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1.The electric charge

* Empirically it was known since ancient times that if amber is rubbed
on fur, it acquires the property of attracting light objects such as
feathers.

* This phenomenon was attributed to a new property of matter called
“electric charge”.

* electron is the Greek name for amber because of its electrostatic
properties and whilst analyzing elementary charge for the first time.

* More experiments show that they are two distinct type of electric
charge: positive (color code: red), and negative (color code: black).
The names “positive” and “negative” were given by Benjamin
Franklin.
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The electric charge on
(1) a glass rod rubbed with silk is positive.

(2) an amber (plastic) rod rubbed with fur is — & oc
negative. (a)
((Note) T
Rubber rubbed with cat fur: rubber becomes negative, while the fur becomes | g -
positive. ~

(b)

Amber rod (-)

Plastic rod (-) %
-

Rubber (-) e W
Glass rod (+) ’?""
_:H___ _- = =
g
it c)
'.;E . (2) Uncharged amber rod exerts no force on papers
Zar, (b) Amber rod is rubbed against a dry cloth (a fur)

ce (¢) Amber rod becomes charged and attracts the papers.

Fig Plastbe rod subbed wiil e



Further experiments on charged objects showed that as :

1. Charges of the same type (either both positive or both e
negative) repel each other as in fig a. — _““\-

2. Charges of opposite type on the other hand attract
each other asin fig b. L

3. The force direction allows us to determine the sign of
an unknown electric charge
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2.Charge is quantized

* The experiments strongly suggested that the electric charge, g, is said to be
qguantized. g is the standard symbol used for charge as a variable. Electric
charge exists as discrete packets The Sl Unit of charge is the coulomb (c).

* The charge of the electron:
*g=ne

 where n is an integer(no. of electron or proton), and e is the fundamental
unit of charge.

e =1.602176487 x 107 °C
For electron g = -e

For proton g = +e

* For neutrong=0
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* How many electrons are there to form 1 C?

1c 1
n=1 = - = — = 6.24 % 1018
e e 1.602%x10~19

1 uC=107°C (u: micro)
1nC=10"°C (n: nano)
1 pC =102 C (p: pico)
1fC=10"1° C (f: femto)
1aC=10"18 C(a: atto)

((Note)) Relation between 1 C (Sl units) and 1 esu (cgs gaussian unit of charge,
electrostatic unit)
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We consider a force between two charges with g =
1c, The separation between two chargesisr=1m.

g acy
4 Amre (lm)y

I~

Al

[N].

In cgs units, the comresponding force between A (esu) [=1 Clas

s q: (A4 esu)’

_— - dyne
= (100cm)’ (dyne]

MNote that F-'«.-' == .F-'d_‘ and 1™ 10° dyne. Then we have

L R i oW _f:—J I «10° =2.99792 x10"
TE, Iy 4T,

So we have
IC = 2.99792 x 10" esu
The charge of electron 1s

ge = 1.60217664 x 107" C= 4.80320425 x 10'? esu. _
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3. Charge is conserved

* Consider a glass rod and a piece of silk cloth (both silk
uncharged) shown in the upper figure.

* |If we rub the glass rod with the silk cloth we know that
positive charge appears on the rod (see the figure).

e At the same time an equal amount of negative charge .
i glass rod
appears on the silk cloth

* so that the net rod-cloth charge is actually zero. This
suggests that rubbing does not create charge but only
transfers it from one body to the other.

silk

g 4 g f |

* Charge conservation can be summarized as follows: In
any process the charge at the beginning equals the
charge at the end of the process.

gl:mmmd
* The total electric charge in an isolated system, that is,
the algebraic sum of the positive and negative charge

present at any time, never change.
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H {15}
He (1sy

Some concepts i (s
Ba (lsyj(2sy
B (1s¥)i2sr(2p)’
C | Iﬁ'FfItE:q!lfprF
Due to the movement of electrons, N Hf;:ﬁ:;ﬁ;j
charge is transferred from one object to F o ujasra
Ne  (1s)¥ii2syi{2p)"
another.
Mg 41513}:5;:'{2.:1'*:135:: |
Positive ion: the atom that loses an ol i Ay
: : g ; . p (1sFNi2sF(2pr N3 (3p)
electron is said to be a positive ion; e (e pon )
Negative ion: the atom that receives an —m |1,-.f“n:sﬁ:pmlsiﬁlsipw
. . . sFI 28 (2p) 0 s C3p) i 3d)
extra electron is said to be a negative & anampen
1on. . MNa® (sodium 1on)
Ne  (IsFI2srF2plfi3s)’ (11 electrons)
Na'  (IsFii2sr(2p) {10 electrons)

Cl {chloride ion)

Cl (PsPpfi3sr(3py (17 electrons)
Cr (IsP)2sF2pH3sy¥(3p)® (18 electrons)
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A .Coulomb’s law

* Charles-Augustin de Coulomb was a French physicist. He is best known for
developing Coulomb's law

 Coulomb's law which is the definition of the electrostatic force of attraction and
repulsion.
* coulomb’s law state that :”"Two stationary electric charges repel or attract one

another with a force proportional to the product of the magnitude of the charges
and inversely proportional to the square of the distance between them”.
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ke q1 q;
72

Coulomb’s law

f1,2 =

€1,2

Here g1 and g2 are numbers (scalars) giving the magnitude and sign
of the respective charges, e is the unit vector in the direction from
charge 1 to charge 2, and F12 is the force acting on charge 2.

Note that

F21=-F12

The constant of proportionality (ke) is written as
L =2 % 107=8.98755*%10° N m? / ¢?( or Vm/c)

TTEY

e
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where ¢ is the speed of light,
¢=2.99792458 x 10° m/s

Note that &, is the permittivity of free space and g, is the permeability of free space,

6, = 8854187817610 ~—
N’

py =47 %107 (N/A?)

The coulomb is an extremely large unit. The force between two charges of | C each a
distance of | m apart is

=t 1CXIC _¢og755%10°N
dre, Im’

((Note)) It 1s casy for you to memonze the value of k..

9 22 :
k. =9x10" N m“/C* {or V m/C) Edit by
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e icic '€C M €

Nm=], C=As
W=V J=Ws=Fds

where

J (Joule), A (Ampere), V (Volt), C (Coulomb),
s (second), N (Neuton), and W (Wat).

((Note))
The S1 unit of charge 1s coulomb. The coulomb unit i1s denved from the S1 unit A
{Ampere) for the electric current i. The current i 1s the rate dg/dr a1 which the amount of

charge (dg) moves past a pont or through a region in time df (second),

i'=d—q.
dt

This relation implies that.

1C = (1A)(1s)
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5.Bohr model

 consider the Bohr model shown in this figure.
* The system consists of a proton and an electron.

* These two particles are coupled with an attractive
Coulomb interaction.

* The electrical force between the electron (charge g1
= -e) and proton (charge g2 = +e) is found from
Coulomb’s law,

o f, =Xed1%2_g 795 108N

B
where ¢ = 1.602176487 x 10" C and r is the Bohr radius given by

rg = 5.2917720859 x 10" (m) =0.52917720859 A.
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This can be compared with the gravitational force between the clectron and proton

Crrmy_rmt
F,=——_r _363153x10%" N

H -
¥

W hat 15 the angular frequency o for electrons rotating the circular orbat?

> 1 — = n
.F_ - ,L_.r_ = FF} —— == PRl
AmE, ry Fy
1 f': I
e — : = 4 13414 =10 .
dmE, mr, rad/s

where m is the mass of electron, = 9. 1093821545 x« 103" beg.
The period 1s

-
T==2 —1.51983=<10""s

iy

((Note))
An important difference between the electric force and the gravitational force
is that the gravitational force is always attractive, while the electric force can be

repulsive, or attractive, depending on the charges of the particle<
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6.Conductors and insulators

A conductor is a material that permits the motion of electric charge through its
volume. Examples of conductors are copper, aluminum and iron. An electric
charge placed on the end of a conductor will spread out over the entire
conductor until an equilibrium distribution is established.

Electric charge placed on an insulator stays in place: an insulator (like glass,
rubber and mylar) does not permit the motion of electric charge.

Superconductors are materials that are perfect conductors, allowing charge to
move without any hindrance
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/. Principle superposition

 When there are more than two charges present we must supplement the Coulomb’s
law with one other fact of nature. This fact is called “the principle of superposition.”

* principle of superposition state that The force on any charge is the vector sum of the
Coulomb forces(electrostatic force) from each of the other charges. This fact is called
“the principle of superposition.”

