

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter05: BJT AC Analysis Lec05_p1 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

BJT Transistor Modeling

- A model is an equivalent circuit that represents the AC characteristics of the transistor.
- A model uses circuit elements that approximate the behavior of the transistor.
- There are two models commonly used in small signal AC analysis of a transistor:
 - r_e model
 - Hybrid equivalent model

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common-Base Configuration

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common Emitter Fixed Bias Configuration

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common Emitter Fixed Bias Configuration

10

Fundumental of Electronic I Msc: Munther Naif Thiyab

11

Common Emitter Fixed Bias Configuration

1h

RR

Input impedance:

 $Z_{i} = R_{B} ||\beta r_{e}$ $Z_{i} \cong \beta r_{e} |_{R_{E} \ge 10\beta r_{e}}$

Output impedance:

 $Z_{0} = R_{C} || r_{0}$ $Z_{0} \cong R_{C} || r_{0} \ge 10R_{C}$

Voltage gain:

$$\mathbf{V}_{\mathrm{o}} = -\beta I_{b} (\mathbf{R}_{\mathrm{C}} || \mathbf{r}_{\mathrm{o}}) , \ I_{b} = \frac{V_{i}}{\beta \mathbf{r}_{\mathrm{e}}} , \ \mathbf{V}_{\mathrm{o}} = -\beta \left(\frac{V_{\mathrm{i}}}{\beta \mathbf{r}_{\mathrm{e}}}\right) (\mathbf{R}_{\mathrm{C}} || \mathbf{r}_{\mathrm{o}})$$

Br

 βI_b

 R_C

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{(R_{C} || r_{o})}{r_{e}} , \quad A_{v} = -\frac{R_{C}}{r_{e}} |_{r_{o} \ge 10R}$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common Emitter Fixed Bias Configuration

Demonstrating the 180° phase shift between input and output waveforms.

12

Fundumental of Electronic I Msc: Munther Naif Thiyab

Example 5.1 Determine r_e , Z_i (with $r_o = \infty$), Z_o (with $r_o = \infty$), A_v (with $r_o = \infty$). Repeat with $r_o = 50 \text{ k}\Omega$.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter05: BJT AC Analysis Lec05_p2 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

16

Common-Emitter Voltage-Divider Bias

Fundumental of Electronic I Msc: Munther Naif Thiyab

Example 5.2

Determine r_e , Z_i , Z_o (with $r_o = \infty$), A_v (with $r_o = \infty$). Repeat with $r_o = 50 \text{ k}\Omega$.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Impedance Calculations

Input impedance:

 $V_{i} = I_{b}\beta r_{e} + I_{e}R_{E}$ $V_{i} = I_{b}\beta r_{e} + (\beta + 1)I_{b}R_{E}$ $Z_{b} = \frac{V_{i}}{I_{b}} = \beta r_{e} + (\beta + 1)R_{E}$ $Z_{b} \cong \beta r_{e} + \beta R_{E} = \beta (r_{e} + R_{E})$ $Z_{b} \cong \beta R_{E} \quad \text{for } R_{E} >> r_{e}$

Output impedance:

 $Z_i = R_B ||Z_b|$

$$Z_{o} = R$$

20

Fundumental of Electronic I Msc: Munther Naif Thiyab

$$A_v = \frac{r_o}{V_i} = -\frac{r_e}{r_e + R_E}$$

and for the approximation $Z_b \cong \beta R$

$$A_v = \frac{V_o}{V_i} \cong -\frac{R}{R_E}$$

21

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter05: BJT AC Analysis Lec05_p3 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

Emitter-Follower Configuration VCC BIh Ca Zh

- This is also known as the common-collector configuration.
- The input is applied to the base and the output is taken from the emitter.
- There is no phase shift between input and output.

23

Fundumental of Electronic I Msc: Munther Naif Thiyab

Impedance Calculations

Fundumental of Electronic I Msc: Munther Naif Thiyab

Impedance Calculations

Output impedance:

$$I_{b} = \frac{V_{i}}{Z_{b}}, I_{e} = (\beta + 1)I_{b}$$
$$= (\beta + 1)\frac{V_{i}}{Z_{b}}$$
$$I_{e} = \frac{(\beta + 1)V_{i}}{\beta r_{e} + (\beta + 1)R_{E}}$$
$$\operatorname{sin} ce \ (\beta + 1) \cong \beta$$
$$V$$

$$I_{e} = \frac{V_{i}}{r_{e} + R}$$

To determine Z_{o} , V_{i} is set to zero V_{i}
 $Z_{o} = R_{E} ||r_{e}|$, $Z_{o} ||r_{e}||_{R_{E} \gg r_{e}}$

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter05: BJT AC Analysis Lec05_p4 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common-Base Configuration

- The input is applied to the emitter.
- The output is taken from the collector.
- Low input impedance.
- High output impedance.
- Very high voltage gain.
- No phase shift between input and output.

