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Hydrographic surveying



Fundamentals of Hydrographic Surveying

Hydrography is the branch of applied science which deals with the measunement and
description of the physical features of oceans, seas, coastal arcas, lakes and rivers, as well as
with the prediction of their change over time, for the primary purpose of safety of navigation
and in support of all other marine activities, including economic development, security and
defense, scentific research, and environmental protection.”  International Hydrographic

Organization — June 2009

L1 Introduction

Mere than half of the world's population bves within 100 km of its shores. The effects of
denser coastal populaton and accelerating climate change can be seen in degraded (and even
-L'dsappﬂ:m-l:-n -e:-:l'] COOEYSiemS, coastal ermsn, over-fshing, manine le]u:'rnn.. and Thigher
vulnembibity to manne disasters such as rsaname or volcanac acovarg.

Marnne environments (ooeans, lake, avers, swamps, wetlands] cover more than two-thinds of
the Eamh's surface, and are oot -I:IF-iJ:f accessible o direct observabons. In the past 20 pey years
pechnodogical advances have allowed us o discover and map mech more detailed  coasial and ocean
bathymetry and o delmeate shore boundanes , mostly throwgh acoustc remote sensmg.

Hydmpgraphy & that branch of physical coeanography that deals with measurement and
defininon of the configumton of the bottems and sdjscent land area of oceans, lakes, harbors, and
ather water badies on Famh. Hydrographic survening, i the stociest sense, is defined mierely as the
s.m‘c:.‘i.nguf a water aren; however, in modern wage it may include a wade '|.'Iri|:q.' oif nithier olectives
such @ measurements of txles, currents, gravity, and the determanation of physical ard chemacal
propertics of water.

The poncpal obgectve of most hydeographic surveys that are conducted by Large
government agencies bke the Mabonal Oceanic and Atmosphenc Admmistrabon (NOAA) 1= 0
produce nawical chares and mappeng. MORAA wses very lagge vessels w0 obian basic data for the
compilaticn of naetcal charts with emphasis on feanares that atfect safe naviganon. Oither objectves
of MOAA mchude scguening the mbormation necessary o produce related manne navigatioeel
products for coastal @one management, engincenng, and scieniific investymions. (dher govemment
agencics such s the US Army Corp of Engineers [USACE]), the Naval Occanographic (ffice
MANVCY, the U5 Crenlopucal Survey (U505), are  tasked with hydrographic surveys for 2 vanesy of
purpnses SBome state and local sgencies as well as the provate sscor also have bydreographic suecey
capahdlities

The U5 Amy Comps of Engeneees (U5ACE) 15 responsible to collect, process, and map
bydeegraphic survey data frr bederally autheorized ol and malitary navigmnon channels and shiore
protectssn peojects theoughowt the U ocluding Puerto Rico and the Viggin Islands. The main
pupose of collecting hydrographic survey data & o be used by engineers and scientists to monitor
channel shoaling condifions. Survey resulis an the fomm of 2 bathymemc  map becomes a decsion
making ool for channel mmnienance opemtions, channel despening contracts, planning studies,



ervimsnmenial monitoring, near shaore engnnesnng
desiens, locmxesn | oand  somessmes  emoval of
olemicoomns such as sunken vessels, sedimena
trarspors modehng, and  brach mounshmend
pmjecis.  (ther  obpectves  ndude  volume
compuaieens for Emr amd oeguirable payment oo
dredging oontracts.  The vwermmching reazon s
pertorm l'l!,'dﬂ:lj_l:l'ﬂl.'lhli.' BUrVeys 45 b ecnsure safe
maviganan condibons Por all commescial and pablic
isers - withiin the bmirs of the fedeml waterasays.
FHydrographic surveys anc viery comiples in berms of
[lectromc) equipment infegm o, bepstecs on held
DpeEranens and oosts.

(In zmaller scale local manne envaronmenrs, the
FUMVEY DpCrEbnns can b for less |:|:|r.|1|.'|l|:1. !":u.'n.'l::.-s-
condocted in o shallow  waters, lakes snd overs may mvoke conventions] (manoal) - surcerang
procedures:

Mautical Charting: Permdic bvdmpraphic surveys mse be performaed o determine  shapping
channel condmions. Minimum contrmlbng depths akeng with locabon of shoals and other cnbcal
informaion - ropanlng  safe nanganon peis dooumenicd. Repocis of Chanoel  Comdstsens ace
accessihle o watersmy uscrs.

FPori and Hareor Operations:  Suwovey data ane sequired foc cffectrre management of waer
resources and harbor estuanes. Opeaivens include manteramee dredgnng, debims nemoval or dear
passage of vessels,  ervenonmeenml restoranon, menne sersctisral -L'-'_"u:_gn., ard many aithiers.

Coastal Geomorphology: Hydmgraphic sunveys provide dasa for morphodrnamic classificanon of
comezl areas from ses stare (breskeng wave hegghis), bathpmetry, fde reppmes (F-factor oomputed

troen tde coRsntuenis).

Coastal Engineering: (oastal mapping dasa &= negured For covill works pregects such as
reveiments, jetives, and beach newanshments. Flydmgraphec suecey data 15 wsed o undersiand
varkmis processes that shape the coastines and human inberactin wiih these processes.

Coastal Zone Management: Hydrographsc surveys provsde dama for coastal haracds  and
vilnembnliny assessment of cioasre] leandscapes inoreltion o clemate change, subsslence, plicial
rebound, and others. Bathymeine dam provide anollacy micemation on micarors that capnane the

hiophysucal comdsiwens and meoerphaodynamec classificannn.

Ushore Resource Mapping: €3 fishore enegry mesparces enclude wmnd, wave, and peologc menemal
[eal, matural gas eec) deposits.  Surveys 2nd Goographic Informanon Syseems sre invaluable tools o
idennty the i::|.|'|]|:|-|r.:.|.1ﬂ-r|. ol thicse ercrey resoarces.



1.2 Disciplines Associated with Hydrographic Surveying

Hydraography relies oo a vanegy aof sceentific and engnesnnr disciplines. Fipare 1 dhestrates the core
discepbnes like CGeodesy, Photogmmancetry, Cartogrraphy, Cibobal Prisibonirg System, Oceanogeaph,
Tides, Physics and Mathermatics. These are the vanous disciplines that mfluence the scence and
products delrversd by bydsographec survey.

mx ¥

Hydlrograply Cregdeay Fhatogromonstry Cmrragraphy
1 = E
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e aragraphy Tidiex

Figure 1. Disciplines that influence the Science of Hydrography

Creodesy is an meesdiscplnary soence which uses space-borne and airhorne remotely sensed, and
roind-based measurements o sadv the :I.]L'I.FI-L' anel size ot the Earth, the |'|I1n-|:|3: and their sxtelines,
urdl thear changes; ro procschy determine position and veloory af pertnds o abjects at the serface oc
arhiting the pilamet, withen o realzed terrestnal nedesence system, and m apply these knowledge to a
vanesty of sciennfc and engincenng apphoatsons, wang mathematics, physics, astronomy, and
COMpHIEEr Soenoe.

Oceanography s the sciennfic discipline concerned with all aspects of the wosld's oocans and seas,
including thesr physcal and chemscal propemes, their ongen and geologes fmmewock, and the bie
formes that inhabie the manne envirooment. Tradibonally, oceanography hes been donded mio four
separate bt related brenches: physical occanngraphy, chemical oocanography, manne gealogy, and
maring acikegy. Physical oceanography deals wath the properties of seaaater (temperaiure, density,
pressure, and so onl, s mevement {Le., waves, currenis, des), and the interactons betacen the
occan wilers and land surfsce warers (mvers amid sineames).



L31 Manne ¥Vessel

The wxe and payload of the manne vessel depends on the extent of the sorvey project
requirements. Survevs can be classified by vessel sive small scole (from wading o small boats),
medmm scale (using medm size boats and acoasie methods], and regaonal scale surveys asing
deep sen research vessels with swate-of-the art mulb-dsoplnany data collecion systems. Essennal
equepment list for cach survey is as talloas:

A} Semall Serveys:
1. Nessel: Olars, Late jackers, Cins ks { minemem 2, exira ml, @nd 10 HP cogne
2 Depth and Pogien: 507 leadlne, renge poles, aod plans. Survey cquspment may inchuce
Total Smuon Instrument (T51), compensabng level as required, posm pode wath
extension muds, Dheeper water requires a fathometer and rmansducer inseallation.
3 Mesceffanerugs: Bacdsm, 300 fi tape, MNoveganon chart, giaff shects, Hatrones (¥ & rEpr kar,
oo ey

B Mediem Scale Sumvevs:
1. Nessel 2565 bt vessel, beensed operaior.
Depth and Posinon: Echosounder aath Transducer and aexdquate power from biarmenes or

FENSTRIOL, ticl box, tmnsdecers | (a5 o 151 Fu:rs.-ir.l:arn.ﬂ'l.g, matn refesence unies (MERLT)
3. Mecellineons: A small vessel for the near-shore shallow: water survey system o perform

a5 MWer ph.'r.fnrm.

() Repwsnal Soale Suneys
Wehicle: 65 it and larger research vessels | with comperent crew and equipment
2 Depth md Posinon: Muln-besm transducer and (1%
A E_qu:_{mm brar sEerer LETRAEITE, |'|.'|:-|.|1.|.|.'rc Fu.lmmng nf frarmes) Intcpmsed
ulpn<dscoplinary  datn collecton systems  (eg,
gl:l.'l.r'!'1 magnencs), regueres accurnie meoshap sunveys
fiwr TS HUCE AN, calthranicin, 2l
synchmnmanon
e o_,

1.3.2 Positioning equipment

Clifxhinre s .:qJ.lpmuu has been revolusineed
due oo deamanc evolubon o sensor :-nd]r.n]-l:gl. aod CoMTHputer

soience. Tmdinonal offshore equipment includes a2 sextant,
trapsit, stadia, and an slectromic dissonce MMEASLOIT I'I.ﬂ?l.‘l'_l
deypoe. I‘-n.m'ﬂ.d.n.:rs, several methods: Gor hoosoonial posichoming
inchade optical, tand-hased elecnomnic rmngng, and l-|.'|-.1-|:-|.'-|:|ﬂ!||'."l:|
prsenung. A basc method aof pesitiomng 15 the resecuon.
However, the posipomng methedology emploed oo any
project will be evalmsed bazed on sibu-:p.:-nﬁi: conditons and  Figare L2 Acowstic "J-':'["‘h
project specificanon, MLl emear
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AREASAND VOLUMES

In civil engineering works such as designing of long bridges, dams, reservoirs, etc., the area of
catchments of rivers is required. The areas of fields are also required for planning and
management of projects. The areais required for the title documents of land.

In many civil engineering projects, earthwork involves excavation and removal and dumping of
earth, therefore it is required to make good estimates of volumes of earthwork. Volume
computations are also needed to determine the capacity of bins, tanks, and reservoirs, and to
check the stockpiles of coal, gravel, and other material.

Computing areas and volumes is an important part of the office work involved in surveying.

1. AREAS

The method of computation of area depends upon the shape of the boundary of the tract and
accuracy required. The area of the tract of the land is computed from its plan which may be
enclosed by straight, irregular or combination of straight and irregular boundaries.

1.1 Computation of Areas of Regular Figures

When the boundaries are straight the area is determined by subdividing the plan into simple
geometrical figures such as triangles, rectangles, trapezoids, etc. Standard expressions as given
below are available for the areas of straight figures.

(a) Triangle:

Areaof triangle = % ab sin C

in which C istheincluded angle between the sides aand b.
The area of atriangle whose lengths of sides are known can be computed by the
Formula:

Area- \/s(s —a)(s—Db)(s—c)
where a, b, and c are the lengths of sides of the triangle and s = %(a+ b+ o).

(b) Rectangle:
If b and ‘d’ are the dimension of a rectangle,
A =bd
(c) Trapezium:
h1l + h2




where d is the distance between two parallel sides and hl and h2 lengths of parallel sides.

Units used for finding areas are square metres, hectare and square kilometre. Relation among
them are:

Hectare =100 m x 100 m = 1 x 10* m?

Square kilometer = 1000 m x 1000 m = 1 x 10° m?
=100 hectare

1.2 Areasof Irregular Shapes

For this purpose from a survey line offsets are taken at regular intervals and areais calculated
from any one of the following methods:

(a) Areaby Trapezoidal rule

(b) Area by Simpson’s rule.

(a) Areaby Trapezoidal Rule:
In trapezoidal rule, the areais divided into a number of trapezoids, boundaries being assumed to
be straight between pairs of offsets.

The area of each trapezoid is determined and added together to derive the whole area. If there are
n offsets at equal interval of d then the total areais

.-'GI b
I ;E:J"' .|.|:_:I_I +|::|‘|-i-.........+|:|_1|
3 |

A=d

L1



Example 1:Compute the area of the tract shown in Figure

—0— ~ )
B e o . e
~ b
/rz 87 |92 \[f,e {104 |52 22 )28
0

1 1 2
0+00 0450 1400 1+50 2+00 2+5C 3+00 3+50 4+0

“

A =
Solution
By Equation above

area = 50(7 22+ 52 +87 +9.2+ 4.9 + 104+ 5.2 +12.2)

=2860 m’

(b) Area by Simpson’s Rule

In Simpson's ruleit is assumed that the irregular boundary is made up of parabolic arcs. The
areas of the successive pairs of intercepts are added together to get the total area.

A= %[{ﬂ, +0 )+ 80, +0, 4.+ L)+ HD, + O, +..+0 )]

To derive the equation of Simpson’s Rule

TE
I-. | | E .
! |
k]

o, [ L8
L L___ ¥
L] [} Lk ] | wl

& n

In this method, the boundary line between two segment is assumed parabolic.

Thefirst two segments of figure above in which boundary between the ordinates is assumed
parabolic.

=~ Areaof thefirst two segments



Area of fropezimn ACFD + Area of parasbola DEFH]
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Areaof Irregularly Spaced Offsets

For irregularly curved boundaries like that in Figure 12.3, the spacing of offsets along the
reference line varies. Spacing should be selected so that the curved boundary is accurately
defined when adjacent offset points on it are connected by straight lines. A formula for
calculating areafor this caseis:

1
area = 5 lathy + hy) + b(hy + hy) + c(hy + hy) + -]

Where a, b, ¢ are the varying offset spaces, and hy, hy, h, are the observed offsets.

Example: compute the area of the tract shown in figure

Curved boundary \\

0+00 0+860 1+ 40 2+40 2470 % 34+75 4435
Reference line

Solution

1 -
aren ‘-I/.vlh 24 0119) 8119 & 144) « 100144 + 60)

« JINGH) 6.1) + 10560 + 115) + 6iIX11.8 |_'£|]

= 4490 m?



Now 1o calculate the area of the irregular figure, use of trapezoidal rule or Simpson's rale can
be made. The Sunpson’s mle require even sumber of imcrements, whereas the trapezoidal nale can
be used for odd as well as even number of increments. In the present case since the number of
increments s even, the area can be determined with either trapezoidal rule or Simpson's rule.

Area by trapezoidal rule

A=J(o' ;0’ +0,+0,+0, .o,+o,)

In this case O and O, are the end offsets, and therefore O, » Oy, = O m.

Thas A,-wx(°;°¢3.6+z.8+4.z‘4.9*3.7)

=30 % 192 = 576.00 m'.

Hence the total area of the tract
Ay 4 Ay b Ay
“ 1160442 + 11608.76 + 576,00
= 23789.18 m* = 2.4 hectares.

