Fundumantal of Ecctranicll

Second Class

Chapter05: BJT AC Analysis
Lec05_p1
Munther N. Thiyab

2019-2020

BJT Transistor Modeling

- A model is an equivalent circuit that represents the AC characteristics of the transistor.
- A model uses circuit elements that approximate the behavior of the transistor.
- There are two models commonly used in small signal AC analysis of a transistor:
- \mathbf{r}_{e} model
- Hybrid equivalent model

BJT Transistor Modeling

Capacitors chosen with very
small reactance at the frequency
of application \rightarrow replaced by
low-resistance or short circuit.

Removal of the dc supply and insertion of the short-circuit equivalent for the capacitors.

The r_{e} Transistor Model Common Emitter Configuration

$$
\begin{aligned}
& Z_{i}=\frac{V_{i}}{I_{b}}=\frac{V_{b e}}{I_{b}} \\
& \begin{aligned}
V_{b e}=I_{e} r_{e} & =\left(I_{c}+I_{b}\right) r_{e}=\left(\beta I_{b}+I_{b}\right) r_{e} \\
& =(\beta+1) I_{b} r_{e} \\
Z_{i}=\frac{V_{b e}}{I_{b}} & =\frac{(\beta+1) I_{b} r_{e}}{I_{b}}=(\beta+1) r_{e} \simeq \beta r_{e}
\end{aligned}
\end{aligned}
$$

The r_{e} Transistor Model Common Emitter Configuration

$$
r_{e}=\frac{26 m V}{I_{E}}
$$

The \mathbf{r}_{e} Transistor Model $t_{c}(\mathrm{~m})$

Common Emitter Configuration

$$
\text { slope }=\frac{\Delta I_{C}}{\Delta V_{C E}}=\frac{1}{r_{0}}
$$

$$
r_{0}=\frac{\Delta V_{C E}}{\Delta I_{C}}
$$

The output resistance r is typically in the range of $40 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$

Common-Base Configuration

Common Base $\boldsymbol{r}_{\boldsymbol{e}}$

 equivalent circuit

Common Emitter Fixed Bias Configuration

Common-emitter fixed-bias configuration.

Network after the removal of the effects of $V_{C O}, C_{1}$ and C_{2}.

Common Emitter Fixed Bias Configuration

Common Emitter Fixed Bias Configuration

Input impedance:
$\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathrm{B}} \| \boldsymbol{\beta} \mathbf{r}_{\mathbf{e}}$
$\left.Z_{i} \cong \beta r_{e}\right|_{R_{E} \geq 10 \beta r_{e}}$
Output impedance:

$Z_{0}=\mathbf{R}_{\mathbf{C}} \| \mathrm{r}_{\mathrm{o}}$
$Z_{\mathbf{0}} \cong \mathbf{R}_{\mathbf{C}} \mid \mathrm{r}_{\mathbf{0}} \geq 10 \mathbf{R}_{\mathbf{C}}$
Voltage gain:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{o}}=-\beta I_{b}\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{r}_{\mathrm{o}}\right), I_{b}=\frac{V_{i}}{\beta \mathrm{r}_{\mathrm{e}}}, \mathrm{~V}_{\mathrm{o}}=-\beta\left(\frac{V_{\mathrm{i}}}{\beta \mathrm{r}_{\mathrm{e}}}\right)\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{r}_{\mathrm{o}}\right) \\
& \mathrm{A}_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{i}}}=-\frac{\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{r}_{\mathrm{o}}\right)}{\mathrm{r}_{\mathrm{e}}} \quad, \quad \mathrm{~A}_{\mathrm{v}}=-\left.\frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{r}_{\mathrm{e}}}\right|_{\mathrm{r}_{0} \geq 10 \mathrm{R}}
\end{aligned}
$$

Common Emitter Fixed Bias Configuration

$$
\mathrm{A}_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{i}}}=-\frac{\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{r}_{\mathrm{o}}\right)}{\mathrm{r}_{\mathrm{e}}}
$$

Demonstrating the 180° phase shift between input and output waveforms.

Example 5.1

Determine $\mathrm{r}_{\mathrm{e}}, \mathrm{Z}_{\mathrm{i}}\left(\right.$ with $\left.\mathrm{r}_{\mathrm{o}}=\infty\right), \mathrm{Z}_{\mathrm{o}}$ (with $\mathrm{r}_{\mathrm{o}}=\infty$), A_{v} (with $\mathrm{r}_{\mathrm{o}}=\infty$). Repeat with $\mathrm{r}_{\mathrm{o}}=50 \mathrm{k} \Omega$.

Example 5.1 - Solution

Fundumantal of Ecctranicll

Second Class

Chapter05: BJT AC Analysis
Lec05_p2
Munther N. Thiyab

2019-2020

Common-Emitter Voltage-Divider Bias

r_{e} model requires you to determine β, r_{e}, and r_{0}.

Common-Emitter Voltage-Divider Bias

Input impedance:

$$
\begin{aligned}
& \mathbf{R}^{\prime}=\mathbf{R}_{\mathbf{1}} \| \mathbf{R}_{\mathbf{2}} \\
& \mathbf{Z}_{\mathbf{i}}=\mathbf{R}^{\prime} \| \beta \mathbf{r}_{\mathbf{e}}
\end{aligned}
$$

Output impedance:

$$
\begin{aligned}
& \mathbf{Z}_{\mathbf{0}}=\mathbf{R}_{\mathbf{C}} \| \mathbf{r}_{\mathbf{0}} \\
& \mathbf{Z}_{\mathbf{0}} \cong \mathbf{R}_{\mathbf{C}} \mid \mathbf{r}_{\mathbf{0}} \geq 10 \mathbf{R}_{\mathbf{C}}
\end{aligned}
$$

Voltage gain:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{o}}=-I_{b}\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{r}_{\mathrm{o}}\right), I=\frac{V_{i}}{\mathrm{r}_{\mathrm{e}}}, \mathrm{~V}_{\mathrm{o}}=-\beta\left(\frac{V_{\mathrm{i}}}{\beta \mathrm{r}_{\mathrm{e}}}\right)\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{r}_{\mathrm{o}}\right) \\
& \mathrm{A}_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{i}}}=-\frac{\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{r}_{\mathrm{o}}\right)}{\mathrm{r}_{\mathrm{e}}}, \quad \mathrm{~A}_{\mathrm{v}}=-\left.\frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{r}_{\mathrm{e}}}\right|_{\mathrm{r}_{\mathrm{o}} \geq 10 \mathrm{R}}
\end{aligned}
$$

Example 5.2

Determine $\mathrm{r}_{\mathrm{e}}, \mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{o}}$ (with $\mathrm{r}_{\mathrm{o}}=\infty$), A_{v} (with $\mathrm{r}_{\mathrm{o}}=\infty$). Repeat with $\mathrm{r}_{\mathrm{o}}=50 \mathrm{k} \Omega$.