 R_E

Fundumental of Electronic I Msc: Munther Naif Thiyab

Calculations

Input impedance:

$$\mathbf{Z}_i = \mathbf{R}_E \mid\mid \mathbf{r}_e$$

Output impedance:

$$Z_0 = R_C$$

Voltage gain:

$$V_{o} = -I_{o}R_{C} = -(-I_{C})R_{C}$$
$$= \alpha I_{e}R_{C}$$

$$I_{e} = \frac{V_{i}}{e} \rightarrow V_{o} = \alpha \left(\frac{V_{i}}{r_{e}}\right) R_{C}$$
$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{\alpha R_{C}}{r_{e}} \cong \frac{R_{C}}{r_{e}}$$

 A_v positive... V_i and V_o in phase.

Current gain:

 αI_e

Assuming $R_E >> r_e$ $I_e = I_i$ $I_o = - I_e = -\alpha I_i$ $A_i = \frac{I_o}{I_e} = -\alpha \cong -$

2

Fundumental of Electronic I Msc: Munther Naif Thiyab

Example 5.8

Determine r_e , Z_i , Z_o , A_v , A_i

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common-Emitter Collector Feedback Configuration

- This is a variation of the common-emitter fixed-bias configuration
- Input is applied to the base
- Output is taken from the collector
- There is a 180° phase shift between input and output

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

Determining the current gain using the voltage gain

Fundumental of Electronic I Msc: Munther Naif Thiyab

8

Determining the current gain using the voltage gain

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter05: BJT AC Analysis Lec05_p5 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

Effect of R_L and R_S

$$V_{o} = -\beta I_{b}(R_{C}||r_{o}||R_{L}) = -\beta I_{b}(R_{C}||R_{L}), I_{b} = \frac{V_{i}}{\beta r_{e}},$$
$$V_{o} = -\beta \left(\frac{V_{i}}{\beta r_{e}}\right)(R_{C}||R_{L}) \implies A_{vL} = \frac{V}{V_{i}} = -\frac{(R_{C}||R_{L})}{r_{e}}$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

Input impedance: $Z_i = R_B || \beta r_e$ Output Impedance: $Z_o = R_C || r_o$ To find overall gain: $V_i = \frac{Z_i V_s}{Z_i + R_s}$, $\frac{V_i}{V_s} = \frac{Z_i}{Z_i + R_s}$ $A_{vS} = \frac{V_o}{V_s} \cdot \frac{V_i}{V_s} = A_{vL} \frac{Z_i}{Z_i + R_s} \implies A_{vS} = \frac{Z_i}{Z_i + R_s} A_{vL}$

11

Fundumental of Electronic I Msc: Munther Naif Thiyab

Darlington Connection

- •The Darlington circuit provides a very high current gain—the product of the individual current gains: $\beta_D = \beta_1 \beta_2$
- •A Darlington transistor connection provides a transistor having a very large current gain, typically a few thousand.
- •Darlington pairs are available as complete packages.
- •A Darlington pair is sufficiently sensitive to respond to the small current.

Fundumental of Electronic I Msc: Munther Naif Thiyab

DC Bias of Darlington Circuits

Base current:

$$\mathbf{I}_{\mathbf{B}} = \frac{\mathbf{V}_{\mathbf{C}\mathbf{C}} - \mathbf{V}_{\mathbf{B}\mathbf{E}}}{\mathbf{R}_{\mathbf{B}} + \beta_{\mathbf{D}}\mathbf{R}_{\mathbf{E}}}$$

Emitter current:

$$\mathbf{I}_{\mathbf{E}} = (\beta_{\mathbf{D}} + 1)\mathbf{I}_{\mathbf{B}} \cong \beta_{\mathbf{D}}\mathbf{I}_{\mathbf{B}}$$

Emitter voltage:

 $\mathbf{V}_{\mathbf{E}} = \mathbf{I}_{\mathbf{E}} \mathbf{R}_{\mathbf{E}}$

Base voltage:

 $\mathbf{V}_{\mathbf{B}} = \mathbf{V}_{\mathbf{E}} + \mathbf{V}_{\mathbf{B}\mathbf{E}}$

Fundumental of Electronic I Msc: Munther Naif Thiyab

Darlington Circuits

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter 6 : Field Effect Transistors Lec06_p1 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

Differences:

- FETs are voltage controlled devices. BJTs are current controlled devices.
- FETs have a higher input impedance. BJTs have higher gains.
- FETs are less sensitive to temperature variations and are more easily integrated on ICs.

