دليل المواد الدر اسية | Modules Catalogue | 2023-2024

University of Anbar

جامعة الأنبار

First Cycle – Bachelor's Degree (B.Sc.) - Electrical Engineering

بكالوريوس - هندسة كهربائية

Table of Contents

- 1. Overview
- 2. Undergraduate Modules 2023-2024
- 3. Contact

1. Overview

This catalogue is about the courses (modules) given by the program of Electrical Engineering to gain the Bachelor of Science degree. The program delivers (48) Modules with (6000) total student workload hours and 240 total ECTS. The module delivery is based on the Bologna Process.

نظره عامه يتناول هذا الدليل المواد الدراسية التي يقدمها برنامج الهندسة الكهربائية للحصول على درجة بكالوريوس العلوم. يقدم البرنامج (48) مادة دراسية، على سبيل المثال، مع (٦٠٠٠) إجمالي ساعات حمل الطالب و ٢٤٠ إجمالي وحدات أوروبية. يعتمد تقديم المواد الدراسية على عملية بولونيا.

2. Undergraduate Courses 2023-2024

Level:UG1: Semester 1

Module 1

Code	Course/Module Title ECTS Semester						
ENG003	Calculus I	6	1				
Class (hr/w)	Class (hr/w) Lect/Lab/Pr/Tut/Sem SSWL (hr/sem) USWL (hr/w)						
3	3 0/0/0/1/0 63 87						
Description							
This course provides a comprehensive guide and up-to-date treatment of engineering							
mathematics with an in-depth overview of the many mathematical. It is intended to							
introduce students of engineering, physics, mathematics, computer science, and related							
fields to those areas of applied mathematics that are most relevant for solving practical							
problems.							

Code	Course/Module Title ECTS Semester					
ENG002	Chemistry	5	1			
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)			
3	0/2/0/0/0	78	47			
Description	Description					
Chemistry and Measurement and significant figures. Atoms, molecules and ions. Formulas						
and names. Stoichiometry and chemical calculations. Chemical reactions.						
Thermochemistry and enthalpy changes. Quantum theory of the atom and electron						
configuration. Chemical bonding and molecular geometry. The Lab. Section presents						
Safety in the Lab. Measurement of mass, volume and density. Identification of an unknown						
compound. Qualitative analysis of anions. Empirical formula of a compound. Thermal						
decomposition of hydrates. Stoichiometric determination. Acidbase and redox titrations.						
Enthalpy of reactions.						

Code	CodeCourse/Module TitleECTSSemester						
ENG007	ENG007Engineering Drawing61						
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)				
2	0 / 2 / 0 / 2 / 0	93	57				
Description							
This course discusses the fundamental concepts of engineering graphics. It gives also an introduction to computer graphics using CAD software. The following topics are covered: Drawing conventions such as standards, line types and dimensioning; drawing of inclined							
and curved surfaces; deducting the orthographic views from a pictorial; drawing full and half sections; deducting an orthographic view from given two views; pictorial sketching							
(isometric and oblique).							

Module 4

Code	Course/Module Title	ECTS	Semester
ENG005	Fundamentals of Electrical Engineering I	6	1
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
2	0 / 2 / 0 / 1 / 0	78	72
Description			
This course introduces the basics of electric circuits, series and parallel connection, and DC			

This course introduces the basics of electric circuits, series and parallel connection, and DC circuit analysis. Additionally, the course presents ohms law, Kirchhoff laws for solving series parallel circuits. Furthermore, it introduces circuit theorem and their analysis; including mesh, nodal, and superposition theorems. Thevenin and Norton theorems are also included. Finally, the course introduces capacitors and inductor into the circuit and how to deal with it under DC condition..