Example 5.2 - Solution

Common-Emitter Emitter-Bias Configuration

Impedance Calculations

Input impedance:

$V_{i}=I_{b} \beta r_{e}+I_{e} R_{E}$
$V_{i}=I_{b} \beta r_{e}+(\beta+1) I_{b} R_{E}$
$Z_{b}=\frac{V_{i}}{I_{b}}=\beta r_{e}+(\beta+1) R_{E}$
$Z_{b} \cong \beta r_{e}+\beta R_{E}=\beta\left(r_{e}+R_{E}\right)$
$Z_{b} \cong \beta R_{E} \quad$ for $\mathrm{R}_{\mathrm{E}} \gg r_{e}$

Output impedance:
$\mathrm{Z}_{\mathrm{i}}=\mathrm{R}_{\mathrm{B}} \| \mathrm{Z}_{\mathrm{b}}$

$$
\mathrm{Z}_{\mathrm{o}}=\mathrm{R}
$$

Gain Calculations

Voltage gain:
$\mathrm{V}_{\mathrm{o}}=-I_{o} R_{C}=-\beta I_{b} R_{C}$
$\mathrm{V}_{\mathrm{o}}=-\beta\left(\frac{V_{i}}{Z_{b}}\right) R_{C}$
$\mathrm{A}_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{i}}}=-\frac{\beta \mathrm{R}_{\mathrm{C}}}{\mathrm{Z}_{\mathrm{b}}}$

substituting $\mathrm{Z}_{\mathrm{b}} \cong \beta\left(\mathrm{r}_{\mathrm{e}}+\mathrm{R}_{\mathrm{E}}\right)$
$A_{v}=\frac{V_{o}}{V_{i}}=-\frac{R_{C}}{r_{e}+R_{E}}$
and for the approximation $\mathrm{Z}_{\mathrm{b}} \cong \beta \mathrm{R}$
$A_{v}=\frac{V_{o}}{V_{i}} \cong-\frac{R}{R_{E}}$

Example 5.3 without C_{E} (unbypassed):
Determine $r_{e}, Z_{i}, Z_{o}, A_{v}$. ignore r_{o} for $r_{o} \geq 10\left(R_{C}+R_{E}\right)$

Fundumantal of Ecctranicll

Second Class

Chapter05: BJT AC Analysis Lec05_p3
Munther N. Thiyab

2019-2020

Emitter-Follower Configuration

- This is also known as the common-collector configuration.
- The input is applied to the base and the output is taken from the emitter.
- There is no phase shift between input and output.

Impedance Calculations

Input impedance:

$\mathrm{Z}_{\mathrm{i}}=\mathrm{R}_{\mathrm{B}} \| \mathrm{Z}_{\mathrm{b}}$
$\mathrm{Z}_{\mathrm{b}}=\beta \mathrm{r}_{\mathrm{e}}+(+1) \mathrm{R}_{\mathrm{E}}$
$\mathrm{Z}_{\mathrm{b}} \cong \beta\left(\mathrm{r}_{\mathrm{e}} \quad \mathrm{R}_{\mathrm{E}}\right)$
$\mathrm{Z}_{\mathrm{b}} \cong \beta \mathrm{R}_{\mathrm{E}} \quad\left(\right.$ for $\left.\mathrm{R}_{\mathrm{E}} \gg \mathrm{r}_{\mathrm{e}}\right)$

Impedance Calculations

Output impedance:

$$
\begin{aligned}
I_{b} & =\frac{V_{i}}{Z_{b}}, \mathrm{I}_{\mathrm{e}}=(\beta+1) \mathrm{I}_{\mathrm{b}} \\
& =(\beta+1) \frac{V_{i}}{Z_{b}}
\end{aligned}
$$

$$
I_{e}=\frac{(\beta+1) V_{i}}{\beta r_{e}+(\beta+1) R_{E}}
$$

$\sin c e(\beta+1) \cong \beta$

$I_{e}=\frac{V_{i}}{r_{e}+R}$
To determine $\mathrm{Z}_{\mathrm{o}}, V_{i}$ is set to zero
$Z_{o}=R_{E} \| r_{e},\left.\quad Z_{o} \quad r_{e}\right|_{R_{\mathrm{f}} \gg \mathrm{r}}$

Gain Calculations

Voltage gain:
$\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{R}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{E}}+\mathrm{r}_{\mathrm{e}}} \mathrm{V}_{i}$
$A_{v}=\frac{V_{o}}{V_{i}}=\frac{R_{E}}{R_{E}+r_{e}}$
$\left.A_{v} \quad \frac{V_{o}}{V_{i}} \cong 1\right|_{R_{E}>r_{c}, R_{E}+r_{c}=R_{E}}$

Example 5.7 Determine $\mathrm{r}_{\mathrm{e}}, \mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{o}}, \mathrm{A}_{\mathrm{v}}$.

Example 5.7 - solution

Fundumantal of Elcctanitul

Second Class

Chapter05: BJT AC Analysis
Lec05_p4
Munther N. Thiyab

2019-2020

Common-Base Configuration

- The input is applied to the emitter.
- The output is taken from the collector.
- Low input impedance.
- High output impedance.
- Very high voltage gain.

- No phase shift between input and output.

Calculations

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathbf{E}} \| \mathbf{r}_{\mathbf{e}}
$$

Output impedance:

$$
\mathbf{Z}_{\mathbf{o}}=\mathbf{R}_{\mathbf{C}}
$$

Voltage gain:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}} & =-I_{o} R_{C}=-\left(-I_{C}\right) R_{C} \\
& =\alpha I_{e} R_{C}
\end{aligned}
$$

Current gain:

$$
I_{e}=\frac{V_{i}}{e} \rightarrow \mathrm{~V}_{\mathrm{o}}=\alpha\left(\frac{V_{i}}{r_{e}}\right) R_{C}
$$

Assuming $R_{E} \gg r_{e}$
$I_{e}=I_{i}$

$$
\mathrm{A}_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{i}}}=\frac{\alpha \mathrm{R}_{\mathrm{C}}}{\mathrm{r}_{\mathrm{e}}} \cong \frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{r}_{\mathrm{e}}}
$$

$I_{o}=-I_{e}=-\alpha I_{i}$
$\mathrm{A}_{\mathrm{i}}=\frac{\mathrm{I}_{\mathrm{o}}}{\mathrm{I}}=-\alpha \cong-$
A_{v} positive... V_{i} and V_{o} in phase.

Example 5.8

Determine $\mathrm{r}_{\mathrm{e}}, \mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{o}}, \mathrm{A}_{\mathrm{v}}, \mathrm{A}_{\mathrm{i}}$

Common-Emitter Collector Feedback Configuration

- This is a variation of the common-emitter fixed-bias configuration
- Input is applied to the base
- Output is taken from the collector
- There is a 180° phase shift between input and output

Calculations

Output impedance:

$$
\mathrm{Z}_{\mathrm{o}} \cong \mathrm{R}_{\mathrm{C}} \| \mathrm{R}_{\mathrm{F}}
$$

Voltage gain:

$I_{o}=\beta I_{b}+I^{\prime}$
For $\beta I_{b} \gg I^{\prime} \rightarrow I_{o} \cong \beta I_{b}$
$V_{o}=-I_{o} R_{C}=-\left(\beta I_{b}\right) R_{C}$
$I_{b}=\frac{V_{i}}{\beta r_{e}} \rightarrow V_{o}=-\beta \frac{V}{\beta r_{e}} R_{C}$
$A_{v}=\frac{V_{o}}{V_{i}}=-\frac{R}{r_{e}}$

Calculations
 Input impedance:

$$
\begin{aligned}
& Z_{i}=\frac{V_{i}}{I_{i}}, \quad V_{o}=-\frac{V_{i}}{r_{e}} R_{C} \\
& I^{\prime}=\frac{V_{o}-V_{i}}{R_{F}}=\frac{V_{o}}{R_{F}}-\frac{V_{i}}{R_{F}}=-\frac{R_{C} V_{i}}{r_{e} R_{F}}-\frac{V_{i}}{R_{F}}= \\
& V_{i}=I_{b} \beta r_{e}=\left(I_{i}+I^{\prime}\right) \beta r_{e}=I_{i} \beta r_{e}+I^{\prime} \beta r_{e} \\
& V_{i}=I_{i} \beta r_{e}-\frac{1}{R_{F}}\left[1+\frac{R_{C}}{r_{e}}\right] \beta r_{e} V_{i} \\
& \text { or } \quad V_{i}\left[1+\frac{\beta r_{e}}{R_{F}}\left[1+\frac{R_{C}}{r_{e}}\right]\right]=I_{i} \beta r_{e} \\
& Z_{i}=\frac{V_{i}}{I_{i}}=\frac{\beta r_{e}}{1+\frac{\beta r_{e}}{R_{F}}\left[1+\frac{R_{C}}{r_{e}}\right]}
\end{aligned}
$$

$$
I^{\prime}=\frac{V_{o}-V_{i}}{R_{F}}=\frac{V_{o}}{R_{F}}-\frac{V_{i}}{R_{F}}=-\frac{R_{C} V_{i}}{r_{e} R_{F}}-\frac{V_{i}}{R_{F}}=-\frac{1}{R_{F}}\left[1+\frac{R_{C}}{r_{e}}\right] V_{i}
$$