Fundumental of Electronic I Msc: Munther Naif Thiyab

FET Types

•JFET: Junction FET

•MOSFET: Metal–Oxide–Semiconductor FET

D-MOSFET: Depletion MOSFET**E-MOSFET:** Enhancement MOSFET

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

JFET Operating Characteristics: $V_{GS} = 0 V$, V_{DS} some positive value

When $V_{GS} = 0$ and V_{DS} is increased from 0 to a more positive voltage:

- The depletion region between pgate and n-channel increases.
- Increasing the depletion region, decreases the size of the nchannel which increases the resistance of the n-channel.
- Even though the n-channel resistance is increasing, the current (I_D) from source to drain through the n-channel is increasing. This is because V_{DS} is increasing.

Fundumental of Electronic I Msc: Munther Naif Thiyab

JFET Operating Characteristics: $V_{GS} = 0 V$, V_{DS} some positive value I_D Saturation level IDSS $V_{GS} = 0 V$ Increasing resistance due to narrowing channel n-channel resistance VP VDS I_D versus V_{DS} for $V_{GS} = 0$ V.

Fundumental of Electronic I Msc: Munther Naif Thiyab

6

JFET Operating Characteristics: Pinch Off

If $V_{GS} = 0$ and V_{DS} is further increased to a more positive voltage, then the depletion zone gets so large that it pinches off the n-channel.

As V_{DS} is increased beyond $|V_P|$, the level of I_D remains the same $(I_D=I_{DSS})$.

 I_{DSS} is the maximum drain current for a JFET and is defined by the conditions $V_{GS}=0$ and $V_{DS} > |V_P|$.

Fundumental of Electronic I Msc: Munther Naif Thiyab

JFET Operating Characteristics , V_{GS}<0

- •As V_{GS} becomes more negative, the depletion region increases.
- •The more negative V_{GS} , the resulting level for I_D is reduced.
- •Eventually, when $V_{GS}=V_P$ (-ve) [$V_P=V_{GS(off)}$], I_D is 0 mA. (the device is "*turned off*".

•The level of V_{GS} that results in $I_D=0$ mA is defined by $V_{GS}=V_P$, with V_P being a negative voltage for n-channel devices and a positive voltage for p-channel JFETs.

Application of a negative voltage to the gate of a JFET.

Fundumental of Electronic I Msc: Munther Naif Thiyab

JFET Operating Characteristics

Fundumental of Electronic I Msc: Munther Naif Thiyab

JFET Operating Characteristics: Voltage-Controlled Resistor

•The region to the left of the pinch-off point is called the ohmic region.

•The JFET can be used as a variable resistor, where V_{GS} controls the drain-source resistance (r_d). As V_{GS} becomes more negative, the resistance (r_d) increases.

$$\mathbf{r_d} = \frac{\mathbf{r_o}}{\left(1 - \frac{\mathbf{V_{GS}}}{\mathbf{V_P}}\right)^2}$$

where r_o is the resistance with $V_{GS}=0$ and r_d is the resistance at a particular level of V_{GS} .

Fundumental of Electronic I Msc: Munther Naif Thiyab

10

p-Channel JFETS

The *p*-channel JFET behaves the same as the *n*-channel JFET, except the voltage polarities and current directions are reversed.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Also note that at high levels of V_{DS} the JFET reaches a breakdown situation: I_D increases uncontrollably if $V_{DS} > V_{DSmax}$.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter 6 : Field Effect Transistors Lec06_p2 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

JFET Symbols

University of Anbar

College of Engineering

Fundumental of Electronic I Msc: Munther Naif Thiyab

Dept. of Electrical Engineering $V_{GS} = -V_{GG}$ G $V_{DD} \ge |V_P|$ $I_D = I_{DSS}$ $I_D = 0 \text{ A}$ V_{DD} $V_{GS} = 0 \text{ V}$ VGS VGS V_{GG} = \$ S $|V_{GG}| \ge |V_P|$ (a) (b) $|V_P| \ge |V_{GG}| \ge 0 \text{ V}$ D $0 \text{ mA} \le I_D \le I_{DSS}$ V_{GG} VGS 05 (c)

(a) $V_{GS} = 0$ V, $I_D = I_{DSS}$; (b) cutoff ($I_D = 0$ A) V_{GS} less than (more negative than) the pinch-off level; (c) I_D is between 0 A and I_{DSS} for $V_{GS} \le 0$ V and greater than the pinch-off level.

Fundumental of Electronic I Msc: Munther Naif Thiyab

JFET Transfer Characteristics

In a BJT, β indicates the relationship between I_B (input) and I_C (output).

In a JFET, the relationship of V_{GS} (input) and I_D (output) is a little more complicated (*Shockley's equation*):

$$\mathbf{I_D} = \mathbf{I_{DSS}} \left(1 - \frac{\mathbf{V_{GS}}}{\mathbf{V_P}} \right)^2$$

William Bradford Shockley (1910–1989)

Fundumental of Electronic I Msc: Munther Naif Thiyab

JFET Transfer Curve

This graph shows the value of I_D for a given value of V_{GS}.