FProblem I The following offsets were taken from a chain line (o an irregular
boundary line at an interval of 10 m:

0, 2.50, 3.50, 5.00, 4.60, 3.20, 0 m

compute the area between the chain line, the irregular boundary line and the end
offsets by:

a- Mid-ordinate rule

b- The average coordinate rule
c- Thetrapezoida rule
d- Simpson'srule



Solution

pe—10m —=
Fig.P.7.1
(a) By mid-orﬂllatc rule: The mid-ordinates are

h;-g-:?z—& "= 125 m : S a0 Ead

By --25';;3‘& = 3.00m

ry = 2502500 | io5n

he =w = 480m

e 102320 -5%0m

ks =L2%+_0 = 160 m

Reguired area = 10 (1.25 + 3.00 + 4.25 + 4.80 + 3.90 + 1.60)
"~ = 10x 18.80 = 188 m?

(b) By average-ordinate rule:
Here d=10m and n = 6 (no. of divs)

Base length = 10 X 6 = 60 m
Number of ordinates =7

Required area = 60 x 0_“‘_&";_152*_5‘7’0+4-50+3.20+0}

=60 x L& = 16114 m?

{c) By trapezoidal rule:
Here' d=10 «

Requuedma-—-(0+0+2(2.50 + 350 4+ 5.00 + 4.60 + 3.20))
_.'>><37.¢so=wam2

{d) By Simpron's rule:
o = 10

Required area = 12 (0.4 0+ 4(2.50 + 500 + 320) + 2(3.50 + 4 60))
n “‘ (4280 + 16,20} =?u 59.00

"3' s 50.00 = 196.66 m’



H.W

Problem 2 ‘The following offsets were taken at 15 m intervals from a survey line
to an imegular boundary line:
3,50, 4.20, 6.75, 5.25, 7.50, 8.80, 7.99, 6.40,4.40, 325 m
.. Cailculare the irvea enclased between the survey line, the imegular boundary
* line, and the first and last offsets, by: - 3
(a) The trapezoidal rule
(b) Simpson's rule

Solution (Fig. P-7.2)

Example: A tract of land hasthree straight boundaries AB, BC, and CD. Thefourth Boundary DA is
irregular. The measured length are as under

AB = 135 m, BC = 191 m, CD = 126 m, BD = 255 m.

The offsets measured outside the boundary D4 to the irregular boundary at a regular interval
of 30 m from D, are as below:

Determiine the area of the tract.
Solution (Fig. 8.8):
Let us first calculate the areas of tnangles 48D and BCD.

The area of a triangle is given by
A= S(S-a)(S-b)(5-¢)

a+b+e

in which a, b, ar.td ¢ are the lengths of the sides, and 5= >

For AABD
g 135+255+180 ..
A, = /285 % (285 - 135) = (285 — 255) = (285 - 180)
= !
= 11604.42 m’,
For ABCD
e 191+122|5+255 o

Ay =286 % (286 —191) = (286 — 126) = (286 — 255)
= 11608.76 m’,

Fig. 8.8
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Froblem 3 The following oftscts are taken from a survey lins to a curved boundary

line:

Distance {m) 0 S 10 15 20 30 40 60 KO

Offset {m) 250 380 460 520 610 470 580 390 2.20
Find the area between the survey line, the curved boundary line, and the firs:

and the last offscts by:

(i) The trapezoidal rule, and (ii) Simpson's rule.

—— w :‘\ﬁu - h———-_.
{,,_ = ° W - < v o '“-],\,
o S
a 5 10 15 20 3o 40 50 20
[N t - i o+ " -
Fig, P.7.3 -
Solution Here, the interva)s between the offsets are not regular throughout the
length. '
So, the section is divided into three compartments.
Let 4; = arca of ist section
4y = area of 2nd section
Ay = area of 3rd section
‘Here, * d] =5m
dz =10m
dg = 20 m

(n) By Trapezoidal rule:
Ajm -,‘f- {2.50 +6.10 + 2 (3.80 + 4.60 + 5.20)) = 80.50 m 2

7 - % (6.10 + 5.80 + 2 (4.70)) = 106.50 m

Apim -229 {580 +2.20 + 2(3.90)} = 15800 m? .

Total arca = 89.50 + 106.50 + 158.00 = 354.00 m?
(b) By Simpson’s rule:
A :;’- {2.50 + 6,10 + 4(3.80 + 5.20) + 2 (4.60)} = §9.66 m >

Ap= !39 {6.10 + 580 + 4 (4.70)) = 102.33 m?

Ao =22 (580 + 220 + 4 (390) = 15733 sqm

Total arca = E9.66 + 10233 + 157.33 = 349.32 m".
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FUNDAMENTALS OF SATELLITE POSITIONING

The precise travel time of the signal is necessary to determine the distance, or so-
called range, to the satellite. Since the satellite isin an orbit approximately 20,200
km above the Earth, the travel time of the signal will be roughly 0.07 sec after the
recelver generates the same signal. If this time delay between the two signals is
multiplied by the signal velocity (speed of light in a vacuum) c, the range to the
satellite can be determined from

r=c X1 13.11)

where r is the range to the satellite and t the elapsed time for the wave to travel
from the satellite to the receiver.

Satellite receivers in determining distances to satellites employ two fundamental
methods: code ranging and carrier phase-shift measurements. Those that employ
the former method are often called mapping grade receivers; those using the latter
procedure are called survey-grade receivers. From distance observations made to
multiple satellites, receiver positions can be calculated. Descriptions of the two
methods and their mathematical models are presented in the subsections that
follow. These mathematicd models are presented to help students better
understand the underlying principles of GPS operation. Computers that employ
software provided by manufacturers of the equipment perform solutions of the
equations.

Code Ranging

The code ranging (also called code matching) method of determining the time it
takes the signals to travel from satellites to receivers was the procedure briefly
described in Section 13.3. With the travel times known, the corresponding
distances to the satellites can then be calculated by applying Equation (13.11).
With one range known, the receiver would lie on a sphere. If the range were
determined from two satellites, the results would be two intersecting spheres. As



shown in Figure 13.8(a), the intersection of two spheres is a circle. Thus, two
ranges from two satellites would place the recelver somewhere on this circle. Now
If the range for athird satellite is added, this range would add an additional sphere,
which when intersected with one of the other two spheres would produce another
circle of intersection. As shown in Figure 13.8(b), the intersection of two circles
would leave only two possible locations for the position of the receiver. A “seed
position” is used to quickly eliminate one of these two intersections.

For observations taken on three satellites, the system of equations that could be
used to determine the position of areceiver at station A is

ph = V(X — X0 + (Y — Y4 + (20— Z,47
P = VX = X + (Y2 =X + (£5—=Z) (13.12)

=V = X+ (Y =X + (27— Z)

where py are the geometric ranges for the three satellites to the receiver at station
A, (X", YY", Z") are the geocentric coordinates of the satellites at the time of the
signal transmission, and (X 4, ¥ 4, £,4) are the geocentric coordinates of the
receiver at transmission time. Note that the variable n pertains to superscripts
and takes on values of 1,2, 0r 3

However, in order to obtain a valid time observation, the systematic error
(known as bias) in the clocks, and the refraction of the wave as it passes through
the Earth’s atmosphere, must also be considered. In this example, the receiver
clock bias is the same for all three ranges since the same receiver is observing



(@ (b)

Figure 13.8 (a) The intersection of two spheres and (b) the intersection of two circles.

each range. With the introduction of afourth satellite range, the receiver clock bias
can be mathematically determined. This solution procedure alows the receiver to
have a less accurate (and less expensive) clock.Algebraicaly, the system of
equations used to solve for the position of the receiver and clock bias are:

RAu(f) = pa(t) + c(8'(1) — 84(1))
RA(1) = palt) + c(&(1) — 84(1))
Ri(1) = palt) + e(8(1) — B4(t))
Ri(t) = pa(t) + c(8%(1) — 8.4())

(13.13)

where R'i(1) is the observed range (also called psendorange) from receiver A to
satellites 1 through 4 at epoch (time) ¢, p’4(f) the geometric range as defined in
Equation (13.12), ¢ the speed of light in a vacuum, 8 4(f) the receiver clock bias,
and &"(t) the satellite clock bias, which can be modeled using the coefficients
supplied in the broadcast message. These four equations can be simultaneously
solved yielding the position of the receiver (X 4, ¥ 4, Z4). and the receiver clock
bias & 4(t). Equations (13.13) are known as the point positioning equations and as
noted earlier they apply to code-based receivers.

THE UNIVERSAL TRANSVERSE MERCATOR PROJECTION

The Universal Transverse Mercator Projection (UTM) is a worldwide system of
transverse Mercator projections. It comprises 60 zones, each 6° wide in longitude,
with central meridians at 3°, 9¢, etc. The zones are numbered from 1 to 60, starting
with 180¢ to 174°Was zone 1 and proceeding eastwards to zone 60. Therefore the



central meridian (CM) of zone n is given by CM = 6n° — 183°. In latitude, the
UTM system extends from 84° N to 80° S, with the polar caps covered by a polar
stereographic projection.

The scale factor at each central meridian is 0.9996 to counteract the enlargement
ratio at the edges of the strips. The false origin of northings is zero at the equator
for the northern hemisphere and 106 m at the equator for the southern hemisphere.
Thefaseorigin for eastingsis 5 x 105 m west of the zone central meridian.

2- Carrier Phase-Shift M easurements

Better accuracy in measuring ranges to satellites can be obtained by observing
phase-shifts of the satellite signals. In this approach, the phase-shift in the signal
that occurs from the instant it is transmitted by the satellite until it is received at the
ground station, is observed. This procedure, which is similar to that used by EDM
instruments, yields the fractional cycle of the signa from satellite to receiver.
However, it does not account for the number of full wavelengths or cycles that
occurred as the signa traveled between the satellite and receiver. This number is
called the integer ambiguity or simply ambiguity. Unlike EDM instruments, the
satellites utilize one-way communication, but because the satellites are moving and
thus their ranges are constantly changing, the ambiguity cannot be determined by
simply transmitting additional frequencies. There are different techniques used to
determine the ambiguity. All of these techniques require that additional
observations be obtained. Once the ambiguity is determined, the mathematical
model for carrier phase-shift, corrected for clock biases, is

: 1 . ; i L
Pi(t) = 2l0) + Ni+ F[8'(0) — 840)] K=k

where for any particular epoch in time, f, @(f) is the carrier phase-shift measure-
ment between satellite j and receiver i, f/ the frequency of the broadcast signal
cenerated by satellite j. 5'(f) the clock bias for satellite j, A the wavelength of the
signal, pl(t) the range as defined in Equations (13.12) between receiver i and
satellite j, N! the integer ambiguity of the signal from satellite j to receiver i, and
o,(1) the receiver clock bias.



ERRORS IN OBSERVATIONS

Electromagnetic waves can be affected by several sources of error during their
transmission. Some of the larger errors include (1) satellite and receiver clock
biases and (2) ionospheric and tropospheric refraction. Other errors in satellite
surveying work stem from (a) satellite ephemeris errors, (b) multipathing, (c)
Instrument miscentering, (d) antenna height measurements, (€) satellite geometry,
and (f) before May 1, 2000, selective availability. All of these errors contribute to
the total error of satellite-derived coordinates in the ground stations.

THE UNIVERSAL TRANSVERSE MERCATOR PROJECTION

The Universal Transverse Mercator Projection (UTM) is a worldwide system of
transverse Mercator projections. It comprises 60 zones, each 6° wide in longitude,
with central meridians at 3¢, 9°, etc. The zones are numbered from 1 to 60, starting
with 180° to 174°Was zone 1 and proceeding eastwards to zone 60. Therefore the
central meridian (CM) of zone n is given by CM = 6n° — 183°. In latitude, the
UTM system extends from 84° N to 80° S, with the polar caps covered by a polar
stereographic projection.

The scale factor at each centra meridian is 0.9996 to counteract the enlargement
ratio at the edges of the strips. The false origin of northings is zero at the equator
for the northern hemisphere and 106 m at the equator for the southern hemisphere.
Thefalse origin for eastingsis 5 x 105 m west of the zone central meridian.
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METHODS OF VOLUME MEASUREMENT

Direct measurement of volumes is rarely made in surveying, since it is difficult to actually apply
a unit of measure to the materia involved. Instead, indirect measurements are obtained by
measuring lines and areas that have a relationship to the volume desired.

Three principal systems are used: (1) the cross-section method, (2) the unit-area (or borrow-pit)
method, and (3) the contour-area method.

21 THE CROSS-SECTION METHOD

The cross-section method is employed almost exclusively for computing volumes on linear
construction projects such as highways, railroads, and canals. In this procedure, after the
centerline has been staked, ground profiles called cross sections are taken (at right angles to the
centerline), usually at intervals of full or haf stationsif the English system of unitsis being used,
or at perhaps 10, 20, 30, or 40 m if the metric system is being employed. Cross-sectioning
consists of observing ground elevations and their corresponding distances left and right
perpendicular to the centerline. Readings must be taken at the centerline, at high and low points,
and at locations where slope changes occur to determine the ground profile accurately. This can
be doneinthefield using alevel, level rod, and tape.

Much of the fieldwork formerly involved in running preliminary centerline, getting cross-section
data, and making slope-stake and other measurements on long route surveys is now being done
more efficiently by photogrammetry.

After cross sections have been taken and plotted, design templates (outlines of base widths and
side slopes of the planned excavation or embankment) are superimposed on each plot to define
the excavation or embankment to be constructed at each cross-section location. Areas of these
sections, called end areas, are obtained by computation or by planimeter. Nowadays, using
computers, end areas are calculated directly from field cross-section data and design information.
From the end areas, volumes are determined by the average-end-area, or prismoidal formula.
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intercept
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Figure 26.1 portrays a section of planned highway construction and illustrates some of the points
just discussed. Centerline stakes are shown in place, with their stationing given in the English
system of units. They mark locations where cross sections are taken, in this instance at full
stations. End areas, based on the planned grade line, size of roadway, and selected embankment
and excavation slopes, are superimposed at each station and are shown shaded. Areas of these
shaded sections are determined, whereupon volumes are computed using formulas given in the
next Section. Note in the figure that embankment, or fill, is planned from stations 10+00 through
11+21 atransition from fill to excavation, or cut, occurs from station11+21 to 11+64 and cut is
required from stations11+64 to 13+00.

Type of cross sections

The types of cross sections commonly used on route surveys are shown in Figure 26.2. In flat
terrain the level section (@) is suitable. The three-level section (b) is generally used where
ordinary ground conditions prevail. Rough topography may require a five-level section (c), or
more practically an irregular section (d). A transition section (€) and a side-hill section (f) occur
when passing from cut to fill and on side-hill locations. In Figure 26.1, transition sections occur



at stations and while a side-hill section exists at 11+21 and 11+64, while a side — hill section
exists at 11+40.

The width of base b, the finished roadway, is fixed by project requirements. As shown in
Figure 26.1, it isusually wider in cuts than on fills to provide for drainage ditches. The side slope
S [the horizontal dimension required for a unit vertical rise and illustrated in Figure 26.2(a)]
depends on the type of soil encountered. Side slopes in fills usually are flatter than those in cuts
where the soil remainsin its natural state.

Cut dopes of 1:1 (1 horizontal to 1 vertical) and fill slopes of 1-1/2:1 might be
satisfactory for ordinary loam soils, but 1-1/2:1 in excavation and 2:1 in embankment are
common. Even flatter proportions may be required—one cut in other factors. Formulas for areas
of sections are readily derived and listed with some of the sketchesin Figure 26.2.
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Example 8.6. Calculate the area of cross-section that has breadith of formation as 10 m, center
height as 3.2 m and side slopes as | vertical 10 2 horizontal.