$1+\frac{R_{C}}{r_{e}} \cong \frac{R_{C}}{r_{e}} \rightarrow Z_{i}=\frac{\beta r_{e}}{1+\frac{\beta R_{C}}{R}} \quad \square \quad \mathbf{Z}_{\mathbf{i}}=\frac{\mathbf{r}_{\mathbf{e}}}{\frac{1}{\beta}+\frac{\mathbf{R}_{\mathbf{C}}}{\mathbf{R}_{\mathbf{F}}}}$

Determining the current gain using the voltage gain

Current Gain $\mathrm{A}_{i}=\frac{I_{o}}{I_{i}} \quad, \quad I_{i}=\frac{V_{i}}{Z_{i}} \quad, \quad I_{o}=-\frac{V_{o}}{R_{L}}$

$$
A_{i_{L}}=\frac{I_{o}}{I_{i}}=\frac{-\frac{V_{o}}{R_{L}}}{\frac{V_{i}}{Z_{i}}}=-\frac{V_{o}}{V_{i}} \cdot \frac{Z_{i}}{R_{L}}
$$

$$
\mathrm{A}_{\mathrm{i}}=-\mathrm{A}_{v_{\mathrm{L}}} \frac{Z_{i}}{R_{L}}
$$

Determining the current gain using the voltage gain

From example 5.2
$\mathrm{Z}_{\mathrm{i}}=1.35 \mathrm{k} \Omega$.
$\mathrm{A}_{\mathrm{v}}=-368.76$
Current Gain $\mathrm{A}_{i}=\frac{I_{o}}{I_{i}}$,
$I_{i}=\frac{V_{i}}{1.35 k} \quad, \quad I_{o}=-\frac{V_{o}}{6.8 k}$
$\begin{aligned} A_{i_{L}} & =\frac{I_{o}}{I_{i}}=\frac{-\frac{V_{o}}{6.8 k}}{\frac{V_{i}}{1.35 k}}=-\frac{V_{o}}{V_{i}} \cdot \frac{1.35 k}{6.8 k} \\ & =-(-368.76) \frac{1.35 k}{6.8 k}=73.2\end{aligned}$

or $\mathrm{A}_{\mathrm{i}}=-\mathrm{A}_{v_{\mathrm{L}}} \frac{Z_{i}}{R_{L}}=-(-368.76) \frac{1.35 k}{6.8 k}=73.2$

Fundumantal of Ecctranicll

Second Class

Chapter05: BJT AC Analysis Lec05_p5

Munther N. Thiyab

Effect of \mathbf{R}_{L} and R_{S}

Effect of \mathbf{R}_{L} and \mathbf{R}_{S}

Effect of R_{L} and R_{S}

Input impedance: $\mathrm{Z}_{\mathrm{i}}=\mathrm{R}_{\mathrm{B}} \| \beta \mathrm{r}_{\mathrm{e}}$
Output Impedance: $\mathrm{Z}_{\mathrm{o}}=\mathrm{R}_{\mathrm{C}} \| \mathrm{r}_{\mathrm{o}}$
To find overall gain: $V_{i}=\frac{Z_{i} V_{s}}{Z_{i}+R_{s}}, \frac{V_{i}}{V_{s}}=\frac{Z_{i}}{Z_{i}+R_{s}}$

$$
A_{v S}=\frac{}{V_{S}}=\frac{V_{o}}{V_{i}} \cdot \frac{V_{i}}{V_{S}}=A_{v L} \frac{Z_{i}}{Z_{i}+R_{s}} \quad \Rightarrow A_{v S}=\frac{Z_{i}}{Z_{i}+R_{s}} A_{v L}
$$

Darlington Connection

-The Darlington circuit provides a very high current gain - the product of the individual current gains: $\beta_{\mathrm{D}}=\beta_{1} \beta_{2}$

- A Darlington transistor connection provides a transistor having a very large current gain, typically a few thousand.
-Darlington pairs are available as complete packages.
- A Darlington pair is sufficiently sensitive to respond to the small current.

DC Bias of Darlington Circuits

Base current:

$$
\mathbf{I}_{\mathbf{B}}=\frac{\mathbf{V}_{\mathbf{C C}}-\mathbf{V}_{\mathbf{B E}}}{\mathbf{R}_{\mathbf{B}}+\beta_{\mathbf{D}} \mathbf{R}_{\mathbf{E}}}
$$

Emitter current:

$$
\mathbf{I}_{\mathbf{E}}=\left(\beta_{\mathbf{D}}+\mathbf{1}\right) \mathbf{I}_{\mathbf{B}} \cong \beta_{\mathbf{D}} \mathbf{I}_{\mathbf{B}}
$$

Emitter voltage:

$$
\mathbf{V}_{\mathbf{E}}=\mathbf{I}_{\mathbf{E}} \mathbf{R}_{\mathbf{E}}
$$

Base voltage:

$$
\mathbf{V}_{\mathbf{B}}=\mathbf{V}_{\mathbf{E}}+\mathbf{V}_{\mathbf{B E}}
$$

Darlington Circuits

$>$ When light falls on the LDR, its resistance reduces.
$>$ The bias voltage is supplied to the transistor and this voltage is enough to make the transistor and relay work.
\Rightarrow A variable resistor is also connected on the base of transistor to adjust the sensitivity.

Fundumantal of Ecctranicll

Second Class

Chapter 6 : Field Effect Transistors Lec06_p1
Munther N. Thiyab

2019-2020

FETs vs. BJTs

Similarities:

- Amplifiers
- Switching devices
- Impedance matching circuits

Differences:

- FETs are voltage controlled devices. BJTs are current controlled devices.
- FETs have a higher input impedance. BJTs have higher gains.
- FETs are less sensitive to temperature variations and are more easily integrated on ICs.

FET Types

-JFET: Junction FET
-MOSFET: Metal-Oxide-Semiconductor FET
-D-MOSFET: Depletion MOSFET
-E-MOSFET: Enhancement MOSFET

JFET Construction

There are two types of JFETs

- n-channel
-p-channel
The n-channel is more widely used.

There are three terminals:

- Drain (D) and Source (S) are connected to the n-channel -Gate (\mathbf{G}) is connected to the \boldsymbol{p} -

JFET Operating Characteristics: $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}$ some positive value

When $V_{G S}=0$ and $V_{D S}$ is increased from 0 to a more positive voltage:

- The depletion region between p gate and n-channel increases.
- Increasing the depletion region, decreases the size of the n channel which increases the resistance of the n -channel.
- Even though the n-channel resistance is increasing, the current (I_{D}) from source to drain through the n-channel is increasing. This is because $V_{D S}$ is increasing.

JFET Operating Characteristics: $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}$ some positive value

I_{D} versus $V_{D S}$ for $V_{G S}=0 \mathrm{~V}$.

JFET Operating Characteristics: Pinch Off

If $\mathrm{V}_{\mathrm{GS}}=0$ and V_{DS} is further increased to a more positive voltage, then the depletion zone gets so large that it pinches off the n-channel.

As $V_{D S}$ is increased beyond $\left|V_{P}\right|$, the level of I_{D} remains the same $\left(I_{D}=I_{D S S}\right)$.

$I_{D S S}$ is the maximum drain current for a JFET and is defined by the conditions $V_{G S}=\mathbf{0}$ and $\mathbf{V}_{\mathrm{DS}}>\left|\mathrm{V}_{\mathrm{P}}\right|$.