* |f we combine the Coulomb’s law and the principle of superposition, That is all there is
to electrostatics.
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Suppose we have some arrangement of charges ql, g2, g3, ..., gN, fixed in space. From the
principle of superposition, the resultant force on the charge g0 is expressed by

'@ @

:ZF Z quh €0

"T“'n r.- 0

a3

Fo=F10+ F20+ F30+ F40 a4

The resultant force Fo on the charge qo is given by
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Example :1

Four point charge at the corners of a square of side (a) shown in fig . Determine
the magnitude and direction of the resultant electric force on q in symbolic form

g, ke,a?
_T ‘ FBA Fca
29 I* i = +( '
+JI. q 4 D e T
A y ?
Fpa
(1 {1

Free body diagram (F.B.D) for force on charge A




Solution

Fak Fca
D A 8
R o )
Foa
a av'2
L I_ E
c & ® g
4 3 ;
Fig 1.1

As shown in fig 1.1.

1- The force FBA is the force acting from charge B to charge A
and the direction of this force upward because the charge(+ A)
move away from charge (+B) because of the repel.

2- The force FDA is the force acting from charge D to charge A
and the direction of this force to the right because the
charge(+ A) move away from charge (+D) because of the repel.

3- The force FcA is the force acting from charge c to charge A
and the direction of this force diagonal component in the
north east because the charge(+ A) move away from charge
(+c) because of the repel. And this force make an angle 45 deg.
Because of the symmetry as shown below

ay 2
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* By applying Coulombe's law to find the net electrostatic force

ke q1 q2
f1,2 = 72
- Forces | x—diecion | V-drecton
FBA 0 k(2q)(q)
a2
FDA k(2q)(q) 0
a2
FCA k(39)(q) cos 45 k(39)(q) cos 45

(av/2)2 (av2)2

kQ2q)(q) , k(3q)(q) cos 45

The resultant electrostatic force in x-direction (FNX )=

a? (av/2)2
The resultant electrostatic force in Y-direction (FNY )= k(Zch(q) + k((ic;;gz) cos 45

Then find the resultant electrostatic force in qis FN=\F2y + Fgy
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The Electric Field

* An electric field is said to exist in the region of space around a charged object—
the source charge. When another charged object—the test charge—enters this
electric field, an electric force acts on it. As an example, consider Figure 23.11,
which shows a small positive test charge g0 placed near a second object carrying
a much greater positive charge Q. We define the electric field due to the source
charge at the location of the test charge to be the electric force g

+ +
on the test charge per unit charge, or to be more specific "+ R fo
+ + T ) m—
the electric field vector E at a point in space is defined as e ' E
4+ +

the electric force F_ acting on a positive test charge g, placed -
Figure 23.11 A small positive test

at that pOint divided by the test Charge: charge gp placed near an object
carrying a much larger positive
F, charge Qexperiences an electric
E= (23.7) ficld E directed as shown.

I
F,=qE (23.8)



* Notice the similarity between Equation 23.8 and the
corresponding equation for a particle with mass placed in a
gravitational field, F,=mg

* The vector E has the Sl units of newtons per coulomb (N/C).
* The direction of E, as shown in Figure 23.11

. For a positive point charge the lines of \E
electric field are directed outward

. For a negative charge the lines of electric
field are directed inward

Figure (23.11)



* According to Coulomb’s law, the force exerted by g on the test charge

IS
F,= k5§

 where r” is a unit vector directed from gtoward g0. This force in
Figure 23.13a is directed away from the source charge g. Because the
electric field at P, the position of the test charge, is defined by
E=F_/q,, we find that at A, the electric field created by gis

E=hk—L§ (23.9)

Active Figure 23.13 A e b

=) |.--|||.I .rll'all l|r-1 s 7 L wini

T ____.-"".I = "E - ;HI'illl |]I.|1;_l_l| Lol T! g s e Is
[ - - E - - then the force on the test chorge is
; - F ) Y diree ted awsy fron b |
F J i SRl clharg 1 I
"_ ’- ; - q-ll“.': |r'f‘d'_ Al .I“'||-I-l||l|'\- |.'-1|. ”"
1 | ¥ 11 i B e I ! e
e te=e o lia -l
| il} For th
= harze. the « ficdd aa
1l by srvwsand 1



.To calculate the electric field at a point Pdue to a group of point
charges, we first calculate the electric field vectors at Pindividually
using Equation 23.9 and then add them vectorially. In other words, at
any point P, the total electric field due to a group of source charges
equals the vector sum of the electric fields of all the charges.

K=k, E I'rr:, r,

R

where r;is the distance from the /th source charge g;to the point Pand
r”;is a unit vector directed from g;toward P.



A charge q; = 7.0 pC is located at the ongin, and a second
charge g2 = — 5.0 pC is located on the xaxis, 0.30 m from
the origin (Fig. 23.14). Find the elecuric field at the point P,
which has coordinates (0, 0.40) m.

0. 40 m *o 050 m

b
&
%

b
..'l
L

H %

Ol LD~
.30 i
Ll T

Figure 23.14 (Example 23.5) The wial elecric Gicld Ea P
equals the vector sum E; + Eq, where E; is the field due w the

positive charge ¢, and Eg is the feld due o the negative
charge .

Solution First, let us find the magnitde of the elecuric field
at P due o each charge. The hields E; due 1o the 7040
charge and Es due w the — 5.0-uC charge are shown in
Figure 23.14. Their magnimudes are

. hj'l : & (7.0 % 10785C)
& = - m — H,I' 4 - 2 [rg —
K, k = (B.O99 = 107 MN-m= ") (0.0 m)®

=989 x 10° N/C

- | g2| ‘ 4 s s 150 ¥ 108 C)
= = p— I -
Eq =k, o2 (8.99 x 10" N-m*/C?) (050

-

= 1B X 10° N/C

The vector Ej has only a y component. The vector E; has an
x component given by Ee cos @ = _'T"'I_.Eg and a negatve ¥y
component given by — Es sin 8 = — %L-_:

. Hence, we can

express the vectors as
E; = 39 % 10°] N/C
E; = (1.1 X 10% — 1.4 X 10%) N/C
The resultant field E at #is the superposinon of E; and Ex:
E=E + Ea= (L1 x 10%i + 25 x 10%j) N/C

From this result, we find that E makes an angle & of 667 with
the positive xaxis and has a magnimde of 2.7 > 107 N/C.



An electric dipole is defined as a positive charge g and a

:n.i.-g:.r.n.c chaq:'p:i.- kel I:r!.r a distinoe Yo For the l:llpnl.r
shomwm in Fignore 2515, find the elecoic field E st Pooe oo the

I|:|.||:|n|.|.- where Pis a distance ¥ iz w Frowm t]'l.eunp:n-

Solution A Porhe ficlds E; and Es due 1o the oo charges
e equ.:.t i ]'ll.-'l"_‘l!.l.‘lLl.d.E becmuase M is Eq_uid.'isr.:nl froan thie
charges. The toral field is E = E; i E-_p.whﬂ\e

H,—E:—n,—;L—n—‘i’—

L]
k!
L1
7%
T

Flﬂ-ﬂ:l'ﬁ 315 [F.'!.-'I.I'l'l':llr 2% 6% The ioial elecoric Geld E ac ™ odae
tin s clharges of couial maggniooace amd opposine sign an elec-
tric dipole ) equalks the vector sum By + Ea The Geld E; §s due
i the posivive charge g and Eyg s the fiold doe gooibe nogaaive

charge — g

w

The ¥y components of E; and Es cancel each other, and
the = eomponents are both in the posiove x direction and
have the ssone magnitode, Therelore, E is paradlel o ohe
2 axis and has o magnioede  equoal w28 cos 8. From
Figure 23,05 we see that cos 8 = a/r = o/ (32 + oS)VE,
Theretore,

7
(3" + &) (y° + a )"

E =25 cos @ = 2k,

= k.75 T )

Ly % ar)

Because 5 =2 o, we can neglect o compared o 57 and wrine

Thws, we see that, at distances Far foom a |:1.||'.|r_|-I-E bt .:lln:ng
the perpendicular bisector of the fine joining the oo
charges, the magnitude of the elecwric feld creed by the
dipole varies as 17, whereas ithe more slowly varying field
of & point charge wvares a8 1777 {see Eqo 23,93 This i
becanse at distane points, the fields of the owo charges of
equal magnitude and opposite sign almos: cancel cach
wlier. The ‘I_.-"'rﬂ' saartdiionds an & for elae dipule alser s obitainied
fioor & distant point along the x axis (see Problem 220 and for
any gemeral distann paobnt.