Fundumental of Electronic I Msc: Munther Naif Thiyab

16

Plotting the JFET Transfer Curve

Using I_{DSS} and Vp ($V_{GS(off)}$) values found in a specification sheet, the transfer curve can be plotted according to these three steps:

Fundumental of Electronic I Msc: Munther Naif Thiyab

Example 6.1

Sketch the transfer curve defined by I_{DSS} =12 mA and V_P =-6V.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter 6 : Field Effect Transistors Lec06_p3 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

MOSFETs

MOSFETs have characteristics similar to JFETs and additional characteristics that make then very useful.

There are two types of MOSFETs:

- Depletion-Type
- Enhancement-Type

Fundumental of Electronic I Msc: Munther Naif Thiyab

Depletion-Type MOSFET Construction

The Drain (D) and Source (S) connect to the to *n*-doped regions.

➢ These *n*-doped regions are connected via an *n*-channel.

This *n*-channel is connected to the Gate (G) via a thin insulating layer of SiO_2 .

The *n*-doped material lies on a p-doped substrate that may have an additional terminal connection called Substrate (SS).

n-Channel depletion-type MOSFET.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Depletion-Type MOSFET :Basic Operation and Characteristics

 $>V_{GS}=0$ and V_{DS} is applied across the drain to source terminals.

This results to attraction of free electrons of the n-channel to the drain, and hence current flows.

n-Channel depletion-type MOSFET with $V_{GS} = 0$ V and applied voltage V_{DD} .

Fundumental of Electronic I Msc: Munther Naif Thiyab

Depletion-Type MOSFET :Basic Operation and Characteristics

 $>V_{GS}$ is set at a negative voltage such as -1 V.

➤The negative potential at the gate pressures electrons toward the p-type substrate and attract holes from the ptype substrate.

This will reduce the number of free electrons in the *n*-channel available for conduction.

The more negative the V_{GS} , the resulting level of drain current I_D is reduced.

When V_{GS} is reduced to V_P (Pinchoff voltage), then $I_D=0$ mA.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Depletion-Type MOSFET :Basic Operation and Characteristics

Fundumental of Electronic I Msc: Munther Naif Thiyab

Basic MOSFET Operation

A depletion-type MOSFET can operate in two modes:

- Depletion mode
- Enhancement mode

Fundumental of Electronic I Msc: Munther Naif Thiyab

D-Type MOSFET in Depletion Mode

Depletion Mode

The characteristics are similar to a JFET.

- When $V_{GS} = 0$ V, $I_D = I_{DSS}$
- When $V_{GS} < 0$ V, $I_D < I_{DSS}$
- The formula used to plot the transfer curve still applies:

$$\mathbf{I}_{\mathbf{D}} = \mathbf{I}_{\mathbf{DSS}} \left(1 - \frac{\mathbf{V}_{\mathbf{GS}}}{\mathbf{V}_{\mathbf{P}}} \right)^2$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

D-Type MOSFET in Enhancement Mode

Enhancement Mode

- $V_{GS} > 0 V$
- I_D increases above I_{DSS}
- The formula used to plot the transfer curve still applies:

Note that V_{GS} is now a positive polarity

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

D-Type MOSFET Symbols

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter 6 : Field Effect Transistors Lec06_p4 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

Enhancement-Type MOSFET Construction

- The Drain (D) and Source (S) connect to the to *n*-doped regions.
- The Gate (G) connects to the *p*-doped substrate via a thin insulating layer of SiO₂
- There is no channel
- The *n*-doped material lies on a *p*doped substrate that may have an additional terminal connection called the Substrate (SS)

Fundumental of Electronic I Msc: Munther Naif Thiyab

Enhancement-Type MOSFET Construction

- For $V_{GS}=0$, $I_D=0$ (no channel).
- For V_{DS} some positive voltage, and $V_{GS}=0$, two reverse biased p-n junctions and no significant flow between drain and source.
- For $V_{GS}>0$ and $V_{DS}>0$, the positive voltage at gate pressure holes to enter deeper regions of the p-substrate, and the electrons in p-substrate will be attracted to the positive gate.
- The level of V_{GS} that results in the significant increase in drain current is called *threshold voltage* (V_T).
- For $V_{GS} \leq V_T$, $I_D = 0$ mA.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Basic Operation of the E-Type MOSFET

The enhancement-type MOSFET operates only in the enhancement mode.