JFET Operating Characteristics, $\mathbf{V}_{\mathbf{G S}}<0$

- As V_{GS} becomes more negative, the depletion region increases.
-The more negative V_{GS}, the resulting level for I_{D} is reduced.
-Eventually, when $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{P}}(-\mathrm{ve})$ $\left[\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathbf{G S}(\text { off }}\right], \mathrm{I}_{\mathrm{D}}$ is 0 mA . (the device is "turned off".
-The level of V_{GS} that results in $\mathrm{I}_{\mathrm{D}}=0 \mathrm{~mA}$ is defined by $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{P}}$, with V_{P} being a negative voltage for n-channel devices and a positive voltage for p -channel JFETs.

> Application of a negative voltage to the gate of a JFET.

JFET Operating Characteristics

n-Channel JFET characteristics with $I_{D S S}=8 \mathrm{~mA}$ and $V_{P}=-4 \mathrm{~V}$.

JFET Operating Characteristics: Voltage-Controlled Resistor

-The region to the left of the pinch-off point is called the ohmic region.
-The JFET can be used as a variable resistor, where V_{GS} controls the drain-source resistance (r_{d}). As V_{GS} becomes more negative, the resistance $\left(r_{d}\right)$ increases.

where $\boldsymbol{r}_{\boldsymbol{o}}$ is the resistance with $\mathrm{V}_{\mathrm{GS}}=0$ and $\boldsymbol{r}_{\boldsymbol{d}}$ is the resistance at a particular level of V_{GS}.

p-Channel JFETS

The p-channel JFET behaves the same as the n-channel JFET, except the voltage polarities and current directions are reversed.

p-Channel JFET Characteristics

As V_{GS} increases more positively

- The depletion zone increases
- I_{D} decreases ($\mathrm{I}_{\mathrm{D}}<\mathrm{I}_{\mathrm{DSS}}$)
- Eventually $\mathrm{I}_{\mathrm{D}}=0 \mathrm{~A}$

Also note that at high levels of $\mathbf{V}_{\text {DS }}$ the JFET reaches a breakdown situation:
I_{D} increases uncontrollably if $V_{D S}>V_{\text {DSmax }}$.

Fundumantal of Ecctranicll

Second Class

Chapter 6 : Field Effect Transistors
Lec06_p2
Munther N. Thiyab

2019-2020

JFET Symbols

JFET symbols: (a) n-channel; (b) p-channel.

(a) $V_{G S}=0 \mathrm{~V}, I_{D}=I_{D S S}$; (b) cutoff $\left(I_{D}=0 \mathrm{~A}\right) V_{G S}$ less than (more negative than) the pinch-off level; (c) I_{D} is between 0 A and $I_{D S S}$ for $V_{G S} \leq 0 \mathrm{~V}$ and greater than the pinch-off level.

JFET Transfer Characteristics

In a BJT, β indicates the relationship between I_{B} (input) and I_{C} (output).

In a JFET, the relationship of V_{GS} (input) and I_{D} (output) is a little more complicated (Shockley's equation):

$$
I_{D}=I_{D S S}\left(1-\frac{\mathbf{V}_{G S}}{\mathbf{V}_{P}}\right)^{2}
$$

William Bradford Shockley

JFET Transfer Curve

This graph shows the value of I_{D} for a given value of $V_{G S}$.

Plotting the JFET Transfer Curve

Using $\mathrm{I}_{\mathrm{DSS}}$ and $\mathrm{Vp}\left(\mathrm{V}_{\mathrm{GS}(\text { off }}\right)$ values found in a specification sheet, the transfer curve can be plotted according to these three steps:

Step 1

Solving for $V_{G S}=0 V \quad I_{D}=I_{D S S}$

Step 2

$$
I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}
$$

Solving for $\mathbf{V}_{G S}=V_{p}\left(V_{G S(\text { off })}\right) I_{D}=\mathbf{A A}$
Step 3
Solving for $\mathbf{V}_{G S}=\mathbf{0 V}$ to $\mathbf{V}_{\mathrm{p}} \quad \mathbf{I}_{\mathbf{D}}=\mathbf{I}_{\mathrm{DSS}}\left(1-\frac{\mathbf{V}_{G S}}{\mathbf{V}_{\mathbf{P}}}\right)^{\mathbf{2}}$
i.e. For $\mathbf{V}_{\mathbf{G S}}=\mathbf{- 1 \mathbf { V }} \quad \mathrm{I}_{\mathrm{D}}=8 m A\left(1-\begin{array}{l}-1)^{2} \\ -4\end{array}\right)=4.5 \mathrm{~mA}$

Conversely, for a given $\mathrm{I}_{\mathrm{D}}, \mathrm{V}_{\mathrm{GS}}$ can be obtained:

$$
\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{P}}\left(1-\sqrt{\frac{\mathrm{I}_{\mathrm{D}}}{\mathrm{I}_{\mathrm{DSS}}}}\right)
$$

Example 6.1

Sketch the transfer curve defined by $\mathrm{I}_{\mathrm{DSS}}=12 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{P}}=-6 \mathrm{~V}$.

Fundumantal of Ecctranicll

Second Class

Chapter 6 : Field Effect Transistors Lec06_p3
Munther N. Thiyab

2019-2020

MOSFETs

MOSFETs have characteristics similar to JFETs and additional characteristics that make then very useful.

There are two types of MOSFETs:

- Depletion-Type
- Enhancement-Type

Depletion-Type MOSFET Construction

$>$ The Drain (D) and Source (S) connect to the to n-doped regions.
\rightarrow These n-doped regions are connected via an n-channel.
\rightarrow This n-channel is connected to the Gate (G) via a thin insulating layer of SiO_{2}.
$>$ The n-doped material lies on a p-doped substrate that may have an additional terminal connection called Substrate (SS).

n-Channel depletion-type MOSFET.

Depletion-Type MOSFET :Basic Operation and Characteristics

$>\mathrm{V}_{\mathrm{GS}}=0$ and V_{DS} is applied across the drain to source terminals.
$>$ This results to attraction of free electrons of the n -channel to the drain, and hence current flows.

Depletion-Type MOSFET :Basic Operation and Characteristics

$>\mathrm{V}_{\mathrm{GS}}$ is set at a negative voltage such as -1 V .
$>$ The negative potential at the gate pressures electrons toward the p-type substrate and attract holes from the ptype substrate.
$>$ This will reduce the number of free electrons in the n-channel available for conduction.
$>$ The more negative the V_{GS}, the resulting level of drain current I_{D} is reduced.

$>$ When V_{GS} is reduced to V_{P} (Pinchoff voltage), then $\mathrm{I}_{\mathrm{D}}=0 \mathrm{~mA}$.

Depletion-Type MOSFET :Basic Operation and Characteristics

$>$ When V_{GS} is reduced to V_{P} (Pinch-off) [i.e. $\mathrm{V}_{\mathrm{p}}=-6 \mathrm{~V}$], then $\mathrm{I}_{\mathrm{D}}=0 \mathrm{~mA}$.
$>$ For positive values of V_{GS}, the positive gate will draw additional electrons (free carriers) from the p-type substrate and hence I_{D} increases.

Basic MOSFET Operation

A depletion-type MOSFET can operate in two modes:

- Depletion mode
- Enhancement mode

D-Type MOSFET in Depletion Mode

Depletion Mode

The characteristics are similar to a JFET.