The eleciric dipole s a good model of many mole-
cules, such as hydiochlorie ackd (HOL. MNewoal aioms ad
molecules belhave as dipoles when placed in an exteral
elecivie Aeld. Furthermore, mvany molecules, such as HCL,
are permanent dipoles, The eflfecy of such dipoles an dhe
behavier of marerials subjecred o clecmic felds s dis-
cussed in Chapleor 26,



Electric Field of a Continuous Charge Distribution

The electric field at Pdue to one charge element carrying charge Agis
ag .
AE = k,—-

where ris the distance from the charge element to point Pand r” is a unit vector
directed from the element toward ~. The total electric field at Adue to all elements
in the charge distribution is approximately

B~k 32L&,

F ';
where the index /refers to the /th element in the distribution. Because the charge
distribution is modeled as continuous, the total field at Pin the limit 44, — @ is

. Ag; . dq . P
Eak, i S—~L ik | =bf (23.11)
J'f: - | r J': - J y= 1}_

where the integration is over the entire charge distribution. This is a vector Figure 23.16 The electric field at
operation and must be treated appropriately. When performing such calculations, pdue o 4 continuons ¢ harge distri

it is convenient to use the concept of a charge density along with the following buiion is the vector sum of the
notations: hields AE due o all the elemenis
Agol the charge disinbution

If a charge Qis uniformly distributed throughout a volume V, the volume charge
density p is defined by

where p has units of coulombs per cubic meter (C/m?3). p= ;E‘._



* If a charge Qis uniformly distributed on a surface of area A4, the

surface charge density o (lowercase Greek sigma) is defined by
0

LrE—"ﬁ.

« where o has units of coulombs per square meter (C/m?2).

* If a charge Qis uniformly distributed along a line of length {, the linear
charge density A is defined by

* where 3 has units of coulombs per meter (C/m).

* If the charge is nonuniformly distributed over a volume, surface, or
line, the amounts of charge dgin a small volume, surface, or length

element are dg=pdV  dg=ocdA  dg= A df



A ring of radius a carries a uniformly distribued positve
total charge (). Calculate the electric field due to the ring at
a point Flving a distance x from its center along the central
axis perpendicular to the plane of the ring (Fig. 25.18a).

Solution The magnimide of the electric field at P due o
the segment of charge dgis

{a)

dE = k,-f;i

This field has an x component dE; = dE cos # along the x
axis and a component dF; perpendicular to the x axis. As
we see in Figure 23 18b, however, the resultamt field at P
must lie along the x axis because the perpendicular com-

(b)
Figure 23.18 (Example 2%.8) A uniformly charged ring of radius a. (a) The field at P
on the xaxis due to an element of charge dg. (b) The towal electric field ar Pis along

the x axis. The perpendicular component of the field at P due 1o segment 1 is canceled
by the perpendicular component due 1o segment 2



» components of all the various charge segments sum to zero. That is, the
perpendicular component of the field created by any charge element is
canceled by the perpendicular component created by an element on the
or|]oposite side of the ring. Because ,- («!+ 42 and cos # = x/r., we find
that:

dE, = dEcos # | K, —‘“_.— II o ——-_-,-—;I—"—_—,——-_T g

* we can integrate to obtain the total field at ~.

J k. X k_x
I.hl )

f..._ TRV ilrI!II' : 3. % /0 'Irn'_|l

%= 4= =) =

| b ._kr.:-_'l'-'_" {.{
. This?result shows that the field is zero at x= 0. Does this finding surprise
you

 What If? Suppose a negative charge is placed at the center of the ring in
Fi%]ure 23.18 and displaced slightly by a distance x ! a along the x axis.
When released, what type of motion does it exhibit? (it will be a harmonic
motion due to the different type of charges)




Example 239 The Electric Field of a Uniformly Charged Disk

A disk of radius R has a uniform surface charge density o
Calculate the electnic field at a point P that hes along the
central perpendicular axis of the disk and a distance x from
the center of the disk (Fig, 23.19).

Solution 1f we consider the disk as a set of concentric rings,
we can use our result from Example 23.8—which gives the
held created by a nng of radius #—and sum the contnbu-
tions of all rings making up the disk. By symmetry, the field
at an axial point must be along the central axis.

The ring of radius r and width dr shown in Figure 23,19
has a surface area equal o 2r dr. The charge dg on this
ring 1s equal to the area of the nng muluplied by the surface
charge density: dg = 2morr dr Using this result in the equa-
ton given for E; in Example 23.8 (with a replaced by r), we
have for the field due o the nng

o 3 (2emerr dr)

dE, =
£, (xF + r?)¥

-

Figure 23.19 (Example 23.9) A uniformly charged disk of ra-
dius R The electric held at an axial point Pis directed along
the central axis, perpendicular io the plane of the disk.

To obtain the total field at P, we integrate this expression
over the limits r = 0 to r = R, noting that x is a constant.



This gives

Dok,

Dr dr

Jo (x4 )32

" | |

(x* + r5) "2 d(r?)

(I X ]
d (2 + RY)I2

[his result 1s valid for all values of x > (). We can calculate
the held close 1o the disk along the axis by assuming thai
R == x; thus, the expression in parentheses reduces o unity
o give us the near-hield approximauon:

E. = 2wk, 0=

where €g1s the permittvity of free space. In the next chapter
we shall obtain the same result for the field created by a
untformly charged inhinite sheet

A convenient way of visualizing electric field patterns is to draw curved lines that are Lr TS

parallel to the electric field vector at any point in space. These lines, called e/ectric field

/ines and first introduced by Faraday, are related to the electric field in a region of space -1 B ‘
in the following manner: i
e The electric field vector E is tangent to the electric field line at each point. The line has . e o

a direction, indicated by an arrowhead, that is the same as that of the electric field AN

vector.

e The number of lines per unit area through a surface perpendicular to the lines is

Figure 23.20 Elecinic field lines
iH."H i k| H.'.]"l.l e suirfaces. | h.':' THEARE-
nitwde of the Held & greaer on sar-

proportional to the magnitude of the electric field in that region. Thus, the field lines are  face A than on surface B
close together where the electric field is strong and far apart where the field is weak.



These properties are illustrated in Figure 23.20. The density of lines through
surface A 1s greater than the density of lines through surface B. Therefore, the magni-
tude of the electric hield is larger on surface A than on surface B. Furthermore, the fact
that the lines at different locations point in different directions indicates that the field
is nonuniform.

Is this relationship between strength of the electric field and the density of field
lines consistent with Equation 23.9, the expression we obtained for E using Coulomb’s
law? To answer this question, consider an imaginary spherical surface of radius r con-
centric with a point charge. From symmetry, we see that the magnitude of the electric
field is the same everywhere on the surface of the sphere. The number of lines N that
emerge from the charge is equal to the number that penetrate the spherical surface.
Hence, the number of lines per unit area on the sphere is N/47r® (where the surface
area of the sphere is 47r°). Because E is proportional to the number of lines per unit
area, we see that E varies as 1/r°: this finding is consistent with Equation 23.9.



=
Y
¥y
Courtesy of Harmld M. Waage, Princeton University

(a) (b) (c)

Figure 23.21 The electric field lines for a point charge. (a) For a positive point charge,
the lines are directed radially outward. (b) For a negative point charge, the lines are di-
rected radially inward. Note that the figures show only those field lines that lie in the
plane of the page. (¢) The dark areas are small pieces of thread suspended in oil, which
align with the electric field produced by a small charged conductor at the center.



* The rules for drawing electric field lines are as follows: |

» The lines must begin on a positive charge and terminate on -

a negative charge. In the case of an excess of one type of 4
charge, some lines will begin or end infinitely far away.

 The number of lines drawn leaving a positive charge or
approaching a negative charge is proportional to the

magnitude of the charge.

* No two field lines can cross.

* We choose the number of field lines starting from any

Positively charged object to be Cgand the number of lines ending

on any negatively charged object to be C/qg/ where Cis an arbitrary
proportionality constant. Once Cis chosen, the number of lines is fixed. For
example, if object 1 has charge Q1 and object 2 has charge @2, then the ratio
of number of lines is M2/N1 =Q2/Q1. The electric field lines for two point
charges of equal magnitude but opposite signs (an electric dipole)



Motion of Charged Particles in a Uniform Electric Field

* When a particle of charge gand mass mis placed in an electric field E, the
electric force exerted on the charge is g E according to Equation 23.8. If this
is the only force exerted on the particle, it must be the net force and causes

the particle to accelerate according to Newton’s second law. Thus,
F,= qgE = ma
* The acceleration of the particle is therefore qE

m

* |f E is uniform (that is, constant in magnitude and direction), then the
acceleration is constant. If the particle has a positive charge, its
acceleration is in the direction of the electric field. If the particle has a

negative charge, its acceleration is in the direction opposite the electric
field.



A positive point charge ¢ of mass m is released from rest in a

uniform electric field E direcied along the x axis, as shown
in Figure 23.25. Describe its motion.

Solution The acceleration is constamt and is given by
¢E/m. The motion is simple linear motion along the x axis.
Therefore, we can apply the equations of kinematics in one
dimension (see Chapuer 2):

xXp= X + i+ %ul‘l‘"
W= +
]Jlr-s - — ]?r-z - Eﬂl:_\"r — xl}

Choosing the initial position of the charge as x, = 0 and
assigning v, = 0 because the particle starts from rest, the
position of the particle as a function of time is

> E .
xp=qyat® = ;—m 2

The speed of the particle is given by

R i

'[:r"" all =
Ll

The third kinematic equation gives us

T'Jr! = Eaxj—= (EEE )x;

]

from which we can find the kinede energy of the charge
after it has moved a distance Ax = x; = x;
K= m(E}ﬁx=qEﬁx
i

I:!=
H'Il‘lr

P

1
We can also obiain this result from the work-kinetc energy
theorem because the work done by the eleciric force is
F,Ax = gEAxand W= AK.