Module 5

Code	Course/Module Title	ECTS	Semester		
UOA005	UOA005 Human Rights and Democracy 2				
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)		
2	0 / 0 / 0 / 0 / 0	33	17		
Description					
This cours	e is designed to give the student the defini	tion of freedom der	mocracy, the		
concept of democracy, history of democracy, the properties of democracy, traditional					
Greek democracy, its principles, modern democracy, and pressure groups. This course is					
designed to give the student the definition of freedom and the right language and					
idiomatically and legitimacy of the user, Origin of the right in the eyes of Islamic law,					
Elements of the right and types of, Personal freedom, Intellectual freedom, Rights and					
economic freedoms, Islam and Slavery, Human rights objectives, The use of freedom and					
the right general project, The right of a Muslim to his Muslim brother, Parental rights,					
Right neighbor, The right of women, Human rights in the heavenly religions, Religious					
	tolerance in Islam.				

|--|

ENG001	Physics	5	1			
Class (hr/w)	Lect/Lab/Pr/Tut/Sem SSWL (hr/sem) USWL (h					
3	0/2/0/0/0	0/2/0/0/0 78 47				
Description						
This is the first	t course in the two-semester sequence of c	alculus-based intro	ductory physics			
courses desi	gned to meet the needs of student majorin	g in Engineering. T	he course is a			
survey of	the concepts, principles, methods and maj	or findings of class	ical Physics			
.Primarily, it covers Newtonian mechanics, and thermal Physics, with topics include:						
Physics and measurement, Vectors, kinematics and dynamics of motion of a single particle						
in one and tw	vo dimensions, work and energy, system o	of particles, linear m	nomentum and			
collisions, kir	nematics and dynamics of rotational motio	n, equilibrium of ri	gid bodies, and			
elasticity, fluid static and fluid dynamics, oscillatory motion, wave motion, and						
temperature and thermal equilibrium.						
The subject matter of the course will be covered in The Lab-based section which presents						
an introduction to the methods of experimental physics emphasis is on developing						
student's skills in experimental techniques, data analysis, and scientific reporting of lab						
work. During	the course students execute a series of exp	eriments on Kinem	atics of motion,			

kinetic and potential energy, Oscillatory motion, Thermal properties of matter, and Viscosity. The course includes computer-based experiments on Classical Mechanic

Level:UG1: Semester 2

Module 7

Code	Course/Module TitleECTSSemester					
UOA001	DA001Arabic Language I22					
Class (hr/w)	w) Lect/Lab/Pr/Tut/Sem SSWL (hr/sem) USWL (hr/w)					
2	0/0/0/0 33 17					
Description						
This course aims at building students' familiarity with and competence in Arabic literature						
in its various genres to increase their ability to appreciate literature and to develop their						
awarene	ss of its concepts through the study of poet	try, novel and the si	hort story.			

CodeCourse/Module TitleECTSSemester						
ENG004 Calculus II 6 2						
Class (hr/w) Lect/Lab/Pr/Tut/Sem SSWL (hr/sem) USWL (hr/s						
3	3 0/0/0/1/0 63 87					
Description						
This course provides a comprehensive guide and up-to-date treatment of engineering mathematics with an in-depth overview of the many mathematical. It is intended to introduce students of engineering, physics, mathematics, computer science, and related fields to those areas of applied mathematics that are most relevant for solving practical problems.						

Module 9			
Code	Course/Module Title	ECTS	Semester

UOA007	UOA007Computer Science I32					
Class (hr/w) Lect/Lab/Pr/Tut/Sem SSWL (hr/sem) USWL (hr/w						
1	1 0 / 2 / 0 / 0 / 0 48 27					
Description						
This course presents an overview of fundamental computer science topics and an						
introduction to computer programming. Overview topics include an introduction to						
computer science and its history, computer hardware, operating systems, digitization of						
data, computer networks, office and application.						