- When $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{DSS}}$
- When $\mathrm{V}_{\mathrm{GS}}<0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}<\mathrm{I}_{\mathrm{DSS}}$
- The formula used to plot the transfer curve still applies:

$$
I_{D}=I_{D S S}\left(1-\frac{\mathbf{V}_{G S}}{\mathbf{V}_{P}}\right)^{2}
$$

D-Type MOSFET in Enhancement Mode

Enhancement Mode

- $\mathrm{V}_{\text {GS }}>0 \mathrm{~V}$
- I_{D} increases above $\mathrm{I}_{\mathrm{DSS}}$
- The formula used to plot the transfer curve still applies:
$I_{D}=I_{\text {DSS }}\left(1-\frac{V_{G S}}{V_{P}}\right)^{\mathbf{2}}$

Note that V_{GS} is now a positive polarity

p-Channel D-Type MOSFET

D-Type MOSFET Symbols

(a) n-channel depletion-type MOSFETs,(b) p-channel depletion-type MOSFETs

Fundumantal of Ecctranicll

Second Class

Chapter 6 : Field Effect Transistors Lec06_p4
Munther N. Thiyab

2019-2020

Enhancement-Type MOSFET Construction

- The Drain (D) and Source (S) connect to the to n-doped regions.
- The Gate (G) connects to the p-doped substrate via a thin insulating layer of SiO_{2}
- There is no channel
- The n-doped material lies on a p doped substrate that may have an additional terminal connection called the Substrate (SS)

Enhancement-Type MOSFET Construction

- For $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=0$ (no channel).
- For V_{DS} some positive voltage, and $\mathrm{V}_{\mathrm{GS}}=0$, two reverse biased p-n junctions and no significant flow between drain and source.
- For $\mathrm{V}_{\mathrm{GS}}>0$ and $\mathrm{V}_{\mathrm{DS}}>0$, the positive voltage at gate pressure holes to enter deeper regions of the p-substrate, and the electrons in p-substrate will be attracted to the positive gate.
- The level of V_{GS} that results in the significant increase in drain current is called threshold voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$.
- For $\mathrm{V}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{T}}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~mA}$.

Basic Operation of the E-Type MOSFET

The enhancement-type MOSFET operates only in the enhancement mode.

- $\mathbf{V}_{G S}$ is always positive.
- As $_{\text {GS }}$ increases, I_{D} increases
- As $\mathbf{V}_{G S}$ is kept constant and $V_{D S}$ is increased, then I_{D} saturates ($I_{\text {DSS }}$) and the saturation level, $\mathbf{V}_{\text {DSsat }}$ is reached
$\mathbf{V}_{\text {DSsat }}$ can be calculated by:

$$
\mathbf{V}_{\text {Dsat }}=\mathbf{V}_{\mathbf{G S}}-\mathbf{V}_{\mathbf{T}}
$$

E-Type MOSFET Transfer Curve

To determine I_{D} given V_{GS} : $\quad \mathbf{I}_{\mathbf{D}}=\mathbf{k}\left(\mathbf{V}_{\mathbf{G S}}-\mathbf{V}_{\mathbf{T}}\right)^{\mathbf{2}}$
Where: $\mathrm{V}_{\mathrm{T}}=$ threshold voltage or voltage at which the MOSFET turns on
k, a constant, can be determined by using values at a specific point and the formula:

$$
\mathbf{k}=\frac{\mathbf{I}_{\mathbf{D}(\mathbf{O N})}}{\left(\mathbf{V}_{\mathbf{G S}(\mathbf{O N})}-\mathbf{V T}^{2}\right)^{2}}
$$

E-Type MOSFET Transfer Curve

Substituting $\mathrm{I}_{\mathrm{D}}(\mathrm{on})=10 \mathrm{~mA}$ when $\mathrm{V}_{\mathrm{GS}}(\mathrm{on})=8 \mathrm{~V}$ from the characteristics:

$$
\mathrm{k}=\frac{10 \mathrm{~mA}}{(8-2)^{2}}=0.278 \times 10^{-3} \mathrm{~A} / \mathrm{V}^{2} \Rightarrow \mathrm{I}_{\mathrm{D}}=0.278 \times 10^{3}\left(V_{G S}-2 V\right)^{2}
$$

p-Channel E-Type MOSFETs

The \boldsymbol{p}-channel enhancement-type MOSFET is similar to the \boldsymbol{n}-channel, except that the voltage polarities and current directions are reversed.

MOSFET Symbols

p-channel

(a)

(b)

Symbols for (a) n-channel enhancement-type MOSFETs and
(b) p-channel enhancement-type MOSFETs.

Fundumantal of Ecctranicll

Second Class

Chapter 7 : FET Biasing Lec07_p1
Munther N. Thiyab

2019-2020

Basic Current Relationships

For all FETs:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{G}} \cong \mathbf{0 A} \\
& \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{S}}
\end{aligned}
$$

For JFETS and D-Type MOSFETs:

$$
I_{D}=I_{D S S}\left(1-\frac{\mathbf{V}_{G S}}{\mathbf{V}_{P}}\right)^{2}
$$

For E-Type MOSFETs:

$$
\mathbf{I}_{\mathbf{D}}=\mathbf{k}\left(\mathbf{V}_{\mathbf{G S}}-\mathbf{V}_{\mathbf{T}}\right)^{\mathbf{2}}
$$

Fixed-Bias Configuration

$$
\begin{aligned}
& I_{G} \cong 0 A \\
& V_{D S}=V_{D D}-I_{D} R_{D} \\
& V_{S}=0, \quad V_{D}=V_{D S}, V_{G S}=-V_{G G} \\
& I_{D}=I_{D S S}\left(1 \frac{V_{G S}}{V_{p}}\right)^{2}
\end{aligned}
$$

Network for dc analysis.

Fixed-Bias Configuration -Graphical Solution

Plotting Shockley's equation.

Finding the solution for the fixed-bias configuration.

Example 7.1

Find $\mathrm{V}_{\mathrm{GSQ}}, \mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{DS}}, \mathrm{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{G}}, \mathrm{V}_{\mathrm{S}}$.

Example 7.1 - graphical solution

Self-Bias Configuration

DC analysis of the self-bias configuration.

Self-Bias Configuration

$$
\begin{aligned}
& V_{G S}=-I_{D} R_{S} \\
& I_{D}=I_{D S S}\left(\begin{array}{ll}
1 & \frac{V_{G S}}{V_{p}}
\end{array}\right)^{2}
\end{aligned}
$$

$I_{D}=I_{D S S}\left(1-\frac{-I_{D} R_{S}}{V_{p}}\right)^{2}$
$I_{D}=I_{D S S}\left(1+\frac{I_{D} R_{S}}{V_{p}}\right)^{2}$
By squaring and rearranging, I_{D} has the form:

$I_{D}^{2}+k_{1} I+k_{2}=0$ [Solve for I_{D}]
DC analysis of the self-bias configuration.

Self-Bias Configuration - graphical solution

-Sketch the transfer curve.
-Draw the line:

$$
\mathbf{V}_{\mathbf{G S}}=-\mathbf{I}_{\mathbf{D}} \mathbf{R}_{\mathbf{S}}
$$

-The Q-point is located where the line intersects the transfer curve.

- Use the value of I_{D} at the Q point (I_{DQ}) to solve for the other voltages:
$V_{D S}=V_{D D}-I_{D}\left(R_{S}+R_{D}\right.$
$V_{S}=I_{D} R_{S}$
$V_{D} \quad V_{D S}+V_{S}$

Example 7.2

Find $\mathrm{V}_{\mathrm{GSQ}}, \mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{DS}}, \mathrm{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{G}}, \mathrm{V}_{\mathrm{S}}$.

Solution

Draw the line: $\mathbf{V}_{\mathbf{G S}}=-\mathbf{I}_{\mathbf{D}} \mathbf{R}_{\mathbf{S}}$

Example 7.2 - solution

Sketching the device characteristics for the JFET

Determining the Q-point

Fundumantal of Ecctranicll

Second Class

Chapter 7 : FET Biasing Lec07_p2
Munther N. Thiyab

2019-2020

Voltage-Divider Bias

Redrawn network for dc analysis.

Voltage-Divider Bias

V_{G} is equal to the voltage across divider resistor R_{2} :

$$
\mathbf{V}_{G}=\frac{\mathbf{R}_{\mathbf{2}} \mathbf{V}_{\mathbf{D D}}}{\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}}
$$

Using Kirchhoff's Law:

$$
\mathbf{V}_{\mathbf{G S}}=\mathbf{V}_{\mathbf{G}}-\mathbf{I}_{\mathbf{D}} \mathbf{R}_{\mathbf{S}}
$$

The Q point is established by plotting a line that intersects the transfer curve.