Solution (Fig. B.10):

A cross-section having no cross-fall, i.e., the ground transverse to the center line of the road
is level, is called as a level- seciion. The area of a level-section is given by

A = h{b + sh)
where
h = the depth at the center line in case of cutting . and the height in case of embankment,
= the formation width, and
1 in 5 = the side slope.
The widths w are given by

W= %q- sh
It 15 given that
b=10m
h=32m
§=2
e Wi e H-t""‘,_:""t-"’? =+
Original ground % i w__ ""']d‘,:,“l""“
surface Jevel '_:‘ﬁ} : M ~ Original groued
el P e ! = surface
PR M L el
(b Curting (k) Embankment

Fig. 8.10

Hence the area

A= 32x(10+2x32) = 52.48 m*



B. Two-Level Section
When the ground- surface ﬁa; a transverse slope: -

and - . by =nx Ee=nlhy - h)
From (a) and (b), -%+':h, TP
_ b
or ﬁl(ll*:)ﬂ'n(h-l-ﬁ)
n - , b
or _ ) .hl -.__(n—:)x(h+7§)

From (2), and (a)

Similarly,

. n b
"2-,.”("’5:)

b ns b
by "2+n+sx(h_—27)

Area ABCED = ADOE + ACOE - AAOB

x-‘-OEde+lOEch—-%-ABx0P

2 2
Here, OE=0P+BE=-%+11
Dd = b, Ce = b,
AB =4 op=%
Arca-s—%{(;—s-rh)b;_w-—é-(%-thb, —%bx%}

2 ; %
{(-2-—; + Ir) & +by) —‘cg;}

(a)

(b)

@

(3)

)

3)

(6)



Example The width at the formation level of a certain cutting is 10 m and side

slope 1 :

1. The surface of the ground has a uniform slope of 1 in 6 in the

transverse direction. Find the cross-sectional area when the depth of cutting at the

ceptrr is 3 m.

Solutx'on Here, b =10m

n=0
From Eq. (3),
From Eq. (5),
From Eq. (6),

s=1
h=3m
b ns h
g S [ e
b 2+n-s[ +'2n)'
_10 6x1 10 )
"2+—_6—1x('3+_2x6)_9'6m'
ns b
bz=~2-+ s [h—'z—;
10 6x1 10 )
2+_6+1X(3—2x6)—685m
_1JfE e i
Ama—z{[zj+hjl[b,+b;}l 5

1 10
2 2w 1

+ 3] (9.6 + 6.85) -

}

107
2x1

—%— (8 % 16.45 — 50} = 40.8 m?



C. Three-level Section

When the transverse slope is not uniform:

Fig. 8.4

Arca ABCOD = ADOP + ACOP + ADAP + ABCP

1 1 1.5
=-2-xkxb, +ixhxb,+ixth2 +-il-x%xh,
; Ar _n. b :
i.c. ca_lf(b' +bz)+z(hl + hy) 9)
b
Here by =OP+Oe=h+ = (10)
i e
zg=OP-cf=h--;;- (11)
Deduction of formula for b, and b,
~(b12
bz =AP+AK=%+5’I1 or ”2=!b'2_'—“.g_'n (8) <
Also
by —
by=efxm=(h-h)n, or hzz"‘"_zbz )
From (a) and (b),
{by — (B/2)}  hny - by
) 5 fig
bn
or ? b:ﬂq—-'i"zr=hngf—b13
bafn; +85)=n .rﬁ«tr'EII =Ny 4 .FH--E—
4 2 O 25
= M L _
bz-ng-_i-:x(h*'l:) _ 10y

Similarly,

" RI’- b . a + [0 i
ey -.r[-"-‘-*ﬁ) (11)



Example The following notes refer to a three-level section:

Station Cross—scctiu;
1 +095 +150 +280
455 0 6.50
2 +L75  +200 +320
550 ] - B30

Find the sectional area at stations 1 and 2, asuming a formation width of & m.

Solution From Eq. (7), we know that

ma={%{b‘ -ll-b':}'i'%ﬂlﬁ +-h1_]}

Data for cross-section at station 1:

h =150m chb =8m
fp =290 m by = 650 m
=095 m By = 4.55m

Cross-sectional area at station 1:

50
Ay = {l:_ (650 + 4.55) + 2 (2.90 + _0.95}}.

=({0.75 x 1105+ 2 % 3.85) = 1599 m?

Data for cross-section it station 2:

h =200 m
hyp =320 m
h; =175 m

b =8m
b; =830 m
by =550 m

Cross-sectional arca at statiun-_i:
Ay {-Z—EE (8.30 + 5.50) + % (3.20 + 1,?5}}

= (L0O % 13.80 + 2 % 4.95) = 23.70 m?
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1-INTRODUCTION

During the 1970s, a new and unique approach to surveying, the global positioning
system (GPS), emerged. This system, which grew out of the space program, relies
upon signals transmitted from satellites for its operation. It has resulted from
research and development paid for by the military to produce a system for global
navigation and guidance. More recently other countries are developing their own
systems. Thus, the entire scope of satellite systems used in positioning is now
referred to as globa navigation satellite systems (GNSS). Receivers that use GPS
satellites and another system such as GLONASS. These systems provide precise
timing and positioning information anywhere on the Earth with high reliability and
low cost. The systems can be operated day or night, rain or shine, and do not
require cleared lines of sight between survey stations. This represents a
revolutionary departure from conventional surveying procedures, which rely on
observed angles and distances for determining point positions. Since these systems
al share similar features, the global positioning system will be discussed in further
detail herein.

2- OVERVIEW OF GPS

Precise distances from the satellites to the receivers are determined from timing
and signal information, enabling receiver positions to be computed. In satellite
surveying, the satellites become the reference or control stations, and the ranges
(distances) to these satellites are used to compute the positions of the receiver.
Conceptualy, this is equivalent to resection in traditional ground surveying work,
where distances and/or angles are observed from an unknown ground station to
control points of known position.

The global positioning system can be arbitrarily broken into three parts. (a) the
space segment, (b) the control segment, and (c) the user segment. The space
segment consists nominally of 24 satellites operating in six orbital planes spaced at
60° intervals around the equator. Four additiona satellites are held in reserve as
spares. The orbital planes are inclined to the equator at 55°.

This configuration provides 24-h satellite coverage between the latitudes of 80°N
and 80°S. The satellites travel in near-circular orbits that have a mean altitude of
20,200 km above the Earth and an orbital period of 12 sidereal hours.1 The
individual satellites are normally identified by their Pseudo Random Noise (PRN)



number, (described below), but can also be identified by their satellite vehicle
number (SVN) or orbital position.

Fhgura 13.2 ol & GPS saellie and (bl te GFS cormsellalicn

The control segment consists of monitoring stations which monitor the signals and
track the positions of the satellites over time. The initial GPS monitoring stations
are at Colorado Springs, and on the idands of Hawaii, Ascension, Diego Garcia,
and Kwajalein. The tracking information is relayed to the master control station in
the Consolidated Space Operations Center (CSOC) located at Schriever Air Force
base in Colorado Springs. The master control station uses this data to make precise,
near-future predictions of the satellite orbits, and their clock correction parameters.
This information is uploaded to the satellites, and in turn, transmitted by them as
part of their broadcast message to be used by receivers to predict satellite positions
and their clock biases (systematic errors).

The user segment in GPS consists of two categories of receivers that are classified
by their access to two services that the system provides. These services are referred
to as the Standard Position Service (SPS) and the Precise Positioning Service
(PPS). The SPSis provided on the L1 broadcast frequency and more recently the
L2 at no cost to the user. This service was initially intended to provide accuracies
of 100 m in horizontal positions, and 156 m in vertical positions at the 95% error
level. However, improvements in the system and the processing software have
substantialy reduced these error estimates. The PPS is broadcast on both the L1
and L2 frequencies, and is only available to receivers having valid cryptographic
keys, which are reserved aimost entirely for DoD use. This message provides a



published accuracy of 18 m in the horizontal, and 28 m in the vertical at the 95%
error level.

3-BASIC PRINCIPLE OF POSITION FIXING

Position fixing in three dimensions may involve the measurement of distance (or
range) to at least three satellites whose X, Y and Z position is known, in order to
define the user’s Xp, Yp and Zp position. In its simplest form, the satellite
transmits a signal on which the time of its departure (tp) from the satellite is
modulated. The receiver in turn notes the time of arrival (tn) of this time mark.
Then the time which it took the signal to go from satellite to receiver is

(ta —tp) =t called the delay time. The measured range R is obtained from
Rl = (tA - tD)C = Atc
where ¢ = the velocity of light.

Whilst the above describes the basic principle of range measurement, to achieve it
one would require the receiver to have a clock as accurate as the satellite’s and
perfectly synchronized with it. As this would render the receiver impossibly
expensive, a correlation procedure, using the pseudo-random binary codes (P or
C/A), usually ‘C/A’, is adopted. The signal from the satellite arrives at the receiver
and triggers the receiver to commence generating its own internal copy of the C/A
code. The receiver-generated code is cross-correlated with the satellite code
(Figure 9.10). The ground receiver is then able to determine the time delay (
t) since it generated the same portion of the code received from the satellite.
However, whilst this eliminates the problem of the need for an expensive receiver
clock, it does not eliminate the problem of exact synchronization of the two clocks.
Thus, the time difference between the two clocks, termed clock bias, results in an
incorrect assessment of t. The distances computed are therefore called ‘pseudo-
ranges’.

The use of four satellites rather than three, however, can eliminate the effect of
clock bias. A linein space is defined by its difference in coordinates in an X, Y
and Z system:



R=(AX? + AY? 4 AZ):
If the error in R, due to clock bias. is SR and is constant throughout. then:
Ry +16R = [(X) — XpP? + (Y1 = Yp)? + (Z) — 2]}
Ry +8R = [(Xy — Xo)? + (Vs = Yo + (Zy — Z,P)
R 48R = [(Xs — Xp? + (V3 — Yo + (Z3 — ZpY)?
Ry + R = [(Xs — Xp)? + (Ya — Yol + (Zs — ZpP1}

where Xj. Y. Z; = the coordinates of satellites 1. 2, 3and 4 (n =1 to 4)
Xp, Y. Z, = the coordinates required for point P
» = the measured ranges to the satellites
Solving the four equations for the four unknowns Xp. ¥, Zp and 3R also solves for the error due to clock
bias.

1 01 00011001 111000110

U | | [ ] 1 | Satellite signal

to

1 01 0001100111100

T

* = >|| 4

Reference signal

Fig. 9.10 Correlation of the pseudo-binary codes



REFERENCE COORDINATE SYSTEMS

In determining the positions of points on Earth from satellite observations, three
different reference coordinate systems are important. First of all, satellite positions
at the instant they are observed are specified in the “space-related” satellite
reference coordinate systems. These are three-dimensional rectangular systems
defined by the satellite orbits. Satellite positions are then transformed into a three-
dimensiona rectangular geocentric coordinate system, which is physically related
to the Earth. As a result of satellite positioning observations, the positions of new
points on Earth are determined in this coordinate system. Finally, the geocentric
coordinates are transformed into the more commonly used and locally oriented
geodetic coordinate system. The following subsections describe these three
coordinate systems.

The Geodetic Coordinate System

Although the positions of points in a satellite survey are computed in the
geocentric coordinate system, in that form they are inconvenient for use by
surveyors (geomatics engineers). This is the case for three reasons. (1) with their
origin at the Earth’s center, geocentric coordinates are typically extremely large
values, (2) with the X-Y plane in the plane of the equator, the axes are unrelated to
the conventional directions of north-south or east-west on the surface of the Earth,
and (3) geocentric coordinates give no indication about relative elevations between
points. For these reasons, the geocentric coordinates are converted to geodetic
coordinates of latitude ¢ longitude A and height (h) so that reported point positions
become more meaningful and convenient for users.

Figure 13.6 aso illustrates a quadrant of the reference ellipsoid, and shows both
the geocentric coordinate system (X,Y,Z), and the geodetic coordinate system (¢,
A, h). Conversions from geocentric to geodetic coordinates, and vice versa are
readily made. From the figure it can be shown that geocentric coordinates of point
P can be computed from its geodetic coordinates using the following equations:



Xp=(Ry, + hp)cos dpcos Ap
Yp = (Ry, + hp) cos ¢psin Ap
Zp =Ry, (1 — &) + hp|sin dp

(13.1)

Figure 13.6

The geodetic

and geocentric
coordinate systems.

where

ia
(13.2)

Ry

"NV - e sind dp

In Equations (13.1), X,, Y, and Z, are the geocentric coordinates of any point P,
and the term e, which appears in both Equations (13.1) and (13.2), is the
eccentricity of the WGS84 reference ellipsoid. Its value is 0.08181919084. In
Equation (13.2), Ryp is the radius in the prime vertical of the elipsoid at point P,
and a, as noted earlier, is the semimgjor axis of the ellipsoid. In Equations (13.1)
and (13.2), north latitudes are considered positive and south latitudes negative.



Similarly, east longitudes are considered positive and west longitudes negative.
Additionally, the programming for the conversion of geodetic coordinates to
geocentric coordinates and vice versais demonstrated.

B Example 13.1

The geodetic latitude, longitude. and height of a point A are 41°15'18.2106"N,
75°00'58.6127" W, and 312.391 m, respectively. Using WGS84 values, what are
the geocentrid coordinates of the point?

Solution

Substituting the appropriate values into Equations (13.1) and (13.2) yields

6,378,137
Ry = = 63874403113 m

A1 — 0.0066943799 sin’(41°15'18.2106")

X 4 = (6.387.440.3113 + 312.391) cos 41°15"18.2106" cos(—75°00"58.6127")
= 1.241.581.343 m

Y 4= (63874403113 + 312.391) cos 41°15'18.2106" sin(—75"00'58.6127")
= —4.638.917.074 m

Z 4 = [6,387.440.3113(1 — 0.00669437999) + 312.391)] sin(41°15'18.2106")

= 4,183.965.568 m




Conversion of geocentric coordinates of any point P to its geodetic values is
accomplished using the following steps (refer again to Figure 13.6).

Step 1: Compute Dp as
By =V X5+ ¥3 (13.3)

Step 2: Compute the longitude as®

Dp — X
Ap=2 tan“(M) (13.4)
Y}'l
Step 3: Calculate approximate latitude, ¢,°
Z
by = tan"[—‘”ﬂ} (13.5)
Dp(1 — %)

Step 4: Calculate the approximate radius of the prime vertical, Ry, using dy, from
step 3. and Equation (13.2).

Step 5: Calculate an improved value for the latitude from

Zp + € Ry, sin(dy)

b = tan‘l( (13.8)

Step 6: Repeat the computations of steps 4 and 5 until the change in ¢ between iter-

ations becomes negligible. This final value, ¢p. is the latitude of the station.

Step 7: Use the following formulas to compute the geodetic height of the sta-

tion. For latitudes less than 45°, use
Dp

P = cos(bp) Ry, (13.7a)
For latitudes greater than 45° use the formula
Zp
hp = — Ry(1 — ¢ 13.7b
P Lin[ <;bp}] Nl ) { }

10
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M Example 13.2

What are the geodetic coordinates of a point that has X, ¥, Z geocentric coordi-
nates of 1,241,581.343, —4,638,917.074, and 4,183,965.568, respectively? (Note:
Units are meters.)

Solution

To visualize the solution, refer to Figure 13.6. Since the X coordinate value is pos-
itive, the longitude of the point is between 0° and 90°. Also, since the Y coordi-
nate value is negative, the point is in the western hemisphere. Similarly since the
Z coordinate value is positive, the point is in the northern hemisphere.

