |       |  |  |
| Attending scientific seminars                                                                                                                                                                                          | Social services (e.g. guest<br>lectures, vocational training and<br>field studies) |       |  |  |
| 58. Acceptance                                                                                                                                                                                                         | e                                                                                  |       |  |  |
| Electrical & Magnetic                                                                                                                                                                                                  | Prerequisites                                                                      |       |  |  |
| Theoretical: 30 students                                                                                                                                                                                               | Minimum number of stu                                                              | ents  |  |  |
| Theoretical: 50 students                                                                                                                                                                                               | The largest number of stu                                                          | dents |  |  |

# Review the performance of higher education institutions ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve. Proving whether he has made the most of the available learning opportunities. It must be linked to the description of

program.

| Ministry of Higher Education and Scientific                        | 59. Educational institution |
|--------------------------------------------------------------------|-----------------------------|
| Research / Anbar University                                        |                             |
| College of Education for Pure Sciences /                           | 60. University Department   |
| Department of Physics                                              | / Center                    |
| Atomic physics                                                     | 61. Course Name/Code        |
| 1 2                                                                |                             |
| Bachelor / Level 3                                                 | 62. Programs in which it    |
|                                                                    | enters                      |
| Presence                                                           | 63. Available Attendance    |
|                                                                    | Forms                       |
| First Semester / 2022-2023                                         | 64. Semester / Year         |
|                                                                    |                             |
| 3 hours theoretical + 3 hours practical / week *                   | 65. Number of Credit        |
| 15 weeks = 90 hours / semester                                     | Hours (Total)               |
| 19-92022                                                           | 66. The date of             |
|                                                                    | preparation of this         |
|                                                                    | description                 |
| 67. Course Objectives:                                             |                             |
|                                                                    |                             |
| (q) The student knows atomic models                                |                             |
| $(\mathbf{r})$ The student knows what x-rays are and how to obtain | them                        |
| (s) The student learns about the ways radiation interacts          |                             |
| (t)                                                                |                             |
|                                                                    |                             |

68. Learning outcomes and methods of teaching, learning and evaluation

| Evaluati<br>on<br>method       | Method<br>of<br>educatio             | Name of the<br>unit/course or<br>topic                                                                                    | Required<br>Learning<br>Outcomes | Hours                                 | The<br>weel |
|--------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|-------------|
|                                |                                      | 69. Course S                                                                                                              | tructure                         |                                       |             |
| 11. D - developmen<br>12. The  | General and trant).<br>student knows | <b>levelopment).</b><br>nsferable skills (other skills<br>how to measure X-ray ener<br><u>be used in technological de</u> | gy and how to use and            | generate it                           |             |
| U. Ge                          | neral and tr                         | ansferable Skills (ot                                                                                                     | her skills related               | to employa                            | bility      |
|                                | generate it                          | knows how to measu<br>should be used in tec                                                                               |                                  |                                       |             |
| T. <b>Th</b> i                 | inking skills                        | 8                                                                                                                         |                                  |                                       |             |
| -Duties<br>-Final E            | Exam                                 |                                                                                                                           |                                  |                                       |             |
| -Short c<br>-Report<br>-Duties | uestions<br>s                        |                                                                                                                           |                                  |                                       |             |
| -Activit                       | •                                    | ay and topical)                                                                                                           |                                  |                                       |             |
|                                | • Evaluati                           | on methods                                                                                                                |                                  |                                       |             |
|                                |                                      | monthly exams, as w<br>h the lesson material                                                                              | ell as the student'              | s classroom a                         | activity    |
|                                |                                      | g and learning metho                                                                                                      |                                  |                                       |             |
| ind<br>2- Th                   | ustry and tech<br>e student disti    | ludes that the atom and a<br>nology<br>nguishes between the diff<br>as the dangers of atomic ra                           | erent effects betweer            | n matter and rad                      | diation     |
|                                |                                      |                                                                                                                           |                                  | B- Subject-spec                       |             |
| For the stude                  | ent to understan                     | The studer<br>d what x-rays are and how                                                                                   | nt learns the ways radia         |                                       |             |
|                                |                                      |                                                                                                                           | The student u                    | derstands atomic<br>nderstands atomic |             |

|                                                                           |                  |                                             | 1                                                                               |                              |   |
|---------------------------------------------------------------------------|------------------|---------------------------------------------|---------------------------------------------------------------------------------|------------------------------|---|
| Daily<br>exam,<br>discussion,<br>assignment<br>s, and<br>monthly<br>exams | Lecture +<br>Lab | Theory of Relativity                        | Introducing the<br>student to the<br>theory of relativity<br>and its importance | 3 theoretical<br>3 Practical | 1 |
| Daily<br>exam,<br>discussion,<br>assignment<br>s, and<br>monthly<br>exams | Lecture +<br>Lab | Black body radiation                        | Introducing the<br>student to black<br>body radiation and<br>its meaning        | 3 theoretical<br>3 Practical | 2 |
| Daily<br>exam,<br>discussion,<br>assignment<br>s, and<br>monthly<br>exams | Lecture +<br>Lab | The effect of radiation on matter           | Familiarizing the<br>student with the<br>effect of radiation<br>on matter       | 3 theoretical<br>3 Practical | 3 |
| Daily<br>exam,<br>discussion,<br>assignment<br>s, and<br>monthly<br>exams | Lecture +<br>Lab | Atomic models                               | atomic models                                                                   | 3 theoretical<br>3 Practical | 4 |
| Daily<br>exam,<br>discussion,<br>assignment<br>s, and<br>monthly<br>exams | Lecture +<br>Lab | Total energy according to<br>the Bohr model | Calculating total<br>energy according<br>to the Bohr model                      | 3 theoretical<br>3 Practical | 5 |
| Daily<br>exam,<br>discussion,<br>assignment<br>s, and<br>monthly<br>exams | Lecture +<br>Lab | X-Ray                                       | Identifying the<br>student with x-<br>rays                                      | 3 theoretical<br>3 Practical | 6 |
|                                                                           |                  | Semester Exam                               |                                                                                 |                              | 7 |
| Daily<br>exam,<br>discussion,<br>assignment<br>s, and<br>monthly<br>exams | Lecture +<br>Lab | Energy levels of x-rays                     | Calculating the<br>energy levels of<br>X-rays                                   | 3 theoretical<br>3 Practical | 8 |
| Daily<br>exam,                                                            | Lecture +<br>Lab | A X-ray diffraction                         | Familiarizing the student with X-ray                                            | 3 theoretical<br>3 Practical | 9 |