Voltage-Divider Bias

Step 1

Plot the line by plotting two points:

- $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{G}}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~A}$
- $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=\mathrm{V}_{\mathrm{G}} / \mathrm{R}_{\mathrm{S}}$

Step 2
Plot the transfer curve by plotting $\mathrm{I}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{P}}$ and the calculated values of I_{D}

Step 3

$$
\mathbf{V}_{\mathbf{G S}}=\mathbf{V}_{\mathbf{G}}-\mathbf{I}_{\mathbf{D}} \mathbf{R}_{\mathbf{S}}
$$

The Q-point is located where the line intersects the transfer curve

Voltage-Divider Bias

$$
\mathbf{V}_{\mathbf{G S}}=\mathbf{V}_{\mathbf{G}}-\mathbf{I}_{\mathbf{D}} \mathbf{R}_{\mathbf{S}}
$$

Effect of \boldsymbol{R}_{S} on the resulting Q-point.

Voltage-Divider Bias

Using the value of I_{D} at the Q-point, solve for the other variables in the voltage-divider bias circuit:

$$
\begin{aligned}
\mathbf{V}_{\mathrm{DS}} & =\mathbf{V}_{\mathrm{DD}}-\mathbf{I}_{\mathbf{D}}\left(\mathbf{R}_{\mathrm{D}}+\mathbf{R}_{\mathrm{S}}\right) \\
\mathbf{V}_{\mathbf{D}} & =\mathbf{V}_{\mathrm{DD}}-\mathbf{I}_{\mathbf{D}} \mathbf{R}_{\mathrm{D}} \\
\mathbf{V}_{\mathrm{S}} & =\mathbf{I}_{\mathbf{D}} \mathbf{R}_{\mathrm{S}} \\
\mathbf{I}_{\mathbf{R} 1} & =\mathbf{I}_{\mathbf{R} \mathbf{2}}=\frac{\mathbf{V}_{\mathbf{D D}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}}
\end{aligned}
$$

Example 7.5 Find $\mathrm{V}_{\mathrm{GSQ}}, \mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{DS}}, \mathrm{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{G}}, \mathrm{V}_{\mathrm{S}}$.

D-Type MOSFET Bias Circuits

Depletion-type MOSFET
bias circuits are similar to
those used to bias JFETs.
The only difference is that
depletion-type MOSFETs
can operate with positive
values of V_{GS} and with I_{D}
values that exceed $\mathrm{I}_{\mathrm{DSS}}$.

Example 7.7 Find $\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{DS}}$

Step 1

Plot the line for

$$
\begin{aligned}
& \cdot \mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{G}}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~A} \\
& \bullet_{\mathrm{I}}=\mathrm{V}_{\mathrm{G}} / \mathrm{R}_{\mathrm{S}}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}
\end{aligned}
$$

Step 2
Plot the transfer curve using $\mathrm{I}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{P}}$ and calculated values of I_{D}.

Step 3

The Q-point is located where the line intersects the transfer curve is. Use the I_{D} at the Q-point to solve for the other variables in the voltage-divider bias circuit.

These are the same steps used to analyze JFET voltage-divider bias

$$
\mathbf{V}_{G}=\frac{\mathbf{R}_{\mathbf{2}} \mathbf{V}_{\mathbf{D D}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}}
$$

circuits.

For $V_{G S}=+\mathbb{I V}$
$I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{p}}\right)^{2}=6 \mathrm{~mA}\left(1-\begin{array}{l}+1 \\ -3\end{array}\right)^{2}=10.67 \mathrm{~mA}$
$V_{G}=\frac{10 M(18 V)}{10 M+110 M}=1.5 V \rightarrow V_{G S}=1.5 V-I_{D}(750)$

$$
\mathbf{V}_{\mathbf{G}}=\frac{\mathbf{R}_{2} \mathbf{V}}{\mathbf{R}_{1}+\mathrm{R}_{2}} \quad \mathbf{V}_{\mathbf{G S}}=\mathbf{V}_{\mathbf{G}}-\mathbf{I}_{\mathbf{D}} \mathbf{R}_{\mathbf{S}}
$$

Example 7.9 Find $\mathrm{V}_{\mathrm{GSQ}}, \mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{D}}$

To plot line $V_{G S}=-I_{D} R_{S}$:
$I_{D}=-V_{G S} / R_{S}$
For $V_{G S}=-6, I_{D}=-(-6) / 2.4 k=2.5 \mathrm{~mA}$
To plot transfer curve for $\mathrm{V}_{\mathrm{GS}}=+2 \mathrm{~V}$:

$$
I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{p}}\right)^{2}=8 \mathrm{~m}\left(1-\begin{array}{c}
+2)^{2} \\
-8
\end{array}\right)=12.5 \mathrm{~mA}
$$

Fundumantal of Ecctranicll

Second Class

Chapter 7 : FET Biasing Lec07_p3

Munther N. Thiyab

2019-2020

E-Type MOSFET Bias Circuits

The transfer characteristic for the e-type MOSFET is very different from that of a simple JFET or the d-type MOSFET.

$$
I_{D}=k\left(V_{G S}-V_{G S(T h}\right)^{2}
$$

Feedback Bias Circuit

DC equivalent of the network

Feedback Bias Q-Point

Step 1

Plot the line using

- $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~A}$
$\cdot \mathrm{I}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DD}} / \mathrm{R}_{\mathrm{D}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$

Step 2

Using values from the specification sheet, plot the transfer curve with

- $\mathrm{V}_{\mathrm{GSTh}}, \mathrm{I}_{\mathrm{D}}=0 \mathrm{~A}$
- $\mathrm{V}_{\mathrm{GS}(\text { on })}, \mathrm{I}_{\mathrm{D}(\mathrm{on})}$

$$
\text { Step } 3
$$

The Q-point is located where the line and the transfer curve intersect

Step 4

Using the value of I_{D} at the Q point, solve for the other variables
 in the bias circuit.

Example 7.11 Find $\mathrm{V}_{\mathrm{GSQ}}, \mathrm{I}_{\mathrm{DQ}}$

Plot Transfer Curve:
$I_{D}=k\left(V_{G S}-V_{G S}(T h)^{2}=0.24 \times 10^{-3}\left(V_{G S}-3\right)^{2}\right.$

Example 7.11 - solution

$$
\text { Plot the line : } \begin{aligned}
& \mathbf{V}_{G S}=\mathbf{V}_{\mathrm{DD}}-\mathbf{I}_{\mathbf{D}} \mathbf{R}_{\mathrm{D}} \\
& \mathbf{V}_{\mathrm{GS}}=\mathbf{1 2}-\mathbf{I}_{\mathbf{D}}(\mathbf{2 k})
\end{aligned}
$$

Voltage-Divider Biasing

Plot the line and the transfer curve to find the Q-point. Use these equations:

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{G}}=\frac{\mathbf{R}_{\mathbf{2}} \mathbf{V}_{\mathbf{D D}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}} \\
& \mathbf{V}_{\mathbf{G S}}=\mathbf{V}_{\mathbf{G}}-\mathbf{I}_{\mathbf{D}} \mathbf{R}_{\mathbf{S}} \\
& \mathbf{V}_{\mathbf{D S}}=\mathbf{V}_{\mathbf{D D}}-\mathbf{I}_{\mathbf{D}}\left(\mathbf{R}_{\mathbf{S}}+\mathbf{R}_{\mathbf{D}}\right)
\end{aligned}
$$