Substituting the appropriate values into Equations (13.3) through (13.7) yields

Step 1:
D = V(1.241,581.343)7 + (—4.638.917.074)" = 4,802.194.8993
Step 2:
4,802,194.8993 — 1,241,581.343
- = = = —75°00'58.6127"
A = 2tan ( e ) 75°00'58.6127" (West)
Step 3:
= tan™" S DAAR, 0 ] = 41°15'18.2443"
o = a0 R00.194.8093(1 — 0.00669437999) | _ = 1
Step 4:
6,378,137
Ry = — 6387.4403148
V1 — 0.00669437999 sin’(41°15'18.2443")
Step 5:

o 1[4183.965.568 + ¢26,387.4403148 sin 41°15'18.2443"
g = tan 4.802.194.8993

= 41°15"18.2107"
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Step 6: Repeat steps 4 and 5 until the latitude converges. The values for the next
iteration are
Ky = 63874403113
iy = 41°15"18.2106"
Repeating with the above values results in the same value for latitude to
four decimal places, so the latitude of the station is 41°15'18.2106" N.

Step 7: Compute the geodetic height using Equation (13.7a) as
4 802,194 .8993

= _ 63874403113 = 312,391
' Cosdl’15'182106" ' :

The geodetic coordinates of the station are latitude = 41715'18.2106" N,
longitude = 75°00'58.6127" W, and height = 312.391 m. Note that this ex-
ample was the reverse computations of Example 13.1, and it reproduced
the starting geodetic coordinate values for that example.

It is important to note that geodetic heights obtained with satellite surveys are
measured with respect to the élipsoid. That is, the geodetic height of a point isthe
vertical distance between the ellipsoid and the point as illustrated in Figure 13.7.
As shown, these are not equivalent to elevations (also called orthometric heights)
given with respect to the geoid. To convert geodetic heights to elevations, the
geoid height (vertical distance between €ellipsoid and geoid) must be known. Then
elevations can be expressed as:

H=h-N (13.8)

where H is elevation above the geoid (orthometric height), h the geodetic height
(determined from satellite surveys), and N the geoidal height. Figure 13.7 shows
the correct relationship of the geoid and the WGS84 ellipsoid in the continental
United States. Here the ellipsoid is above the geoid, and geoid height (measured
from the ellipsoid) is negative. The geoid height at any point can be estimated with
mathematical models developed by combining gravimetric data with distributed
networks of points where geoidal height has been observed.
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Area by coordinates

Computation of area within a closed polygon is most frequently done by the coordinate method.
In this procedure, coordinates of each angle point in the figure must be known. They are
normally obtained by traversing, although any method that yields the coordinates of these points
IS appropriate.

The coordinate method is easily visualized; it reduces to one simple equation that applies to all
geometric configurations of closed polygons and is readily programmed for computer solution.

The procedure for computing areas by coordinates can be developed with reference to Figure as
shown:

Hp E

As shown in that figure, it is convenient (but not necessary) to adopt a reference coordinate
system with the X and Y axes passing through the most southerly and the most westerly traverse
stations, respectively.

Lines BB’, CC’, DD’ and EE' in the figure are constructed perpendicular to the Y axis. These
lines create a series of trapezoids and triangles (shown by different color shadings). The area
enclosed with traverse ABCDEA can be expressed in terms of the areas of these individual
trapezoids and triangles as:



e ABCNE A FEOY 4+ IR
AE'EA — OC°B°H AEHE' A 12.5
[he apes of each Ir.||l|.'-'-.1|||_ | -.-51-:|r|||'|'ir- ' E Y E eaii he L"\lii"il':"\-\.‘n.l 11 Tefims al
I-r'||2|||.*~ a%
i+ LM ;
AN g = B
In tewms o] conrdinale vahlies, Uis sanse ares B RQLF R I8
Xp+ Xp .
AP g —J'—..'— r"-iT.l. ¥nl

Each of the trapezoids and triangles of Equation (12.5) can be expressed by coordinates in a
similar manner. Substituting these coordinate expressions into Equation (12.5), multiplying by 2
to clear fractions, and rearranging

2(area) = +XaYp + XpYc + Xc¥p + Xp¥e + XYy
—Xg¥s — Xc¥pg — Xp¥e — Xg¥p — Xy¥p (12.6)

Equation (12.6) can be reduced to an easily remembered form by listing the X and Y coordinates
of each point in succession in two columns, as shown in Equation (12.7), with coordinates of the
starting point repeated at the end. The products noted by diagonal arrows are ascertained with
dashed arrows considered plus and solid ones minus. The algebraic summation of all productsis
computed and its absolute value divided by 2 to get the area.

Xa ¥
Xa 4_-....- Y
KXo &7 ..r.-rl“-‘ Yi 17
Xpa& ™Y, =

Xy By,
N, & ey

The procedure indicated in Equation (12.7) is applicable to calculating any size traverse. The
following formula, easily derived from Equation (12.6), is avariation that can also be used,

O !

darea = Al

+ Xpl¥e—Y5) = Xel¥p— Y.-l]'z (12.8)

XaYp —Yp)+ Xp(¥Y—Ye) + Xc(Yp — Yp)



It was noted earlier that for convenience, an axis system can be adopted in which for the most
westerly traverse point, and for the most southerly station. Magnitudes of coordinates and
products are thereby reduced, and the amount of work lessened, since four products will be zero.
However, selection of a special origin like that just described is of little consequence if the
problem has been programmed for computer solution. Then the coordinates obtained from
traverse adjustment can be used directly in the solution. However, a word of caution applies, if
coordinate values are extremely large as they would normally be; for example, if state plane
values are used. In those cases, to ensure sufficient precision and prevent serious round-off
errors, double precison should be used. Or, as an aternative, the decimal place in each
coordi 2nate can arbitrarily be moved n places to the left, the area calculated and then multiplied
by 10 “".

Example : Find the area as shown in the figure

T Far
coemarrian af orea & K=5FEha4t
by roordinaies Ll ]



Point

> m O N o b

0.00
517.44
523.41
716.29
125.72

0.00

——T
bardior dtnnce
nrd rovEeE crea
CEETHAET o |-:\.'
[ msthod

x|

Y[ ] Plus (XY)

591.78

202.94 0

0.00 0

494.02 343,257

847.71 607,206

591.78 74,398

= 1,044,861

499,684

545,177

2 area= 545177

Area= 272588 m?

Area by DOUBLE-MERIDIAN DISTANCE METHOD

The area within a closed figure can also be computed by the double-meridian distance (DMD)
method. This procedure requires balanced departures and latitudes of the tract’s boundary lines,
which are normally obtained in traverse computations. The DMD method is not as commonly
used as the coordinate method because it is not as convenient, but given the data from an
adjusted traverse, it will yield the same answer. The DMD method is useful for checking answers
obtained by the coordinate method when performing hand computations.

H e e e e ey

o

MmEs=—=

Minus (YX)

306,211
106,221

0

87,252

0

I = 499,684

By definition, the meridian distance of a traverse course is the perpendicular distance from the
midpoint of the course to the reference meridian. To ease the problem of signs, a reference
meridian usually is placed through the most westerly traverse station.



In Figure 12.6, the meridian distances of courses AR, BC, CD, DE, and EA
are MM', PP'. Q0Q'. RR'. and TT"', respectively. To express PP’ in terms of con-
venient distances, MF and BG are drawn perpendicular to PP'. Then

PP' = P'F + FG + GF

meridian distance of AB + %deparmre of AB + %deparlure of BC

Thus, the meridian distance for any course of a traverse equals the meridian distance of the
preceding course plus one half the departure of the preceding course plus half the departure of
the course itsdlf. It is simpler to employ full departures of courses. Therefore, DMDs equa to
twice the meridian distances that are used, and a single division by 2 is made at the end of the
computation.

Based on the considerations described, the following general rule can be applied in calculating
DMDs: The DMD for any traverse course is equal to the DMD of the preceding course, plus the
departure of the preceding course, plus the departure of the course itself. Signs of the departures
must be considered. When the reference meridian is taken through the most westerly station of a
closed traverse and calculations of the DMDs are started with a course through that station, the
DMD of thefirst courseisits departure. Applying these rules, for the traverse in Figure 12.6.

DMD of AB = departure of AB
DMD of BC = DMD of AB + departure of AB + departure of BC

A check on all computations is obtained if the DMD of the last course, after computing around
the traverse, is also equal to its departure but has the opposite sign. If there is a difference, the
departures were not correctly adjusted before starting, or a mistake was made in the
computations. With reference to Figure 12.6, the area enclosed by traverse ABCDEA may be
expressed in terms of trapezoid areas (shown by different color shadings) as:
area = E'EDD'E’' + C'CDD'C' — (AB'BA
+ BB'C'CB + AEE'A) (12.10)

The area of each figure equals the meridian distance of a course times its balanced latitude. For
example, the area of trapezoid C'CDD'C’' = Q'Q * C'D’, where Q'Q and C'D’ are the meridian
distance and latitude, respectively, of line CD. The DMD of a course multiplied by its latitude
equals double the area. Thus, the algebraic summation of all double areas gives twice the area
inside the entire traverse. Signs of the products of DM Ds and latitudes must be considered. If the
reference line is passed through the most westerly station, all DMDs are positive. The products
of DMDs and north latitudes are therefore plus and those of DMDs and south latitudes are
minus.



Example: Find the areafor the figure as shown below using DMD method

Solution

Figure 12.5
Traverse for
compuiotion ol orea
by coordinates,

] X w3573
E v_ag71
F XaT1629
" Y=o
¢ D
| ’ ,
\/ / |
| /
A’( /
X = 0.00 /
¥ =501 78 F 4
)
'
4’
e
¢
G
X =817 .84 8'
Y=200.04
]
|/
‘4
C Xc=S23ar o
Y« 000

Departure of AB - F817.dd44 — DD of AR
Daporure of A = +517 444
Departure of 8C - L5544
+ 1040852 = DD of BC
Departura of BC = +5.944
Depariure of CO = S 1F2ER]
+ 1230857 = DD of O
Departure of (0 — + 192.88)
Departure of DE - 550 571
-Bd2.007 = DD of DE
Departure of DE = 590571
Depeerure of £4 — =158

+125718 = DD of EA &



m-:-mmmnunmm

Balanced Balanced Double Areas [
Coursa Doparture__] Llotitude ] DMD[_] Plus Minus
AR 517 44 — 388 B4 £17.44 201,201
B 50 — 0% 85 1040 B5 200,240

(k] |53 B 59402 1239 A0 w40 174

DE — 580,57 1553.4% £42 81 139 4048
EA - 125 T2 L 12572 321748
Tetal 000 000 89 734 444 517

-444 17

b L T

2 area= 545177
Area= 272588 m*

Example for second method Tind the area of a closed traverse considering the
following data, by the latitude and DMD method.

Side Latitude Departure
AB ’ + 2255 + 120.5
BC - 245.0 + 210.0
CDh - 150.5 ’ - 110.5
DA + 170.0 - 220.0

Solution
Calculation of DMD

DMD of AB = + 120.5

DMD of BC = + 120.5 + 120.5 + 210.0 = 451.0
DMD of CD = + 451.0 + 210.0 - 110.5 = + 550.5
DMD of DA = + 550.5 - 110.5 - 220.0 = + 220.0



The result is tabulated as follows:

10

Side Latitude Departure WD Double area = (col. 2 = col. 4)
| 2 3 4 5 (+) (=) 6 .
AB + 225.5 + 120.5 + 120.5 2717275 —-
BC - 245.0 + 210.0 + 451.0 — 110,495.00
CD - 150.5 - 110.5 + 550.5 — 82,850.25
E DA + 170.0 = 220.0 + 220.0 37, 400.00 -
Total = + 64,572,975 | — 193,345.25
Algebraic sum = — 128,772.5

{(Negalive sign neglected)

Twice area = algebraic sum

Required area of traverse = 1 % 1287725

2
= 64,386.25 m*
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CURVES

In highways, railways, or canals the curve are provided for smooth or gradua
change in direction due the nature of terrain, cultural features, or other unavoidable
reasons. In highway practice, it is recommended to provide curves deliberately on
straight route to break the monotony in driving on long straight route to avoid
accidents.

The horizontal curve may be a simple circular curve or a compound curve. For a
smooth transition between straight and a curve, a transition or easement curve is
provided. The vertical curves are used to provide a smooth change in direction
taking place in the vertical plane due to change of grade.

Curve
1
| |
Horizontal Curve Vertical Curve
| : I T T ]
Simple Compound Revers: Transition  Lemniscate
Curve Curve Curve Curve Curve

102 TYPES OF HORIZONTAL CURVES

The following are the different types of horizontal curves:

1. Simple circular curve When a curve
consists of a single arc with a constant
radius connecting the two tangents, it is
said to be a circolar curve (Fig, 10.5),

2. Compound curve When a curve
consists of two or more arcs with
different radii, it is calied a compound
curve. Such a curve lies on the same
side of a common tangent and the
centres of the different arcs lie on the
same side of their respective tangents

(Fig. 10.6).




COMMON TANGENT

D

O,
Fig. 10.6

3. Reverse curve A reverse curve consists of two arc bending in opposite diredtions.
Their centres lie on opposite sides of the curve. T&cir radii may be cither equal
or different, and they have one commeon tangeat (Fig. 10.7).

O, c

Fig. 10.7

4. Transition curve A curve of variable radius is known as a transition curve. It
is also called a spiral curve or casement curve. In railways, such a curve is
provided on both sides of a circular curve to minimise supcrelevation. Excessive
superclevation may cause wear and tear of the rail section and discomfort to
passengers (Fig. 10.8).

Elements of CIRCULAR CURVES

A simple circular curve shown in Fig. 7.1, consists of simple arc of a circle of
radius R connecting two straights Al and IB at tangent points T1 called the point of
commencement (P.C.) and T2 called the point of tangency (P.T.), intersecting at I,
called the point of intersection (P.I.), having a deflection angle A or angle of
intersection ¢. The distance E of the midpoint of the curve from I is called the
external distance. The arc length from T1 to T2 is the length of curve, and the
chord T1T2 is called the long chord. The distance M between the midpoints of the
curve and the long chord, is called the mid-ordinate. The distance T1l which is



egual to the distance T2, is called the tangent length. The tangent Al is called the
back tangent and the tangent IB is the forward tangent.

»:
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Formulato calculate the various elements of acircular curve for usein design and
setting out, are as under.

A
Tangent length (Ty = Hian— 71
L h of ) s, {72
-\.-I..tr'l oL CliEve a) 120 R ] |
LA
Long chord (L) = 2Rsn— -{7.3)
Extzmal distance (E} = R[ S — — l] (T4
A
sMid=ordinate (&) = F[I — 08— ] ("5
Chadiage of Ty = Chaage of PL — T {T.6]

Chainage of T = Chamage of T, + 1 {77



Setting of circular curve
There are various methods for setting out circular curves. Some of them are:

1-Perpendicular Offsets from Tangent (Fig. 7.1) using the equation:

Offsets from tangents may be: i

L. Radial
2, Perpendicular
1. Radial Offsets :
(a) In Fig. 10.16, AB and BC arc two tangents intersecting at B, and that the
langent points are T; and T,

Fig. 10.16

Let us take a point D on the rear tangest AB such that
TQD =X

Let O, be the radial offset at D,
The point D is joined with the centre Q. So, OD s the radial Jine.
Now, from AT, OD
OT7 + T\D? = OD?
where OoT, =R
OD =R+ O,
T,D =x



(b)
(c)

(d)

K R+ 2=+ 0)
or R+O.-~JR!+.:§
O, = VR ¥ x* -

The calculated distance O, is cut off from the radial line OD to get the first

_point of the curve P,.

By increasing the value of x by a regular amount, a number of offscts are
obtained. These are set off along the respective radiat lines.

From the tangent point T, one half of the curve can be set out. In this
case, the left halfof the curve can be sct out ftocn Ty up to the apex point
F.