- V_{GS} is always positive.
- As V_{GS} increases, I_D increases
- As V_{GS} is kept constant and V_{DS} is increased, then I_D saturates (I_{DSS}) and the saturation level, V_{DSsat} is reached

V_{DSsat} can be calculated by:

$$\mathbf{V}_{\mathbf{Dsat}} = \mathbf{V}_{\mathbf{GS}} - \mathbf{V}_{\mathbf{T}}$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

E-Type MOSFET Transfer Curve

k, a constant, can be determined by using values at a specific point and the formula:

k

$$=\frac{-D(ON)}{(V_{GS(ON)} - VT)^2}$$
14

Fundumental of Electronic I Msc: Munther Naif Thiyab

5

E-Type MOSFET Transfer Curve

Substituting $I_D(on) = 10$ mA when $V_{GS}(on) = 8V$ from the characteristics:

$$k = \frac{10 \text{ mA}}{(8-2)^2} = 0.278 \times 10^{-3} \text{ A/V}^2 \implies I_D = 0.278 \times 10^{-3} (V_{GS} - 2V)^2$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

p-Channel E-Type MOSFETs ↓ I_D (mA) Ala (mA) $V_{GS} = -6 \text{ V}$ 8 $V_{CS} = -5 \text{ V}$ n 0.55 $V_{GS} = -4 \text{ V}$ $V_{GS} = -3 \text{ V}$ -5 -6 -4 0 0 Vas $V_{GS} = V_T = -2 V_T$ (a) (c) (b)

The *p*-channel enhancement-type MOSFET is similar to the *n*-channel, except that the voltage polarities and current directions are reversed.

Fundumental of Electronic I Msc: Munther Naif Thiyab

MOSFET Symbols

(b) *p*-channel enhancement-type MOSFETs.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter 7 : FET Biasing Lec07_p1 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

Basic Current Relationships For all FETs: $I_G \cong 0A$ $I_D = I_S$ For JFETS and D-Type MOSFETs: $\mathbf{I}_{\mathbf{D}} = \mathbf{I}_{\mathbf{DSS}} \left(1 - \frac{\mathbf{V}_{\mathbf{GS}}}{\mathbf{V}_{\mathbf{P}}} \right)^2$

For E-Type MOSFETs:

$$\mathbf{I_D} = \mathbf{k}(\mathbf{V_{GS}} - \mathbf{V_T})^2$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fixed-Bias Configuration

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fixed-Bias Configuration – Graphical Solution

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

6

Self-Bias Configuration

Fundumental of Electronic I Msc: Munther Naif Thiyab

Self-Bias Configuration

$$V_{GS} = -I_D R_S$$
$$I_D = I_{DSS} \left(1 \quad \frac{V_{GS}}{V_p} \right)^2$$

$$I_D = I_{DSS} \left(1 - \frac{-I_D R_S}{V_p} \right)^2$$

$$I_D = I_{DSS} \left(1 + \frac{I_D R_S}{V_p} \right)$$

By squaring and rearranging, I_D has the form:

$$I_D^2 + k_1 I + k_2 = 0$$
 [Solve for I_D]

DC analysis of the self-bias configuration.

Fundumental of Electronic I Msc: Munther Naif Thiyab

8

Self-Bias Configuration – graphical solution

Sketch the transfer curve.Draw the line:

 $V_{GS} = -I_D R_S$

•The Q-point is located where the line intersects the transfer curve.

•Use the value of I_D at the Q-point (I_{DQ}) to solve for the other voltages:

$$V_{DS} = V_{DD} - I_D (R_S + R_D)$$
$$V_S = I_D R_S$$
$$V_D \quad V_{DS} + V_S$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

Example 7.2 - solution

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter 7 : FET Biasing Lec07_p2 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

Voltage-Divider Bias

Fundumental of Electronic I Msc: Munther Naif Thiyab

Voltage-Divider Bias

 V_G is equal to the voltage across divider resistor R_2 :

$$\mathbf{V}_{\mathbf{G}} = \frac{\mathbf{R}_2 \mathbf{V}_{\mathbf{D}\mathbf{D}}}{\mathbf{R}_1 + \mathbf{R}_2}$$

Using Kirchhoff's Law:

$$\mathbf{V}_{\mathbf{GS}} = \mathbf{V}_{\mathbf{G}} - \mathbf{I}_{\mathbf{D}}\mathbf{R}_{\mathbf{S}}$$

The Q point is established by plotting a line that intersects the transfer curve.