Code	Course/Module Title ECTS Semester					
ELE002	Digital Techniques 5 2					
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)			
2	0/2/0/0/0	63	62			
Description	Description					
This course introduces the student to digital fundamentals concepts, which includes:						
numbers systems. Codes, Types of logic gates, and Boolean expressions of different						
circuits. The course also examines the design of main logic circuits, along with an						
introduction to analysis of clocked sequential circuits. This course introduces the student to						
understand the Flip-flops, types of flip-flops, there logic symbols, and excitation tables of						
different flip-flops. The course also examines the design of main logic circuits, along with						
an introduction to analysis of clocked sequential circuits and the topics of sequential circuit						
analysis and design, PLD, and Logic families.						

Module 11

Code	Course/Module Title	ECTS	Semester	
ENG006	Engineering Mechanics (Static)	6	2	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
3	0/0/1/0	63	87	
Description				
This course is an introduction to learning and applying the principles required to solve engineering mechanics problems. Concepts will be applied in this course from previous courses you have taken in basic math and physics. The course addresses the modeling and				
analysis of static equilibrium problems with an emphasis on real world engineering applications and problem solving				

Code	Course/Module Title	ECTS	Semester
UOA003	English Language I	2	2
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
2	0 / 0 / 0 / 0 / 0	33	17
Description			
This course is designed to enable the students to achieve academic oral and written communication to the standard required at the university level. The course integrates all the language skills with emphasis on writing, and stimulates students' imagination, and promotes personal expression. Students, in this course, are trained to apply critical thinking			

skills to a wide range of challenging subjects from diverse scientific topics. Course activities include writing various types of academic essays, acquiring advanced academic vocabulary, and getting involved in group discussions and debates. In addition, the course also includes other skills to consolidate the main skills, such as further readings in electrical engineering.

Module 13

Code	Course/Module Title	ECTS	Semester	
ELE001	Fundamentals of Electrical Engineering II	6	2	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
3	0 / 2 / 0 / 1 / 0	93	57	
Description				
Capacitors, Inductors, series and parallel connection, AC circuit analysis, sinusoidal review, complex numbers, sinusoidal circuits, impedance and admittance, series and parallel connection and phase relation in Sinusoidal Circuits, Phasor Diagram, More				
Sinusoidal Circuits, instantaneous, average, apparent power and power factor and reactive				
power, complex power and power triangle, RMS values, maximum power transfer in				
sinusoidal circuits. Resonance in AC Circuits, Magnetic Circuits.				

Level:UG2: Semester 3

Module 13

Code	Course/Module Title	ECTS	Semester
UOA002	Arabic Language II	2	3
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
2	0/0/0/0/0	30	20
Description			
0			

Module 14

Code	Course/Module Title	ECTS	Semester	
ENG008	Calculus III	6	3	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
3	0/0/1/0	63	87	
Description				
Advanced topics in calculus, including vectors and vector-valued functions, partial				
differentiation, Lagrange multipliers, multiple integrals, and Jacobians; application of the				
line integral, including Green's Theorem, the Divergence Theorem, and Stokes' Theorem.				

Code	Course/Module Title	ECTS	Semester
UOA006	Crimes of Baath Party	2	3
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
2	0/0/0/0/0	33	17

Description		
	0	

Code	Course/Module Title	ECTS	Semester	
ELE015	DC Machines I	4	3	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
2	0/2/0/1/0	78	22	
Description				
This course is designed to enable the students to understand the DC machines as a required at department level. The course integrates the Generator-principle of rotating electrical machines and calculation of induced e.m.f., energy, power and torque in DC machines. Construction of DC machines and function of commutator. Type of armature windings. Calculation of m.m.f. per pole. Type of excitation connections. Armature reaction.				

Module 17

Code	Course/Module Title	ECTS	Semester	
ELE003	Electric Circuits I	5	3	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
3	0/0/1/0	63	62	
Description				
This course is a first course on electric circuits. The course is designed to provide students				
with an importance for electrical engineering field: Natural and Step Response of RL and				
RC Circuits, Sequential Switching; Natural and Step Response of Parallel and Series RLC				
Circuits. Operation Amplifiers. Balanced Three-Phase Circuits, Analysis of circuits (Wye,				
Delta); Power Calculations. Unbalanced Three-Phase systems.				