Example 7.12 Find $\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{DQ}}$

$$
\begin{aligned}
& k=\frac{I_{D(o n)}}{\left(V_{G S(o n)}-V_{G S(T h)}\right)^{2}} \\
& k=\frac{3 m A}{(10-5)^{2}}=0.12 \times 10^{-3} \\
& I_{D}=k\left(V_{G S}-V_{G S(T h}\right)^{2} \\
& I_{D}=0.12 \times 10^{-3}(G S-5)^{2} \\
& V_{G} \frac{18 M(40 \mathrm{~V})}{22 M+18 M}=18 V \\
& V_{G S}=V_{G} \quad I_{D} R_{S} \\
& V_{G S}=18 V-I_{D}(0.82 \mathrm{k})
\end{aligned}
$$

Example 7.12-Solution

Fundumantal of Ecctranicll

Second Class

Chapter08: FET Amplifier Lec08_p1
Munther N. Thiyab

2019-2020

Introduction

FETs provide:

- Excellent voltage gain
- High input impedance
- Low-power consumption
- Good frequency range

FET Small-Signal Model

Transconductance

The relationship of a change in I_{D} to the corresponding change in $\mathbf{V}_{\mathbf{G S}}$ is called transconductance

Transconductance is denoted g_{m} and given by:

$$
\mathbf{g}_{\mathbf{m}}=\frac{\Delta \mathbf{I}_{\mathbf{D}}}{\Delta \mathbf{V}_{\mathbf{G S}}}
$$

Graphical Determination of \mathbf{g}_{m}

Mathematical Definitions of \mathbf{g}_{m}

$$
\begin{gathered}
g_{m}=\frac{\Delta \mathbf{I}_{\mathbf{D}}}{\Delta \mathbf{V}_{\mathbf{G S}}} \\
\mathbf{g}_{\mathrm{m}}=\frac{2 \mathbf{I}_{\mathbf{D S S}}}{\left|\mathbf{V}_{\mathbf{P}}\right|}\left[1-\frac{\mathbf{V}_{\mathbf{G S}}}{\mathbf{V}_{\mathbf{P}}}\right] \\
\text { Where } \mathbf{V}_{\mathbf{G S}}=\mathbf{0 V} \quad \mathbf{g}_{m 0}=\frac{2 \mathbf{I}_{\mathbf{D S S}}}{\left|\mathbf{V}_{\mathbf{P}}\right|} \\
\mathbf{g}_{\mathbf{m}}=\mathbf{g}_{\mathbf{m} 0}\left[1-\frac{\mathbf{V}_{\mathbf{G S}}}{\mathbf{V}_{\mathbf{P}}}\right] \\
\text { Where } 1-\frac{\mathbf{V}_{\mathbf{G S}}}{\mathbf{V}_{\mathbf{P}}}=\sqrt{\frac{\mathbf{I}_{\mathbf{D}}}{\mathbf{I}_{\mathbf{D S S}}}} \\
\mathbf{g}_{\mathrm{m}}=\mathbf{g}_{\mathbf{m} 0}\left(1-\frac{\mathbf{V}_{\mathbf{G S}}}{\mathbf{V}_{\mathbf{P}}}\right)=\mathbf{g}_{\mathbf{m} 0} \sqrt{\frac{\mathbf{I}_{\mathbf{D}}}{\mathbf{I}_{\mathbf{D S S}}}}
\end{gathered}
$$

FET Impedance

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\infty \Omega
$$

Output Impedance:

$$
Z_{o}=r_{d}=\frac{1}{y_{o s}}
$$

where:

$$
\begin{aligned}
& \left.\mathbf{r}_{\mathbf{d}}=\frac{\Delta \mathbf{V}_{\mathbf{D S}}}{\Delta \mathbf{I}_{\mathbf{D}}} \right\rvert\, \mathbf{v}_{\mathbf{G S}}=\text { constant } \\
& \mathbf{y}_{\mathbf{o s}}=\text { admittance parameter listed on FET specification sheets. }
\end{aligned}
$$

FET AC Equivalent Circuit

Summary Table

Fixed-bias
[JFET or D-MOSFET]

Self-bias
bypassed R_{S}
[JFET or D-MOSFET]

Self-bias
Unbypassed R_{S}
[JFET or D-MOSFET]

Troubleshooting

Check the DC bias voltages:
If not correct check power supply, resistors, FET. Also check to ensure that the coupling capacitor between amplifier stages is OK .

Check the AC voltages:
If not correct check FET, capacitors and the loading effect of the next stage

Practical Applications

Three-Channel Audio Mixer
Silent Switching
Phase Shift Networks
Motion Detection System

Fundumantal of Ecctranicll

Second Class

Chapter08: FET Amplifier
Lec08_p2
Munther N. Thiyab

2019-2020

Common-Source (CS) Fixed-Bias Circuit

The input is on the gate and the output is on the drain

There is a 180° phase shift between input and output

Calculations

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathbf{G}}
$$

Output impedance:

$$
\begin{aligned}
& \mathbf{Z}_{\mathbf{o}}=\mathbf{R}_{\mathbf{D}} \| \mathbf{r}_{\mathbf{d}} \\
& \left.\mathbf{Z}_{\mathbf{0}} \cong \mathbf{R}_{\mathbf{D}}\right|_{\mathbf{r}_{\mathbf{d}} \geq \mathbf{1 0 R}_{\mathbf{D}}}
\end{aligned}
$$

Voltage gain:

$$
\begin{aligned}
& A_{\mathbf{v}}=\frac{\mathbf{V}_{\mathbf{0}}}{\mathbf{V}_{\mathbf{i}}}=-\mathbf{g}_{\mathbf{m}}\left(\mathbf{r}_{\mathbf{d}} \| \mathbf{R}_{\mathrm{D}}\right) \\
& \mathbf{A}_{\mathbf{v}}=\frac{\mathbf{V}_{\mathbf{0}}}{\mathbf{V}_{\mathbf{i}}}=-\left.\mathbf{g}_{\mathbf{m}} \mathbf{R}_{\mathbf{D}}\right|_{\mathbf{r}_{\mathbf{d}} \geq \mathbf{1 0 R}_{\mathbf{D}}}
\end{aligned}
$$

Common-Source (CS) Self-Bias Circuit

This is a common-source amplifier configuration, so the input is on the gate and the output is on the drain

There is a 180° phase shift between input and output

Calculations

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathbf{G}}
$$

Output impedance:

$$
\begin{aligned}
& \mathbf{Z}_{\mathbf{o}}=\mathbf{r}_{\mathbf{d}} \| \mathbf{R}_{\mathbf{D}} \\
& \mathbf{Z}_{\mathbf{0}} \cong \mathbf{R}_{\mathbf{D}} \mid \mathbf{r}_{\mathbf{d}} \geq \mathbf{1 0 R _ { D }}
\end{aligned}
$$

Voltage gain:

$$
\begin{aligned}
A_{v} & =-\mathbf{g}_{m}\left(\mathbf{r}_{d} \| R_{D}\right) \\
A_{v} & =-\mathbf{g}_{m} R_{D} \mid \mathbf{r}_{\mathbf{d}} \geq \mathbf{1 0 R}_{D}
\end{aligned}
$$

Common-Source (CS) Self-Bias Circuit

Removing C_{s} affects the gain of the circuit.

Calculations

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathbf{G}}
$$

Output impedance:

$$
\left.Z_{\mathbf{o}} \cong \mathbf{R}_{\mathrm{D}}\right|_{\mathbf{r}_{\mathbf{d}} \geq 10 R_{\mathrm{D}}}
$$

Voltage gain:

$$
\begin{aligned}
& A_{V}=\frac{\mathbf{V}_{\mathbf{0}}}{\mathbf{V}_{\mathbf{i}}}=-\frac{\mathbf{g}_{m} \mathbf{R}_{D}}{1+\mathbf{g}_{\mathbf{m}} \mathbf{R}_{\mathbf{S}}+\frac{\mathbf{R}_{\mathrm{D}}+\mathbf{R}_{\mathbf{S}}}{\mathbf{r}_{\mathbf{d}}}} \\
& \left.A_{v}=\frac{\mathbf{V}_{\mathbf{o}}}{\mathbf{V}_{\mathbf{i}}}=-\frac{\mathbf{g}_{\mathbf{m}} \mathbf{R}_{\mathbf{D}}}{1+\mathbf{g}_{\mathbf{m}} \mathbf{R}_{\mathbf{S}}} \right\rvert\, \mathbf{r}_{\mathbf{d}} \geq 10\left(\mathbf{R}_{\mathrm{D}}+\mathbf{R}_{\mathrm{S}}\right)
\end{aligned}
$$

Common-Source (CS) Voltage-Divider Bias

This is a common-source amplifier configuration, so the input is on the gate and the output is on the drain.