= E -
+ =
+ _
® v=0 - B
)
+ f |=
+ =
+ - X - —
bl |

Figure 23.25 (Example 23.10) A positive point charge 4 in a
uniform electric field E undergoes constant accelemtion in the
direction of the ficld.



* The electric field in the region between two oppositely charged flat metallic
plates is approximately uniform (Fig. 23.26). Suppose an electron of charge -eis
projected horizontally into this field from the origin with an initial velocity z.',i at
time ¢= 0. Because the electric field E in Figure 23.26 is in the positive ydirection,
the acceleration of the electron is in the negative ydirection. That is,

a= '—i| (23.13)

m,
Because the acceleration is constant, we can apply the equations of kinematics in

two dimensions with y,; = ¢, and Ui = (). After the electron has been in the

Lt | :
— — - 1| b -1 :
(0h i) | ! | i
KAk T | 14 Active Figure 23.26 An clectron is
™ . : s "
i 4 -4 | ¢ projected horizontally into a uniform
- LY Y. clectric field produced by two
E I E
- charged plates. The electron under-

; Ll - v roes 4 downward acceleration (oppo-

++++++++++ + 4 i : g :
site E), and its motion is paraboli
1.'1-"'"[!' it 18 1""“'1'1"“ |||.1' |FI:!""‘



electric field for a time interval, the components of its velocity at time tare
Uy = ty = Cconstant
el

m

28 i1 ! — |

r

Its position coordinates at time tare

Xr= vyl

| } I F'j'.. o
Y= sl d" = —= [=
= & < m,

(23.14)
(23.15)

(23.16)

(23.17)

Substituting the value ¢= x,/v,from Equation 23.16 into Equation 23.17, we see that y;is
proportional to x.2. Hence, the trajectory is a parabola. This should not be a surprise—
consider the analogous situation of throwing a ball horizontally in a uniform gravitational
field. After the electron leaves the field, the electric force vanishes and the electron continues
to move in a straight line in the direction of v in Figure 23.26 with a speed v> v;.

Note that we have neglected the gravitational force acting on the electron. This is a good
approximation when we are dealing with atomic particles. For an electric field of 10* N/C, the
ratio of the magnitude of the electric force e £to the magnitude of the gravitational force mg

is on the order of 10 for an electron and on the order of 101! for a proton.



Example 23.11 An Accelerated Electron

An electron enters the region of a uniform electric field
as shown in Figure 23.26, with v, = 3.00 % 10° m/s and
E=200N/C. The horizontal length of the plates is
¢ = 0.100 m.

(A) Find the acceleration of the electron while it is in the
electric field.

Solution The charge on the electron has an absolute value
of 1.60 % 1079 C, and m,=9.11 x 1073 kg. Therefore,
Equation 23.13 gives

(160 x 107 C) (200 N/C)
", 9.11 x 10~% kg

—3.51 % 10"*j m/s?

(B) If the electron enters the held at ume ¢ = 0, find the
ume at which it leaves the feld.

Solution The horizontal distance across the field is { =
0.100 m. Using Equation 23.16 with x; = £, we find that the
ume at which the electron exits the electric held is

(4 0.100 m

= - == _ - 4 —8
v, 3.00 % 10°m/s SRS

=

(C) If the vertical positon of the electron as it enters the field
is ¥, = 0, what is its vertical position when it leaves the feld?

Solution Using Equation 23.17 and the results from parts
(A) and (B), we find that

¥y = gay? = =3(8.51 x 10" m/s%)(8.38 x 1078 5)?

=—00195m= —195cm

If the electron enters just below the negative plate in Figure
23.26 and the separation beiween the plates is less than the

value we have just calculated, the electron will strike the pos-
itive plate.
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1.Electric dipole moment

* An electric dipole is a pair of point charges with equal magnitude and
opposite sign (a positive charge g and a negative charge —q) separated
by a distance (d = 2a) which is the dipole axis as shown in figure (3-1) .

2a

T

Elgonc Sipole mamant
+

® =
* Definition of electric moment:- | Fure (3
In physics, the electric dipole moment

(or electric dipole for short) is a measure of

the polarity of a system of electric charges.

In figure(3-2) r =2a =d, In the simple case of two point
one with charge +q and one with charge —q AN B

Figure (3-2)




* the electric dipole moment is:
*P=rXg eerernnnn (3-1) (the magnitude of dipole moment)
* The unite of dipole moment is Coulomb. meter (C. m)

* where r is the displacement vector pointing from the negative charge to the
positive charge (r = 2a = d). This implies that the electric dipole moment
vector points from the negative charge to the positive charge.

* What happen if we put a dipole in electric field?
* If the dipole is parallel to the electric field as shown in figure (3-3 (a),(b)

* The +ve charge produces a force accelerated in the direction of E, while the
—ve charge produces a force accelerated opposite to the direction of E.

* In this case there are two forces having the same magnitude but opposite
in their direction, then the resultant force acting on dipole=0



2
® e
F F
1 .

figure 3-3(a)

the electric field parallel to the
dipole axis, the forces having the
same magnitude but opposite
direction, The resultant force
acting on dipole =0

L ]

Figure 3-3(b)
the electric field parallel to the dipole
axis, the forces having the same
magnitude but opposite direction,

The resultant force acting on dipole
=0

> E

‘ H F) Tl

Tl -0 } d
c.wc | CW

F

>

—-
Figure 3-3 (c)

the electric field perpendicular to the
dipole axis, the forces having the same
magnitude but opposite direction, The
resultant force acting on dipole generate
a torque



Fi%ure 3-3c represent the dipole axis vertical to the electric field (E) . In this case there is a torque
will be produces

t=fxI ... (3-2)
Where T represent the torque and ¢ the arm of the acting force

Thnet =T1 + 15 becuse the two force in clock wise (C.W) direction
=f X+ f Xx¢
d d
= f X E+f X E
Tnet = f X d
F=gX E

Tnet = qXEXd . (3-3)



2. Torgue

* We consider the behavior of the electric dipole moment in the presence of an electric field
* An electric dipole is a pair of point charges with

equal magnitude and opposite sign -
(a positive charge q and a negative charge —q) -

separated by a distance d (= 2a) as in figure (3-4). ) /—~
* The electric dipole moment is defined by / —

* P=2aq = . (3-4)
* The unit of pis C m. The magnitude of Figure (3-4)
the torque 1 exerted by the field E is according to equation (3-3): 3

e T =(qE)(2a)sin® = pEsin® ............. (3-5) 5
where @ is the angle between E and the dipole axis : |

The torque directed to clock —wise

Figure (3-5) represent the vector form of the torque (1) s

VE

Figure (3-5)



3-Potential energy of electric dipole

 The work done on the electric dipole moment (p) by the electric field (E) is given
by W =TD v, (3-6)

 Wheret is the torque, O is the angular displacement
cdw=1tdd, T=-—pEsind
* Not that This torque (- 7) is the counterclockwise direction and in the direction of

. . . E -
increasing @ as shown in . " ® :
figure (3-6)(a),(b). o : @ P :
- C.C.W
= : ®
=
ool
T=
a) (p) in the same diraction of E b)(p) perpendiculer to E
?=0 ,  ©=90

T = p E sin®=0, The minimum value T = p E sin® = maximum value,

Figure (3-6)



* When @ is increases from 0 ° to 90 ° then the torque will be negative sign (-7)
* [dw =-[ pE sind=-p E [ sind d @

W=p E cos®
W=-U=p E cos®

* Since AU=- A W, we have the expression for the potential energy (U) (in units of
J)

e U=-pE

* Note-1 Work-energy theorem; A K= A W =- AU,
Where A K is the kinetic energy

* note-2) The kinetic energy work theorem; W=+A K

* Note-3)) The potential energy has its minimum value where p and E are parallel
(® = 0). The potential energy has its maximum value where p and E are
antiparallel (@ = m)



Example: -

An electric dipole has a charge of +/- 3.2 10 '* and separation distance of
0.25nm  the electnic field is (4 10°X/C).