Fundumental of Electronic I Msc: Munther Naif Thiyab

line intersects the transfer curve

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

Voltage-Divider Bias

Using the value of I_D at the Q-point, solve for the other variables in the voltage-divider bias circuit: V_{DD} V_{DD} V_{DD} V_{DD}

Fundumental of Electronic I Msc: Munther Naif Thiyab

D-Type MOSFET Bias Circuits

Depletion-type MOSFET bias circuits are similar to those used to bias JFETs. The only difference is that depletion-type MOSFETs can operate with positive values of V_{GS} and with I_D values that exceed I_{DSS} .

circuits.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Example 7.7 Find V_{GSQ} , I_{DQ} , V_{DS} o 18 V Step 1 1.8 kΩ Plot the line for 110 MΩ $\bullet V_{GS} = V_G, I_D = 0 A$ -oV $\bullet I_{D} = V_{G}/R_{S}, V_{GS} = 0 V$ $I_{DSS} = 6 \text{ mA}$ $V_P = -3 \text{ V}$ Vio Step 2 Plot the transfer curve using I_{DSS} , V_{P} and 10 MΩ calculated values of I_D. 750 Ω Step 3 The Q-point is located where the line intersects the transfer curve is. Use the I_D at $V_{G} = \frac{R_2 V_{DD}}{R_1 + R_2}$ the Q-point to solve for the other variables in the voltage-divider bias circuit. $V_{GS} = V_G - I_D R_S$ These are the same steps used to analyze JFET voltage-divider bias 18

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter 7 : FET Biasing Lec07_p3 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

E-Type MOSFET Bias Circuits

D (on)

The transfer characteristic for the e-type MOSFET is very different from that of a simple JFET or the d-type MOSFET.

$$I_D = k \left(V_{GS} - V_{GS(Th)} \right)^2$$

21

Fundumental of Electronic I Msc: Munther Naif Thiyab

Feedback Bias Circuit

Fundumental of Electronic I Msc: Munther Naif Thiyab

Feedback Bias Q-Point

Step 1

Plot the line using

$$\label{eq:VGS} \begin{split} \bullet V_{GS} &= V_{DD}, \ I_D = 0 \ A \\ \bullet I_D &= V_{DD} \ / \ R_D \ , \ V_{GS} = 0 \ V \end{split}$$

Step 2

Using values from the specification sheet, plot the transfer curve with

• V_{GSTh} , $I_D = 0 A$ • $V_{GS(on)}$, $I_{D(on)}$

Step 3

The Q-point is located where the line and the transfer curve intersect

Step 4

Using the value of I_D at the Q-point, solve for the other variables in the bias circuit.

 $\mathbf{V}_{\mathbf{GS}} = \mathbf{V}_{\mathbf{DD}} - \mathbf{I}_{\mathbf{D}}\mathbf{R}_{\mathbf{D}}$

23

Fundumental of Electronic I Msc: Munther Naif Thiyab

Voltage-Divider Biasing

Plot the line and the transfer curve to find the Q-point. Use these equations:

$$\mathbf{V}_{\mathbf{G}} = \frac{\mathbf{R}_2 \mathbf{V}_{\mathbf{D}\mathbf{D}}}{\mathbf{R}_1 + \mathbf{R}_2}$$

$$V_{GS} = V_G - I_D R_S$$
$$V_{DS} = V_{DD} - I_D (R_S + R_D)$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

Example 7.12 - Solution

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter08: FET Amplifier Lec08_p1 Munther N. Thiyab

2019-2020

Introduction

FETs provide:

- Excellent voltage gain
- High input impedance
- Low-power consumption
- Good frequency range

FET Small-Signal Model

Transconductance

The relationship of a change in I_D to the corresponding change in V_{GS} is called transconductance

Transconductance is denoted g_m and given by:

$$\mathbf{g}_{\mathbf{m}} = \frac{\Delta \mathbf{I}_{\mathbf{D}}}{\Delta \mathbf{V}_{\mathbf{GS}}}$$

Graphical Determination of g_m

Mathematical Definitions of g_m

$$g_{m} = \frac{\Delta I_{D}}{\Delta V_{GS}}$$

$$g_{m} = \frac{2I_{DSS}}{|V_{P}|} \left[1 - \frac{V_{GS}}{V_{P}} \right]$$
Where $V_{GS} = 0V$ $g_{m0} = \frac{2I_{DSS}}{|V_{P}|}$

$$g_{m} = g_{m0} \left[1 - \frac{V_{GS}}{V_{P}} \right]$$
Where $1 - \frac{V_{GS}}{V_{P}} = \sqrt{\frac{I_{D}}{I_{DSS}}}$

$$g_{m} = g_{m0} \left(1 - \frac{V_{GS}}{V_{P}} \right) = g_{m0} \sqrt{\frac{I_{D}}{I_{DSS}}}$$

FET Impedance

Input impedance:

$$Z_i = \infty \Omega$$

Output Impedance:

$$\mathbf{Z}_{\mathbf{o}} = \mathbf{r}_{\mathbf{d}} = \frac{1}{\mathbf{y}_{\mathbf{os}}}$$

where:

$$\mathbf{r}_{\mathbf{d}} = \frac{\Delta \mathbf{V}_{\mathbf{DS}}}{\Delta \mathbf{I}_{\mathbf{D}}} \Big| \mathbf{V}_{\mathbf{GS}} = \text{constant}$$

y_{os}= admittance parameter listed on FET specification sheets.