Impedances

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathbf{1}} \| \mathbf{R}_{\mathbf{2}}
$$

Output impedance:

$$
\begin{aligned}
& \mathbf{Z}_{0}=\mathbf{r}_{d} \| \mathbf{R}_{D} \\
& \left.\mathbf{Z}_{\mathbf{o}} \cong \mathbf{R}_{D}\right|_{\mathbf{r}_{d} \geq 10 R_{D}}
\end{aligned}
$$

Voltage gain:

$$
\begin{aligned}
& A_{v}=-g_{m}\left(r_{d} \| R_{D}\right) \\
& A_{v}=-\left.\mathbf{g}_{m} R_{D}\right|_{\mathbf{r}_{d} \geq 10 R_{D}}
\end{aligned}
$$

Source Follower (Common-Drain) Circuit

In a common-drain amplifier configuration, the input is on the gate, but the output is from the source.

There is no phase shift between input and output.

Impedances

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathbf{G}}
$$

Output impedance:

$$
\begin{aligned}
& Z_{o}=r_{d}\left\|R_{S}\right\| \frac{1}{g_{m}} \\
& Z_{o} \cong R_{S} \|\left.\frac{1}{g_{m}}\right|_{r_{d} \geq 10 R_{S}}
\end{aligned}
$$

Voltage gain:

$$
\begin{aligned}
& A_{v}=\frac{\mathbf{V}_{\mathbf{0}}}{\mathbf{V}_{i}}=\frac{\mathbf{g}_{m}\left(\mathbf{r}_{\mathbf{d}} \| \mathbf{R}_{\mathbf{S}}\right)}{1+\mathbf{g}_{m}\left(\mathbf{r}_{\mathbf{d}} \| \mathbf{R}_{\mathbf{S}}\right)} \\
& A_{\mathbf{v}}=\frac{\mathbf{V}_{\mathbf{o}}}{\mathbf{V}_{\mathbf{i}}}=\left.\frac{\mathbf{g}_{\mathbf{m}} \mathbf{R}_{\mathbf{S}}}{1+\mathbf{g}_{m} R_{\mathbf{S}}}\right|_{\mathbf{r}_{\mathbf{d}} \geq 10}
\end{aligned}
$$

Common-Gate (CG) Circuit

The input is on the source and the output is on the drain.

There is no phase shift between input and output.

Calculations

Input impedance:

$$
\begin{aligned}
& Z_{i}=\mathbf{R}_{S} \|\left[\frac{\mathbf{r}_{\mathbf{d}}+\mathbf{R}_{\mathbf{D}}}{1+\mathbf{g}_{\mathbf{m}} \mathbf{r}_{\mathbf{d}}}\right] \\
& \mathbf{Z}_{\mathbf{i}} \cong \mathbf{R}_{\mathbf{S}} \|\left.\frac{\mathbf{1}}{\mathbf{g}_{\mathrm{m}}}\right|_{\mathbf{r}_{\mathbf{d}} \geq 10 \mathbf{R}_{\mathbf{D}}}
\end{aligned}
$$

Output impedance:

$$
\begin{aligned}
& \mathbf{Z}_{\mathbf{0}}=\mathbf{R}_{\mathbf{D}} \| \mathbf{r}_{\mathbf{d}} \\
& \mathbf{Z}_{\mathbf{0}} \cong \mathbf{R}_{\mathbf{D}} \mid \mathbf{r}_{\mathrm{d}} \geq 10
\end{aligned}
$$

Voltage gain:

$$
\left.A_{v}=\frac{\mathbf{V}_{\mathbf{0}}}{\mathbf{V}_{\mathbf{i}}}=\frac{\left[g_{m} R_{D}+\frac{\mathbf{R}_{D}}{\mathbf{r}_{d}}\right]}{\left[1+\frac{R_{D}}{\mathbf{r}_{d}}\right]} \quad A_{v}=g_{m} R_{D} \right\rvert\, r_{d} \geq 10 R_{D}
$$

Fundumantal of Ecctranicll

Second Class

Chapter08: FET Amplifier
Lec08_p3
Munther N. Thiyab

2019-2020

D-Type MOSFET AC Equivalent

E-Type MOSFET AC Equivalent

g_{m} and r_{d} can be found in the specification sheet for the FET.

Common-Source Drain-Feedback

There is a 180° phase shift between input and output.

Calculations

Input impedance:

$$
\begin{aligned}
& Z_{i}=\frac{R_{F}+r_{d} \| R_{D}}{1+g_{m}\left(r_{d} \| R_{D}\right)} \\
& \left.\mathbf{Z}_{i} \cong \frac{\mathbf{R}_{F}}{1+\mathbf{g}_{m} R_{D}} \right\rvert\, R_{F} \gg r_{d} \| R_{D}, r_{d} \geq 10 R_{D}
\end{aligned}
$$

Output impedance:

$$
\begin{aligned}
& \mathbf{Z}_{\mathbf{0}}=\mathbf{R}_{F}\left\|r_{d}\right\| \mathbf{R}_{D} \\
& \mathbf{Z}_{\mathbf{o}} \cong \mathbf{R}_{\mathbf{D}} \mid \mathbf{R}_{F} \gg \mathbf{r}_{\mathrm{d}} \| \mathbf{R}_{\mathrm{D}}, \mathbf{r}_{\mathrm{d}} \geq 10 \mathbf{R}_{\mathrm{D}}
\end{aligned}
$$

Voltage gain:

$$
\begin{aligned}
& \mathbf{A}_{\mathbf{v}}=-\mathbf{g}_{\mathbf{m}}\left(\mathbf{R}_{\mathbf{F}}\left\|\mathbf{r}_{\mathbf{d}}\right\| \mathbf{R}_{\mathbf{D}}\right) \\
& \mathbf{A}_{\mathbf{v}} \cong-\mathbf{g}_{\mathbf{m}} \mathbf{R}_{\mathbf{D}} \mid \mathbf{R}_{\mathbf{F}} \gg \mathbf{r}_{\mathbf{d}} \| \mathbf{R}_{\mathbf{D}}, \mathbf{r}_{\mathbf{d}} \geq 10 \mathbf{R}_{\mathbf{D}}
\end{aligned}
$$

Common-Source Voltage-Divider Bias

Calculations

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{1} \| \mathbf{R}_{\mathbf{2}}
$$

Output impedance:

$$
\begin{aligned}
& \mathbf{Z}_{\mathbf{o}}=\mathbf{r}_{\mathbf{d}} \| \mathbf{R}_{\mathbf{D}} \\
& \left.\mathbf{Z}_{\mathbf{0}} \cong \mathbf{R}_{\mathbf{D}}\right|_{\mathbf{r}_{\mathrm{d}} \geq 10}
\end{aligned}
$$

Voltage gain:

$$
\begin{aligned}
& \mathbf{A}_{\mathbf{v}}=-\mathbf{g}_{\mathbf{m}}\left(\mathbf{r}_{\mathbf{d}} \| \mathbf{R}_{\mathbf{D}}\right) \\
& \mathbf{A}_{\mathbf{v}} \cong-\mathbf{g}_{\mathbf{m}} \mathbf{R}_{\mathbf{D}} \mid \mathbf{r}_{\mathbf{d}} \geq 10 \mathbf{R}_{\mathbf{D}}
\end{aligned}
$$

Summary Table

Common-gate
[JFET or D-MOSFET]

more...