A What 1s the magnitude and the direction of the electnec dipole moment” b) what is
the force on sach charge and the met force omn the sentire dapole”™ C) calculate the
potential energy at an angle of 90" and 30*7 d) calculate the work required to move
the dipole from 90 to 30°7 &) what is the magnitude of the net torgue at 90= 7
Soelution: -

a) VWhat i1s the magpnitudes and the direction of the slectmce dapole moment™
p=g >xd

P=32w 10" % 0.25 x 10 "= 8> 10 *"C.m

the direction of p 1n v__ direction -+ according to the
P‘

B) what 1= the force on sach charre and the net force on
the entire dipole”

f=gq =< FE
F=32 10 ' 3 4 » 10%=1.28 = 10 '*IN the force on each charge

The two force have the same magnitude but in the opposite direction, then the net
forcae =

E
Frnee = 0




c) calculate the potential energy at an angle of 90 and 307

= —FP » E cosD
IFL = —i(8 10_:"'} = & > :I.ﬂ“') cos920*" = 0f
2

—(8 x 10 ") x (4 > 10%)cos30 = —2. 771 x 10223

H} calculate the work regquired to move the dipole from 90° to 30°7

W =P x E{ cosD; —cos0,)
W (8 x 10 ) » (4 > 10%)( cos30 — cos90)
W = 2,771 » 10 =<

This zmean W — —AL

F
P ‘ i = E

e) what 1= the magnitude of the net torque at 90*7

P »» E sin@
(8 »x 107%) » (4 » 10%)sin920
r= 3.2 10N _m

T

T
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Summary

* Electric Flux

* Gauss’s Law

* Examples of using Gauss’s Law
* Properties of Conductors



Flux of an electric field

* |s the measure of electric field line passing through the surface area “S”

Electric flux
bP=EXA unite : N.m?/C

Where:
A: is a vector perpendicular to the surface area,
E : is the electric field

A E A
+ t
| i =50 =2
| A
Siiicsl Surface’

(A) parallel to the (E ) (A) perpendicular to the( E)



* Electric flux depend on the strength of the E
on the surface area, and depend on

the relative orientation of the field and the surface (¢
b=EXAcos®

Where @ is the angle between E and A

Calculate the flux of the electric field E.

- through the surface A, in cach of the

- i three cases shown:




Gauss’s Law

* Gauss’ law is an expression of the general relationship between the
net electric flux through a closed surface and the charge enclosed by
the surface. The closed surface is often called a Gaussian surface.



Gaussian surface : The closed surface is often

called a Gaussian surface. If the Gaussian surface

has a net electric charge g;,, within it, then the

electric flux through the surface is q;,, /&g, thatis
Qin dA E

d)sz.dA:— T
€0

Small
reign



Flux through a sphere from a point charge

The electric field around a point charge

EF— Y

dre, |1, |2

Thus the flux on a sphere
is E X Area

[

D = x4 |,
g, |1, |

| 2

Cancelling we get




Now we change the radius of sphere

1
B
g |1, |
1
D, = Q2><47r|r2|2
4rzg, |1, |
The flux 1s
D, :2 the same as D, =0, :g

before



Since the flux is related to the number of field lines
passing through a surface the total flux is the total from
each charge

o 0 O

0,
O} ) O = Z For any
) surface




Quiz

S3

Quiz)
Calculate the electric flux in each closed surface

$s1=
Gs2=
bs3=
bsa=



Fired the Mo i sach surface iT the elsetric Meld i pass
| throwugh the cloped surface smd its direction s sbown in
figure 7

E

l 1- electric flux on the upper surface is J

Pout=+E5 A

Becavze E || rfees Firres prcndﬂcnief Eo A and its sign is positive [ E is pointing
outward the surface)

2« glerctric flux on the lower surface is

D= A

Because E || the line perpendecoler to A and its sign is negative ([(E is
painting inward the surfacej

3- the electric flux on the other 4-surface of the cubic is D Because E L
the line perpendecoler to A

¢=E Acos90=0
4-The net & is P net=Pin+Pour

= P (but in the opposite direction



Conductors in Electric Fields

* E =0 everywhere inside the conductor.
e 2. There is no net charge inside the conductor.

* 3. E is everywhere perpendicular to the bounding surface of the
conductor.

* 4. The electric potential V is constant insider the conductor.
* 5. Any net charge must reside on the surface of conductor.

* 6. The tangential component of the electric field E is zero on the
surface of conductor.



1-E is zero within conductor

If there is a field in the conductor, then the free electrons would feel a
force and be accelerated. They would then move and since there are
charges moving the conductor would not be in electrostatic equilibrium

Thus E=0

2. There is no net charge inside the conductor.

Because of the repulsive force inside the conductor the charge would
reside on the surface of conductor

3-E is everywhere perpendicular to the bounding surface of the
conductor.

If the tangential component of the E,, >0, it would cause surface charge q
to move thus it would not be in electrostatic equilibrium, thus E,, =0, for
this reason only the vertical component of E bounded the surface of
conductor
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Application of the Gauss’ law:

1.Electric field due to infinite point of charge

® =FE.dA =2n

€0
E$ dA cos0 =<
€0
E X 4mR? = %in
€0

Gaussian surface



Application of the Gauss’ law:

2.Electric field due to infinite line of charge

_ Qin
$E.dA = o
— _Qin
—_cﬁl E.dA+§ﬁ2 E.dA+gﬁ3 E.dA ey
E$ dA cos0 =2

€0

E.2nrl =§ where the area of cylindrical surface is 2mr [
B 2Trey

_¢
}‘_z

Linear charge density



Application of the Gauss’ law:

3.Nonconducting sheet ( surface of charge)

FE.dA =2
€o
— _Qin
=¢ E.dA+¢ E.dA+¢, E.dA = _
EA+EA= ﬁ {i:l.::;:h_i;.m
€o . surface
2AE= 24
€0
-9
B 280
Q

" C/m?) thesurface

charge density)

o




Application of the Gauss’ law:

4.Solid nonconducting sphere
a)The electric field outside the sphere

$E.dA =2

€o

EX 4mr? = Yin
€0

E_ Qin

T 2
4ATITr4 €

Gaussian surface

p = % (c/m3 )( the volume charge density)



Application of the Gauss’ law:

Solid nonconducting sphere
b)The electric field inside the sphere(r<R)

$E.dA =Sn
€0
Ex 4mr? = 2
€0
o'
EF=—
4ATITr4 €y Q. o'
p—_9 P=v=v
 4mrle, Q _ Q' Gaussian surface
4 R3 4 r3
EF= Kor /am 3/37r

Qr
R3 Q' =03



Application of the Gauss’ law:

c)The electric field on the surface of the sphere( the radius is R)

QR _ Q@

"~ 4mR3g, AmR2%g,

Gaussian surface



Application of the Gauss’ law:

* 5) conducting sphere and thin shell

* A) r>R
®=¢EdA=2

€o

E$ dA cos0 =<

€0
Ex 4mR? =2
€0
— Qin _ KQ
£= 4ATTR%2g, R2
b) r<R
Ex 4mR? = 20

En

Gaussian surface

(there is no charge in side the conductor)



Application of the Gauss’ law:

6)Thick conducting shell
* E outside

$E.dA ==

€o

Ex4mR2 =%
€0
(+10-5)x10~°

€o

E X AmR? =
_5x107°
" 4mR2g,

E inside Gaussian surface

Ex 4wR? = —3X10°°
€0




Application of the Gauss’ law:

* Find E when r>57?

Ex 4gR? = —2X107°
€0
* Find E when 5<r<3?
E=0

 Find E when r<3?

E=0 (there is no charge inside the shell)

Gaussian surface
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Potential difference and electric potential

When a test charge g, is placed in an electric field E created by some source charge
distribution, the electric force acting on the test charge is ¢E. The force ¢E is
conservative because the force between charges described by Coulomb’s law is consery-
ative. When the test charge is moved in the field by some external agent, the work
done by the field on the charge is equal 1o the negative of the work done by the exter-
nal agent causing the displacement. This is analogous to the situation of lifting an
object with mass in a gravitational field—the work done by the external agent is mgh
and the work done by the gravitational force is — mgh.

When analyzing electric and magnetic fields, it is common practice to use the
notation dl 1o represent an infinitesimal displacement vector that is oriented tangent
to a path through space. This path may be straight or curved, and an integral
performed along this path is called either a path integral or a line integral (the two terms
are synonymous).



For a given position of the test charge in the field, the charge-field system has a
potential energy U relative to the configuration of the system that is defined as U = 0.
Dividing the potential energy by the test charge gives a physical quantity that depends
only on the source charge distribution. The potental energy per unit charge U/ g, is

independent of the value of gy and has a value at every point in an electric field. This
quantity U/qq is called the electric potential (or simply the potential) V. Thus, the

electric potential at any point in an electric field is

U
o— (25.2)
do

The fact that potential energy is a scalar quantity means that electric potential also is a

V=

scalar quantity.