The other half of the curve can be sct out from the second tangent point
Ta. Let & poamD, beukcnuadxumcey from’l‘;.'rhc offset O, is then

calculated as Oy R? +y2 - R

'l'hc calculated dlslancc 0 is set off along the radial line OD| to get lhe point
P, on the curve. Thus bymcn:asmg the value of ¥, the required offscts are calculated
and sct off along their respective radial lines to get the points on the curve for the
right half,

2. By perpendicular offsels ;
(a) In Fig. 10.17, AB and BC are two tangentls meeling at a point B. The

)

tangent length is calculated and the tangent points T, and T, are marked
on the ground.

Fig. 10.17

A point D is taken along the rear tangent AB ata duuancc x from T;. Let
O, be the perpendicular offset at D. The line EP; is drawn pamllei to T.D

Here OE =R - O, OP, = R, EP,  =x
From QOEP,, OP? = EP? + OE? '
or RP=2+ (R -0)*

or R—0, =~R* —x

or O, =R -~R* —x

{c) This calculated distance O, is set out along the perpendicular drawn at D

to get the point P, on the curve.
Similarly, by progressively increasing the value of x by a regular amount,

a series of offsets are obtained. These are set out along the perpendicular

drawn through the respective points.
Thns the left half of the curve is set out from T, up to the apex F.
(d) The 6ther half of the curve is set out from T, by calculating the offset by

the relation
O, =R~ [RT =2 :
The calculated distance O, is sct out along'thé perpendicular drawn at D, to

get the point P, bn the curve. This process is continued until the apex F is reached.



2-Offsetsfrom Long Chord usingthe equation:

Lzt AB and BC be two tnngents meeting at a point B, with & deflection angie &
The following daz are calculated for setting out the curve (Fig, 10L11).

1. The tangent length iz calculaied according (o the formula; TL = R tan 72
2. Tangent points T and T; are marked.
3. The length of the curve k& calculated according o the formula:

4.
S

6.

c 7.

R Rg*

CL = S50¢

Fig. 10.11

The chainages of T; and T3 are found out.
The lengith of the long chord (L)Y is calculated from:
L = 2R sin §2

1he long chord is divided into two cqual halves the left half and the right
half}. Here the curve is symunetrical in both the halves. .
The mid-ordinate Og is calculated as follows: g

() Op = DE = versed sinc of curve = R (I — cos ¢/2) 1)
(b) Again OF = R and QD =R ~- Og

From triangle OT;D, OT? = 0D? + T,D?
L2
or R? =(R—0g) + (—f)

or R~ Oy =~JR? —(LI2)?

or Oy =R — JRT —(Li2)? v (@3]

Thus, the mid-ordinate Oy can be calculated from Eq. (1) or (2).

Considering the left half of the long chord, the ordinates O, ©,, ... are

calculated at distances X;, X3, ... taken from D towards the tangent point T),.
The formula for the calculation of ordinates is deduced as follows.
Lct P be a point at a distance x from D. Thea PP; (O,) is the required

ordinate. A linc PP, is drawn paraliel to T;T,. From triangle OP,P,,

OP? = OP? + P, P}

or R = [(R—Og) + O} = x* [where, OP; = (R ~ Og) + O.)
or R— 0Oy + O =~JRT =3
or O, = VR —x% — (R — Op) ' 3)

The ordinates for the right half are similar to these obtained for the left

half.



- Example Two tangents AB and BC intersect at a point & a1 chainage 150.5 m.
‘Calculate all the necessary data for setting out a cironlar curve of radivs 100 m
and deflection angle 30° by the method of offsets fmm the long chord.

O

Fig.E10.1
Solution. ' ;
1. Tangent length -: R tan -g-
=100 x tan 15° = 26,79 m
2, Chainage of Ty = 150.50 — 26.79 = 123.71 m

3. Curve length = % = W = 5236 m

4. Chainage of Ty = 123.71 + 5236 = 176.07 m

5. Length of long chord (L) = 2R sin &2
=2 x 100 x sin 15° = 51.76 m

6. The long chord is divided into two equal halves.
Each half = 1/2 % 51.76 = 25.88 m

7. Mid-ordinate, Op = R — \[R? — (.;;)

- =100 - 1007 — 25887 =341 m

8. The ordinates are calculated at § m intervals starting from the centre towards
T, for the left half.

Oy mR? —x2 (R-Op)
= /(1007 = 5%) - {100 - 341)

= 9987 - 9659 =328 m

O =+/(100% - 10?) — 9659
= 9950 ~ 9659 = 291.m

Fon w0 = 1AF) — YB3

Gt 59 = 228
N e T
T oy T R

iy oo M- 289) - k)
= "'ﬁ”? iy _ﬂuE' =5 f'l_p
i =4 07 - Z5ABFY 1S 0 (eheched,

9. The ordinates T e vight habl o il oo thuse for the Jelt hald
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AVERAGE-END-AREA FORMULA

Figure 26.3 illustrates the concept of computing volumes by the average-end area method. In the
figure A; and A,, and are end areas at two stations separated by a horizontal distance L. The
volume between the two stations is equal to the average of the end areas multiplied by the
horizontal distance L between them.

” 'IA
£ \ Volume by overese
/ 3 \ ‘
S — e - end-area-method

Thus:

A+ A4,
= L
5 *

In Equation (26.1), A;and A, arein m® L isin m, and V¢ is in m®. Equations (26.1) is
approximate and give answers that generally are slightly larger than the true prismoidal volumes.
They are used in practice because of their simplicity, and contractors are satisfied because pay
guantities are generaly dlightly greater than true values. Increased accuracy is obtained by
decreasing the distance L between sections. When the ground is irregular, cross sections must be
taken closer together.

v (26.1)

Example: Compute the volume of excavation between station 24+00 with an end area of 711 m?
and 25+00 station with an end area of 515 m?.

Solution
Ves (A2 4

711+515
2

Ve= ( )100=61300 m®

End Areas by Coordinates

The coordinate method for computing end areas can be used for any type of section, and has
many engineering applications. The procedure was described to determine the area contained
within a closed polygon traverse.

For example



Station H L C n K R G
34 + 00 0 123 C1b8 Cl18o (1ol €122 0
15 338 20 0 12 333 15
! L L= ]
LEronnd profda X
- .
—— Ag
b 00— . |- I B
e
s ol =g Ay, e
| H""-l. = i —:-._, - — 1% j_
= I 15 1 = ]G
o o : a9.8 2 o e e !
F.I.:_":.II.;IJ :
b L
12.5 15.8 18 10.1 12.2 0 0
15 33.8 20 0 —-12 —-33.3 -15 15

Answer =710 m?

PRISMOIDAL FORMULA

The prismoidal formula applies to volumes of all geometric solids that can be considered
prismoids. A prismoid, illustrated in Figure 26.6, is a solid having ends that are parallel but not
similar and trapezoidal sides that are also not congruent. Most earthwork solids obtained from

cross-section data fit this classification.

* /'Station 64 + 00

Figure 26.6
Sections for which
the prismoidal
correction is added

to the end-area
volume.

~ Station 63 + 00

However, from a practical standpoint, the differences in volumes computed by the average-end-
area method and the prismoidal formula are usually so small as to be negligible. Where extreme
accuracy is needed, such as in expensive rock cuts, the prismoidal method can be used. One

arrangement of the prismoidal formulais:



Where Vp is the prismoidal volume in cubic meter, A; and A, are areas of successive Cross
sections taken in the field, An is the area of a “computed” section midway between A; and Ay,
and L isthe horizontal distance between A; and As.

To use the prismoidal formula, it is necessary to know area A, of the section halfway between
the stations of A; and A,. Thisis found by the usual computation after averaging the heights and
widths of the two end sections. Obviously, the middie area is not the average of the end areas,
since there would then be no difference between the results of the end-area formula and the
prismoidal formula.

The prismoidal formula generaly gives a volume smaller than that found by the average-end-
areaformula. For example, the volume of a pyramid by the prismoidal formulais Ah/3 (the exact
value), whereas by the average-end-area method it is Ah/2. An exception occurs when the center
height is great but the width narrow at one station, and the center height small but the width large
at the adjacent station.

Example: Compute the volume using the prismoidal formula and by average end areas for the
following three-level sections of aroadbed having a base of 24 m and side slopes of 1.5/1.

Solution
Station L C R Area
1+ 00 g’: C;.J g;’{;t 5.3{23.?’2+ 23.0) i 2-'1[?.3: 7.4) L
T glhgj CE‘,{} (;; 6_{}[21.82+ 23.2) & 2-'1[6.5: T.5) o
A gj: CE,& ;‘;’;‘J 6.5[24.32+ 23.5) ) 2:1[5.34+ 7.0) _ 2362
100(215.0 + 4(219.0) + 236.2)
p = G = 22120 m3

1. =100 (215.0+236.2)
¢ 2

= 22560 m?




Volume computations

Volume calculations for route construction projects are usually done and arranged in tabular
form. To illustrate this procedure, assume that end areas listed in columns (2) and (3) of Table
26.3 apply to the section of roadway illustrated in Figure 26.1. By using Equation (26.1), cut and
fill volumes are computed and tabulated in columns (4) and (5).

-13 + 00
Cut slope
intercept
-12 + 00
11 + 64
11 + 40
11+ 21
-11 + 00
gl ; - Fill slope
,-f' 97t 4 intercept
it Figure 26.1
Section of
el : B noodway illustrating
G excavation {cut) and
Centerline stake embankment (fill).

The volume computations illustrated in Table 26.3 include the transition sections of Figure 26.1.
This is normaly not done when preliminary earthwork volumes are being estimated (during
design and prior to construction) because the exact locations of the transition sections and their
configurations are usually unknown until slope staking occurs. Thus, for calculating preliminary
earthwork quantities, an end area of zero would be used at the station of the centerline grade
point (station 11+40 of Figure 26.1), and transition sections (stations 11+21and 11+64 of Figure
26.1) would not appear in the computations. After slope staking the locations and end areas of



transition sections are known, and they should be included in final volume computations,
especialy if they significantly affect the quantities for which payment is made.

Table 26.3
Stations AreaCut(m?) AreaFill(m®) Volume Volume
Cut(m?) Fill (m®)
10+00 992
70650
11+00 421
5134.5
11+21 0 68
215.3 940.5
11+40 34 31
2136 248
11+64 144 0
14940
12+00 686
80200
13+00 918

Problem 1 + An embankment of width 10 m and side slopes 1 Y5 : 1 is required
o be made on a ground which is level in a direction transverse to the centre line.
The central heights at 40 m intervals are as follows:

0.90, 1.25, 2.15, 2.50, 1.85, 1.35, and 0.85

Calculate the volume of earth work according to (i) the trapezoidal formula,
and (ii} the prismoidal formula.

Solution The cross-sectional areas are calculated by Eq. (1):
Area, A=L+Sh)y=xh

Ay = (10 + 1.5 x 0.90) x 0.90 = 10.22 m?
Ay = (10 + 1.5 % 1.25) x 1.25 = 14.84 m?
Ay = (10 + 1.5 % 2.15) x 2.15 = 28.43 m?
Aq = (10 + 1.5 x 2.50) x 2.50 = 34.38 m?
As = (10 + 1.5 % 1.85) x 1.85 = 23.63 m?
Ag = (10 + 1.5 x 1.35) x 1.35 = 16.23 m?
Ay = (10 + 1.5 x 0.85) x 0.85 = 9.58 m?

(a) YVolume according to trapezoidal formula:

V= %Q- {1022 + 9.58 + 2 (1484 + 2843 + 3438 + 23863 + 1623)}

= 20 {1980 + 23502} = 50964 m? 5
(b) Volume calculated in prismoidal formula: '

V= -‘-‘32 {10.22 + 958 + 4 (14.84 + 3438 + 16.23) + 2 (28.43 + 23.63)}

= 13'2 (19.80 + 261.80 + 104.12) = 5,142.9 m?



VOLUME USING SPOT HEIGHT METHOD

This method is generally used for calculating the volumes of excavations for basements or tanks,
i.e. any volume where the sides and base are planes, whilst the surface is broken naturaly
(Figure 11.22(a)). Figure 11.22(b) shows the limits of the excavation with surface levels in
metres at A, B, C and D. The sides are vertical to a formation level of 20 m. If the area ABCD
was a plane, then the volume of excavation would be:

V = plan area ABCD x mean height

- - —— - A M dl airfien

Fomnaiiom lesesd 70 00 m

A-n---l:r-l-.-llb-‘ B
0 EE
- ot i a
frr ERE '.'i'E.'f"' -
b f IR N =8, 08
st _
250
)
30,00 G

{h)

Fi. 11.22 I3l Section. and 0] oian

However, as the illustration shows, the surface is very broken and so must be covered with agrid
such that the area within each 10-m grid square is approximately a plane. It is therefore the
ruggedness of the ground that controls the grid size. If, for instance, the surface Aaed was not a
plane, it could be split into two triangles by a diagona (Ae) if this would produce better surface
planes. Considering square Aaed only:

V = plan area x mean height

1
V=100>l<Z(12+11+8+11):1050m3

If the grid squares are all equal in area, then the data is easily tabulated and worked as follows:
Considering AEFG only, instead of taking each grid square separately, one can treat it asa
whole.

100
V:T(hA+hE+hF+hG)+2(ha+hb+hC+h’d)+4h'e



If one took each grid separately it would be seen that the heights of AEFG occur only once,
whilst the heights of abcd occur twice and he occurs four times; one still divides by four to get
the mean

VOLUME USING CONTOUR AREA METHOD

Volumes based on contours can be obtained from contour maps by using a planimeter to
determine the area enclosed by each contour. Alternatively, CAD software can be used to
determine these areas. Then the average area of the adjacent contours is obtained using Equation
(26.1) and the volume obtained by multiplying by the contour spacing (i.e., contour interval).
Use of the prismoidal formula is seldom, if ever, justified in this type of computation. This
procedure is the basis for volume computations in CAD software.

The contour-area method is suitable for determining volumes over large areas, for example,
computing the amounts and locations of cut and fill in the grading for a proposed airport runway
to be constructed at a given elevation. Another useful application of the contour-area method is
in determining the volume of water that will be impounded in the reservoir created by a proposed
dam.

Figure 26.8
Determining the
volume of water
impounded in a
reservoir by the
confour-area

method.
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Example 2

A reservoir isto be formed in ariver valley by building a dam across it. The entire area that will
be covered by the reservoir has been contoured and contours drawn at 1.5-m intervals. The
lowest point in the reservoir is at a reduced level of 249 m above datum, whilst the top water
level will not be above a reduced level of 264.5 m. The area enclosed by each contour and the
upstream face of the dam is shown in the table below.

Contour (m) Area enclosed (m°)
250.0 1874
251.5 6 355
253.0 11 070
254.5 14 152
256.0 19 310
257.5 22 605
259.0 24781
260.5 26 349
262.0 29 830
263.5 33728
265.0 37 800

Estimate by the use of the trapezoidal rule the capacity of the reservoir when full. What will be
the reduced level of the water surfaceif, in atime of drought, this volume is reduced by 25%7?

SOLUTION

1
Vi =3 (1874 (1) = 624.6 m®

9 =

(1874 + 6355
2

6355411070
V3:( 2

)(1.5) =6171.75m3

)(1.5) = 13068.75 m?

11070+14152

v, = (f) (1.5) = 18916.5 m?

Vs =

(14152 + 19310

- )(1.5) = 25096.5 m?
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6 =

(19310 + 22605

> )(1.5) = 31436.25m3

(33728 + 37800
11 =

. )(0.5) = 17882m3

V total =X v;

Problem 4 The areas enclosed by the contours in a lake are as follows:

Contour (m) 270 275 280 285 290
Area (m?) 2,050 8,400 - 16,300 24,600 31,500

Calculate the volume of water between the contours 270 m and 290 m by:
(i) the trapczoidal formula, and (ii) the prismoidal formula.

Solution (a) Volume according to trapezoidal formula
= 2 {2,050 + 31,500 + 2 (8, 400 + 16,300 + 24, 600))
= 330,375 m?

(b) Volume by prismoidal formula:
= 2 (2,050 + 31, 500 + 4 (8, 400 + 24, 600) + 2 (16, 300))
= 330, 250 m?
Problem 5 An excav-tion is to be made for a reservoir 40 m long and 30 m wide

at the bottom. The side slope of the excavation has 1o be 2 : 1. Calculate the
volume of earth work if the depth of excavation is 5 m. Assume level ground at

the site.
_ Solution i A,
Ty
bl |
— ;
BOm] | O e !
R |
60m
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245 Sunveying and Levaling

Bottom section. L=40 m B=30m
Area A, = 40 x 30 = 1,200 m*
Mid-zecticon. L=b+2sh=40+2=22=x25=50m

B=0+2x2x25=40m
Arca A; = 50 % 40 = 2,000 m*

Taop rection: L=40+ 2 x5=560m
F=3x2x2x=x5=5m
Ar:_aA3,=ﬁﬂx5{3=3,LH}Dm

Volume according to prismoidal formula = -2?5- (1,200 4 3,000 + 4 (2,000)}
= 10,166.66 m’

H.W

Problem 6 The formation width of a certain cutting is 8 m and the side slope
is 1: 1. The surface of the ground has a uniform slope of 1 in 10. If the depths
of cutting at the centres of three sections 40 m apart are 2, 3 and 4 m respectively,
find the volume of earth work.

data: :

Formation width = 10 m
Side lope = 1 : 1

Problem 7  Calculate the volume of the earth work ‘fo;' a road having the following |

Chainage (m) Depth of cutting ﬁanévcrsc slope
go 1.00 1in 10
2.00 - 1in5

1.00 1.50 1in 8



Problem 8 Data for the three-level section of a road are as follows:

13

; \
Station Left Centre Fight
. + 3.95 ¥ l.m + E'j'jd
1 L 0 750
y +13s + 158 + 280
375 0 S0

The width of cutting at formation level is ¥ m, and the side slope is 1: 1. The |
stations are 50 m apart. Calculate the volume of culting.

P.:‘afrfem I8  The following notes are given for a multilevel section of a road
of formation width 6 m and side slope 1 : 1. The stations are taken at 50 m

intervals.
Station Leit Centre Right
1 +220  +175 + 150, +475  +640
550 3.00 [ ~525 730
2 + 310 + 220 + 2.00 + 525 + 740
525 300 0 600  BSD

Calculate the volume of earth work.
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Example 2. The straight lines ABI and CDI are tangents to a proposed circular
curve of radius 1600 m. The lengths AB and CD are each 1200 m. The
intersection point is inaccessible so that it is not possible directly to measure the
deflection angle; but the angles at B and D are measured as.

ABD =123"48, BD C=126 12’, andthelength BD is 1485 m.

Calculate the distances from A and C of the tangent points on their respective
straights and cal culate the deflection angles for setting out 30-m chords from one
of the tangent points.
Referring to Figure 10.19:
Ay =180° —123°48' = 56° 12/, A, = 180° — 126° 12’ = 53° 48’
A=A+ A =110
¢ =180°—A =T

Tangent lengths IT) and IT> = Rtan A/2 = 1600 tan 55° = 2285 m

Fig. 10.19 Inaccessible intersection point



By sine rule in triangle BID:
_ BDsinA;  1484sin 53748

-_— 2 J}
Bi P 70 12752 m
BDsin Ay 1485 sin 536° 15’
— = v | . 1
i sin g sin 709 351

Thus: Al =AB 4Bl =12004 12752 =24752 m
Cl=CD4+ID=12004+ 1314 =2514m
AT =A—ITy =24752 — 2285 = 1902 m
CTh,=CI—IT; =2514 —2285=220m
Deflection angle for 30-m chord = 28.6470  30/1600 = 0.537148°
=0°32"14"

Example 10.3 A circular curve of 800 m radius has been set out connecting two straights with a deflection
angle of 42°. It is decided. for construction reasons, that the mid-point of the curve must be moved 4 m
towards the centre, i.e. away from the intersection point. The alignment of the straights is to remain

unaltered.
Calculate:

(1) The radius of the new curve.

(2) The distances from the intersection point to the new tangent points.

(3) The deflection angles required for setting out 30-m chords of the new curve.

{4) The length of the final sub-chord. (L)

Referring to Figure 10.20:
IA = Ri(sec A/2 — 1) = 800(sec 21" — 1) = 56.92 m

S AB=IA4+4m==60.92m

(1) Thus, 60.92 = R2(sec 217 — 1), from which RB; = 856 m
(2) Tangent length = IT) = Rytan A/2 =856tan 21" = 3286 m



Fig. 10.20 A realigned road

(3) Deflection angle for 30-m chord = 28.6479 - /R = 28.6479 . 8£ = 1700 14"

856 x 427 = 3600
(4) Curve length= RA rad = 306765 =627.5m

.". Length of final sub-chord = 27.5 m

10.11  VERTICAL CURVES

1. Definition When two different gradients meet at a point along a road surface,
they form a sharp point at the apex. Unless this apex point is roupded off to form
a smooth curve, no vehicle can move along that portion of the road. So, for the
smooth and safe running of vehicles, the mecting point of the gradients is rounded
off 1o form a smooth curve in a vertical plane. This curve is known as a vertical
curve,

Cenerally, the parabolic curves are preferred as it is casy to work out the mini-
mum sight distance in their case, and the minimum sight distance is an important
factor to be considered while calculating the length of the vertical curve,



2. Gradient 'The gradicnt is expressed in (wo ways:

(3) As a percentage, ¢.g. 1%, 1.5%, ctc.

(b) As 1 in s, where # is the horizoaial distance and 1 represents vertical distance,
¢g. 1 in 100, I in 200, etc, .

Again, the gradient may be ‘rise’ or ‘fall’. An up gradicat is known as ‘rise’
and is denoted by a positive sign. A down gradient is keown as ‘fall’ and is
indicated by a negatve sign,

3. Rate of change of grade The characteristic of & parabolic curve is that the
gradient changes from point 10 point but the rate of change of grade remains
constant. Hence, for finding the length of the vertical curve, the rate of change of
grade should be an important consideration as this factor remains constant throughout
the length of the vertical curve. '

Generally, the recommended rate of change of grade is 0.1% per 30 m at
summits and 0.05% per 30 m at sags.

4. Length of vertical curve The length of the vertical curve is calculated by
considering the sight distance. To provide minimum sight distance, a certain
permimmuhofchmndmummmuwmmofmevenkd
curve s calculated as follows:
change of grade
Length of vertical curve = vate of change of grade
algebraic difference of grades g, — g3
o T rate of change of grade = 7

where, 2, and g; = percentage of grade and  r = yate of change of grade

Example Find the length of vertical curve connecting two grades + 0.5% and
— 0.4% where rate of change of grade is 0.1%. 1
Solution Length of vertical curve = &%ﬁ

_ (05 + 04) = 30 x 10
= 1

=09 x 30 = 10=270m

5, Types of vertical curves The following are the different types of vertical curves
that may occur. ' '
{a) Summit Curve  Figure 10.36{a) shows
a summit curve where an up gradient is
followed by a down gradient.

Figure 10.36(b) shows a summit durve
where a down gradient is followed by
another down gradient.

(b) Sag Curve Figure 10.36{c) shows a
sag curve where a down gradient is :
followed by an up gradient. Fig. 10.36(a)




Thus, . h-i&t;ﬂl_lxxz

400x1 !
h=£%.%lxx§_ and 5o on

where, xy, x; ... =distances taken along the slope measured from tangent point
e I = half-length of vertical curve
£: and g = percentages of grade

Figure 10.36(d) shows a sag curve of
where an up gradient is followed by O 9 2
another up gradient.

&Selﬁngoufvelﬁcﬂcurve The vertical 777777 77T YT T T T T Ty
curve may be set out by the following
. two methods: Fig. 10.36(b)

(a) The tangent correction method
(b) The chord gradient method
The tangent correction method is pre-
ferred in practical situations, as it ,‘!),o/o
involves simple calculations and curve
setting. - - Fig. 2 0.36(c)

(a) Tangent Correction Method In Fig.
10.37, the tangent correction or tangent
offsct is the difference of elevation |
¢ between points P and P}, P being a point
on the curve, P a point on the gradient.

Then

)'=RL.=P| -RLoanlangcnl
correction

ola

02

Olo

*9, % +On

Fig. 10.36(d)

Let x be the horizontal distance of
point P from the origin. x; is the sloping
distance along the gradient of the point
P,. Here, x is.taken to be approximately
equal to x;. ;

The equation of the curve is S P A 2

y= sz ’9\ T' éo

_ &~ 8
where, C = constant = 400 % 1

O A
3
>

! = half-length of vertical curve .
Tangent correction at any point, Fig.10.37
(81 — 82).% x{

Y= a0 %1 )



f

7. Points to be remembered while calculating data required for sefting out vertical
curve

(a) The length of the vertical curve is assumed equal o the length of (wo

tangents.

That is, BT[ + BT’I = T[Bl + Bsz
=2 (I = half length of vertical curve)
B (APEX)

Fig. 10.38

{b) The curve is assumed to be equally long on either side of the apex point.
That is, T;B; = Bng = 50, BT, == BT, = {

(c) The length of the vertical curve is given by the formula:

L= 5‘—:—-& r being the rate of change of grade.
(d) Chainage of T, = chainage of B - BT,
(e) Chainage of T, = chainage of B + BT,

g L1
() RLof T, = RLofB*x1Ix 100

= B2
(8) RLof T, = RLof B +1!x {7

(h) RLofB, =L (RLofT, + RL of T;)

(i) RLofB, = -;Z—(RLofB + RL of B3)

(j) Tangent correction at distance x,

21— &2

Y = 4001 <X

(k) The tangent correction is deducted from the RL of a point on the grade w
get the corresponding point on the curve,

{1} A setting out table is prepared.

{m)} Since the curve is symmetrical, tangent corrections are calculated for one
side of the point of intersection. The tangent corrections for the other side
will be exactly the same,

 Example Calculate the RL of the various station pegs on a vertical curve connecting

two grades of + 0.6% and — 0.6%. The chainage and the RL of intersection point
are 550 and 325.50 m respectively. The rate of change of grade is 0.1% per 30 m.



{ being half the curve length.
Tangent correction at point 1,

S RTCO L R
Tangent correction at point 2, ¥2 =-%§ = 0.060 m
Tangent -':crr.rectic:-n at point 3, ¥y = %}%’% =0.135m
Tangent correction -at point 4, Yy = %—i%-gﬂl; = 0,240 m

6
229 45
T T
Fig. €. 10.5
Solution
{a) Length of vertical curve,
L;i_@‘_(a@.x:;o_-_%x:m:mom

25T %
length of curve on either side of apex is taken as 180 m.

(b) Chainage of T, = 550 — 180 = 370 m &

(c) Chainage of T; = 550 + 180 = 730 m

(d) RLofT, = 32550 - Q:QT’S_E@Q =32442m

(¢) RLof T, = 32550 — %&l = 32442 m

() RLofB, = % (32442 + 324.42) = 32442 m

(8) RLofB, = % (325.50 + 324.42) = 324.96 m (vertex)
(h) Tangent comrection at the centre = 325.50 — 32496 = 0.54 m

(i) Tangent corrections are found out at 30 m interval. from the relation:

i B 2
Y=00x! <*



{ being half the curve length.

Tangent correction at point 1,

S0 o X

Tangent correction at point 2, ¥2 =-!£U_x—fi—%§ = 0060 m
Tangent correction at point 3, Yy = %ﬁ%‘;}—; =0.135m
Tangent correction at point 4, g = %ﬁ% = 0.240 m

_Llix (150)?

=0540m (checked) "

Tangent correction at point 5, vy T = 0375 m
i
Check: Tangent correction at point 6, = %ﬁ%
{j3 Reduced levels on grade:
. _06x30 _
Rise per 30 m =00 =018 m

RL of point 1 = RL of T; #+ 0.18 m

= 32442 + 0.18 = 324.60 m

RL of poimt 2 = 324.60 + 0,18 = 324.78 m
RL of point 3 = 32478 + 0.18 = 324.96 m
RL of point 4 = 324.96 +'0.18 = 325.14 m
RL of point § = 325.14 + 0,18 = 32532 m
RL of point 6 = 325.32 -4‘- (.18 =325.50 m

(k) Reduged level on the curve:

RL of point 1 = 324.60 — 0.015 = 324.585

BRL of point 2 = 324.78 — 0.060 = 324.720

RL of point 3 = 324,96 — (1,135 = 324.825

RL of point 4 = 325.14 = 0.240 = 324.900

RL of point 5 = 325.32 — 0,375 = 324.945

RL of point & = 325.50 — (.540 = 324.960
=]

Setung out table
Setting out table

(RL of B) (checked)

(RL of B;) (checked)

. Point | Chainage | Grade RL | Tangent correction | Curve RL} Remark
| 3 (=ve)
T 370° 324.42 0 324.42 | Starting of curve
| 400 324.60 0.015 324585 | .
2 430 32478 0.060 324.720
3 460 324.96 0.135 324.825
4 490 325.14 0.240 .+ 324.900
5 520 325.32 0.375 924.945.
6 550 325.50 0.540 324960 | Vertex of cuive
5 580 32532 0.375 324.945
4 610 325.14 0.240 324,900
3 640 324.96 0.135 324.825
2 670 324.76 0.060 324.720
L 5 700 324.60 0.015 324,585
T, 730 324.42 ¢ 324.42 | Finishing point
of curve
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3- Rankin’s Method or Deflection Angle Method
Tangential angle &, = 1718.9= minutes

Deflectionangles A,=A,_; +6_n
Example

The centre-line of two straights is projected forward to meet at |, the deflection
angle being 30-. If the straights are to be connected by a circular curve of radius
200 m, tabulate all the setting-out data, assuming 20-m chords on a through
chainage basis, the chainage of | being 2259.59 m.

Solution

A
Tangent length T = RtanT

=200 tan 15= 53.59 m

Chainge of T1 = 2259.59 — 53.59 = 2206 m
~. 1st sub-chord = 14m

Length of circular arc = RA =200(30° - 7/180) m = 104.72 m
From which the number of chords may now be deduced i.e.,
1st sub-chord =14 m
2nd, 3rd, 4th, 5th chords = 20 m each
Final sub-chord =10.72 m
Total = 104.72 m (Check)
. Chainage of T2 = 2206 m + 104.72 m = 2310.72m
Deflection angles:
0,=1718.9 (14/200) minutes=2° 00’ 19"
Standard chord = 1718.9 (20/200) minutes= 2° 51’ 53"
Final sub-chord=1718.9 (10.72/200) minutes= 1° 32' 08"



Check: The sum of the deflection angles =
A/2 =140 59" 59" = 150

Chord number Chord length Chainage Deflection angle  Setting-out angle Remarks

(m) (m) ! " “ ! "
1 14 222000 2 1] 19 2 00 19 peg |
2 20 224000 2 51 53 4 52 12 peg 2
3 20 226000 2 31 53 T 44 05 peg 3
4 20 228000 2 31 53 10 35 38 peg 4
5 20 230000 2 51 53 13 27 51 peg 5
i) 10,72 231072 1 32 08 14 59 39 peg 6

The error of 1" is, in this case, due to the rounding-off of the angles to the nearest
second and is negligible.

Exampfe Two tangents intersect at chainage 1,250 m. The angle of intersection

i5 150°. Calculate all data necessary for setting out a curve of radius 250 m by
the deflection angle method, The peg intérvals may be taken as 20 m. Prepare a

seiting out table when the least count of the vernier is 207, Calculate the data for
feld checking.



Solutionn Given data:

As L N

e

11.

152

Radius = 250 m

Deflection angle ¢ = 1B0® — 150° = 30°
Chainage of intersection point = 1,250 m
Peg interval = 20 m

LC of vernier = 207

R tan &2
250 x tan 15° = 67.0m

TRY®  mx 250 % 30° _
180° - 180° = 130.89 m

Chainage of first TP, T, = 1,2500 - 67.0 = 1,183.0m
Chainage of second TP, To = 1,183.0 + 130.89 = 1,313.89 m
Length of initial sub-chord = 1,190.0 — 1,183.0 = 7.0 m
No. of full chords (20 m) = 6

Chainage covered = 1,190.0 + (6 x 20) = 1,310.00 m
Length of final sub-chord = 1,313.89 ~ 1,310.00 = 3.89 m
Deflection angie for initial sub-chord,

S = 1,7189 x 7.0
3= 250
Deflection angle for full chord,

5 1,7189 x 20
S L T1

Deflection angle for final sub-chord,

17189 x 369
250

Tangent length

Curve length =

mins = 0°48°8"

mins = 2°17’31"

S,= = 0°26°45"

Arithmetical check:
Total deflection angle (4,) = & + 6 X 8 + &,

@72 =§g-'i=15°

Here,
A, = 0°48’8" + 6 x 2°17'31" + 0°26'45" = 14°59'59"
= 15° (approximately)

So, the calculated deflection angles are correct.
Data for field check: :

(a) Apex distance = R (sec ¢/2 — 1)
= 250 (sec 15° - 1) =882 m

(b) Versed sinec of curve = R {1 — cos §2)

o 250 (1-~c0s 199 = 852 40

Chainage | Chord | Defleciion Tuotal Anglé to | Remark
length angle for deflection be set ‘
chord " angle (A)

1,183.0 <3 — = ! Starting poiat

. . 1 curve
1.190.0 7.0 0=48°8" O°48°8" 0°4807 LC of vernier

1.2100 | - 200 2°17'317 3°5°39" 3°5°40" = 207
1,230.0 200 2°17°31% 5°23°10” 5923°0" '
1,250.0 200 | 2017317 | TU0'41” | Te4040”
1,270.0 20.0 2°17°31" 9°58°12” 9°58°0"
1,290.0 20.0 2°17°31" | 12°15'43" | 12°15'40"
1,310,0 20.0 2°17°317 | 14°33'14" | 14°33'20"
1,313,890 | 3.9 0°26°45" | 14°59°59" 15%0°0" | Finishing pojnt
: .| of curve.

1




H.W

Assume that A = 8° 24’ the station of the Pl is 64 + 27.46 and terrain conditions
require the minimum radius permitted by the specifications of, say, 2864.79 m
(arc definition). Calculate the PC and PT stationing and the external and middle
ordinate distances for this curve.

H.W

Assume that a metric curve will be used at a PI whereA = 8° 24’ Assume also that
the station of the Pl is 6+427.464 and that terrain conditions require a minimum
radius of 900 m. Calculate the PC and PT stationing, and other defining elements
of the curve. Also compute notes for staking the curve using 20-m increments.

Fieid proce_dure of setting out curve (by deflection angles) by one-theodolite method

1. In Fig. 10.19, AB and BC are two tangents intersecting at B. The tangent
length and curve lengths are calculated,:and the points Ty and T, are fixed.

A Fig.10.19 C

2. The lengths of the initial and final sub-chords, and the number of full chords
are ascertained. :

3. The deflection angles for the chords are calculated and verified by arithmetical
check.

4. A setting out table is prepared, depending on thc least count of the theodolite.
For setting the curve, only theé angles from the “angles to be set” column should
be taken. '

5. The theodolite is centred over T; and properly levelled. Then vernier A is
set to 0° of the main scale. The upper clamp is fixed.

6. The lower clamp is released and the ranging rod at the intersection point B
is perfectly bisected with the help of the lower tangent screw. The lower clamp
is now tightened.

7. The upper clamp is released and the first deflection anglc (81) is set on vernier
A, The telescope is directed along the line T,E.

8. Now, the zero end of the tape is held at T} and the distance TP, is mcasurcd
cqual to the length of the initial sub-chord in such as a way that the ranging rod
at P, is also bisected by the telescope. Then the telescope is lowered to mark the



base of ranging rod perfectly. So, P, is a point on the curve which is marked by
a nail or armrow.

9. The next deflection angle (&8;) is set on vernier A and the point P; is so marked
that P,P, i equal to the length of a full chord, and the ranging rod at P; is perfectly
bisected by the telescope. So, P is the next point on the curve.

10. This process is continued until all the deflection angles are set out and all
the points on the curve are marked. Finally, the last point should coincide with
Ta.

If it does not, the armount-of error is found out. If this error is small, it is
distributed among the last few pegs.

If the error is large, the entire operation should be repeated. Finally, all the
points py, Pz Pa. ... are marked by stout pegs.

Procedure for Setting Deflection Angles 1. The theodolite is centred and levelled at
the first tangent point and the lower clamp is fixed. The upper clamp is loosened
and vernier A is set approximately to the zero of the main scale. After that, the
upper clamp is tightened and by turning the upper tangent screw the arrow of
vernier A is brought into exact coincidence with the zero of the main scale.

2. Mow, the lower clamp is loosened and the ranging rod at the intersection
point is perfectly hisected with the help of the Iower tangent screw. Then both the
clamps are tightened.

3. Suppose the deflection angle 0°48°20” is to be set. By turning the upper
tangent screw very slowly, the arrow of vernier A is made to cross two small
divisions (i.e. 40°) of the main scale. Then, looking through the divisions of the
vernier scale carcfully, the first small division after eight big divisions (i.e. 8200
of the vernier scale is made to coincide with any division of the main scale.

Thus, Deflection angle = 0°40°0” + 0°8720”
= 0P48720"
4, Similarly, by tumning the upper tangent screw very slowly, suhse-ﬁ;umt-d-:ﬂnctian

angles are set out one by one according to the entries in the “angles to be =e.”
column of-the setting out table. - .



10.8 COMPOUND CURVE—CALCULATION OF DATA AND SETTING OUT

When it is not possible to connect the two tangents by one circular curve, it
becomes necessary to take a suitable commion tangent, and set out two curves of
different radii 10 connect the rear and forward tangents. This curve is known as
-a compound curve (Fig. 10.21(a)).

Notation
AB = rear tangent
BC = forward tangent
DE = common tangent
¢ = deflection angle between rear and forward tangent
¢, = deflection angle between rear and common tangent
¢, = deflection angle between common and forward tangent.
0,; = centre of short curve
O; = centre of long curve
R; = radius of short curve
R;, = radius of long curve
Ty and 77 = tangent points for short curve
T; and 73 =tangent points for long curve )

o‘l

[53/

Fig. 10.21(a)

T, = total tangent length of shonzs&-‘side (BTy)
T, = total tangent length of longer side (BT3)
= tangent length of short curve

= tangent length of long curve

-

s

e
Calcuiation of data
l.o=0¢; + &
2.7, =BD + DT, = BD +
sin @ ¢
= DE x m + R, tan 3
30 TL=LE+E’I‘3=BE+II.
sin @y D)

=DEX—SW+RLT



4. Common tangent, DE = t; + 1 = R, tan -%1- + Ry tan %3-
@
where t; = R ta.n% :L=R-L:mna§2-
From aBDE,
BDD  BE
sing; sin g,
DE DE
T sin 1807 — (¢, + ¢z))  sin (1807 — ¢)
BD = DE x 102
sin g
sin ¢hy
and BE = DE x m

ﬂR‘¢l
180°

IZRL¢2
180°

5. Curve length (short curve) =

Curve length (long curve) =

17189 % C, .
R, -

where : C; = chord of short curve

6. Deflection angle (short curve), 8, =

XCp. .
Deflection angle (long curve) &, = 1"71&13,, =

‘where . - Cp = chord of long curve

7. Chainage of Ty = chainage of B — T, A
8. Chainage of T, = chainage of T; + short curve length
9. Chainage of T; = chainage of T; + long curve length.



Example Two tangents AB and BC intersect at B. Ano(her line DE intersects
AB and BC at D and E such that ZADE = 150° and £ZDEC = 140°. The radius
of the first curve is 200 m and that of the second is 300 m. The chamagc of B is
950 m.

Calculate all data necessary for setting out the compound curve.

Solution Consider Fig. 10.21(b).

Fig. 10:21 (b)

Given data: ¢y = 180° — 150° = 30°, . ¢ = 30° + 40° = 70°

¢; = 180° — 140° = 40° : .
1. T,D=DT2=R,m-¢2—'=m0xmr5°=5358m
2. T:E = ET;-RLtang— 300 x tan 20° = 10919 m
3, DE = DT; + THE = 53.58 + 109.19 = 162.77 m

4. From ABDE,
DB _ BE . DE

sin 40° ~ sin 30° ~ sin 110°

sin 40° 06427 _ ..+
DB = DE X ————= SinT10° =162.77 ¥ ==== 09396 11134 m

s SO 0.5
BE = DE X ——= Sin110° 162.77 X e 0.9396 = 8661 m

BT; = BD + DT, = 111.34 + 53.58 = 164.92 m
BT, = BE + ET; = 86.61 + 109,19 = 195.8 m
5. Chainage of Ty = 950 - 164.92 = 785.08 m _ '

6. Short curve lengm = L’Sll%%,lc-loi =10472m-

it Chalnage of Tz = 785.08 + 104,72 = 889 80 m

8. Long curve length = Q%‘-ﬁ = 20944 m

9. Chainage of T3 = 889.80 + 209.44 = 1,099.24 m

' Deflection angle for short curve:
Taking a full chord of 20 m,

10



Numbm-‘uf full chords = 5 (5 x 20 = 100 m)
Length of final sub-chord = 104,72 — 100 = 472 m

1,718.9 % 20
200
1,718.9 x 4.72
200

& for full chord = = 2°51°53"

& for final sub-chord = = 0407 34"

Check:

Total deflection angle = % = —3-% = 15°

Calculated angles = 5 x 2°51°53" + 0°40°34”
= 14°59"59" = 15° (say) -
Deflection angle for long curve: : : :
Taking a full chord of 30 m,
Number of full chords = 6 (6% 30 = 180 m)

Length of final sub-chord = 209.44 — 180.00 = 29.44 m)

L7189 %30
& for Tull chord = 55—~ 2°51°53
L7TERG = 2044

T ] r o
300 = 2%45741

& for final sub-chord =
Check:

¢?=£=

T i

Total deflection =

Calculated angles = 6 x 2517337 + 2°4R8°41"
= 19°59°59" = 20 (say)

11



10.2 REVERSE CURVE—CALCULATION OF DATA AND SETTING OUT

A reverse curve consists of two circular arcs of equal or different radii turning in

opposite directions with a common tangent at the junction of the arcs. The junction
point is said to have reverse curvature. The reverse curve is also known as a

serpeniine curve.

Reverse curves are penerally used to connect two parallel roads or railway

lines, or when two lines intersect at a very small angle.

These curves are suitable for railway sidings, city roads, ete. But they should
be avoided as [ar as possible for important tracks or highways for the following

reasons:

Superelevation cannol be provided al the point of reverse curvature.
A sudden change of direction would be dangerous for a vehicle.
A sudden change of cant causes discomfort to passengers.

it LB

CUrve,

Reverse curves are generally short, and hence they are set out by the chain and

tape method.
Notation

1. InFig. 10.23, AB and EF the straight lines, BE is the common tangent and

C is the point of reverse curvature,

! Fig.10.23

T, and T; are the tangent points.

@ is the angle of intersection between the straight lines,

¢y and ¢n are the deflection angles of the comimon tangent.
Ry and B; arc.the radii of the arcs.

She Rt

Reverse curves may involve various cases, Here we shall illustrate two of

them.

Case I—When the straights are non-parallei Suppose AB, BC and CD are lines of
an open traverse dlong the alignment of a road (Fig. 10.243. AB and CD when
produced meet at a point E, where @ is the angle of intersection. It is required to
conncct the lines AB and CD by & reverse curve with BC as the common tangcnt.

Let $; = angle of deflection for the first arc
¢ = angle of deflection for the second arc
¢ = angle of intersection between AB and CD

Carelessness of the driver may cause the vehicle 1o overium over a reverse

12



Ty and T; = tangent points

Fig. 1024

' F = point of reverse curve
R = common radius for the arcs

The following data have to be calculated for setting oul the curve.

1. Tangent length of first arc,

2. Tangent length of second arc,

3. Length of common tangent,

4. Length of first curve,

. Length of s=cond curve,

00 =) &4 LA

The length of the reverse curve is normally small. So, the curve may be sel out
by taking offsets from (i) the long chord, or (ii) the chiord produced. (Both these
methods have already been described.

If the length of the curve becomes large and chaining along it difficult, the
curve may be set out by the deflection-angle method (Rankine's method). (This

T,B=BF=man%'
T2C=CF=Rlan-%
BC = BF + CF

=.’Etm::%+ﬂ‘ta.r|..T2

. Chainage of T| = chainage of B -~ T} B.
. Chainage of F = chainage of T, + 1st curve length
. Chainage of T; = chainage of F + 2nd curve length - .

method has also been described previously.)
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REMOTE SENSING

Remote sensing (RS), also called earth observation, refers to obtaining information
about objects or areas at the Earth’s surface without being in direct contact with the
object or area. Humans accomplish this task with aid of eyes or by the sense of
smell or hearing; so, remote sensing is day-today business for people. Reading the
newspaper, watching cars driving in front of you are all remote sensing activities.
Most sensing devices record information about an object by measuring an object’s
transmission of electromagnetic energy from reflecting and radiating surfaces.

Remote sensing techniques alow taking images of the earth surface in various
wavelength region of the electromagnetic spectrum (EMS). One of the major
characteristics of aremotely sensed image is the wavelength region it representsin
the EMS. Some of the images represent reflected solar radiation in the visible and
the near infrared regions of the electromagnetic spectrum, others are the
measurements of the energy emitted by the earth surface itself i.e. in the thermal
infrared wavelength region. The energy measured in the microwave region is the
measure of relative return from the earth’s surface, where the energy is transmitted
from the vehicle itself. This is known as active remote sensing, since the energy
source is provided by the remote sensing platform. Whereas the systems where the
remote sensing measurements depend upon the external energy source, such as sun
are referred to as passive remote sensing systems.

PRINCIPLES OF REMOTE SENSING

Detection and discrimination of objects or surface features means detecting and
recording of radiant energy reflected or emitted by objects or surface materia (Fig.
1). Different objects return different amount of energy in different bands of the
electromagnetic spectrum, incident upon it. This depends on the property of
material (structural, chemical, and physical), surface roughness, angle of incidence,
intensity, and wavelength of radiant energy.

The Remote Sensing is basically a multi-disciplinary science which includes a
combination of various disciplines such as optics, spectroscopy, photography,
computer, electronics and telecommunication, satellite launching etc. All these
technologies are integrated to act as one complete system in itself, known as
Remote Sensing System. There are a number of stages in a Remote Sensing
process, and each of them isimportant for successful operation.



Stagesin Remote Sensing
* Emission of electromagnetic radiation, or EMR (sun/self- emission)

 Transmission of energy from the source to the surface of the earth, as well as
absorption and scattering

* Interaction of EMR with the earth’s surface: reflection and emission
* Transmission of energy from the surface to the remote sensor
* Sensor data output

* Data transmission, processing and analysis

-

Pre-Process and A chive Almosprere

p Down Link
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Waler }‘\'.:I._‘,j

Figure 1: Remote Sensing process

At temperature above absolute zero, all objects radiate electromagnetic
energy by virtue of their atomic and molecular oscillations. The total amount of
emitted radiation increases with the body’s absolute temperature and peaks at
progressively shorter wavelengths. The sun, being a maor source of energy,
radiation and illumination, allows capturing reflected light with conventional ( and
some not-so-conventional) cameras and films.



The basic strategy for sensing electromagnetic radiation is clear. Everything in
nature has its own unique distribution of reflected, emitted and absorbed radiation.
These spectral characteristics, if ingeniously exploited, can be used to distinguish
one thing from another or to obtain information about shape, size and other
physical and chemical properties.

Modern Remote Sensing Technology ver sus Conventional Aerial Photography

The use of different and extended portions of the electromagnetic spectrum,
development in sensor technology, different platforms for remote sensing
(spacecraft, in addition to aircraft), emphasize on the use of spectral information as
compared to spatial information, advancement in image processing and
enhancement techniques, and automated image analysis in addition to manual
interpretation are points for comparison of conventional aerial photography with
modern remote sensing system.

During early half of twentieth century, aerial photos were used in military surveys
and topographical mapping. Main advantage of aerial photos has been the high
gpatial resolution with fine details and therefore they are still used for mapping at
large scale such as in route surveys, town planning, construction project
surveying, cadastra mapping etc. Modern remote sensing system provide satellite
images suitable for medium scale mapping used in natural resources surveys and
monitoring such as forestry, geology, watershed management etc. However the
future generation satellites are going to provide much high-resolution images for
more versatile applications.

ELECTROMAGNETIC RADIATION AND THE ELECTROMAGNETIC
SPECTRUM

EMR isadynamic form of energy that propagates as wave motion at a velocity of
¢ = 3x 1010 cm/sec. The parameters that characterize a wave motion are
wavelength (1), frequency (v) and velocity (c) (Fig. 2). The relationship between
the aboveis



r= Vi
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-

/

velotity of light, ©

Figure 2: Electromagnetic wave. It has two components, Electric field E and Mapnetic
fleld M, both perpendicular to the direction of propagation

Electromagnetic energy radiates in accordance with the basic wave theory. This
theory describes the EM energy as travelling in a harmonic sinusoidal fashion at
the velocity of light. Although many characteristics of EM energy are easily
described by wave theory, another theory known as particle theory offers insight
into how electromagnetic energy interacts with matter. It suggests that EMR is
composed of many discrete units called photons/quanta. The energy of photon is

Q=hc/Ak=hV

Where
Q is the energy of quantum,

h = Planck’s constant



Table 2: Principal Divisions of the Eleciromagnetic Spectrum

Camma rays Gamma rays
Xorays X-rays

This region 1s beyvond the violet portion of the visthle
wavelength. and hence tts name. Some earths surface
material primarily rocks and minerals emit visthle LTV
radiation. However UV adiation ts largely scattered
by earths atmosphere and hence not used in fiedd of
remobe sensing.

Visthle Spectrum

0.4 pm - 0.7 pm

Viatet 0.4 pm -0.446 pm
Blue 0.446 pm -0.5 pm
Green 0.5 pum - D.578 pm
Yellow 0.578 pm - 0.592 pm
Ohrange 0.592 pm - 0.62 pm

This 1s the light, which our eves can detect. This 1s
the only portion of the spectrum that can be
assoctated with the concept of color. Blue Green and
Red are the three primary colors of the vistbhle
spectrum. [ hey are defined as sich becass: no single

primary color can be created frome the other two, bt
all otfer colors can be formed by combining the

Red 0.62 i 0.7 pm three In various proportions. | he color of an object
= defined by the color of the 1ght it reflects:
Infrared (IR} Spectnum Wavelengths longer than the red portion of the

0.7 pm - 100 pm

wislble spectrum are destgnated as the Infrared
spectrum. - British Astronomer Willtam Herschel
discovered this in 1800. The infrared region can be
ditvided into two categories based on thetr radiadion

properties.

Reflected IR (.7 wm - 3.0 pm) ts used for rermote
sensing. Thermal IR (3 pm - 35 pm) ts the radiation
emitted from earths surface in the form of heat and
iesed for rernote sensing.

Microwsnve Region

lmm-1m

This 15 the longest wavelength ised In remiote sersing.
The shortest wavelengths In this range have
properties stmilar to thermal infrared region. The
maln advantage of this spectrum is iis ability to

penetrate through clods.

Radio Waves
=1 mj)

This 15 the longest portion of the spectrum mosthy
ie=ed for commercial broadeast and meteorology.




Types of Remote Sensing

Remote sensing can be either passive or active. ACTIVE systems have their own
source of energy (such as RADAR) whereas the PASSIVE systems depend upon
external source of illumination (such as SUN) or self-emission for remote sensing.

INTERACTION OF EMR WITH THE EARTH’S SURFACE

Radiation from the sun, when incident upon the earth’s surface, is either reflected
by the surface, transmitted into the surface or absorbed and emitted by the surface
(Fig. 3). The EMR, on interaction, experiences a number of changes in magnitude,
direction, wavelength, polarization and phase. These changes are detected by the
remote sensor and enable the interpreter to obtain useful information about the
object of interest. The remotely sensed data contain both spatia information (size,
shape and orientation) and spectral information (tone, colour and spectral
signature).

E; (&) = Incident energy
5

\\\ E] {.’.:l = Eg[-’t] Ll E'q [-’x} + ET {r‘.:|

.

\‘ Egp (3) = Reflected energy

Eald) = Absorbed energy Er(d) = Transmitted energy

Figure 3: Interaction of Energy with the earths surface. { source? Lillesand & Kiefer, 1993)

From the viewpoint of interaction mechanisms, with the object-visible and infrared
wavelengths from 0.3 um to 16 um can be divided into three regions. The spectral
band from 0.3 pm to 3 um is known as the reflective region. In this band, the
radiation sensed by the sensor is that due to the sun, reflectedby the earth’s surface.
The band corresponding to the atmospheric window between 8 um and 14 pum is



known as the thermal infrared band. The energy available in this band for
remotesensing is due to thermal emission from the earth’s surface. Both reflection
and self-emission are important in the intermediate band from 3 um to 5.5 um. In
the microwave region of the spectrum, the sensor is radar, which is an active
sensor, as it provides its own source of EMR. The EMR produced by the radar is
transmitted to the earth’s surface and the EMR reflected (back scattered) from the
surface is recorded and analyzed. The microwave region can also be monitored
with passive sensors, called microwave radiometers, which record the radiation
emitted by the terrain in the microwave region.

Reflection

Of al the interactions in the reflective region, surface reflections are the most
useful and revealing in remote sensing applications. Reflection occurs when a ray
of light is redirected as it strikes a non-transparent surface. The reflection intensity
depends on the surface refractive index, absorption coefficient and the angles of
incidence and reflection (Fig. 4).

Figure 4. Different types of scattering surfaces (a) Perfect specular reflector {b) MNear perfect
specular reflector (o) Lambertain (d) Chast-Lambertian () Complex.

Transmission

Transmission of radiation occurs when radiation passes through a substance
without significant attenuation. For a given thickness, or depth of a substance, the
ability of amedium to transmit energy is measured as transmittance ().
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Transmitted radiation

Incident radiation

Spectral Signature

Spectral reflectance, [p(A)], is the ratio of reflected energy to incident energy as a
function of wavelength. Various materials of the earth’s surface have different
spectral reflectance characteristics. Spectral reflectance is responsible for the color
or tone in a photographic image of an object. Trees appear green because they
reflect more of the green wavelength. The values of the spectra reflectance of
objects averaged over different, well-defined wavelength intervals comprise the
spectral signature of the objects or features by which they can be distinguished. To
obtain the necessary ground truth for the interpretation of multispectral imagery,
the spectral characteristics of various natural objects have been extensively
measured and recorded. The spectral reflectance is dependent on wavelength, it
has different values at different wavelengths for a given terrain feature. The
reflectance characteristics of the earth’s surface features are expressed by spectral
reflectance, whichisgiven by:

p(A) =[ER(L) / EI(A)] x 100

p(L) = Spectral reflectance (reflectivity) at a particular wavelength.
ER()A) = Energy of wavelength reflected from object

EI(M) = Energy of wavelength incident upon the object

The plot between p(L) and A is called a spectral reflectance curve. This varies with
the variation in the chemical composition and physical conditions of the feature,
which results in a range of values. The spectral response patterns are averaged to
get ageneralized form, which is called generalized spectra response pattern for the
object concerned. Spectral signature is a term used for unique spectral response
pattern, which is characteristic of a terrain feature. Figure 5 shows a typica
reflectance curves for three basic types of earth surface features, healthy
vegetation, dry bare soil (grey-brown and loamy) and clear lake water.
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Figure 5. ]'vp'lcal Spcural Reflectance curves for vegetation, soil and water

Reflectance Characteristics of Earth’s Cover types

The spectral characteristics of the three main earth surface features are discussed
below :

Vegetation: The spectral characteristics of vegetation vary with wavelength. Plant
pigment in leaves called chlorophyll strongly absorbs radiation in the red and blue
wavelengths but reflects green wavelength. The internal structure of healthy leaves
acts as diffuse reflector of near infrared wavelengths. Measuring and monitoring
the near infrared reflectance is one way that scientists determine how healthy
particular vegetation may be.

Water: Mgjority of the radiation incident upon water is not reflected but is either
absorbed or transmitted. Longer visible wavelengths and near infrared radiation is
absorbed more by water than by the visible wavelengths. Thus water 1ooks blue or
blue green due to stronger reflectance at these shorter wavelengths and darker if
viewed at red or near infrared wavelengths. The factors that affect the variability in
reflectance of a water body are depth of water, materials within water and surface
roughness of water.

Soil: The majority of radiation incident on a soil surface is either reflected or
absorbed and little is transmitted. The characteristics of soil that determineits
reflectance properties are its moisture content, organic matter content, texture,
structure and iron oxide content. The soil curve shows less peak and valley
variations. The presence of moisture in soil decreasesits reflectance.
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By measuring the energy that is reflected by targets on earth’s surface over a
variety of different wavelengths, we can build up a spectral signature for that
object. And by comparing the response pattern of different features we may be able
to distinguish between them, which we may not be able to do if we only compare
them at one wavelength. For example, Water and Vegetation reflect somewhat
similarly in the visible wavelength but not in the infrared.

INTERACTIONSWITH THE ATMOSPHERE

The sun is the source of radiation, and e ectromagnetic radiation (EMR) from the
sun that is reflected by the earth and detected by the satellite or aircraft-borne
sensor must pass through the atmosphere twice, once on its journey from the sun to
the earth and second after being reflected by the surface of the earth back to the
sensor. Interactions of the direct solar radiation and reflected radiation from the
target with the atmospheric constituents interfere with the process of remote
sensing and are called as “Atmospheric Effects”.

The interaction of EMR with the atmosphere is important to remote sensing for
two main reasons. First, information carried by EMR reflected/ emitted by the
earth’s surface is modified while traversing through the atmosphere. Second, the
interaction of EMR with the atmosphere can be used to obtain useful information
about the atmosphere itself.

The atmospheric constituents scatter and absorb the radiation modulating the
radiation reflected from the target by attenuating it, changing its spatial distribution
and introducing into field of view radiation from sunlight scattered in the
atmosphere and some of the energy reflected from nearby ground area. Both
scattering and absorption vary in their effect from one part of the spectrum to the
other.

The solar energy is subjected to modification by several physical process esas it
passes the atmosphere, viz.

1) Scattering; 2) Absorption, and 3) Refraction
Atmospheric Scattering

Scattering is the redirection of EMR by particles suspended in the atmosphere or
by large molecules of atmospheric gases. Scattering not only reduces the image
contrast but also changes the spectral signature of ground objects as seen by the
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sensor. The amount of scattering depends upon the size of the particles, ther
abundance, the wavelength of radiation, depth of the atmosphere through which the
energy is traveling and the concentration of the particles. The concentration of
particulate matter varies both in time and over season. Thus the effects of
scattering will be uneven spatially and will vary from time to time. Theoretically
scattering can be divided into three categories depending upon the wavelength of
radiation being scattered and the size of the particles causing the scattering. The
three different types of scattering from particles of different sizes are summarized
below:

Sc,alu'riug_ “'-:Lwlnngfh .I!'q:lpmximum Kincs

proCess dependence of particles
particle size

Salertive

o Rayleigh At = 1 um Air malecules

o Nie LT 0.1 to 10 pm Sminke, hae

o Maon-salective Jo =10 pm [Dhast, fog, clouds

Rayleigh Scattering

Rayleigh scattering predominates where electromagnetic radiation interacts with
particles that are smaller than the wavelength of the incoming light. The effect of
the Rayleigh scattering is inversely proportional to the fourth power of the
wavelength. Shorter wavelengths are scattered more than longer wavelengths. In
the absence of these particles and scattering the sky would appear black. In the
context of remote sensing, the Rayleigh scattering is the most important type of
scattering. It causes a distortion of spectral characteristics of the reflected light
when compared to measurements taken on the ground.

Mie Scattering

Mie scattering occurs when the wavelength of the incoming radiation is similar in
size to the atmospheric particles. These are caused by aerosols: a mixture of gases,
water vapor and dust. It is generdly restricted to the lower atmosphere where the
larger particles are abundant and dominates under overcast cloud conditions. It
influences the entire spectral region from ultraviolet to near infrared regions.

Non-selective Scattering

This type of scattering occurs when the particle size is much larger than the
wavelength of the incoming radiation. Particles responsible for this effect are water
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droplets and larger dust particles. The scattering is independent of the wavelength,
al the wavelength are scattered equally. The most common example of non-
selective scattering is the appearance of clouds as white. As cloud consist of water
droplet particles and the wavelengths are scattered in equal amount, the cloud
appears as white. Occurrence of this scattering mechanism gives a clue to the
existence of large particulate matter in the atmosphere above the scene of interest
which itself is a useful data. Using minus blue filters can eliminate the effects of
the Rayleigh component of scattering. However, the effect of heavy hazei.e. when
all the wavelengths are scattered uniformly, cannot be eliminated using haze filters.
The effects of haze are less pronounced in the thermal infrared region. Microwave
radiation is completely immune to haze and can even penetrate clouds.

Atmospheric Absor ption

The gas molecules present in the atmosphere strongly absorb the EMR passing
through the atmosphere in certain spectral bands. Mainly three gases are
responsible for most of absorption of solar radiation, viz. ozone, carbon dioxide
and water vapour. Ozone absorbs the high energy, short wavelength portions of the
ultraviolet spectrum (A < 0.24 pm) thereby preventing the transmission of this
radiation to the lower atmosphere. Carbon dioxide is important in remote sensing
as it effectively absorbs the radiation in mid and far infrared regions of the
spectrum. It strongly absorbs in the region from about 13-17.5 pum, whereas two
most important regions of water vapour absorption are in bands 5.5 - 7.0 um and
above 27 um. Absorption relatively reduces the amount of light that reaches our
eye making the scene look relatively duller.

Atmospheric Windows

The general atmospheric transmittance across the whole spectrum of wavelengths
Is shown in Figure 6. The atmosphere selectively transmits energy of certain
wavelengths. The spectral bands for which the atmosphere is relatively transparent
are known as atmospheric windows. Atmospheric windows are present in the
visible part (.4 pm - .76 um) and the infrared regions of the EM spectrum. In the
visible part transmission is mainly effected by ozone absorption and by molecular
scattering. The atmosphere is transparent again beyond about A= Imm, the region
used for microwave remote sensing
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Figure 6 : Atmospheric windows

Refraction

The phenomenon of refraction, that is bending of light at the contact between two
media, also occurs in the atmosphere as the light passes through the atmospheric
layers of varied clarity, humidity and temperature. These variations influence the
density of atmospheric layers, which in turn, causes the bending of light rays as
they pass from one layer to another. The most common phenomena are the mirage
like apparitions sometimes visible in the distance on hot summer days.