FET AC Equivalent Circuit

Summary Table

Troubleshooting

Check the DC bias voltages:

If not correct check power supply, resistors, FET. Also check to ensure that the coupling capacitor between amplifier stages is OK.

Check the AC voltages:

If not correct check FET, capacitors and the loading effect of the next stage

Practical Applications

Three-Channel Audio Mixer Silent Switching Phase Shift Networks Motion Detection System

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter08: FET Amplifier Lec08_p2 Munther N. Thiyab

2019-2020

Common-Source (CS) Fixed-Bias Circuit

Calculations

Input impedance:

 $Z_i = R_G$

Output impedance:

$$\begin{aligned} \mathbf{Z}_{o} &= \mathbf{R}_{D} \parallel \mathbf{r}_{d} \\ \mathbf{Z}_{o} &\cong \mathbf{R}_{D} \end{vmatrix} \quad \mathbf{r}_{d} \geq 10\mathbf{R}_{D} \end{aligned}$$

Voltage gain:

$$\mathbf{A}_{\mathbf{V}} = \frac{\mathbf{V}_{\mathbf{0}}}{\mathbf{V}_{\mathbf{i}}} = -\mathbf{g}_{\mathbf{m}}(\mathbf{r}_{\mathbf{d}} \parallel \mathbf{R}_{\mathbf{D}})$$
$$\mathbf{A}_{\mathbf{V}} = \frac{\mathbf{V}_{\mathbf{0}}}{\mathbf{V}_{\mathbf{i}}} = -\mathbf{g}_{\mathbf{m}}\mathbf{R}_{\mathbf{D}} \Big|_{\mathbf{r}_{\mathbf{d}} \ge 10\mathbf{R}_{\mathbf{D}}}$$

Common-Source (CS) Self-Bias Circuit

This is a common-source amplifier configuration, so the input is on the gate and the output is on the drain

There is a 180° phase shift between input and output

Calculations

Input impedance:

 $Z_i = R_G$

Output impedance:

$$Z_{0} = r_{d} || R_{D}$$
$$Z_{0} \cong R_{D} ||_{r_{d} \ge 10R_{D}}$$

Voltage gain:

$$\mathbf{A}_{\mathbf{v}} = -\mathbf{g}_{\mathbf{m}}(\mathbf{r}_{\mathbf{d}} || \mathbf{R}_{\mathbf{D}})$$
$$\mathbf{A}_{\mathbf{v}} = -\mathbf{g}_{\mathbf{m}}\mathbf{R}_{\mathbf{D}} \Big|_{\mathbf{r}_{\mathbf{d}} \ge 10\mathbf{R}_{\mathbf{D}}}$$

Common-Source (CS) Self-Bias Circuit

Calculations

Voltage gain:

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S} + \frac{R_{D} + R_{S}}{r_{d}}}$$
$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S}} |r_{d} \ge 10(R_{D} + R_{S})$$

Common-Source (CS) Voltage-Divider Bias

This is a common-source amplifier configuration, so the input is on the gate and the output is on the drain.

Impedances

Input impedance:

$$\mathbf{Z}_{\mathbf{i}} = \mathbf{R}_1 \parallel \mathbf{R}_2$$

Output impedance:

$$\begin{aligned} \mathbf{Z}_{\mathbf{0}} &= \mathbf{r}_{\mathbf{d}} \parallel \mathbf{R}_{\mathbf{D}} \\ \mathbf{Z}_{\mathbf{0}} &\cong \mathbf{R}_{\mathbf{D}} \\ \mathbf{r}_{\mathbf{d}} \geq 10\mathbf{R}_{\mathbf{D}} \end{aligned}$$

Voltage gain:

$$\mathbf{A}_{\mathbf{v}} = -\mathbf{g}_{\mathbf{m}}(\mathbf{r}_{\mathbf{d}} \parallel \mathbf{R}_{\mathbf{D}})$$
$$\mathbf{A}_{\mathbf{v}} = -\mathbf{g}_{\mathbf{m}}\mathbf{R}_{\mathbf{D}} \Big|_{\mathbf{r}_{\mathbf{d}} \ge 10\mathbf{R}_{\mathbf{D}}}$$

Source Follower (Common-Drain) Circuit

In a common-drain amplifier configuration, the input is on the gate, but the output is from the source.

There is no phase shift between input and output.