Work and Potential (V)

The work done by the electric force in moving a test
charge from point ato point b6is given by

b b
Wa—)b :jﬁdi:jqoﬁdi
Dividing through by the test charge q, we have
b
V,~Vy=E-di

a
Rearranging so the order of the subscripts is the same
on both sides

b
Vy—V,=—|E-dl
a



Electric Potential

From this last result V, -V :_IE dl

We get dV =—E . diord—V —E

dx

We see that the electric field points in the direction of

decreasing potential
Work (W) =Ua—-Ub =q (Va - Vb)

We are often more interested in potential differences
as this relates directly to the work done in moving a
charge from one point to another



Units for Energy

There is an additional unit that is used for energy in
addition to that of joules

A particle having the charge of e (1.6 x 10'1° C) that is
moved through a potential difference of 1 Volt has an
increase in energy that is given by

W =gAV =1.6x10"" joules=1eV



Electric Potential

General Points for either positive or negative charges

The Potential /ncreasesif you move in the direction

MOYE

) _— <
opposite to the electric field e
AV = —FE d cos 180
AV =4E d £
and
The Potential decreasesif you move in the same
1 1 1 1 MOVE
direction as the electric field e
AV = —E d cos0 =& =B

AV =E d £




Example 1

- A
Points A, B, and Clie in
E - = C

a uniform electric field. - B

VVYyVYYVYYy

What is the potential difference between points A and B?
AVpg = Vg -V

a) AV, >0 b)AV,; =0 c) AV, <0

The electric field, £ points in the direction of decreasing
potential

Since points A and B are in the same relative horizontal
location in the electric field there is no potential
difference between them




Example 2 . A

Points A, B, and C liein £ — =
a uniform electric field.

vVVYyVYyYvVYYVYY

Point Cis at a higher potential than point A.

True

As stated previously the electric field points in the direction of
decreasing potential

Since point C is further to the right in the electric field and the
electric field is pointing to the right, point Cis at a lower potential

The statement is therefore FALSE




Example 3 A

Points A, B,and Clieina £ — « C
uniform electric field.

VVYyVvVYYVYYyYy

If a negative charge is moved from point A to point B, its electric
potential energy

a) Increases. b) decreases. @esn’t cha@

The potential energy of a charge at a location in an electric
field is given by the product of the charge and the potential at
the location (pE=q Av)

As shown in Example 1, the potential at points A and B are
the same

Therefore the electric potential energy also doesn’t change




Units for Energy

There is an additional unit that is used for energy in
addition to that of joules

A particle having the charge of e (1.6 x 10'1° C) that is
moved through a potential difference of 1 Volt has an
increase in energy that is given by

W =gAV =1.6x10"" joules=1eV



Electric Potential (V) due to point of charge
We define the term to the right of the summation as

the electric potential at point a

1 .
Electric _ Potential | = Z 2 9,
i 72'(90 V.

1

_ ykai
V =) -
Like energy, potential is a SCALAR

We define the potential of a given point charge as being
1 ¢q

472'80 r

Potential =V =

This equation has the convention that the potential is
zero at infinite distance



Question: A particle of charge gy = +6.0 pC 1s located on the z-axis at the pomt z; = 5.1 cm. A second particle

Example

of charge g; = —5.0 uC 1s placed on the z-axis at z; = —3.4cm. What is the absolute electric potential at the

origin (£ = 0)? How much work must we perform in order to slowly move a charge of g3 = —7.0uC from

mfinity to the origin, whilst keeping the other two charges fixed?

@ o (6x1079) ;
V, = k.= = (8.988 x 1D =1.06 x 10°V.
FT g ( ) (5.1 x 1072)
V; = k. =i (8.988 x 10°) @A x107) 1.32 x 10° V.

The net potential V at the origin is simply the algebraic sum of the potentials due
to each charge taken in isolation. Thus,

V=V,+V,=-264x10°V,

The work W which we must perform in order to slowly moving a charge g3 from
infinity to the origin is simply the product of the charge and the potential
difference. Thus,

W=gV=(-7x10"%)(-2.64 x 10°) = 1.85 1.



Electric Potential(v) due to dipole

b z

Line BA is on the z axis. The positive charge is at (0, 0, a)

and the negative charge is at (0, 0, -a)
We consider an electrical potential at the point P, due to

the electric dipole moment

1 1
Viotal = kq 7”_1 - E



Equipotential Surfaces

* It is possible to move a test charge from one
point to another without having any net work
done on the charge.

* This occurs when the beginning and end points
have the same potential

* It is possible to map out such points and a given
set of points at the same potential form an
equipotential surface



Equipotential Surfaces

* The electric field does no work as a charge is moved
along an equipotential surface

« Since no work is done, there is no force, gk, along the
direction of motion

» The electric field is pervendicularto the equipotential
surface

Constant Electric Field Point Charge Electric Dipole

+ + ¥

T




*Capacitor



Capacitance and Dielectrics

Consider two conductors carrying charges of equal magnitude and opposite sign, as
shown in Figure 26.1. Such a combination of two conductors is called a capacitor.
The conductors are called plates. A potenual difference AV exists between the con-
ductors due to the presence of the charges.

What determines how much charge i1s on the plates of a capacitor for a given
voltage? Experiments show that the quantity of charge Q on a capacitor! is linearly
proportional to the potential difference between the conductors; that is, Q= AV,
The proportionality constant depends on the shape and separation of the con-
ductors.®* We can write this relationship as Q= CAV il we dehne capacitance as

follows:

The capacitance C of a capacitor is defined as the ratio of the magnitude of the
charge on either conductor to the magnitude of the potenual difference between

the conductors:

O (26.1)

AV



Note that by definition capacitance is always a positive quantity. Furthermore, the charge
() and the potential difference AV are always expressed in Equation 26.1 as positive
quantities. Because the potential difference increases linearly with the stored charge,
the ratio (/AV 1s constant for a given capacitor. Therefore, capacitance 1s a measure
of a capacitor’s ability to store charge. Because positive and negative charges are sepa-
rated in the system of two conductors in a capacitor, there is electric potental energy
stored In the system.

From Equation 26.1, we see that capacitance has SI units of coulombs per volt. The
SI unit of capacitance is the farad (F), which was named in honor of Michael Faraday:

[F=1C/V



Suppose that we have a capacitor rated at 4 pF. This rating means that the capaci-
tor can store 4 pC of charge for each volt of potental difference between the two
conductors. If a 9-V battery is connected across this capacitor, one of the conductors
ends up with a net charge of — 36 pC and the other ends up with a net charge of

+ 36 pC.

—Q
Figure 26.2 A parallel-plate capac-
itor consists of two parallel con-
ducting plates, each of area A,
separated by a distance d. When
the capacitor is charged by con- Area= A

necting the plates to the terminals
of a battery, the plates carry equal
amounts of charge. One plate
carries positive charge, and the
other carries negative charge.




Types of capacitors

 1- parallel plate capacitor

c = % = % ....... (26-3) due to the geometry

parallel plate capacitor

2- cylindrical capacitor
Q _ 2meel

Cc=—=—3 due to the geometry

v lnz

Where a= the small radios, b= the bigger radios and I:
the length of the cylinder




Total charge “'hlll Towal charge -4

Types of capacitors

3- Spherical capacitor

Q 4me-ab
==
v b—a

due to the geometry

* Where a= the small radios, b= the bigger
radios

Path of suiface
ILEEration

A parallel-plate capacitor with air between the plates has an 8.85 % 10~ "2 C2/N-m?) (2.00 X 10~ m®
area A = 200 % 10~* m* and a plate separation d = 1.00 mm. o o AL .4,

i d 1.00 X 107 * m
Find its capacitance.

= LTI %1075 F= 1.71p¥
Solution From Equation 26.3, we find that g



Connection of Capacitors

1- parallel combination Q4 Qs Qs
. The individual potential differences across capacitors v & e %
connected in parallel are the same and are equal to the " s -Qz
potential difference applied across the combination.
V= Ul —_ Uz —_ v3
. The total charge on capacitors connected in parallel is Q12=_Cl v
the sum of the charges on the individual capacitor 83 —
Q= + + CoqV=CLV+Cv+cC3v

Q1 .Qz Q3 | | o to o
The equivalent capacitance of parallel connected is the Coqg =C1 + €3 + 3

algebraic sum of individual capacitance

Ceq =C1 +C3 +C3 parallel connection



Series combination

* The charges on capacitors connected in series are
the same

*Q =01 =02 =03
* The total potential differences across any number

of capacitors connected in series is the sum of the
potential difference across the individual capacitors

*V=V; + VU + Vs
* The inverse of the equivalent capacitance of series
connection is the algebraic sum of inverse of the
individual capacitances
1 1 1 1
=—+— +—

Ceq C1 C2 C3




Example

Find the -t'fllli\.':ll(‘l"lt ca[ﬂrimnrp between a and & for the
combination of capacitors shown in Figure 26.11a. All
capmcitances are in mucrofards.

Solution Using Fguatons 268 and 26.10, we reduce the
combimtion step by step as indicated in the hgure. The LO-uF
and 3.0-pF capacitors are in parallel and combine according
w the expression Cg = € + Gy = 4.0 uF. The Z0uF and
G.0-pF capacitors also are in parallel and have an equivalent
capacitance of B0 pF. Thus, the apper branch in Figure
26.11b consisis of wo 4.0-uF capacitors in senies, which
combine as follows:

{al

Interactive

S N . S |
Cy €1 Gz 40pF  40uF  20uF
Cog = 2.0puF

The lower branch in Figure 26.11b consisis of two 8.0-uF
capacitors in series, which combine w yvield an equiva-
lent capacitance of 4.0 uF. Finally, the 2.0-u4F and 4.0-pF
capacitors in Figure 26.1 1e are in parallel and thus have an

equivalent capacitance of 6.0 pF.

" 4.1

{ch ()

Figure 26.11 (Example 26.4) To find the equivalent capacitance of the capacivors in
part (a), we reduce the various combinations in sueps as indicated in pans (b), (c), and
(d}), using the series and parallel miles described in the texe.



Energy Stored in a Charged Capacitor

* The work done in charging the capacitor appears as electric potential
energy U stored in the capacitor as in the following forms

°U=2icv2 ......... 1
cU=0QV 2
2
==L 3

2 C

* The unite of energy is joule (J)



Energy density

* The energy per unite volume known as the energy density

U
° uE — ;
L2 Leap?
Uy = 2 _2

Ad dAd

1 L
‘U = - &E?  the unite is (J/m3)

The energy density in any electric field is proportional to the square of
magnitude of the electric field at a given point.



Dielectric

* The capacitance of a set of charged parallel plates is
increased by the insertion of a dielectric material.
oA

® Co =
d
o The dielectric is the free space (air)
* Also co = & }

Vo
e if we put the dielectric between two plates of the

capacitors, then the capacitance is increased as in the
following form

ke A
d

K=o oy ke
Co

where k = the dielectric constant

e C=




gt =
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Basic concepts

Electricity: Physical phenomenon arising from
the existence and interactions of electric charge

Charge

Current

Voltage

x| K| K|

Power and Energy




Electric current

7 charge  coulombs

time seconds

W= 7 amperes

An ampere (A) is the number of electrons having a total charge of
1 C moving through a given cross section in 1 sec.

As defined, current flows in direction of positive charge flow



Current density

* It is the amount of current flowing in a unit area and its
symbol (J).

=1

. .. A
* The unite of current density is (W



Electric circuit

An electric circuit is an interconnection of electrical elements
linked together in a closed path so that electric current may
flow continuously

Circuit diagrams are the standard for electrical engineers

» Node or terminal

l__ Resistor

Fg |. Simple Circuit




Voltage

The voltage across an element is the work (energy) required to

“u_n

move a unit of positive charge from the terminal to the “+”

terminal

+ N —

+ . W joules

2 .- |V — . — ket volts

5 - _ ()  coulombs

L -

+ L

I ~  Avoltis the potential difference (voltage)

% _ between two points when 1 joule of energy

is used to move 1 coulomb of charge from
one point to the other



Power

The rate at which energy is converted or work is performed

W joules
— = — =— watt
{ second

=1V

A watt results when 1 joule of energy is converted or used in 1 second

Power Dissipated in Resistor v<R P

2
VI =% ~TR



Resistors

Resistor
% Resistance (R) is the physical

\ \ --\_\G property of an element that impedes

"'F_ % (3 the flow of current . The units of

. B\ i
® N\ \ resistance are Ohms (Q)
Three resistnrs.
Type Passive Resistivity (p) is the ability of a
Electronic symbol material to resist current flow. The
units of resistivity are Ohm-meters

1 (Burope) (Q-m)

W(US) Example:

Resistivity of copper 1.68%x1078 Q'm

Resistivity of glass 1019to 10 QO'm



Resistors

Color bands

Resistance material
(carbon composition)

Insulation contin,



Resistors

Standard EIA Colar Code Table 4 Band: =25 5%, and =105

firi S - At
Sand . Hanad IIE!.-I:'-:' Earad

Binck
Enowm
Aead

Celagn £ -
FIE
Winint




Ohm’s Law

_ AV
= pL

A = Cross-sectional area of wire

L = length of wire

(remember, Ris in Q

B . -‘GL
= T and pisin Q.m)

Ohm’s Law
V = RI




* The resistor consume energy this energy is consumed as a heat

If the temperature increase the resistivity (p )also increase du to the
following formula

p=p1+a(—T)

Where « is the temperature coefficient of resistivity and its unite (?)

And (T) measured in kelvin or centigrade
Can find the resistance from the above formula above

R=R(1+a(T—T)



Electrical sources

An electrical source is a voltage
or current generator capable of
T G supplying energy to a circuit

<>_

P

Examples:

Controlled Voltage Soarce Controlled Current Source

-12-Volt car battery
-Wall plug

| -AA batteries

-

Battery of cells Single cell




|deal voltage source

An ideal voltage source is a circuit element where the voltage
across the source is independent of the current through it.

Recall Ohm’s Law: V=IR

¥ AoaEce . . . .
e The internal resistance of an ideal voltage source is zero.

—>
I
vV R If the current through an ideal voltage source is
completely determined by the external circuit, it

is considered an independent voltage source

Fgore 1: An ides] voltage sonrce, V,
driving a resisdor, K, and cresling a
curneil §



|deal current source

An ideal current source is a circuit element where the current
through the source is independent of the voltage across it.

Recall Ohm’s Law: | = V/R

The internal resistance of an ideal current source is infinite.

If the voltage across an ideal current source is
completely determined by the external circuit, it
is considered an independent current source



Dependent Sources

A dependent or controlled source depends upon a different
voltage or current in the circuit




Electric Circuit Design Principles

Resistors In series

The resistors in a series circuit are 680 Q, 1.5 kQ, and 2.2 kQ. What is
the total resistance?

R,
MWW
680 €
Vs R,
E2V = 1.5 kQ
R,
AW




Series circuits

A series circuit has only one current path

Current through each component is the same

A series circait with & voltage source (such as a
battery) and 3 resistors

In a series circuit, all elements must
function for the circuit to be complete




Multiple elements in a series circuit

Vietal =V1i + Vot ...+ V,




Example: Resistors in series

The resistors in a series circuit are 680 Q, 1.5 kQ, and 2.2 kQ. What is
the total resistance?

R, Riotar = Hy + Ho + Hg
AW = 68082 + 150002 + 220012
680 €2 = 43800
Vs R, — 4.38kQ)
12V — 1.5 k2
R,
Wy
2.2 k2
istor?
The current through each resistor* 7 Vv 12V 9 74mA

" Riotar 438000



Example: Voltage sources in series

:|||+—n

Find the total voltage of the sources shown

\0 0
< <
|+ |

0
<
|1II+ I.lI

Vtﬂtﬂ{ — Vl =+ 'l”ﬂ T VB — 27V




Example: Resistors in parallel

The resistors in a parallel circuit are 680 Q, 1.5 kQ, and 2.2 kQ.
What is the total resistance?

Vs R, R, R,
+5.0 V—:_— 680 Q 1.5kQ 2.2kQ




Parallel circuits

I T Is I, A parallel circuit has more than
, = ., =R, sk 2R 2R one current path branching from
- i i i i the energy source

Voltage across each pathway is
the same

In a parallel circuit, separate current
paths function independently of one
another




Multiple elements in a parallel circuit

1 _ 1 1 e
Rtotm‘. Rl R2 R'n.

1L 14
Ltota! Ll LZ Ln.

Ci:otal = Ol = 02 i On

For parallel voltage sources, the voltage
is the same across all batteries, but the
current supplied by each element is

a fraction of the total current




Example: Resistors in parallel

The resistors in a parallel circuit are 680 Q, 1.5 kQ, and 2.2 kQ). What is
the total resistance?

1
s == 2]
R1+R2+R3

= 38612

Rtﬂml =

Voltage across each resistor?
Dissipated power?

Current through each resistor?



Circuit Definitions

* Node — any point where 2 or more circuit elements
are connected together
* Wires usually have negligible resistance
e Each node has one voltage (w.r.t. ground)

* Branch — a circuit element between two nodes

* Loop — a collection of branches that form a closed
path returning to the same node without going
through any other nodes or branches twice



Example

* How many nodes, branches & loops?

SRR




Example

* Three nodes







Example

* Three Loops, if starting at node A

A

Is

Vo



Kirchoff’s Voltage Law (KVL)

* The algebraic sum of voltages around each
loop is zero

* Beginning with one node, add voltages across
each branch in the loop (if you encounter a +
sign first) and subtract voltages (if you
encounter a — sign first)

> voltage drops - 2 voltage rises =0
* Or 2 voltage drops = 2 voltage rises



Example

* Kirchoff’s Voltage Law around 15t Loop

A L, + LR, - B

ﬁ

'

LR, Vo

Assign current variables and directions

Use Ohm'’s law to assign voltages and polarities consistent with
passive devices (current enters at the + side)



Example

* Kirchoff’s Voltage Law around 15t Loop

A L, + LRy
—_—

P

Is

C

Vo



Circuit Analysis

* When given a circuit with sources and resistors having fixed values,
you can use Kirchhoff's two laws and Ohm’s law to determine all
branch voltages and currents

+ Vpg -

A B_l I

7Q
=+

3Q
Vic




Series Resistors

 KVL: +41-110Q-12v=0, Sol=1.2A

* From the viewpoint of the source, the 7 and 3 ohm resistors in series
are equivalent to the 10 ohms

T

10Q
0 1-10Q




Circuit Analysis

* By Ohm’s law: V,; = [-7Q and V. = 1-3Q
* By KVL: Vg +Vpc—12v=0

* Substituting: [-7Q +1-3Q0-12v=Q =
g | = 70 B
* Solving: I=1.2A +
3, <,
BC
Since V5 = [-7Q and V. = 1-3Q C

And I=12A
SoV,g=84vandVg.=3.6v



Kirchoff’s Current Law (KCL)

* The algebraic sum of currents entering a node is zero

e Add each branch current entering the node and subtract each branch current
leaving the node

e > currentsin-2currentsout=0
e Or 2 currents in = 2 currents out



Example

e Kirchoff’s Current Law at B

B

It
o 1

Assign current variables and directions
Add currents in, subtract currents out: |, -, -I;+Is=0

Vo



Example: Find VAB for the Figure
below

___A |
E o
-+ +
Bk 40
B |
By KVL: 1,-8Q+1,,40 =0 mmm——) |,=2- |,
By KCL: 10A =1, +1,
Substituting: 10A=1,+2-1,=3-1,
So ,=3.33A =) |,=6.67A

And V,; =1, 4 = 26.33 volts



Another Way

10 A 2.667Q Vg

B

By Ohm’s Law: V,;=10A-2.667 (2
So V,g =26.67 volts

Replacing two parallel resistors (8 and 4 €2)
by one equivalent one produces the same
result from the viewpoint of the rest of the
circuit.
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Alternating current circuits (A.C) circuits

* Electrical appliances in the house use alternating current (AC) circuit

* If an AC sources applies an alternating voltage to a series circuit
containing resistor , inductor, and capacitor , what are the amplitude
and time characteristics of the alternating current.

* An AC circuit consist of combination of circuit element and power
source

* The power source provides an alternating voltage,Av



Alternating voltage (A.C voltage)

* The output from an AC power source is sinusoidal and varies with
time according to the equation

* Av = AV, 4 Sinwt
* Where:
 Av :instantaneous voltage

* AViax: mMaximum output voltage of source also called the voltage
amplitude

* w: the angular frequence of the AC voltage



The angular frequency is
w=2mf == AV

ek
F is the frequency of the source

T is the period of source

The voltage is positive during one half of the cycle and negative during

the other half

* The current in any circuit driven by an AC source is an alternating current

that varies sinusoidally with time.

* Commercial electric power plants in the us use a frequency of 50 Hz and 60
at the USA and Saudi Arabia .



Resisters in an AC circult

Consider a circuit consisting of an AC source and a

resistor - Avg
The AC source is symbolized by —@— w
R

Apply Kirchhoff’s loop rule Therefore,
Av+ Avg =0
Av—igR=0

AV, sin(wt) — iR =0 Q
AV, o sSin(wt) -
SINL = AL 1
i e mﬂxR — 1,,..sin(wt) Av= AV, sin of
Where: I,,.x= av;ﬂ

Avpg = | . R sin wi




Resisters in an AC circuit

I'he current and the voltage are in phase:
they simuluaneously reach thei

° The graph ShOWS the Current through and the Voltage across the Itlii'ﬁlllll!l" 1'1!1“(':1. llli'll IR 'nlllh"'«.
. and their 2ero salues,
resistor "
* The current and the voltage reach their maximum value at the same s Ay 4
time

* The current and the voltage are said to be in phase
* For asinusoidal applied voltage, the current in a resistor is always in
phase with the voltage L —

* The direction of the current has no effect on the behavior of the
resistor




Phaser diagram

*To simplify the analysis of AC circuits, a graphical
constructor called a phasor diagram can be used.

*A phasor is a vector whose length is proportional to the
maximum value of the variable it represents.

*The vector rotates counterclockwise at an angular
speed equal to the angular frequency associated with
the variable.

*The projection of the phasor onto the vertical axis
represents the instantaneous value of the quantity it
represents.

phasors are in the same -
direction because the current is
in phase with the voltage.

IH" ll'ﬂ




RMS current and voltage

* The average current in one cycle is zero.

= Resistors experience a temperature increase which depends on the
magnitude of the current, but not the direction of the current.

* The power is related to the square of the current.

= The rms current is the average of importance in an ac circuit.
* RMS STANDS FOR ROOT MEAN SQUARE

L., = %? —0707 I,




Note about RMS value

* RMS values are used when discussing alternating current and voltage
because

* AC ammeter and voltmeter are designed to read RMS value



Example

The voltage output of an AC source is given by the expression Av =
200 sin(wt), where Av is in volts. Find the rms current in the circuit when
this source is connected to a 100-(} resistor.

Av = 200sinwt

Vs = 0.707 % 200 = 141.4 v

_ Upms 1414

Lms =228 = =2 = 1414 A




Inductors in an AC circuit

*Kirchhoff's loop rule can be applied
and gives:
Av+Ay, =0, or
Av-L 2 =0
at

Av= r_% = AV sintt

- AVl ro AV,
rl=—!_ﬂjﬁnntm=-f—cwmt

Av = AV, sin wt

e

| out of phase by (1/2) rad = 90*

This shows that the instantaneous current iy in the inductor
and the instantaneous voltage Av; across the inductor are




ohase relationship of inductors in an AC circuit

The current lags the voltage by

* For a sinusoidal applied voltage, the current in an one-fourth of a cycle.

inductor always lags behind the voltage across the 2w, & /
inductor by 90° (r/2). hy

* The current is a maximum when the voltage across
the inductor is zero.




Phasor diagram for an inductor

The current and voliage phasors
are at 97 1w each other.

* The phasors are at 90° with respect to each other.

ll';

J
* This represents the phase difference between the current // N\
and voltage. = 1k

+ Specifically, the current lags behind the voltage by 90°. 1 oy 9



Inductive reactance

* The factor (Wl has the same units as resistance and is related to current

and voltage in the same way as resistance.

* Because WLl depends on the frequency, it reacts differently, in terms of

offering resistance to current, for different frequencies.

* The factor is the inductive reactance and is given by:



Inductive reactance

* Current can be expressed in terms of the inductive reactance:

AV AV
] =BNor] =222
P x; Lo XL

* As the frequency increases, the inductive reactance increases

The voltage across inductive

*The instantaneous voltage across the inductor is
di

dt
=-AV_,Ssin wt

=—1_ ., X,sin wt

Av, = -L



example

Ex. 31.2 In a purely inductive AC circuit, L = 25.0 mH and the rms voltage is 150 V.
Calculate the inductive reactance and rms current in the circuit if the frequency is
60.0 Hz.

X, =wL =2nfl=2%60xm+*25+10"3=3*1037 ohm

__ Avppms 150
 xp 3%103m

=15.92 mA

I rms




Capacitors in an AC circuit

* The circuit contains a capacitor and an AC | I
source.

* Kirchhoff's loop rule gives:
ﬂv + EV,: =0 And so




Capacitors in an AC circuit

* The current reach its maximum value before the
voltage reach's its maximum value
* The current lead the voltage by 90°

Phaser diagram for capacitor

The phaser diagram shows that for a sinusoidally
applied voltage the current always leads the
voltage across a capacitor by 90°

'he current leads the voltage

by one-fourth of a ovele.

I he current and voltage phasors
are at ‘“)° 1o cach other.




Capacitive reactance

e The maximum current in the circuit occurs at
coswt = 1 which given by

| =wCAV. =2V
(1/ wC)
. V
X.=— Whichgives [ = o
wC X

 The impeding effect of capacitor on the current in an AC circuit
is called the capacitive reactance and given by

1
X.=—
“ wC



Voltage across capacitor

*The instantaneous voltage across the capacitor can be written as

Av, = AV, o Sin(wt) = 1,4 X sin(wt)

*As the frequency of the voltage source increases, the capacitive

recctance decreases and the maximum current increases.

*As the frequency approaches zero, x_ approaches infinity and the

current approaches zero.

* This would act like a dc voltage and the capacitor would act as an open
circuit.



example

An 8.00 F capacitor is connected to the terminals of a 60.0-Hz AC source whose rms
voltage is 150 V.. Find the capacitive reactance and the rms current in the circuit.

1- To find the capacitive reactance

X = 1
¢ 2mfc
1 1
Xpo= —==x 103 ohm
2m*x60%8%10~6 T

2-To find the rms current

v 150
I = o= =047 A
rms X, %*103