| discussion, |           |                             | diffraction and     |               |    |
|-------------|-----------|-----------------------------|---------------------|---------------|----|
| assignment  |           |                             | how it is done      |               |    |
| s, and      |           |                             |                     |               |    |
| monthly     |           |                             |                     |               |    |
| exams       |           |                             |                     |               |    |
| Daily       |           | Wave and particle theory    | Learn about wave    |               |    |
| exam,       |           |                             | and particle theory |               |    |
| discussion, | Lecture + |                             |                     | 3 theoretical |    |
| assignment  |           |                             |                     | 3 Practical   | 10 |
| s, and      | Lab       |                             |                     | 5 Practical   |    |
| monthly     |           |                             |                     |               |    |
| exams       |           |                             |                     |               |    |
| Daily       |           | Negr's fugue equation       | What is Nagger's    |               |    |
| exam,       |           | 8 8 8 1                     | fugue equation?     |               |    |
| discussion, | <b>-</b>  |                             | 81                  |               |    |
| assignment  | Lecture + |                             |                     | 3 theoretical | 11 |
| s, and      | Lab       |                             |                     | 3 Practical   | 11 |
| monthly     |           |                             |                     |               |    |
| exams       |           |                             |                     |               |    |
| Daily       |           | Applications to Nagger's    | Applications to     |               |    |
| exam,       |           | fugue equation              | Nagger's fugue      |               |    |
| discussion, |           | rugue equation              | equation            |               |    |
|             | Lecture + |                             | equation            | 3 theoretical | 12 |
| assignment  | Lab       |                             |                     | 3 Practical   | 12 |
| s, and      |           |                             |                     |               |    |
| monthly     |           |                             |                     |               |    |
| exams       |           |                             | T '1' ' 4           |               |    |
| Daily       |           | Electronic structure of the | Familiarizing the   |               |    |
| exam,       |           | atom                        | student with the    |               |    |
| discussion, | Lecture + |                             | electronic          | 3 theoretical | 10 |
| assignment  | Lab       |                             | structure of the    | 3 Practical   | 13 |
| s, and      | Luo       |                             | atom                | 5 Tracticul   |    |
| monthly     |           |                             |                     |               |    |
| exams       |           |                             |                     |               |    |
| Daily       |           | Orbital angular             |                     |               |    |
| exam,       |           | momentum                    |                     |               |    |
| discussion, |           |                             | Calculating         |               |    |
| assignment  |           |                             | orbital angular     |               | 14 |
| s, and      |           |                             | momentum            |               |    |
| monthly     |           |                             |                     |               |    |
| exams       |           |                             |                     |               |    |
|             |           | Semester Exam               |                     |               | 15 |

| 70. References                                                                                                                                                                    |                                                                                    |                                |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------|--|--|--|
| <ol> <li>Atomic physics book, Dr. Taleeb Alafay,<br/>university of Musool, 1985.</li> <li>Molecular physics book, Dr. Khalid A.<br/>Jasem, university of Musool, 1992.</li> </ol> | ,<br>Required readings :<br>11. Course Books<br>12. Other                          |                                |  |  |  |
| PowerPoint                                                                                                                                                                        | Special Requirements                                                               |                                |  |  |  |
| Attending scientific seminars                                                                                                                                                     | Social services (e.g. guest<br>lectures, vocational training and<br>field studies) |                                |  |  |  |
| 71. Acceptance                                                                                                                                                                    | e                                                                                  |                                |  |  |  |
|                                                                                                                                                                                   |                                                                                    | Prerequisites                  |  |  |  |
| Theoretical: 30 students Practical: 20 students                                                                                                                                   |                                                                                    | Minimum number of students     |  |  |  |
| Theoretical: 50 students Practical: 20 students                                                                                                                                   |                                                                                    | The largest number of students |  |  |  |

#### Review the performance of higher education institutions ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve. Proving whether he has made the most of the available learning opportunities. It must be linked to the description of

program.

| Ministry of Higher Education and Scientific      | 72. Educational institution |
|--------------------------------------------------|-----------------------------|
| Research / Anbar University                      |                             |
| College of Education for Pure Sciences /         | 73. University Department   |
| Department of Physics                            | / Center                    |
| Email/ Presence                                  | 74. Course Name/Code        |
| Bachelor / First Level                           | 75. Programs in which it    |
|                                                  | enters                      |
| Presence                                         | 76. Available Attendance    |
|                                                  | Forms                       |
| First Semester / 2022-2023                       | 77. Semester / Year         |
| 3 hours theoretical + 3 hours practical / week * | 78. Number of Credit        |
| 15 weeks = 90 hours / semester                   | Hours (Total)               |
| 2022/2/10                                        | 79. The history of          |
|                                                  | preparation of this         |
|                                                  | description                 |

#### 80. Course Objectives:

(u) The student knows the classification of materials in terms of their electrical properties: conductive, dielectric and semiconductor

 $(\mathbf{v})$  The student gets to know the scientific basis in the work and manufacture of semiconductor materials

(w) The student gets to know the factors affecting the determination of the basic properties of semiconductor materials

(x) The student gets to know the factors affecting the determination of any practical application based on semiconductor materials

#### V. Knowledge and understanding

- 7. -The student understands each type of semiconductor material
- 8. -The student understands the importance of semiconductor materials
- 9. -The student learns to use semiconductor materials in electronic applications
- 10. -The student understands the relationship of semiconductor materials to other electronic elements.

#### W.Subject-specific skills

- 4. -The student concludes that there is a physical basis upon which the work of any electronic element is based
- 5. -The student should distinguish between any element of electronic circuits
- 6. -The student learns to classify electronic elements based on their importance and practical application

#### • Teaching and learning methods

- Lecture, discussion, short reports, problem solving

#### • Evaluation methods

- Monthly test (essay and topical)
- -Activity
- -Short questions
- -Reports
- -Duties
- -Final Exam

#### X. Thinking skills

- Ask various questions and brainstorm

#### • Teaching and learning methods

- Discussion, lecture, questioning

#### • Evaluation methods

- 12. Achievement Tests
- 13. Test methods (interview and observation)
- 14. Student feedback

|                                                               | 82. Course Structure                                                                        |                                                                                                                                                                                                                         |                                                                                  |                              |   |  |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------|---|--|
| Evaluati<br>on<br>method                                      | Method<br>of<br>educatio<br>nName of the<br>unit/course or<br>topicRequired<br>Learning<br> |                                                                                                                                                                                                                         | Hours                                                                            | The<br>week                  |   |  |
| Short<br>questions<br>with<br>homewor<br>k solving            | Lecture +<br>Lab                                                                            | Chapter 1 / 1- Electrical<br>circuit 2- Voltage 3-<br>Electric current 4-<br>Resistors 5- Reading<br>electrical resistors 6-<br>Kirchhoff's law of<br>voltage and current 7-<br>Examples of solved                      | * Knowledge of<br>non-political<br>concepts in<br>electricity and<br>electronics | 3 theoretical<br>3 Practical | 1 |  |
| Short<br>questions<br>with<br>homework<br>solving             | Lecture +<br>Lab                                                                            | Chapter II/1-<br>Introduction 2- Energy<br>beams of crystals 3-<br>Conductive, insulating<br>and semiconductor<br>materials 4- Pure<br>semiconductors 5-<br>Impurity<br>semiconductors                                  | *Knowledge of<br>the basics of<br>semiconductor<br>physics                       | 3 theoretical<br>3 Practical | 2 |  |
| <sup>I</sup> Short<br>questions                               | Lecture +<br>Lab                                                                            | -6Negative<br>semiconductors 7-<br>Positive<br>semiconductors 8-<br>Charge density in<br>impurity conductors 9-<br>Current flow in<br>impurity<br>semiconductors 10-<br>Solving the exercises of<br>the second semester | *Knowledge of<br>the basics of<br>semiconductor<br>physics                       | 3 theoretical<br>3 Practical | 3 |  |
| اسئلة قصيرة                                                   | Lecture +<br>Lab                                                                            | Chapter III / Crystalline<br>Biode 1- Introduction<br>2- PN junction PN 3-<br>Drain Zone                                                                                                                                | *Know the<br>basics of the<br>work of the<br>crystalline diode                   | 3 theoretical<br>3 Practical | 4 |  |
| Short<br>questions<br>in<br>addition<br>to<br>assignmen<br>ts | Lecture +<br>Lab                                                                            | -4Barrier voltage 5-<br>PN junction at rest 6-<br>PN junction power<br>diagram 7- Calculation<br>of barrier voltage 8- PN<br>junction under external<br>influence 9- Front bias                                         | *Know the<br>basics of the<br>work of the<br>crystalline diode                   | 3 theoretical<br>3 Practical | 5 |  |

|                                               |                  | of PN junction -10<br>Reverse PN junction<br>bias                                                                                                                                                                                            |                                                                                           |                              |    |
|-----------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------|----|
| Short<br>questions                            | Lecture +<br>Lab | 11. Binary Circuit<br>Analysis 12- Bi-Zener<br>13- Tunneling Duo 14.<br>Solving Chapter Three<br>Problems                                                                                                                                    | *Know the<br>basics of the<br>work of the<br>crystalline diode                            | 3 theoretical<br>3 Practical | 6  |
| Attendanc<br>e test<br>(various<br>questions) |                  | Semester Exam                                                                                                                                                                                                                                |                                                                                           |                              | 7  |
| Short<br>questions                            | Lecture +<br>Lab | Chapter IV / Uses of<br>the crystalline diode 1-<br>Introduction 2-<br>Calendar 3- Half-wave<br>calendar circuit                                                                                                                             | *Know the uses<br>of the work of<br>the crystalline<br>diode                              | 3 theoretical<br>3 Practical | 8  |
| Short<br>Questions<br>+<br>Assignme<br>nts    | Lecture +<br>Lab | <ul> <li>4- Full wave rectifier<br/>circuit 5- Calendar</li> <li>bridge 6- Ripple factor</li> <li>7- Filtration circuits 8-<br/>Binding circuits</li> </ul>                                                                                  | * Know the uses<br>of the work of<br>the crystalline<br>diode                             | 3 theoretical<br>3 Practical | 9  |
| Short<br>questions                            | Lecture +<br>Lab | <ul> <li>9- Voltage multiplier<br/>circuit 10. Cutting<br/>circuits (pruning) 11.</li> <li>Voltage regulation 12.</li> <li>Solving Chapter IV<br/>problems</li> </ul>                                                                        | *Know the uses<br>of the work of<br>the crystalline<br>diode                              | 3 theoretical<br>3 Practical | 10 |
| Short<br>questions                            | Lecture +<br>Lab | Chapter V: Transistor<br>1- Introduction 2- Basic<br>Characteristics of the<br>Transistor                                                                                                                                                    | *Know the<br>basics of the<br>transistor                                                  | 3 theoretical<br>3 Practical | 11 |
| Short<br>questions                            | Lecture +<br>Lab | -3The principle of<br>operation of the<br>transistor 4- Methods<br>of connecting the<br>transistor 5-<br>Connecting the<br>common base 6-<br>Connecting the<br>common emitter 7-<br>Connecting the<br>common collector 8-<br>Solved examples | *Know the<br>basics of the<br>transistor work<br>and ways to<br>connect the<br>transistor | 3 theoretical<br>3 Practical | 12 |
| Short<br>questions                            | Lecture +<br>Lab | -7Transistor Action<br>Zones 8- Active Zone<br>9- Cutting Area 10<br>Saturation Zone 11- 11-<br>Solving Fifth Chapter                                                                                                                        | *Know the<br>areas where the<br>transistor works                                          | 3 theoretical<br>3 Practical | 13 |

|                                                                                        | Exercises     |                                                                                                                                                   |    |
|----------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Attendanc<br>e test<br>(various<br>questions)                                          | Semester Exam |                                                                                                                                                   | 14 |
| Drawing<br>an<br>illustratio<br>n of the<br>material<br>studied<br>during the<br>class | Review        | *Thestudent's<br>understanding of<br>the material<br>tucked during<br>the semester<br>* The student's<br>knowledge to<br>link all of the<br>above | 15 |

| 83. Infrastructur                                                                                                                                                                                              | re                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| <ul> <li>9. Physics of Electrons, Dr. Subhi Saeed<br/>Al-Rawi</li> <li>10.The basis of electronic engineering - Dr.<br/>Riyad Kamal Al-Hakim</li> <li>11.Rakesh Kumar Garg by Basic<br/>Electronics</li> </ul> | Required readings :<br>13. Course Books<br>14. Other                               |
| 12.Electronic devices electron flow version<br>by Thomas L. Floyd                                                                                                                                              |                                                                                    |
| PowerPoint                                                                                                                                                                                                     | Special Requirements                                                               |
| Attending scientific seminars                                                                                                                                                                                  | Social services (e.g. guest<br>lectures, vocational training and<br>field studies) |
| 84 Accen                                                                                                                                                                                                       | tanaa                                                                              |

| 84. Acceptance                                  | 2                              |
|-------------------------------------------------|--------------------------------|
| Electrical & Magnetic                           | Prerequisites                  |
| Theoretical: 30 students Practical: 20 students | Minimum number of students     |
| Theoretical: 50 students Practical: 20 students | The largest number of students |

#### Review the performance of higher education institutions ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve. Proving whether he has made the most of the available learning opportunities. It must be linked to the description of

program.

| Ministry of Higher Education and Scientific                             | 85. Educational institution            |
|-------------------------------------------------------------------------|----------------------------------------|
| Research / Anbar University                                             |                                        |
| College of Education for Pure Sciences /                                | 86. University Department              |
| Department of Physics                                                   | / Center                               |
| Electromagnetic                                                         | 87. Course Name/Code                   |
| Bachelor / First Level                                                  | 88. Programs in which it enters        |
| Presence                                                                | 89. Available Attendance               |
|                                                                         | Forms                                  |
| First Semester / 2022-2023                                              | 90. Semester / Year                    |
| 3 hours theoretical / week $*$ 15 weeks = 45                            | 91. Number of Credit                   |
| hours / semester                                                        | Hours (Total)                          |
| 2022/2/10                                                               | 92. The history of                     |
|                                                                         | preparation of this                    |
|                                                                         | description                            |
| 93. Course Objectives:                                                  |                                        |
| (y) The student knows the rules basic in electromagnetic.               |                                        |
| $(\mathbf{z})$ The student gets to know the scientific basis in the Ele | ectrostatic and Application of Gauss's |

 law.

 (aa)
 The student gets to know the tangential component of E, Piosson 's and Laplace 's equations, application of Piosson 's and Laplace 's equations, solved examples, problem.

 (bb)
 The student gets to know Time-varying electromagnetic fields.

#### 94. Learning outcomes and methods of teaching, learning and evaluation

#### Y. Knowledge and understanding 11. -The student gets to know the factors affecting the determination of the basic properties of the electric dipole, materials in an electric field. 12. -Faraday 's law of induction, Maxwell 's equation from Faraday 's law 13. -Maxwell 's equation from Ampere 's law, Maxwell 's equation from Gauss 's law, Maxwell 's equation and boundary conditions. 14. -The student understands the Electromagnetic waves. Z. Subject-specific skills 7. -The student concludes that there is a physical basis upon which the work of any electromagnitic element is based. 8. -The student should distinguish between any element of electronic circuits 9. -The student learns Coulomb's law, electric field intensity, electric field intensity due to charge distribution, electric flux and electric flux density. **Teaching and learning methods** • Lecture, discussion, short reports, problem solving -• Evaluation methods Monthly test (essay and topical) -Activity -Short questions -Reports -Duties -Final Exam **Thinking skills** AA. Ask various questions and brainstorm • Teaching and learning methods Discussion, lecture, questioning

#### • Evaluation methods

- 15. Achievement Tests
- 16. Test methods (interview and observation)
- 17. Student feedback

## **BB.** General and transferable Skills (other skills related to employability and personal development).

- 14. Verbal teaching behavior skills such as discussion, dialogue, explanation and interpretation.15. Non-verbal teaching behavior skills, such as visual contact between the teacher and the
- student, and use of illustrations such as educational videos and pictures
- 16. Planning skill: such as the skill of determining the subject of the lesson, using appropriate means, preparing questions
- 17. Implementation skills: such as stimulating students' motivation, controlling and managing the classroom
- 18. Evaluation skills: such as preparing monthly tests, essays, objective

|                                                       |                               | 95. Course Str                                                                      | ructure                          |               |             |
|-------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------|----------------------------------|---------------|-------------|
| Evaluati<br>on<br>method                              | Method<br>of<br>educatio<br>n | Name of the<br>unit/course or<br>topic                                              | Required<br>Learning<br>Outcomes | Hours         | The<br>week |
| Short<br>questions<br>with<br>homework<br>solving     | Lecture +<br>desiccation      | Chapter 1 / 1- vector<br>analysis 2- Examples<br>of solved                          | knowledge and understanding      | 3 theoretical | 1           |
| Short<br>questions<br>with<br>homework<br>solving     | Lecture +<br>desiccation      | Chapter II/ Coordinate<br>systems                                                   | knowledge and understanding      | 3 theoretical | 2           |
| Short<br>questions<br>with<br>homework<br>solving     | Lecture +<br>desiccation      | Electrostatic - Solving<br>the exercises of the<br>second semester                  | knowledge and<br>understanding   | 3 theoretical | 3           |
| Short<br>questions<br>with<br>homework<br>solving     | Lecture +<br>desiccation      | Chapter III / Electric field and Gauss's law                                        | knowledge and understanding      | 3 theoretical | 4           |
| Short<br>questions<br>in addition<br>to<br>assignment | Lecture +<br>desiccation      | Solution of<br>Electrostatic Problem                                                | knowledge and<br>understanding   | 3 theoretical | 5           |
| Short<br>questions                                    | Lecture +<br>desiccation      | The Electrostatic Field<br>in Dielectric Media<br>Solving Chapter Three<br>Problems | knowledge and understanding      | 3 theoretical | 6           |
| Attendance<br>test<br>(various<br>questions)          |                               | Semester Exam                                                                       |                                  |               | 7           |
| Short<br>questions                                    | Lecture + desiccation         | Chapter IV / Electric<br>susceptibility and<br>dielectric constant                  | knowledge and understanding      | 3 theoretical | 8           |
| Short<br>Questions<br>+                               | Lecture + desiccation         | boundary conditions of the field vectors                                            | knowledge and understanding      | 3 theoretical | 9           |

| Assignmen<br>ts                                                                       |                          |                                                                                               |                                                                                                                                                   |               |    |
|---------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|
| Short<br>questions                                                                    | Lecture + desiccation    | Electrostatic Energy<br>Solving Chapter IV<br>problems                                        | knowledge and<br>understanding                                                                                                                    | 3 theoretical | 10 |
| Short<br>questions                                                                    | Lecture +<br>desiccation | Chapter V The<br>Magnetism, The<br>Magnetization<br>Equations of Field,                       | knowledge and understanding                                                                                                                       | 3 theoretical | 11 |
| Short<br>questions                                                                    | Lecture + desiccation    | Magnetic properties of<br>matters, Magnetic Flux<br>Solved examples                           | knowledge and understanding                                                                                                                       | 3 theoretical | 12 |
| Short<br>questions                                                                    | Lecture +<br>desiccation | Magnetic<br>Susceptibility and<br>magnetic Permeability<br>Solving Fifth Chapter<br>Exercises | knowledge and understanding                                                                                                                       | 3 theoretical | 13 |
| Attendance<br>test<br>(various<br>questions)                                          |                          | Semester Exam                                                                                 |                                                                                                                                                   |               | 14 |
| Drawing<br>an<br>illustration<br>of the<br>material<br>studied<br>during the<br>class |                          | Review                                                                                        | *Thestudent's<br>understanding of<br>the material<br>tucked during<br>the semester<br>* The student's<br>knowledge to<br>link all of the<br>above |               | 15 |

|                                                                                                                                                                      | 96. Infrastructur             | e                                                                                  |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------|---------------|
| <b>13.Foundation Of Electromagnetic Theory</b><br>By: John R. Reitz, Frederick J. Milford<br>& Robert W. ChristyRequired readings :<br>15. Course Books<br>16. Other |                               | 15. Course Books                                                                   |               |
|                                                                                                                                                                      | PowerPoint                    | Special Requirements                                                               |               |
|                                                                                                                                                                      | Attending scientific seminars | Social services (e.g. guest<br>lectures, vocational training and<br>field studies) |               |
|                                                                                                                                                                      | 97. Accept                    | ance                                                                               | ;             |
|                                                                                                                                                                      | Electrical & Magnetic         |                                                                                    | Prerequisites |
|                                                                                                                                                                      |                               |                                                                                    |               |

Minimum number of students

The largest number of students

Theoretical: 30 students

Theoretical: 50 students

#### Review the performance of higher education institutions ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve. Proving whether he has made the most of the available learning opportunities. It must be linked to the description of

program.

| Ministry of Higher Education and Scientific | 98. Educational institution      |
|---------------------------------------------|----------------------------------|
| Research / Anbar University                 |                                  |
| College of Education for Pure Sciences /    | 99. University Department        |
| Department of Physics                       | / Center                         |
| Physical Optics                             | 100. Course Name/Code            |
|                                             |                                  |
| Bachelor / second Level                     | <b>101.</b> Programs in which it |
|                                             | enters                           |
| Presence                                    | <b>102.</b> Available Attendance |
|                                             | Forms                            |
| first Semester / 2022-2023                  | 103. Semester / Year             |
|                                             |                                  |
| 3 hours theoretical +3 practical/ week * 15 | <b>104.</b> Number of Credit     |
| weeks = 90 hours / semester                 | Hours (Total)                    |
| 2022/9/20                                   | 105. The history of              |
|                                             | preparation of this              |
|                                             | description                      |
| 106. Course Objectives:                     |                                  |
| 0                                           |                                  |
| (cc) The student will understand the basics | of physical optics               |
| (dd) - Introduce the student to the phenome |                                  |

occurs and its applications.

(ee) Introduce the student to the phenomenon of light diffraction, how it occurs and its applications.

(ff) Introduce the student to the phenomenon of polarization of light, how it occurs and its applications.

#### CC. Knowledge and understanding

1- The student's understanding of the basics of physical optics. 2- Introducing the student to the phenomenon of light interference, how it occurs and its applications. 3- Introducing the student to the phenomenon of light diffraction, how it occurs and its applications. 4- Introducing the student to the phenomenon of polarization of light, how it occurs and its applications

#### DD. Subject-specific skills

#### • Teaching and learning methods

- Lecture, discussion, short reports, problem solving

#### • Evaluation methods

- Monthly test (essay and topical)
- -Activity
- -Short questions
- -Reports
- -Duties
- -Final Exam

#### EE. **Thinking skills**

- Ask various questions and brainstorm

#### • Teaching and learning methods

- Discussion, lecture, questioning

#### • Evaluation methods

- 18. Achievement Tests
- 19. Test methods (interview and observation)
- 20. Student feedback

## FF. General and transferable Skills (other skills related to employability and personal development).

19. Verbal teaching behavior skills such as discussion, dialogue, explanation and interpretation.
20. Non-verbal teaching behavior skills, such as visual contact between the teacher and the student, and use of illustrations such as educational videos and pictures

- 21. Planning skill: such as the skill of determining the subject of the lesson, using appropriate means, preparing questions
- 22. Implementation skills: such as stimulating students' motivation, controlling and managing the classroom
- 23. Evaluation skills: such as preparing monthly tests, essays, objective

|                                                               | <b>108. Course Structure</b>  |                                                                                                                                                                                                                                                                   |                                  |                                 |             |
|---------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|-------------|
| Evaluati<br>on<br>method                                      | Method<br>of<br>educatio<br>n | Name of the<br>unit/course or<br>topic                                                                                                                                                                                                                            | Required<br>Learning<br>Outcomes | Hours                           | The<br>week |
| Short<br>questions<br>with<br>homewor<br>k solving            | Lecture                       | Huygen's principle,<br>Young's experiment,<br>interference fringes<br>from a double source                                                                                                                                                                        |                                  | 3<br>theoretical<br>3 Practical | 1           |
| Short<br>questions<br>with<br>homework<br>solving             | Lecture                       | intensity distribution in<br>the fringe system,<br>Fresnel's Biprism, other<br>apparatus depending on<br>division of the wave<br>front, coherent sources,<br>division of amplitude<br>,Michelson<br>interferometer, circular<br>fringes, visibility of<br>fringes |                                  | 3<br>theoretical                | 2           |
| <sup>I</sup> Short<br>questions                               | Lecture                       | interferometer<br>measurements of<br>length,Twyman and<br>Green interferometer<br>,index of refraction by<br>interference methods,<br>reflection from a plane-<br>parallel film, fringes of<br>equal inclination,<br>Newton's rings,<br>problems.                 |                                  | 3 Practical                     | 3           |
| اسئلة قصيرة                                                   | Lecture                       | Fresnel and fraunhofer<br>diffraction, diffraction<br>by a single slit, further<br>investigations of single-<br>slit pattern,                                                                                                                                     |                                  | 3<br>theoretical                | 4           |
| Short<br>questions<br>in<br>addition<br>to<br>assignmen<br>ts | Lecture                       | rectangular aperture,<br>resolving power with a<br>rectangular aperture,                                                                                                                                                                                          |                                  | 3 Practical                     | 5           |
| Short<br>questions                                            | Lecture                       | chromatic resolving<br>power of a prism,<br>circular aperture,                                                                                                                                                                                                    |                                  | 3<br>theoretical                | 6           |

|             |           | receiving newer of a                         |              |     |
|-------------|-----------|----------------------------------------------|--------------|-----|
|             |           | resolving power of a telescopen              |              |     |
| Attendanc   |           | resolving power of a                         | 3 Practical  |     |
| e test      |           | microscope, the double                       | 5 i lucticui | -   |
| (various    |           | slit, qualitative aspects                    |              | 7   |
| questions)  |           | of the patter                                |              |     |
|             |           | derivation of the                            | 3            |     |
| Short       | <b>.</b>  | equation for the                             | theoretical  | 0   |
| questions   | Lecture   | intensity, comparison of                     |              | 8   |
| 1           |           | the single-slit and<br>double –slit pattern  |              |     |
| Short       |           | distinction between                          | 3 Practical  |     |
| Questions   |           | interference and                             | 5 Plactical  |     |
| Questions + | Lecture + | diffraction, problems.                       |              | 9   |
| Assignme    | Lab       |                                              |              | ,   |
| nts         |           |                                              |              |     |
| Short       | Lecture + | POLARIZATION                                 | 3            |     |
| questions   | Lab       |                                              | theoretical  | 10  |
| Short       | Lecture + | Polarization by                              |              |     |
| questions   | Lecture + | reflection                                   | 3 Practical  | 11  |
| questions   | Lau       | representation of the                        | 3            |     |
| Short       | Lecture + | vibrations in light,                         | 0            | 10  |
| questions   | Lab       | polarization angle and                       | theoretical  | 12  |
| 1           |           | Brewster's law                               |              |     |
|             | <b>.</b>  | Huygen's principle,                          | 3 Practical  |     |
| Short       | Lecture + | Young's experiment,                          |              | 13  |
| questions   | Lab       | interference fringes<br>from a double source |              |     |
| Attendanc   |           |                                              |              |     |
| e test      |           | ~                                            |              |     |
| (various    |           | Semester Exam                                |              | 14  |
| questions)  |           |                                              |              |     |
| Drawing     |           |                                              |              |     |
| an          |           |                                              |              |     |
| illustratio |           |                                              |              |     |
| n of the    |           | Review                                       |              | 1 Г |
| material    |           | Keview                                       |              | 15  |
| studied     |           |                                              |              |     |
| during the  |           |                                              |              |     |
| class       |           |                                              |              |     |

| 109. Infrastructu                                                                                                                                                                                           | ire                                                                                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|
| 1 - Fundamentals of opticsEdited by(Francis A. Jenkins &<br>Harvey E. White)2-Principles of optics ,by MAX BORN<br>Cambridge University Press,April2013Required readings :<br>17. Course Books<br>18. Other |                                                                                    |  |
| PowerPoint                                                                                                                                                                                                  | Special Requirements                                                               |  |
| Attending scientific seminars                                                                                                                                                                               | Social services (e.g. guest<br>lectures, vocational training and<br>field studies) |  |
| 110. Acceptance                                                                                                                                                                                             | ce                                                                                 |  |
|                                                                                                                                                                                                             | Prerequisites                                                                      |  |
|                                                                                                                                                                                                             | Minimum number of students                                                         |  |
|                                                                                                                                                                                                             | The largest number of students                                                     |  |

#### Review the performance of higher education institutions ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve. Proving whether he has made the most of the available learning opportunities. It must be linked to the description of program.

| Ministry of Higher Education and Scientific<br>Research / Anbar University | 111. Educational institution                        |
|----------------------------------------------------------------------------|-----------------------------------------------------|
| College of Education for Pure Sciences /<br>Department of Physics          | 112. University Department<br>/ Center              |
| Geometrical Optics                                                         | 113. Course Name/Code                               |
| Bachelor / first Level                                                     | 114. Programs in which it enters                    |
| Presence                                                                   | 115. Available Attendance<br>Forms                  |
| second Semester / 2022-2023                                                | 116. Semester / Year                                |
| 3 hours theoretical +3 practical/ week * 15<br>weeks = 90 hours / semester | 117. Number of Credit<br>Hours (Total)              |
| 2022/9/20                                                                  | 118. The history of preparation of this description |

#### **119**. Course Objectives:

The student should know the foundations of geometric optics (gg)

(hh)The student should know how light propagates, reflects, and refracts(ii) The student should know how images are formed in lenses and mirrors

(jj) The student knows the types of optical devices and how they work

120. Learning outcomes and methods of teaching, learning and evaluation

| GG. K                     | Inowledge and understanding                                      |
|---------------------------|------------------------------------------------------------------|
|                           | erstands how light is transmitted, reflected, and refracted      |
| 2-The student will        | know how images are formed in lenses and mirrors                 |
| HH. S                     | ubject-specific skills                                           |
|                           | ubjeet speeme skins                                              |
|                           |                                                                  |
|                           |                                                                  |
| • T                       | eaching and learning methods                                     |
| - Lecture                 | , discussion, short reports, problem solving                     |
| • E                       | valuation methods                                                |
|                           | test (essay and topical)                                         |
| -Activity                 |                                                                  |
| -Short questi<br>-Reports | ons                                                              |
| -Reports<br>-Duties       |                                                                  |
| -Final Exam               |                                                                  |
|                           |                                                                  |
| II. Thinkir               | ng skills                                                        |
| - Ask var                 | ious questions and brainstorm                                    |
| • T                       | eaching and learning methods                                     |
| - Dis                     | cussion, lecture, questioning                                    |
| • E                       | valuation methods                                                |
| 21. Achieve               | ment Tests                                                       |
| 22. Test me               | thods (interview and observation)                                |
| 23. Student               | feedback                                                         |
|                           |                                                                  |
|                           |                                                                  |
| II Conoro                 | l and transferable Skills (other skills related to employability |

## JJ. General and transferable Skills (other skills related to employability and personal development).

24. Verbal teaching behavior skills such as discussion, dialogue, explanation and interpretation.

25. Non-verbal teaching behavior skills, such as visual contact between the teacher and the student, and use of illustrations such as educational videos and pictures

- 26. Planning skill: such as the skill of determining the subject of the lesson, using appropriate means, preparing questions
- 27. Implementation skills: such as stimulating students' motivation, controlling and managing the classroom
- 28. Evaluation skills: such as preparing monthly tests, essays, objective



| 121. Course Structure                                         |                               |                                        |                                  |                                 |             |
|---------------------------------------------------------------|-------------------------------|----------------------------------------|----------------------------------|---------------------------------|-------------|
| Evaluati<br>on<br>method                                      | Method<br>of<br>educatio<br>n | Name of the<br>unit/course or<br>topic | Required<br>Learning<br>Outcomes | Hours                           | The<br>week |
| Short<br>questions<br>with<br>homewor<br>k solving            | Lecture                       | Propagation of light                   |                                  | 3<br>theoretical<br>3 Practical | 1           |
| Short<br>questions<br>with<br>homework<br>solving             | Lecture                       | Spherical surfaces                     |                                  | 3<br>theoretical                | 2           |
| <sup>\</sup> Short<br>questions                               | Lecture                       | Gaussian formula                       |                                  | 3 Practical                     | 3           |
| اسئلة قصيرة                                                   | Lecture                       | Thin lenses                            |                                  | 3<br>theoretical                | 4           |
| Short<br>questions<br>in<br>addition<br>to<br>assignmen<br>ts | Lecture                       | Lens makers<br>formula                 |                                  | 3 Practical                     | 5           |
| Short<br>questions                                            | Lecture                       | Image formation<br>using thin lenses   |                                  | 3<br>theoretical                | 6           |
| Attendanc<br>e test<br>(various<br>questions)                 |                               | Combination of<br>lenses               |                                  | 3 Practical                     | 7           |
| Short questions                                               | Lecture                       | Thick lenses                           |                                  | 3<br>theoretical                | 8           |
| Short<br>Questions<br>+<br>Assignme<br>nts                    | Lecture +<br>Lab              | Spherical mirrors                      |                                  | 3 Practical                     | 9           |
| Short<br>questions                                            | Lecture +<br>Lab              | IMAGE<br>FORMATION IN<br>SPHERICAL     |                                  | 3<br>theoretical                | 10          |

|                                                                                        |                  | MIRRORS             |                  |    |
|----------------------------------------------------------------------------------------|------------------|---------------------|------------------|----|
| Short<br>questions                                                                     | Lecture +<br>Lab | Mirror formula      | 3 Practical      | 11 |
| Short<br>questions                                                                     | Lecture +<br>Lab | aberrations         | 3<br>theoretical | 12 |
| Short<br>questions                                                                     | Lecture +<br>Lab | Optical instruments | 3 Practical      | 13 |
| Attendanc<br>e test<br>(various<br>questions)                                          |                  | Semester Exam       |                  | 14 |
| Drawing<br>an<br>illustratio<br>n of the<br>material<br>studied<br>during the<br>class |                  | Review              |                  | 15 |

| 122. Infrastructure                                                                                                                                                                                       |                                                                                    |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| <ol> <li>Fundamentals of optics</li> <li>Edited by(Francis A. Jenkins &amp;</li> <li>Harvey E. White)</li> <li>Principles of optics ,by MAX BORN</li> <li>Cambridge University Press,April2013</li> </ol> | Required readings :<br>19. Course Books<br>20. Other                               |  |  |  |
| • PowerPoint                                                                                                                                                                                              | Special Requirements                                                               |  |  |  |
| Attending scientific seminars                                                                                                                                                                             | Social services (e.g. guest<br>lectures, vocational training and<br>field studies) |  |  |  |
| 123. Acceptance                                                                                                                                                                                           |                                                                                    |  |  |  |
|                                                                                                                                                                                                           | Prerequisites                                                                      |  |  |  |
|                                                                                                                                                                                                           | Minimum number of students                                                         |  |  |  |
|                                                                                                                                                                                                           | The largest number of students                                                     |  |  |  |

#### Review the performance of higher education institutions ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve. Proving whether he has made the most of the available learning opportunities. It must be linked to the description of program.

| Ministry of Higher Education and Scientific    | 124. Educational institution |
|------------------------------------------------|------------------------------|
| Research / Anbar University                    |                              |
| College of Education for Pure Sciences /       | 125. University Department   |
| Department of Physics                          | / Center                     |
| Laser physics                                  | 126. Course Name/Code        |
|                                                |                              |
| Bachelor / fourth Level                        | 127. Programs in which it    |
|                                                | enters                       |
| Presence                                       | 128. Available Attendance    |
|                                                | Forms                        |
| second Semester / 2022-2023                    | 129. Semester / Year         |
|                                                |                              |
| 2 hours theoretical / week $*$ 15 weeks $=$ 30 | 130. Number of Credit        |
| hours / semester                               | Hours (Total)                |
| 2022/9/20                                      | 131. The history of          |
|                                                | preparation of this          |
|                                                | description                  |
| 122 0 01: //                                   |                              |

#### 132. Course Objectives:

| ( <b>k</b> k) | To make the student understand the idea of lasers                      |
|---------------|------------------------------------------------------------------------|
| (ll) Intr     | oduce the student to the foundations of laser generation               |
| (mm)          | Introduce the student to the optical resonator, its purpose and types  |
| (nn)          | Introduce the student to the pumping methods and pumping plans used in |
| laser         | r devices                                                              |
| (00)          | Introduce the student to the types of lasers and power plans           |
| <b>(pp)</b>   | Introducing the student to laser output and the techniques used in it  |
| (qq)          | - Introducing the student to the properties of lasers                  |

KK. Knowledge and understanding 1-Introducing the student to the idea of lasers. 2- Introducing the student to the foundations of laser generation. 3- Introducing the student to the optical resonator, its purpose and types. 4- Introducing the student to the pumping methods and pumping plans used in laser devices.. 5- Introducing the student to the types of lasers and their diagrams. The energy in it. 6-Introducing the student to the laser output and the techniques used in it. 7-Introducing the student to the properties of lasers. 8- Introducing the student to the applications of laser rays in various fields.

| LL. Subject-specific skills                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Teaching and learning methods                                                                                                                        |
| - Lecture, discussion, short reports, problem solving                                                                                                |
| Evaluation methods                                                                                                                                   |
| <ul> <li>Monthly test (essay and topical)</li> <li>Activity</li> <li>Short questions</li> <li>Reports</li> <li>Duties</li> <li>Final Exam</li> </ul> |
| MM. Thinking skills                                                                                                                                  |
| - Ask various questions and brainstorm                                                                                                               |
| Teaching and learning methods                                                                                                                        |
| - Discussion, lecture, questioning                                                                                                                   |
| Evaluation methods                                                                                                                                   |
| <ul> <li>24. Achievement Tests</li> <li>25. Test methods (interview and observation)</li> <li>26. Student feedback</li> </ul>                        |

## NN. General and transferable Skills (other skills related to employability and personal development).

- 29. Verbal teaching behavior skills such as discussion, dialogue, explanation and interpretation.30. Non-verbal teaching behavior skills, such as visual contact between the teacher and the
- student, and use of illustrations such as educational videos and pictures
- 31. Planning skill: such as the skill of determining the subject of the lesson, using appropriate means, preparing questions
- 32. Implementation skills: such as stimulating students' motivation, controlling and managing the classroom
- 33. Evaluation skills: such as preparing monthly tests, essays, objective

|                                                               | 134. Course Structure         |                                                        |                                  |               |             |
|---------------------------------------------------------------|-------------------------------|--------------------------------------------------------|----------------------------------|---------------|-------------|
| Evaluati<br>on<br>method                                      | Method<br>of<br>educatio<br>n | Name of the<br>unit/course or<br>topic                 | Required<br>Learning<br>Outcomes | Hours         | The<br>week |
| Short<br>questions<br>with<br>homewor<br>k solving            | Lecture                       | Laser and maser<br>idea                                |                                  | 2 theoretical | 1           |
| Short<br>questions<br>with<br>homework<br>solving             | Lecture                       | Differences<br>between laser and<br>maser              |                                  | 2 theoretical | 2           |
| <sup>I</sup> Short<br>questions                               | Lecture                       | Interaction between<br>laser light and the<br>material |                                  | 2 theoretical | 3           |
| اسئلة قصيرة                                                   | Lecture                       | Enstien's coeffiecients                                |                                  | 2 theoretical | 4           |
| Short<br>questions<br>in<br>addition<br>to<br>assignmen<br>ts | Lecture                       | Population at<br>thermal equilibrium                   |                                  | 2 theoretical | 5           |
| Short<br>questions                                            | Lecture                       | Principles of laser<br>production                      |                                  | 2 theoretical | 6           |
| Attendanc<br>e test<br>(various<br>questions)                 |                               | Plans of pumping                                       |                                  | 2 theoretical | 7           |
| Short questions                                               | Lecture                       | Methods of<br>pumping                                  |                                  | 2 theoretical | 8           |
| Short<br>Questions<br>+<br>Assignme<br>nts                    | Lecture +<br>Lab              | Resonator definition<br>and operation                  |                                  | 2 theoretical | 9           |
| Short<br>questions                                            | Lecture +<br>Lab              | Laser resonator stability                              |                                  | 2 theoretical | 10          |

| Short       | Lecture + | Resonator design | 2 theoretical | 11 |
|-------------|-----------|------------------|---------------|----|
| questions   | Lab       |                  |               | 11 |
| Short       | Lecture + | Laser output     | 2 theoretical | 12 |
| questions   | Lab       | *                |               | 12 |
| Short       | Lecture + | Laser types      | 2 theoretical | 13 |
| questions   | Lab       | <b>V</b> 1       |               | 15 |
| Attendanc   |           |                  |               |    |
| e test      |           | Semester Exam    |               | 14 |
| (various    |           | Semester Exam    |               | 14 |
| questions)  |           |                  |               |    |
| Drawing     |           |                  |               |    |
| an          |           |                  |               |    |
| illustratio |           |                  |               |    |
| n of the    |           | Review           |               | 15 |
| material    |           | Kevlew           |               | 15 |
| studied     |           |                  |               |    |
| during the  |           |                  |               |    |
| class       |           |                  |               |    |

| 135. Infrastructure                                                                                                                                                                                                                                                         |                                                                                    |                                |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------|--|--|
| 1-Laser physics and some practical<br>applications," Siham Afif Qandala.<br>Publishing House General Cultural Affairs<br>Publication year 1992<br>-2Laser and its applications<br>The author is Farouk bin Abdullah Al-<br>Watban<br>Publisher: Mars Publishing House, 1987 | Required readings :<br>21. Course Books<br>22. Other                               |                                |  |  |
| • PowerPoint                                                                                                                                                                                                                                                                | Special Requirements                                                               |                                |  |  |
| Attending scientific seminars                                                                                                                                                                                                                                               | Social services (e.g. guest<br>lectures, vocational training and<br>field studies) |                                |  |  |
| 136. Acce                                                                                                                                                                                                                                                                   | 136. Acceptance                                                                    |                                |  |  |
|                                                                                                                                                                                                                                                                             |                                                                                    | Prerequisites                  |  |  |
|                                                                                                                                                                                                                                                                             |                                                                                    | Minimum number of students     |  |  |
|                                                                                                                                                                                                                                                                             |                                                                                    | The largest number of students |  |  |