Module 18

Code	Course/Module Title	ECTS	Semester	
ELE005	Electromagnetic Fields I	5	3	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
2	0/0/0/1/0	48	77	
Description				
This course is designed for students to understand vector analysis, Coulomb's law and electric field intensity, Electric flux density, Gauss's law and divergence, Energy and potential.				

Code	Course/Module Title	ECTS	Semester
UOA004	English Language II	2	3
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
2	0/0/0/0/0	30	20
Description			
	0		

Code	Course/Module Title	ECTS	Semester	
ELE007	Fundamentals of Electronics I	4	3	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
2	0/2/0/1/0	78	22	
Description				
Semiconductor Materials and PN Junction: Forward biased, Reversed biased, and I-V				
Relationship. Diode and Zener diode circuits: DC analysis, models and applications.				
Bipolar junction transistor. Transistor Structure, and I-V Relationship. DC-Biasing BJT				
and Basic transistor applications: Switch, Digital Logic, etc. Field Effect Transistors				
(FETs): Structure and Operation of JFET P-Channel, N-Channel, Enhancement-Mode,				
Depletion-Mode MOSEETs				

Level:UG2: Semester 4

Module 19					
Code	Course/Module Title	ECTS	Semester		
ENG009	Calculus IV	6	4		
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)		
3	0/0/1/0	63	87		
Description					
Differential Ed	quations, begins with some definition	ns and terminology a	nd mathematical		
models used in a differential equations course. First-order and higher-order differential					
equations, along with the methods of solutions and their applications are introduced.					
Modeling	Modeling with higher-order, Laplace transform, and systems of linear first-order				
differential equations are covered. At the end, students learn series solutions of linear					
equations. Numerical methods are covered throughout the course. This course focuses on					
differential equations and their applications in science and engineering.					

Module 20

Code	Course/Module Title	ECTS	Semester
UOA008	Computer Science II	3	4
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
1	0/2/0/0/0	45	30
Description			
	0		

Code	Course/Module Title	ECTS	Semester
ELE016	DC Machines II	4	4
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
2	0/2/0/1/0	78	22
Description			

This course is designed to enable the students to understand the DC machines as a required at department level. The course integrates the Losses and efficiency of D.C. generators. Type and characteristic of D.C. generator. Parallel operation of D.C. generators. Motorsprinciple of operation of D.C. motors. Calculation of speed, torque, starting of D.C. motors, characteristic (shunt, series, compound, separately), speed control, electric breaking. Brush less DC motor.

Module 22

Code	Course/Module Title	ECTS	Semester	
ELE004	Electric Circuits II	4	4	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
3	0/0/1/0	63	37	
Description				
This course is a second course on electric circuits. The focus of the course is to impart useful skills on the students to enhance their circuit analysis capability. Hence, the course				

is designed to provide students to enhance their circuit analysis capability. Hence, the course is designed to provide students with a knowledge on circuit analysis by Introducing the topic and illustrating its importance for electrical engineering field: Laplace transform and relation between current and voltage for resistance, capacitance and inductance, Laplace transform and its applications in electric circuit the concept of magnetic coupling, Analysis of magnetic coupled circuits, Linear transformers, Ideal transformers. Two-port networks and its different equation forms, Evaluation of its parameter, Interconnected two-port networks, Frequency response. High-pass, low-pass, Band pass, and Band-stop filters. Revision and a set of solved examples.

Module 23

Code	Course/Module Title	ECTS	Semester		
ELE006	Electromagnetic Fields II	5	4		
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)		
2	0/0/1/0	48	77		
Description					
This course is designed for students to understand current and conductors dielectrics and					
capacitance, Poisson's and Laplace's equations, the steady magnetic field, Magnetic forces,					
materia	materials and inductance. Time-varying fields and Maxwell's equations.				

Code	Course/Module Title	ECTS	Semester	
ENG010	Engineering Statistics	4	4	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
3	0/0/0/0/0	48	52	
Description				
Statistical Engineering models are based on mathematics and probability theory. This				
course provides students with a working knowledge of fundamental statistics principles and				
probability in ac	ldition to a preface to the regression	and correlation analy	vsis. By the end of	
the semester, students should be able to determine when each of the various topics we have				
covered is appropriate to use, and to apply them to practical engineering situations or				
problems.	problems. This course will cover techniques on data collection and presentation,			

descriptive statistics, basic elements of probability theory, sampling techniques and theory, statistical estimation, hypothesis testing and regression analysis.

Module 25

Code	Course/Module Title	ECTS	Semester	
ELE008	Fundamentals of Electronics II	4	4	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
2	0/2/0/1/0	78	22	
Description				
small signal analysis of BJT circuits of transistor. Field effect Transistor (JFET), DC and small signal analysis of JFET circuits, MOSFETs, DC circuit analysis of Depletion and Enhancement MOSFETs and JFETs. Basic MOSFET applications, Switch, Digital Logic				
Gates, and Amplifiers.				

Level:UG3: Semester 5

Module 25					
Code	Course/Module Title	ECTS	Semester		
ELE020	Computer Networks	4	5		
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)		
2	0 / 0 / 0 / 1 / 0	48	52		
Description					
This course presents an overview of fundamental computer science topics and an					
introduction to computer programming. Overview topics include an introduction to					
computer science and its history, computer hardware, operating systems, digitization of					
	data, computer networks, office and application.				

Module 26

Code	Course/Module Title	ECTS	Semester	
ELE017	AC Machines I	5	5	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
2	0 / 2 / 0 / 1 / 0	78	47	
Description				
This course is designed to enable the students to understand the AC machines especially induction motors to the standard required at department level. The course integrates				
Introduction of AC machines construction and operation principle for students of the third				
year in electrical engineering department. Students, in this course, will deals with single				
phase induction machine, equivalent circuit, three phase induction machines etc.				
Theoretical preparation of students to work in the field of electrical machine design				

Theoretical preparation of students to work in the field of electrical machine design, operation, fault detection and control. Applying numerical method to solve industrial problem.

Code	Course/Module Title	ECTS	Semester
ELE013	Analog Communications and Noise	4	5

Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
2	0 / 0 / 0 / 1 / 0	48	52	
Description				
This course introduces the fundamentals of communication system engineering.				
Specifically, the analog communication systems (AM and FM). The noise within the				
communication systems is also introduced.				

Code	Course/Module Title	ECTS	Semester
ELE021	Electric Power I	5	5
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
2	0/0/1/0	48	77
Description			
This course is designed to introduce elements of power system, generation unit, thermal			
plants, Hyd	ro plants, Steam plants, nuclear plants.	Explain principle of	Load factor,
capacity factor	r, transmission line constants, resistance	e, inductance, single	phase two wire,
three phase, s	ymmetrical distance, unsymmetrical di	stance, flat arrangen	nent, horizontal
arrangement, l	nexagonal arrangement. Give an overvi	ew of Capacitance, s	single phase two
wire, three	phase, symmetrical distance, unsymmetrical	etrical distance, flat a	arrangement,
horizontal ar	rangement, earth effect. Performance d	lesign of T.L, short T	L. equivalent
circuit, voltage regulation, phasor diagram, Medium T.L. equivalent circuit, voltage			
regulation, phasor diagram, T model, pi model, Long T.L, equivalent circuit, voltage			
regulation, phasor diagram.			

Module 29

Code	Course/Module Title	ECTS	Semester
ELE009	Electronics I	5	5
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
2	0 / 2 / 0 / 1 / 0	78	47
Description			
Multistage and compound Configurations, Amplifier frequency response. Differential amplifier, Application to CMOS and BIMOS circuits, Operational amplifier Characteristics, Op -Amp applications: Constant-Gain Multiplier, Voltage Summing, Voltage Buffer, Controlled Sources, Comparator, Log and antilog amplifiers, Active			
Filters.			

Code	Course/Module Title	ECTS	Semester
ELE011	Engineering Analysis I	7	5
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
3	0 / 0 / 0 / 1 / 0	63	112
Description			
This course introduces the fundamentals of the continuous Engineering Analysis. It studies			
the linear time-invariant (LTI) systems and their impulse response, convolution, and			
correlation. The Fourier transform, and series of continuous Engineering Analysis are also			
studied. The	course teaches the frequency response	and its applications i	n the electrical

systems and signals communication. The types and designs of analog filters in Fourier domain are presented.

Level:UG3: Semester 6

Module 31

Course/Module Title	ECTS	Semester		
Computer Programming	4	6		
Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)		
0/2/0/0/0	48	52		
Description This course provides introduction to MATLAB. It is designed to give students fluency in MATLAB, including popular toolboxes. Programming in MATLAB includes input and output of data, algebraic and logical expressions and operators, hierarchy of precedence of operations, all data types including complex numbers and strings, structured and cell arrays, array indexing and array operations, matrices and matrix operations, control structures, loops, script and function m-files, function handles and their use, graphics and				
	Course/Module Title Computer Programming Lect/Lab/Pr/Tut/Sem 0/2/0/0/0 rides introduction to MATLAB. uding popular toolboxes. Progra gebraic and logical expressions data types including complex m ndexing and array operations, m , script and function m-files, fur ns of MATLAB to solutions of o	Course/Module TitleECTSComputer Programming4Lect/Lab/Pr/Tut/SemSSWL (hr/sem)0/2/0/048vides introduction to MATLAB. It is designed to give suding popular toolboxes. Programming in MATLAB isgebraic and logical expressions and operators, hierarchdata types including complex numbers and strings, strndexing and array operations, matrices and matrix ope, script and function m-files, function handles and theirns of MATLAB to solutions of engineering problems i		

systems of linear equations. Introduction to Simulink.

Module 32

Code	Course/Module Title	ECTS	Semester	
ELE018	AC Machines II	5	6	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
2	0/2/0/1/0	78	47	
Description				
This course is designed to enable the students to understanding synchronous machines and				
transformer	rs to the standard required at dep	partment level. The cou	rse integrates	
Introduction of	SG and SM definition of all type	es, operation and control	ol of Synchronous	
machines an	nd transformer for students of th	e third year in electrica	al engineering	
department. Stu	idents, in this course, will deals	with operation principl	le of synchronous	
generator, equivalent circuit of SG and efficiency calculation. Study motor operation mode				
and its equivalent circuit. Efficiency calculation of SM, starting and stopping of SM.				
introduction of transformers and its several types. Power transformer and distribution				
transformer				

Code	Course/Module Title	ECTS	Semester
ELE014	Digital Communications	5	6
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
2	0/2/0/1/0	78	47
Description			
This course introduces the fundamentals of the digital communication systems. It discusses different techniques of transmitting analog signals in form of discrete/binary signals. Different carrier modulation methods of the binary data are presented.			

Code	Course/Module Title	ECTS	Semester
ELE022	Electric Power II	5	6
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
2	0/0/1/0	48	77
Description			
This course is designed to introduce the 2-port network, ABCD constants, power circle			
diagram, power flow through T.L. Give an overview of Overhead T.L insulators, string			
insulators, voltage distribution, and corona. Explain Sag and stress calculations, parabola			
equation, effect of ice and wind, different level supports, economic operation, and			
underground cables.			

Module 35

Code	Course/Module Title	ECTS	Semester		
ELE010	Electronics II	5	6		
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)		
2	0/2/0/1/0	78	47		
Description					
Power Amplifiers: Definitions and Amplifier Types. Feedback Circuits: Feedback					
Concepts, Feedback Connection Types. Linear Oscillators: Basic Principles of Sinusoidal					
Oscillators, Positive Feedback and Oscillation, The Oscillation Criterion. RC Oscillator:					
RC Phase-Shift	RC Phase-Shift Oscillator and Wien-Bridge Oscillator. LC and Crystal Oscillator. Non-				
Sinusoidal Oscillators and Tim Circuits. Wave shaping of function generator, Monostable					
Multi-vibrator, Astable Multi-vibrator. Power Supplies (Voltage Regulators) and Practical					
Applications.					

Module 36

Code	Course/Module Title	ECTS	Semester	
ELE012	Engineering Analysis II	6	6	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
3	0/0/1/0	63	87	
Description				
This course introduces the fundamentals of the discrete Engineering Analysis. It studies the				
linear time-invariant (LTI) discrete systems and their impulse response, convolution, and				
correlation. The Fourier transform, and series of discrete Engineering Analysis are also				
studied. The course introduces the z-Transform and its applications in the electrical				
systems and signals communication.				

Level:UG4: Semester 7

Code	Course/Module Title	ECTS	Semester
ELE025	Control Theory I	6	7
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
2	0 / 2 / 0 / 1 / 0	78	72

Description			
This course giv	ves the students a theoretical foundation	on for understanding	feedback control
system analysi	is it Introduce basic techniques for an	alysis and design of f	feedback control
systems. It give	s a definition about control theory and	l a comparison betwe	een open loop and
closed loop systems, derivation of transfer function and making a mathematical			
representation for various types of physical systems, block diagram formulation and			
reduction, sig	nal flow graph formula. The course en	nables the student to	know test input
signals and transit response analysis for first, second and higher order systems, error			
analy	sis and stability theorem in s domain	using Routh-hurtize	criteria.

Code	Course/Module Title	ECTS	Semester	
ELE023	Electric Power III	6	7	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
2	0/0/1/0	48	102	
Description				
This course is designed to enable the students to understand of power system analysis for students of the Fourth year in electrical engineering department. The course integrates Power system representation; Per unit system; Balanced and unbalanced faults, Symmetrical fault calculations. Symmetrical components, Unsymmetrical faults; Synchronous machine in power system; Power system load flow problems. Direct methods involving inversion of the nodal admittance matrix, iterative methods Gauss-Seidal				
method, Newton Raphson method;				

Module 39

Code	Course/Module Title	ECTS	Semester
ENG011	Engineering Numerical Methods	5	7
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
3	0/2/0/0/0	78	47
Description			
The numerical methods course involves solving engineering problems drawn from all			
fields of engineering. The numerical methods include: Error analysis, roots of nonlinear			
algebraic equations, solution of linear and transcendental simultaneous equations, matrix			
and vector manipulation, curve fitting and interpolation, numerical integration and			
differentiation, solution of ordinary and partial differential equations.			

Code	Course/Module Title	ECTS	Semester	
ENG012	Ethics and Leadership Skills	2	7	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
2	0 / 0 / 0 / 0 / 0	33	17	
Description				
This course is designed for engineering students who are interested in advancing into management and leadership roles. You will gain a perspective on what it is like to be an engineering leader. You will develop awareness of your own strengths and weaknesses as a leader when you are placed in charge of a project. You will learn how to leverage your				
strengths and control your weaknesses. You will also learn how to manage relationships				

with your team members and how to set up a creative environment for your team to motivate each team member to reach his or her potential. You will also learn how to deal with different ethical issues that are related to engineering field.

Module 41

Code	Course/Module Title	ECTS	Semester
ELE028	Final Year Project I	4	7
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
1	1 / 2 / 0 / 0 / 1	63	37
Description			
0			

Module 42

Code	Course/Module Title	ECTS	Semester	
ELE027	Information Theory	7	7	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
2	0/0/1/0	48	127	
Description				
This course will cover the following topics: Information Presentation and Information				
Sources, Measures of Information, Entropy and Information, Entropy Ergodic Theorem,				
Information Rate, Channel modeling, Introduction to Coding, Channel Coding, Source				
Coding, Coding for Noisy Channels, Block Codes, Convolutional Code, Optimal Error				
Correction Codes				

Level:UG4: Semester 8

Module 43

Code	Course/Module Title	ECTS	Semester
ELE026	Control Theory II	6	8
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
2	0 / 2 / 0 / 1 / 0	78	72
Description			
This course gives the students the ability for understanding steps and procedure drawing root locus plot, and designing compensator using root locus method, frequency domain analysis including polar plot, bode plot, gain and phase margin, Nyquist stability criteria, three term controller (PD, PI, PID) controllers. The course focuses on analysis of control systems in state space and the methods of design of control system using state space approach. In the end of the course, the course introduces sampled data systems and analysis			

Code	Course/Module Title	ECTS	Semester
ELE034	Digital Electronics	5	8
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)

2	0 / 0 / 0 / 1 / 0	48	77		
Description					
This course is	This course is designed to enable the students to understand the Digital Electronics circuits.				
The course concerned with design and implementation of digital circuits using finite state					
machines (synchronous and asynchronous), Studying various types of digital to anlage					
(D/A) and analog to digital (A/D) convertors. Knowing the characteristics and types of					
different logic families, studying the construction and types of Semiconductor memories					
and programmable logic devices.					

Code	Course/Module Title	ECTS	Semester
ELE029	Final Year Project II	4	8
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
1	1 / 2 / 0 / 0 / 1	63	37
Description			
0			

Module 46

Code	Course/Module Title	ECTS	Semester	
ELE024	Power Electronics	5	8	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
2	0/0/1/0	48	77	
Description				
Power Semiconductor Devices: Power Diode, Thyristor, Diac, Triac, BJT Transistor, MOSFET. AC/DC converters (Rectifier), Uncontrolled and Controlled Half and Full wave Rectifier. DC/DC Convertor (Choppers), DC/AC Convertor (Inverters), AC/AC Convertor (Cyclo-converters). Static Switches.				

Module 47

Code	Course/Module Title	ECTS	Semester	
ELE039	Power System Analysis	5	8	
Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)	
2	0/0/1/0	48	77	
Description				
This course is designed to enable the students to understand of power system analysis for				
students of the Fourth year in electrical engineering department. The course integrates				
Power system stability; Study of protection of power system generation, transmission and				
distribution. Study of important parts of system protection. explanation of grounding				
system. Introduction of distribution system. High voltage DC transmission system				
performance.				

Code	Course/Module Title	ECTS	Semester
ELE036	Programmable Logic Controller (PLC)	5	8

Class (hr/w)	Lect/Lab/Pr/Tut/Sem	SSWL (hr/sem)	USWL (hr/w)
2	0/2/0/1/0	78	47
Description			
Understand the fundamentals Programmable Logic Controllers systems. Identify the types of PLC communications and network systems. Design, edit, test, and document PLC Ladder Logic Programs. Diagnose and troubleshoot PLCs using Rockwell's A.I. and R.S. Series software. Specify safety consideration for personnel, field devices and automated equipment			

3. Contact

Program Manager: Naser Farhan Abdullah | PhD in Communications Engineering | Assistant Prof. Email: naser.falahy@uoanbar.edu.iq Mobile no.: +9647506862755

Program Coordinator: Abdullah Khalid Ahmed Al-Mash'hadany | MSc in Electrical engineering | Lecturer Email: electrical.eng.dep@uoanbar.edu.iq Mobile no.: +9647811839384