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

Impedances

V; o

 R_G

G

+

 V_{gs}

 $g_m V_{gs}$

D

Input impedance:

$$Z_i = R_G$$

Output impedance:

$$Z_{o} = r_{d} \parallel R_{S} \parallel \frac{1}{g_{m}}$$
$$Z_{o} \cong R_{S} \parallel \frac{1}{g_{m}} \mid r_{d} \ge 10R_{S}$$

Voltage gain:

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{g_{m}(r_{d} \parallel R_{S})}{1 + g_{m}(r_{d} \parallel R_{S})}$$
$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{g_{m}R_{S}}{1 + g_{m}R_{S}} |r_{d} \ge 10$$

S

 r_d

 R_S

 V_o

Common-Gate (CG) Circuit

The input is on the source and the output is on the drain.

There is no phase shift between input and output.

Calculations

S

 V_{gs}

a

RS

 C_1

 Z_i

Input impedance:

$$Z_{i} = R_{S} \parallel \left[\frac{r_{d} + R_{D}}{1 + g_{m} r_{d}} \right]$$
$$Z_{i} \cong R_{S} \parallel \frac{1}{g_{m}} \Big|_{r_{d} \ge 10 R_{D}}$$

Output impedance:

$$Z_{o} = R_{D} || r_{d}$$
$$Z_{o} \cong R_{D} ||_{r_{d} \ge 10}$$

Voltage gain:

 V_i

$$\mathbf{A}_{v} = \frac{\mathbf{V}_{o}}{\mathbf{V}_{i}} = \frac{\left[g_{m}\mathbf{R}_{D} + \frac{\mathbf{R}_{D}}{\mathbf{r}_{d}}\right]}{\left[1 + \frac{\mathbf{R}_{D}}{\mathbf{r}_{d}}\right]} \quad \mathbf{A}_{v} = g_{m}\mathbf{R}_{D}|_{\mathbf{r}_{d}} \ge 10\mathbf{R}_{D}$$

 r_d

 $g_m V_{gs}$

+G

D

 Z'_o

 \sum_{R_D}

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky C_2

 Z_o

 V_o

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter08: FET Amplifier Lec08_p3 Munther N. Thiyab

2019-2020

D-Type MOSFET AC Equivalent

E-Type MOSFET AC Equivalent

g_m and r_d can be found in the specification sheet for the FET.

Common-Source Drain-Feedback

Calculations

Input impedance:

$$Z_{i} = \frac{R_{F} + r_{d} \parallel R_{D}}{1 + g_{m}(r_{d} \parallel R_{D})}$$
$$Z_{i} \approx \frac{R_{F}}{1 + g_{m}R_{D}} \Big|_{R_{F}} \gg r_{d} \parallel R_{D}, r_{d} \ge 10R_{D}$$

Output impedance:

$$Z_{o} = R_{F} || r_{d} || R_{D}$$
$$Z_{o} \cong R_{D} \Big|_{R_{F} \gg r_{d} || R_{D}, r_{d} \ge 10R_{D}}$$

Voltage gain:

$$\mathbf{A}_{\mathbf{v}} = -\mathbf{g}_{\mathbf{m}}(\mathbf{R}_{\mathbf{F}} || \mathbf{r}_{\mathbf{d}} || \mathbf{R}_{\mathbf{D}})$$
$$\mathbf{A}_{\mathbf{v}} \cong -\mathbf{g}_{\mathbf{m}}\mathbf{R}_{\mathbf{D}} |_{\mathbf{R}_{\mathbf{F}} >> \mathbf{r}_{\mathbf{d}} || \mathbf{R}_{\mathbf{D}}, \mathbf{r}_{\mathbf{d}} \ge 10\mathbf{R}_{\mathbf{D}}}$$

Common-Source Voltage-Divider Bias

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Calculations

Input impedance:

 $\mathbf{Z}_i {=} \mathbf{R}_1 {\parallel} \mathbf{R}_2$

Output impedance:

$$\begin{aligned} \mathbf{Z}_{\mathbf{o}} &= \mathbf{r}_{\mathbf{d}} \parallel \mathbf{R}_{\mathbf{D}} \\ \mathbf{Z}_{\mathbf{o}} &\cong \mathbf{R}_{\mathbf{D}} \Big|_{\mathbf{r}_{\mathbf{d}} \geq 10} \end{aligned}$$

Voltage gain:

$$\mathbf{A}_{\mathbf{v}} = -\mathbf{g}_{\mathbf{m}}(\mathbf{r}_{\mathbf{d}} \parallel \mathbf{R}_{\mathbf{D}})$$
$$\mathbf{A}_{\mathbf{v}} \cong -\mathbf{g}_{\mathbf{m}}\mathbf{R}_{\mathbf{D}}|_{\mathbf{r}_{\mathbf{d}} \ge 10\mathbf{R}_{\mathbf{D}}}$$

Summary Table

more...

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky