Syllabus:-
(1) Simple Stress and Strain.
(2) Compound Bars.
(3) Shear force and Bending moment diagrams.
(4) Bending
(5) Shear Stress distribution.
(6) Torsion.
(7) Thin cylinder.
(8) Thick cylinder.
(a) Complex stresses.

References :-
(1) Mechanics of materials. by: $E \cdot J$. Hearn Vol. 1
(2) Strength of materials. by:- Singer.
(3) Mechanic of materials by: F. P. Beer.

Chapter one :
Pimple stress and strain

Stress $(\tilde{\sigma})=\frac{P}{A}$ where :(8): i- Normal stress

Tension
P
compression

(i.e) The force is normal to cross-section area
(P) :- Lood ($N, K N, M N, G N, \ldots$)
(A) 8 -cross section area $\left(\mathrm{m}^{2}, \mathrm{~mm}^{2}, \ldots\right)$

Normal strain : $-(\epsilon)=\frac{\delta L}{L}$
whore :- SL z -change in length Lz-original length
Also : $E=\frac{\sigma}{\epsilon}>E=E \cdot \epsilon$
Where 8 -
(E) : - Young modulus of elasticity.

$$
E=\frac{P \cdot L}{A \cdot \delta} \Rightarrow \delta=\frac{P L}{A E}
$$

Poison's Ratio 2- (r)

$$
r=\frac{\delta d / d}{\delta L / L}=\frac{\text { Lateral strain }}{\text { Longitudinal strain }}
$$

For most engineering material

$$
0,25<x<0,33
$$

Shear stress $(\tau) 8$ - $\quad \tau=\frac{Q}{A}$
Where 8-(Q)s shear force (A): - Area (Parallel with Q) Also s- $\tau=G \gamma$
Where 8 - ($\gamma 1$) - Shear strain (G) ε-Modulus of rigid ty

Thermal stresses \&-

$$
\delta=\alpha L \Delta t
$$

Where 8 - $(S) \varepsilon$. change in length due to the effect of temperature $(\Delta t) 8$ - change in temperature. (α) s- Coefficient of linear expansion. $\epsilon=\frac{\delta}{L}=\frac{\alpha L \Delta t}{L}=\alpha \cdot \Delta t$ $\sigma=E \epsilon=E \alpha \cdot \Delta t$

Example (1) : Drive an expression for the total extension of the bar of circular cross-section as shown when its subjected to an axial tensile load (P).
Solution e-

For $(d x)_{8-} d \delta=\frac{P \cdot d x}{A E} \Rightarrow \delta=\int_{x_{E 0}}^{x=L} \frac{P}{\pi E}+\frac{d x}{\left(r_{1}+\frac{\sqrt[r]{2}-r_{1}}{L} x\right)^{2}}$

$$
\Rightarrow \delta=\frac{P \cdot L}{\pi \in r_{1} r_{2}}
$$

Example (2) z- Find the stress in each section and total externsion?

Solution 8 -
(I) Section (AB): $: \bar{\sigma}=\frac{P}{A}=\frac{20 \times 10^{3}}{25 \times 25 \times 10^{-6}}=32 \frac{\mathrm{MN}}{\mathrm{m}^{2}}=32 \mathrm{MPO}$
(3) Section (CD) $s-\sigma=\frac{P}{A}=\frac{20 * 10^{3}}{\frac{\pi}{4}\left(12 * 10^{-3}\right)^{2}}=176.838 \mathrm{MPa}$.

$$
\begin{aligned}
\delta_{T} & =\delta_{A B}+\delta_{B C}+\delta_{C D} \\
& =\frac{P \cdot L_{A B}}{A_{A B} \cdot E}+\frac{P \cdot L_{B C}}{A_{B C} \cdot E}+\frac{P \cdot L_{C D}}{A_{C D} \cdot E}=\frac{P}{E}\left(\frac{L_{A B}}{A A B}+\frac{L_{B C}}{A_{B C}}+\frac{L_{C D}}{A_{C D}}\right) \\
& =\frac{20 * 10^{3}}{210 * 10^{9}}\left(\frac{0.05}{25 * 25 \times 10^{-6}}+\frac{0.04}{\frac{\pi}{4}\left(20 * 10^{-3}\right)^{2}}+\frac{0105}{\frac{\pi}{4}\left(12 \times 10^{-3}\right)^{2}}\right) \\
& =0.0618 \mathrm{~mm} .
\end{aligned}
$$

Example o - Two Solid cylinderical rods $A B$ and $B C$ are welded together and loaded as shown. knowing that the average normal 300 mm stress not exceed 175 Mpa in tod $A B$ and 150 Apo in rod BC. Determine the smallest value of d_{1} and d_{2}

Sol 8 - in lecture.
\qquad

Strength of Materials

External Lead:-
From free body diagram 8 $2 f_{1}+f_{2}=w$
$S_{1}=S_{2} \rightarrow \frac{F_{1} \cdot L_{1}}{A_{1} \cdot E_{1}}=\frac{F_{2} \cdot L_{2}}{A_{2} \cdot E_{2}}$

$$
\begin{aligned}
& L_{1}=L_{2} \\
& \Rightarrow \frac{F_{1}}{A_{1} \cdot E_{1}}=\frac{F_{2}}{A_{2} E_{2}}
\end{aligned}
$$

A_{1}, E_{1}, A_{2} and E_{2} are known, thus twe equation with two unknown $\left(F_{1}, F_{2}\right)$

Temperature change 8 -

$$
2 F_{1}=F_{2}
$$

Comp. $+E x t .=\alpha_{1} L \Delta t-\alpha_{2} L \Delta t$ $S=\frac{F L}{A E}$.

$$
\Rightarrow \quad \frac{F_{1} L}{A_{1} E_{1}}+\frac{F_{2} L}{A_{2} E_{2}}=\left(\alpha_{1}-\alpha_{2}\right) \Delta t_{1} L
$$

$$
\Rightarrow \frac{F_{1}}{A_{1} E_{1}}+\frac{F_{2}}{A_{2} E_{i}}=\left(\alpha_{1}-\alpha_{2}\right) \Delta t
$$

Two equation with two unknowns (F_{1} and F_{2}) r_{1}

Tube and red s-
From free body diagram e-

$$
\begin{array}{r}
F_{t}=F_{r} \\
\text { comp. }+E_{x} t=d \\
\therefore \frac{F_{t} \cdot L}{A_{t} \cdot E_{t}}+\frac{F_{r} \cdot L}{A_{r} \cdot E_{r}}=d
\end{array}
$$

Two equation with two unknown (F and $F R$)
ft
Example (1) 3 - A compound bar consist of four wires of brass, the diameter of each one (2.5 mm) and one wire of steel has a diameter of $(1.5 \mathrm{~mm})$ determine:-
(1) The stress in each wives if the bar is subjected to load of $(500 \mathrm{~N})$. All wires have a Same length
(2) The common deflection if $(L=0.75 \mathrm{~m}) . E_{S}=200 \mathrm{GPa} E B=100 \mathrm{GPa}$

$$
\text { Solutions - } \sum \sqrt{y}=0 \Rightarrow 4 F_{B}+F_{S}=500 \rightarrow \text { (1) }
$$

$$
S_{B}=S_{S} \Rightarrow \frac{F B \cdot L}{A B \cdot E B}=\frac{F_{S} \cdot L}{A_{S} \cdot E_{S}}
$$

$$
=\frac{F_{B}}{\frac{\pi}{4}\left(2.5 \times 10^{-3}\right)^{2} \times 100 \times 10^{9}}=\frac{F_{S}}{\frac{\pi}{4}\left(1.5 * 10^{-3}\right)^{2}+200 * 10^{9}}
$$

$$
\Rightarrow \frac{F_{B}}{(2.5)^{2}}=\frac{F_{S}}{(1.5)^{2}} \text {. Twi equation with the unknowns } F_{b} \text { and } F_{5}
$$

$$
\rightarrow F_{S}=76 \mathrm{~N} \quad F_{B}=106 \mathrm{~N}
$$

$$
\bar{\sigma}_{B}=\frac{F_{B}}{A_{B}}=\frac{106}{\frac{\pi}{4}(2.5)^{2} \cdot 10^{6}}=21.4 P_{B} \quad \sigma_{s}=\frac{F_{S}}{A_{S}}=\frac{76}{\frac{\pi}{4}}\left(1.5 \times 10^{-3}\right)^{2}=43.21 \mathrm{PPa}
$$

$$
\delta_{S}=\delta_{B}=\frac{F_{S} . L}{A_{S} E_{S}}=\frac{43.2 \times 10^{6}+0.75}{200+10^{9}}=0.162 \mathrm{~mm}
$$

Example (z) 8-A compound bar is constructed from thee bars 50 mm wide by 12 mm thick together to form a bour so mm wide 36 mm thick. The middle bat is of aluminum alloy for which $E=70$ Gpa and the outside of brass with $E=100$ MRa. IF the bars ave initially fastened at $18^{\circ} \mathrm{C}$ and the temperature of the whole assembly is then vised to $\mathrm{SO}^{\circ} \mathrm{C}$, determine the stress set up in the brass and the aluminum-

$$
x_{B}=18 * 10^{-6} \frac{1}{c^{2}} \quad x_{A}=22 * 10^{-6} \frac{1}{c}
$$

Solution $-2 F=F a$

$$
\begin{aligned}
& E_{B}+C_{A P}=\left(\alpha_{A 1}-\alpha_{2}\right) L \Delta t \\
& \frac{F_{B} \cdot L}{A_{B} E_{B}}+\frac{F_{A L} \cdot L}{A_{B L} \cdot E_{A L}}=\left(\alpha_{p L}-\alpha_{B}\right) L \Delta t
\end{aligned}
$$

$\frac{F B}{5 \times 12=10^{-6}+100 \times 10^{9}}+\frac{F A L}{50 \times 12 \times 10^{-6}+70 \times 10^{9}}=(22-18) \times 10^{-5}(50-18)$
From these equation 8 -

$$
F_{A L}=3984 \mathrm{~N}
$$

$$
F_{8}=1992 \mathrm{~N}
$$

$\sigma_{Z}=\frac{F B}{A B}=\frac{1992}{S 0-12 * 10^{-6}}=3.32 \mathrm{MPa}($ Ten $)$
$\sigma_{A L}=\frac{F_{Q L}}{A_{D L}}=\frac{3984}{50+12 \times 10^{-6}}=6.64 \mathrm{MPa}$ (camp)
KIF P $=15 \mathrm{kN}$ (coup) Find Wis and Vol $F_{A}+2 F_{B}=15$
$S B=S A L \Rightarrow \frac{F A L \cdot L}{A_{2} E A}=\frac{F Z \cdot L}{A_{B} \cdot E_{G}}$

$$
\begin{aligned}
& \Rightarrow F B=5.56 \mathrm{KN} \quad F A L=3.89 \mathrm{KN} \\
& \widetilde{O A L}=\frac{F A L}{A A L}=6.45 \mathrm{MPa} \quad \quad \mathrm{FB}=9.26 \mathrm{MPA} \\
& \Rightarrow \sigma B \text { Total }=-9.26+3.32 \mathrm{MPa} \quad(\operatorname{Mompl} \\
& \sigma \mathrm{OAL} \text { total }=-6.48-6.64=13 \mathrm{MPa} \quad \operatorname{comp})
\end{aligned}
$$

Example (3) E - A compound bars is constructed form a stool rod of 25 mm diameter surrounded by a capper tube of 50 rom outside dicemeter and 25 men inside diameter. The red and tube ewe joined by this diameter pos as shewn in the figure. Find the stares set up in the pins it, after pinning the teorfersature st raised by so ${ }^{\circ} \mathrm{C}$.
For steels $E=20$ Gpo $\quad X=1140^{-6} / / \mathrm{C}$
For Gpper e. $E=\operatorname{los}$ Gpa $\quad x=17 \times 10^{-6} 1 /{ }^{\circ} \mathrm{C}$

Solutions. $F_{T}=F_{R} \rightarrow$ (1)

$\Rightarrow \frac{F T}{\frac{\pi}{4}\left(50^{2}-25^{2}\right) \times 10^{-6}+105 \times 10^{9}}+\frac{F R}{\frac{5}{4}(25)^{2} \times 10^{-6} \times 210 \times 109}=(17-11) \cdot 10^{-6} \times 50$

$$
76.46 \mathrm{FT} \times 10^{-9}+9.7 \mathrm{FR} \times 10^{-9}=3 \mathrm{cc} \times 10^{-6}
$$

From these equations:-

$$
\begin{aligned}
& F T=F R=18.564 \mathrm{KN} \\
& \qquad \tau=\frac{C \mathrm{~L}}{2 A}=\frac{18.564}{\frac{\pi}{4}(20)^{2} \times 10^{-6}} \mathrm{ZL}=29.55 \mathrm{MPa}
\end{aligned}
$$

Shear force and bending moment diagram

8
Positive S.F
Positive B.M
< Concentrated loads:
$R_{A}(12)=10(10)+20(6)+30(2)-20(8) \Rightarrow R_{A}=10 \mathrm{KN}$
$\sum F_{Y}=0 \Rightarrow R_{A}+R_{F}=10+20+30-20$
$\Rightarrow R_{F}=30 \mathrm{KN}$
section x;
$M_{X}=R_{A} \cdot X=10 x$
(increasing line)
section y;
$M_{Y}=R_{A} \cdot Y-10(Y-2)$
$10 \cdot Y-10 Y+20=20$
(horizontal line)

- Notes:

1. Values of shear force $=$ Slope of bending moment.
2. Area of shear force diagram between two points $=$ value difference between bending moment of these points.

< Uniformly distributed loads:

$\sum M_{B}=0$
$R_{A} * 12=25 * 12 * 6 \Rightarrow R_{A}=150 \mathrm{KN}$
$\sum F Y=0$
$R_{A}+R_{B}=25 * 12 \Rightarrow R_{B}=150 \mathrm{KN}$
Section x :
S.FX $=150-25 X$ (decreasing line)
$B * M_{x}=R A * x-W * x * \frac{x}{2}=150 X-125 x^{2}$
Convex parabola
To find $B \ominus M_{m}$
$\frac{d M}{A X}=0 \Rightarrow 150-125 X=0 \Rightarrow X=6 \mathrm{~m}$
$\Rightarrow B * M_{\max }=450 \mathrm{KN} \cdot \mathrm{m}$

Note: $S\left(* F_{x}=Q_{x}=150-125 X=\frac{d M}{d x} \Rightarrow Q=\frac{d M}{d x}\right.$

$M=Q d x$
$I F Q=0 \Rightarrow M$ is minimum or maximum

\checkmark Distributed loads of increasing value

$\sum M B=0 \Rightarrow R A * 12=\frac{60 * 12}{2}\binom{x}{300} * 4 \therefore R A=120 K N$
$\sum F Y=0 \Rightarrow R A+R B=60 * \frac{12}{2} \Rightarrow R B=240 K N$

SECTION X:

$Q_{X}=R A-\frac{1}{2} W_{X}(X)=120-\frac{1}{2}\left(\frac{60}{12} * X\right) X=120-2.5 X^{2}$
(Convex parabola)
$Q x=0 \Rightarrow X=\sqrt{48}$
$M x=R A * X-\left(\frac{1}{2}(5 X) X\right) \frac{X}{3}=120 X-\frac{5}{6} X^{3}$
(Convex third degree)

$$
\begin{aligned}
& M_{\max } a t Q x=0 a t x=\sqrt{48} \\
& M_{\max }=120(\sqrt{48})-\frac{5}{6}(\sqrt{48})^{3}=560 \mathrm{KN} \cdot \mathrm{~m}
\end{aligned}
$$

$<$ Couples:
$\sum M B=0 \Rightarrow R A * 10=10 \Rightarrow R A=1 K N$
$\sum F Y=0 \Rightarrow R A=R B \Rightarrow R B=1 K N$
$Q x=-R A=-1$
$M x=-R A . X=-X$
$M c=-8$

Note: point of inflexion occur at ($M=0$)

Example-1-

$\sum M E=0 \Rightarrow R A * 8+40 * 2$
$=10 * 2 * 7+20 * 6+20 * 3+10(t)+20(3)(t .5)$
$\Rightarrow R A=42.5 K N$
$\sum F Y=0 \Rightarrow R A=R E=10(2)+20+20+10+20(3)+40 \Rightarrow R E=127.5 \mathrm{KN}$
$Q B=42.5-10(2)-20=2.5 \mathrm{KN}^{\circ}$
$Q D=22.5-20-20-20(2)-10=67.5 \mathrm{KN}$

$$
M X=42.5 X-10 X\left(\frac{X}{2}\right)
$$

$M B=42.5(2)-10\left(\frac{22}{2}\right)=26 \mathrm{KNm}$
$M Y=R A(Y)-10 * 2(Y-1)-20(Y-2)-$
$20(Y-5)-20(Y-5)\left(\frac{Y-5}{2}\right)=-90+82.5 Y-10 Y^{2}$
$M Y=0 \Rightarrow 10 Y^{2}-82.5 Y+90=0$
$\Rightarrow Y=6.96$ ory $=1.5$ (neglect $)$

$$
\begin{aligned}
& M C=-90+82.5(5)-10(5)^{2}=72.5 \mathrm{KNM} \\
& M E=-90+82.5(8)-10(8)^{2}-10(l)=-80 \mathrm{KN} \cdot M
\end{aligned}
$$

Example 2
$C=80 \mathrm{KN}, \mathrm{M}$
$\sum M B=0 \Rightarrow R c(6)+10 * 3 * 1.5+80=\frac{1}{2} * 6 * 48 * 2 \Rightarrow R c=27 \mathrm{KN}$
$\sum F Y=0 \Rightarrow R c+R B=10 * 3+\frac{1}{2} * 48 * 6 \Rightarrow R B=147 \mathrm{KN}$
$Q X=-R c+\frac{1}{2} w x \cdot x=27.2+\frac{1}{2}(48) \frac{x}{6} \cdot x=-27.2+4 x^{2}$
(Concave parabola)
$Q x=0 \Rightarrow 4 X^{2}-27.2=0 \Rightarrow x=2.61 \mathrm{~m}$
$M x=27.2 x-\frac{1}{2} w \cdot x \cdot \frac{x}{3}=27.2 x-\frac{1}{2}(8 x) * x * \frac{x}{3} 27.2 x-\frac{3}{4} x^{3}$
(Convex third degree)

$$
\begin{aligned}
& M_{\max }=27.2 x(2.61)-\frac{3}{4}(2.61)^{3}=47.3 \mathrm{KN} . \mathrm{m} \\
& M=0 \Rightarrow \frac{3}{4} x^{3}-27.2 x=0 \Rightarrow x=4.5 \mathrm{~m} \\
& M c=27.2(6)-\frac{3}{4}(6)^{3}=-125 \mathrm{KN} . \mathrm{m}
\end{aligned}
$$

Example: A simply supported beam (ABC) has length of (6 m) and loaded as shown below. The weight of the beam $100 \mathrm{~N} / \mathrm{m}$. find:
(1) The reactions at A and B
(2) Draw shear force diagrams and from it find the value and position of maximum bending moment
Solution:

$$
\begin{aligned}
& \sum M B=0 \Rightarrow R A * 5-100 * 5 * 2.5+100 * 1 * 0.5=0 \\
& \quad \Rightarrow R A=240 \mathrm{~N}
\end{aligned}
$$

$$
\sum F Y=0 \Rightarrow R A+R B=100 * 6 \Rightarrow R B=360 N
$$

$$
M x=R A^{*} x-100 x * \frac{x}{2}=240 x-50 x^{2}
$$

$$
R x=R A-100 x \Rightarrow R x=240-100 x \Rightarrow
$$

$$
M_{\max } a t R=0 \Rightarrow 240-100 x=0 \Rightarrow x=2.4 \mathrm{~m}
$$

$$
M_{\max }=240(2.4) * 50(2.4)^{2}=288 \mathrm{~N} . \mathrm{M}
$$

- From (S.F.D)
$\frac{240}{x}=\frac{260}{5-x} \Rightarrow x=2.4 \mathrm{~m}$
$B . M_{\text {max }}=\operatorname{areaof}(S . F . D)=\frac{I}{2} * 240 * 2.4=288 \mathrm{~N} . \mathrm{M}$

chapter Four 8- Bending.
* Simple bending theory 8 -
* Assumptions 8 -
(1) The beam is initially straight and unstressed.
(2) The material is homegenous and isotropic.
(3) The Elastic limit is nowhere exceeded.
(4) Young's modulus is the same in tension and compression.
(5) Plane cross-section remains plane after bending.
(6) Every cross-section is symmetrical obout the plane of bending.
(7) the loading is pure bending.

The strain of the line $A B$

$$
\epsilon=\frac{A^{\prime} B^{\prime}-A B}{A B}
$$

before beneling $A B=C D$
and $C D$ on the nutral axis (No Strain)

$$
\therefore e=\frac{A^{\prime} B^{\prime}-C D}{C D}=\frac{(R+y) \theta-R \theta}{R \theta}=\frac{y}{R}
$$

But $\epsilon=\frac{\tilde{E}}{E}=\frac{Y}{R} \rightarrow$ (1)

Also

$$
\begin{aligned}
\text { AI SO } 8-F= & \sigma \cdot A \\
\Rightarrow d F= & \sigma \cdot d A \Rightarrow d M=Y \cdot d F \\
& =\sigma \cdot Y \cdot d A \\
\propto M= & \int_{A} \sigma Y d A=
\end{aligned}
$$

$\therefore M=\frac{E}{R} \cdot I \rightarrow(2) \quad I=$ second moment of inertia

$$
I(\text { rectangular })=\frac{b h^{3}}{12}
$$

I (circle) $=\frac{\pi}{4} R^{4}$ where $(R) \equiv$ radius of circle

* Always the nutral axis (N.A) passes through the Centroid because assumption (7) means that there is no resultant forge across the Section, i.e

$$
F_{c}=F_{t}
$$

$$
M=F t \cdot \frac{2}{3} h
$$

$$
=\left(\frac{1}{2} \sigma+\frac{h}{2} b\right) \frac{2}{3} h
$$

Example (1):- the beam loaded os shown, Find the maximum bending stress $\left(\tilde{\sigma}_{\max }\right)$.

Solution 8-

$$
\begin{aligned}
\Sigma M B & =0 \\
R_{A} * 7 & =5 * 7 * 3.5+20 * 3.5 \\
\Rightarrow R_{A} & =27.5 \mathrm{kN} \\
\sum F_{y} & =0
\end{aligned} \Rightarrow R_{A}+R_{B}=5 * 7+200 \text { kN }
$$

Mana occunes at Zero shear force

$$
5 \mathrm{kN} /\left.\mathrm{m}\right|^{20 \mathrm{kN}}
$$

There are two ways to find $M_{\max }$

(1) $M_{\text {max }}=27.5 * 3.5-5 * 3.5 * \frac{3.5}{2}=65.52 \mathrm{kN} . \mathrm{m}$
(2) $M_{\text {max }}=$ are of shear force between A and the Centre

$$
=\frac{1}{2} * 17.5 * 3.5+10 * 3.5=65.625 \mathrm{kN} \cdot \mathrm{~m}
$$

$$
\begin{aligned}
Y_{\text {max }} & =150 \mathrm{~mm} \\
I_{N . A} & =\frac{200(300)^{3}}{12}-2 * \frac{90 * 260}{12} \\
& =1.86 * 10^{8} \mathrm{~mm}^{4} \\
\sigma^{\prime} & =\frac{65.625 * 10^{3} * 150 * 10^{-3}}{1.86 * 10^{-4}}=51.8 \mathrm{MPa} .
\end{aligned}
$$

Page $\mathcal{N a}^{2}$.

Example (2) : Find (ω) if maximum stress in tension is 160 MPa and in compression is $80 \mathrm{Mpo}$.
w
Solution 8-
Because of the Symmetry

$$
R_{A}=R_{B}=\frac{1}{2} \omega L
$$

Maximum bending moment occurs at the centre $=2.5 \omega * 2.5-2.5 w \cdot \frac{25}{2}$

$$
\begin{aligned}
= & 3.125 \mathrm{~W} \\
\bar{y}=\frac{\sum A Y}{\sum A} & =\frac{(100 * 25 * 137.5+125 * 12 * 62.5) \times 10^{-9}}{(100 * 25+125 * 12) * 10^{-6}}
\end{aligned}
$$

100 mm
\square 25 mm
$=109.4 \mathrm{~mm}$ (From the base)

$$
\begin{aligned}
I_{N \cdot A} & =\left[\frac{100 * 406^{3}}{3}-\frac{88 * 15.6^{3}}{3}+\frac{12 * 109.4}{3}\right] * 10^{-12}=7.36 * 10^{-6} \mathrm{~m}^{4} \\
M & =\frac{\sigma \cdot I}{Y}=\frac{80 * 10^{6} \times 7.36 * 10^{-6}}{40.6 \times 10^{-3}}=14.5 \mathrm{kN} \cdot \mathrm{~m} \\
M & =\frac{160 * 10^{6} * 7.36 * 10^{-6}}{109.4 * 10^{-3}}=10.76 \mathrm{kN} \cdot \mathrm{~m} \\
& \circ M_{\text {max }}=10.76 \mathrm{kN} \cdot \mathrm{~m}=3.125 \mathrm{~W}
\end{aligned}
$$

$$
\Rightarrow W=3.44 \mathrm{kN} / \mathrm{m}
$$

Example (2) 8-Determine the concentrated lead that can be applied at the Centre of a simply supported span 6 m long if $\frac{E s}{E w}=20 . \quad\left(\sigma_{\max }\right)_{s}=120 \mathrm{Hpa}$

Solution: -

$$
\begin{aligned}
& \text { Solution } 8 \text { - Ests }=E_{\omega} t_{\omega} \Rightarrow \frac{E_{s}}{E_{\omega}} t_{s}=20 \times 100=2000 \mathrm{~mm} \\
& \sigma_{\omega}=\frac{M \cdot Y}{I} \Rightarrow M=\frac{\sigma \cdot I}{Y} \Rightarrow M=\frac{8 \times 10^{6} \times 416 \times 10^{-6}}{170.2 \times 10^{-3}}=19.55 \mathrm{kN} \cdot \mathrm{~m} \\
& \sigma_{\omega}=\sigma_{s} \cdot \frac{E_{\omega}}{E_{s}}=120 * \frac{1}{20}=6 \mathrm{MPa} . \\
& M=\frac{6 * 10^{6} * 416 \times 10^{-6}}{89.78 * 10^{-3}}=27.8 \mathrm{kN} \cdot \mathrm{~m} \\
& M_{\max }=19,55=\frac{\omega}{2} \times 3 \Rightarrow \omega=13.03 \mathrm{kN}
\end{aligned}
$$

Example (3) 8 - Find the maximum bending moment For a composite beam that has the following properties. $\left(\sigma_{\text {max }}\right)_{S}=120 \mathrm{Mpo},\left(\sigma_{\text {max }}\right)_{A l}=80 \mathrm{Mpa} \cdot\left(\sigma_{\text {max }}\right)_{\omega}=10 \mathrm{Mpa}$ $E_{S}=200 \mathrm{Gpa}$. $E_{A L}=70 \mathrm{Gpa}$ and $E^{2}=10 \mathrm{Gpa}$.
Solutions-

$$
\begin{aligned}
& \text { Eats }=E \omega t_{\omega} \Rightarrow t_{\omega}=\frac{200}{10} \times 80=1600 \mathrm{~mm} \\
& E_{\text {stow }}=E_{\text {Al. }}^{\text {AL }} \Rightarrow t W=\frac{70}{10} \times 80=560 \mathrm{~mm} \\
& \bar{y}=\frac{\sum A Y}{\sum A}=\frac{20 * 1600 * 210+150 * 80 * 125+560 * 50 * 25}{20 * 1600+150 * 80+560 * 50}=123.8 \mathrm{~mm} \\
& I=\frac{560 * 123.8^{3}}{3}-\frac{480 * 73.8^{3}}{3}+\frac{1600 * 96.2^{3}}{3}-\frac{1520 * 76.2^{3}}{3}=540.5 * 10 \mathrm{~m}^{-6} \\
& M=\frac{10 * 10^{6} * 540.5 * 10^{-6}}{76.2 * 10^{-3}}=70.8 \mathrm{kN} \cdot \mathrm{~m} \\
& \sigma_{w}=\frac{E_{w}}{E s} \cdot \sigma_{s}=\frac{10}{200} * 120=6 \mathrm{MPa} \Rightarrow M=\frac{6 * 10^{6} * 540 * 10^{6}}{96.2 * 10^{-3}}=\frac{33.7 \mathrm{kN} .}{\mathrm{m}} . \\
& \sigma_{w}=\frac{E_{\omega}}{E_{a 1}} \cdot \sigma_{a 1}=\frac{10}{70} * 8=11 \cdot 4 \mathrm{MPa} \Rightarrow M=\frac{11.4 * 10^{6} * 540 * 10^{6}}{123.8 * 10^{-3}}=49.5 \mathrm{kNim} \\
& \stackrel{\circ}{\infty} M_{\text {max }}=33.7 \text { kN.m }
\end{aligned}
$$

Example (i):-

$$
M_{\text {max }}=\text { ? }
$$

For wood 8 -

$$
\sigma_{\max }=12 \mathrm{MPa}
$$

$$
E=10 G P_{0}
$$

For Steel 8-

$$
\sigma_{\max }=150 \mathrm{Mpa} \quad E=200 \mathrm{Gpa} .
$$

Solution 8-

$$
\begin{aligned}
& \text { Est }=E_{\omega} t_{\omega} \Rightarrow t_{\omega}=\frac{E_{S}}{E_{W}} \cdot t_{s}=\frac{200}{10} \times 12=240 \mathrm{~mm} \\
& \text { INcA }=2 * \frac{50 * 200^{3}}{12}+\frac{228 * 80^{3}}{12}=76,36 * 10^{6} \mathrm{~mm}^{4}=76.36 \times 10^{-6} \mathrm{~m}^{4} \\
& M_{\max }=\frac{\sigma_{\max } \cdot I}{V_{\max }}=\frac{12 * 10^{6} * 76.36 * 10^{-6}}{100 * 10^{-3}}=9200 \mathrm{~N} \cdot \mathrm{~m} \\
& \frac{\sigma_{S}}{\sigma_{\omega}}=\frac{E_{S}}{E_{W}} \Rightarrow \sigma_{W}=\frac{E_{W}}{E_{S}} \cdot \sigma_{S}=\frac{10 * 10^{9}}{200 \times 10^{9}} \times 150 \times 10^{6} \\
& =7.5 \mathrm{MPa} . \\
& \operatorname{Mnax}=\frac{7.5 * 10^{6} * 76.36 * 10^{-6}}{40 \times 10^{-3}}=14.3175 \mathrm{kNim} \\
& \therefore M_{\max }=9200 \text { Nom }
\end{aligned}
$$

* Bending of Composite beams 8 -
(1) Flitched beams 8-

$$
\begin{aligned}
& M=E I \cdot \frac{1}{R} \\
& \therefore M \propto \frac{1}{R}
\end{aligned}
$$

where $F I \equiv$ constand and called Flexural stiffness t ${ }^{\text {ts }} \rightarrow 1$

Equivalent section (EI) constant

$$
\begin{aligned}
& \text { Equivalent section (EI) constant } \\
& \text { i.e } E_{S} I_{s}=E_{w} I_{w} \Rightarrow E_{s} \cdot \frac{t_{s} \cdot h^{3}}{12}=E_{w} \cdot \frac{t_{w} h^{3}}{12}
\end{aligned}
$$ h is constant thus

$$
\begin{equation*}
\text { Es. ts }=\text { Ew. Aw } \tag{1}
\end{equation*}
$$

and $R_{w}=R_{s} \Rightarrow \frac{E_{s} \cdot Y_{s}}{\sigma_{s}}=\frac{E_{w} Y_{w}}{\sigma_{w}}$

$$
y_{s}=y_{w} \Rightarrow \frac{E_{s}}{\sigma_{s}}=\frac{E_{w}}{\sigma_{w}} \rightarrow \text { (2) }
$$

Equations (1) and (2) are very important to solve any proplem for this type of beams.

Chapter Secern:

$$
\begin{aligned}
& \sigma=\frac{M \cdot y}{I}, \quad \sigma_{+} d \sigma=\frac{(M+d M) y}{I} \Rightarrow d \sigma=\frac{d M \cdot y}{I} \\
& Z \cdot b_{1} \cdot d x=\int_{y_{1}}^{h} d \sigma \cdot b \cdot d y=\int_{y_{1}}^{h} \frac{d M}{I} b \cdot y \cdot d y \\
& B u t ~ d M=Q \cdot b_{1} \cdot d x=\int_{y_{i}}^{h} \frac{Q \cdot d x}{I} b y \cdot d y \\
& \Rightarrow Z \cdot b_{1}=\frac{Q}{I} \int_{y_{1}}^{h} b \cdot y \cdot d y=\frac{Q}{I} \int_{y_{1}}^{h} y \cdot d A
\end{aligned}
$$

* Rectangular section s.

$$
\begin{aligned}
& b=b_{1} \\
& \tau \cdot b=\frac{Q}{I} \int_{y_{1}}^{1 / 2} b \cdot y \cdot d y \\
& I=\frac{b h^{3}}{12} \\
& Z \cdot b=\frac{12 Q}{6 h^{3}}\left[\frac{y^{2}}{2}\right]_{y_{1}}^{h / 2}=\frac{6 Q}{6 h^{3}}\left[\frac{h^{2}}{4}-y_{1}^{2}\right) \\
& a t y_{1}=0 \Rightarrow Z=Z_{\max }=\frac{3}{2} \frac{Q}{b \cdot h}=\frac{3}{2} Z_{\text {mean }} \text {. }
\end{aligned}
$$

Example (1) s. Find shear stoss at E and D for the cross. Section as shown.

$$
\begin{aligned}
\text { Sol:- } \quad R_{A}=R_{B} & =700 \mathrm{kN} \\
\text { From S.F.D } \Rightarrow Q & =700-300 * 1 \\
& =400 \mathrm{kN} \\
y^{-}=\frac{\sum A Y}{\sum A} & =\frac{100 * 100 * 50-50 * 50 * 25}{100 * 100-50 * 50}
\end{aligned}
$$

$$
\Rightarrow \bar{y}^{\prime}=58.33 \mathrm{~mm}
$$

$$
=60.6 \mathrm{MPa} .
$$

$$
\begin{aligned}
& \tau_{D}=\frac{400 * 10^{3} *(50 * 100) * 16.66 * 10^{-9}}{5.72 * 10^{-6} * 100 * 10^{-3}}=58.4 \mathrm{MPa} . \\
& \tau_{D}=\frac{400 * 10^{3} * 50 * 100 * 16.66 * 10^{-9}}{5.72 * 10^{-6} * 50 * 10^{-3}}=116.8 \mathrm{MPa} .
\end{aligned}
$$

* Circular Section : -
* I. Section 3- (web)

$$
\begin{aligned}
& \tau \cdot b_{1}=\frac{Q}{I} \int_{y_{1}}^{h} y d A \\
\Rightarrow & \tau \cdot t=\frac{Q}{I}\left[\int_{y_{1}}^{h / 2} y t \cdot d y+\int_{1 / 2}^{4 / 2+t} y b d y\right] \\
\Rightarrow & Z=\frac{Q}{2 I}\left(\frac{h^{2}}{4}+b h+b t-y_{1}^{2}\right] \\
& a t y_{1}=0
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \zeta=\frac{Q}{2 I}(h+t) Z_{1} \\
& Z w=\frac{Q}{2 I}(h+t) \cdot \frac{b}{Z} \\
& Z_{w}=\frac{Q}{2 I}(h+t) b
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \zeta_{\text {max }}=\frac{Q}{2 I}\left(\frac{n^{2}}{4}+b h+\right. \\
& -\zeta \cdot t \cdot d x=\int_{0}^{Z_{1}} d \sigma t \cdot d z \\
& -d \sigma d=d M(h, t)
\end{aligned}
$$

$$
\begin{array}{r}
\text { Flange } \therefore \text { - } V \cdot t \cdot d x=\int_{0}^{z_{1}} d \sigma t \cdot d z \\
\text { But } d \sigma d=\frac{d M}{I}\left(\frac{h}{2}+\frac{t}{2}\right)
\end{array}
$$

$$
\begin{aligned}
& \tau \cdot b_{1}=\frac{Q}{I} \int_{y_{1}}^{h} b_{i} y_{i} \cdot d y \\
& \geqslant \tau \cdot 2 x_{1}=\frac{Q}{T} \int_{y_{1}}^{R} 2 x \cdot y d y \\
& \Rightarrow \zeta \cdot 2 \sqrt{R^{2}-y_{1}^{2}}=\frac{4 R}{\pi R^{4}} \int_{y_{1}}^{R} 2 \sqrt{R^{2}-y^{2}} y^{2} d y \\
& \Rightarrow \zeta \cdot 2\left(R^{2}-y_{1}^{2}\right)=-\frac{41}{\pi R_{1}^{1}}\left[\left(R^{2}-y^{1}\right)^{2 / 2} \cdot \frac{1}{t}\right]_{y_{1}}^{p} \\
& \rightarrow C \cdot 2\left(R^{2}-y_{1}^{2}\right)^{1 / 2}=\frac{? Q}{3 \pi R^{4}}\left(R^{2}-y_{1}^{2}\right)^{\frac{2}{2} / 2} \\
& \begin{aligned}
& \Rightarrow Z= \frac{4 Q}{3 \pi R^{4}}\left(R^{2}-y_{1}^{2}\right) \\
& \text { at } y_{1}=0 \Rightarrow Z_{\text {max }} \\
&=\frac{4}{3} \text { (mean. }
\end{aligned}
\end{aligned}
$$

Example (2) If $Q=200 \mathrm{kN}$ find the shear stress at points A, B, C and D and also find the ratio between the maximum shear stress and mean shear stress.

$$
\begin{aligned}
& \text { Sol 3-I }=\left[\frac{12.0+16 c^{3}}{12}-\frac{\pi}{64}(80)^{4}\right] * 10^{-12} \\
& =85.95 * 10^{-6} \mathrm{~m}^{4} \\
& \tau \cdot\left(120-2 x_{1}\right)=\frac{Q}{I}\left(A \bar{y} \text { rec. }-A_{\text {cir. }}\right) \\
& \bar{\tau}\left(120-2 x_{1}\right)=\frac{Q}{I}\left[120\left(80-y_{1}\right) *\left(\frac{80-y_{1}}{2}+y_{1}\right)\right. \\
& -\int_{y_{1}}^{R} 2 x y d y \\
& \rightarrow \tau\left(120-2 x_{1}\right)=\frac{Q}{I}\left[120\left(80-y_{1}\right)\left(\frac{80+y_{1}}{2}\right)\right. \\
& -\int_{y_{1}}^{R} \sqrt{R^{2}-y^{2}} 2 y d y \\
& \rightarrow 2 \bar{C}\left(60-\sqrt{R^{2}-y_{1}^{2}}\right)=\frac{Q}{\pi}\left[60\left(80^{2}-y_{1}^{2}\right)-\left[-\frac{2}{3} \cdot\left(R^{2} \cdot y^{2}\right)^{3 / 2}\right]_{y_{1}}^{R}\right. \\
& =\frac{Q}{I}\left[60\left(80^{2}-y_{1}^{2}\right)-\left(-\frac{2}{3}\left[\left(R^{2}-R^{2}\right)-\left(R^{2}-y_{1}^{2} 1\right]\right)\right.\right. \\
& =\frac{Q}{I}\left(60\left(80^{2}-y_{1}^{2}\right)-\left[\frac{2}{3}\left(R^{2}-y_{1}^{2}\right)^{3 / 2}\right]\right. \\
& \Rightarrow \bar{C}\left(60-\sqrt{R^{2}-y_{1}^{2}}\right)=\frac{Q}{I}\left[\left(30\left(80^{2}-y_{1}^{2}\right)-\frac{1}{3}\left(R^{2}-y_{1}^{2}\right)^{3 / 2}\right]\right. \\
& \Rightarrow \zeta\left(60-\sqrt{40^{2}-y_{1}^{2}}\right)=\frac{200}{38.95410^{6}}\left[30\left(80^{2}-y_{1}^{2}\right)-\frac{1}{3}\left(40^{2}-y_{1}^{2 / 2}\right)\right] \\
& \text { at, } y_{1}=0 \Rightarrow Z_{D}=4.3 .816 \mathrm{MPa} \text {, at } \text { lit }_{4}=20 \mathrm{~mm} \Rightarrow C_{C}=33.6 \\
& \text { db } y_{1}=40 \Rightarrow \bar{C}_{B}=12.3 \quad \text { at } y_{1}=60 \Rightarrow \tau_{A}=7.2 \mathrm{Mpa}
\end{aligned}
$$

Exainple (3): - If a simply supported beam carry a concentrated load (w) at the center and the beam has a rectangular cross section with depth (d). At what distance be the sheax stress equal to the mean shear stress?

$$
\begin{aligned}
& \text { Sol } 3-\tau m=\frac{Q}{A}=\frac{w}{2 b d} \\
& \tau=\frac{Q \cdot A \cdot \bar{y}}{I \cdot b} \bar{y}=\frac{d / 2-y_{1}}{2}+y_{1}=b\left(\frac{d}{2}-y_{1}\right)=\frac{d / 2+y_{1}}{2} \\
& I=\frac{b d^{3}}{12} \Rightarrow \tau=\frac{w \cdot b\left(\frac{d}{2}-y_{1}\right)\left(\frac{d}{2}+y_{1}\right)+12}{2 * 2 b d^{3} \cdot b}=\frac{3 w\left(\frac{d^{2}}{4}-y_{1}^{2}\right)}{d 3 \cdot b} \\
& \tau=\tau_{\text {mean }} \Rightarrow \frac{3 w\left(\frac{d^{2}}{4}-y_{1}^{2}\right)}{d^{3} \cdot b}=\frac{w}{2 b d} \\
& \rightarrow 6\left(\frac{d^{2}}{4}-y_{1}^{2}\right)=d^{2} \Rightarrow 1 \cdot 5 d^{2}-6 y_{1}^{2}=d^{2} \Rightarrow 6 y_{1}^{2}=\frac{d^{2}}{2} \Rightarrow y_{1}=\frac{d}{\sqrt{12}}
\end{aligned}
$$

Example (4) 3- $Q=140 \mathrm{kN}$.
Sol 3 -

$$
\begin{aligned}
& I=\left[\frac{100 \times 100^{3}}{12}-\frac{\pi}{64}\left(50^{4}\right)\right] . \\
& =8.02 \times 10^{6} \mathrm{~mm}^{4} \\
& \tau_{A}=\frac{140 *(100 * 25) * 37.5}{8.02 * 10^{6} * 100}=16.4 \mathrm{MPa} \\
& \tau \cdot b_{1}=\frac{Q}{I} \int_{y_{1}}^{h} y d A \Rightarrow \tau\left(100-2 x_{1}\right)=\frac{Q}{I}\left[100\left(50-y_{1}\right)\left(50-\frac{50-y_{1}}{2}\right)\right. \\
& \left.-\int_{y_{1}}^{25} y(2 x d y)\right] \\
& \text { But s. } 25^{2}=x^{2}+y^{2}=x_{1}^{2}+y_{1}^{2}
\end{aligned}
$$

* Simple torsion theory: -
* Assumptions =-

1. The material is homogeneous.
2. The load is within the elastic zone.
3. Circular sections remain circular.
4. Cross-Section remain plane.
5. Cross -section rotate as if
 rigid.

* Derivation:- $\overparen{A B}=R O=\gamma L$ where $:-$
$R \equiv$ Radius of circular shaft.
$\theta=$ Angle of twist (unit radian).
$\gamma \equiv$ Angle of distortion (Shear strain).
$L \equiv$ Length of the twisted shaft.
But: $: \gamma=\frac{\tau}{G} \Rightarrow \frac{\tau}{G} \cdot L=R .9 \Rightarrow \frac{\tau}{R}=\frac{G \cdot 0}{L}=\frac{\tau}{r}$ Where 8 -
$Z \equiv$ shear stress at radius (R).
$G \equiv$ Modulus of rigidity.
$\bar{z}=$ shear stress at radius (r).

$$
\begin{aligned}
d F & =\bar{Z}_{*} \cdot 2 \pi r d r \\
d T & =r \cdot d F=2 \pi r^{2} \bar{\zeta} d r \\
\therefore \int d T & =\int_{0}^{R} 2 \pi r^{2} Z^{-} d r=\int^{R} 2 \pi\left(\frac{G \cdot O}{L} r\right)^{2} r d r \\
\therefore T & =\frac{G \cdot \theta}{L}\left(\frac{\pi}{2} R^{4}\right) \\
\therefore T & =\frac{G \cdot \theta}{L} J \Rightarrow \frac{T}{J}=\frac{G \cdot \theta}{L} \quad \text { where }
\end{aligned}
$$

* Torsion of tapered Shafts 3-1

$$
r=r_{1}+\frac{r_{2}-r_{1}}{L} x
$$

$$
\frac{G \cdot 0}{L}=\frac{T}{J} \Rightarrow \frac{G \cdot d 0}{d x}=\frac{T}{\frac{\pi}{2} x^{4}}
$$

$$
\therefore \theta=\int d \theta=\int_{0}^{L} \frac{T}{G} \cdot \frac{d x}{\frac{\pi}{2}\left(r_{1}+\frac{r_{2}-r_{1}}{L} x\right)^{4}}
$$

$$
\Rightarrow \theta=\frac{T \cdot L}{G} \cdot \frac{2}{3 \pi} \frac{r_{1}{ }^{2}+r_{1} r_{2}+r_{2}{ }^{2}}{r_{1}{ }^{3} \cdot r_{2}{ }^{3}}
$$

$$
\begin{aligned}
& \text { if } x_{1}=r_{2} \Rightarrow \theta=\frac{T \cdot L}{G} \cdot \frac{1}{\frac{\pi}{2} R^{4}} \\
& =\frac{T \cdot L}{G \cdot J}
\end{aligned}
$$

* Power transmitted by shafts 8 -

$$
\text { Power }=\frac{F \cdot d x}{d t}=\frac{T}{R} \cdot \frac{R d \theta}{d t}
$$

\therefore power $=$ T.W where s-
$P \equiv$ Transmitted Power (watt)
$T \equiv$ Transmitted Torque (N.m)

$I=$ Polar second moment of area.
hollow shaft

$$
J=\frac{\pi}{2}\left(R_{1}\right.
$$

* Compound shafts 2-
(1) Series Connection :-

$$
\text { Total } 9=9_{1}+9_{2}
$$

$$
T=T_{1}=T_{2}
$$

(2) Parallel conection \&-

Total $T=T_{1}+T_{2}$

$$
\theta=\theta_{1}=\theta_{2}
$$

$$
\theta_{1}=\theta_{2}
$$

Solution 8 -

$$
\begin{aligned}
& \theta_{1}=\theta_{2} \Rightarrow \frac{\pi_{1} L_{1}}{G_{1} J_{1}}=\frac{\Gamma_{2} L_{2}}{G_{2} J_{2}} \Rightarrow \frac{1.8 \Gamma_{1}}{\frac{\pi}{2}+25^{4}}=\frac{1.2 T_{2}}{\frac{\pi}{2}+12.5^{4}} \\
& \left.\begin{array}{ll}
\Rightarrow T_{1}=10.67 T_{2} & \rightarrow(1) \\
\pi_{1}+T_{2}=680 & \rightarrow(2)
\end{array}\right] \Rightarrow T_{1}=622, \Gamma_{2}=58 \mathrm{~N} \cdot \mathrm{~m} \\
& \tau_{1}=\frac{T_{1} R_{1}}{J_{1}}=\frac{622 * 25 \times 10^{3}}{\frac{\pi}{2} * 25^{4} \times 10^{-12}}=25.33 \mathrm{HPa} \\
& \tau_{2}=\frac{T_{2} R_{2}}{J_{2}}=\frac{58 * 12.5 * 10^{-3}}{\frac{\pi}{2} * 12.5^{4} * 10^{-12}}=19 \mathrm{MPa} . \\
& 3=\theta_{1}=\theta_{2}=\frac{\pi L_{1}}{J_{1} G_{1}}=\frac{622 * 1.8}{\frac{\pi}{2} \times 25^{4} \times 10^{-12} \times 50 \times 10^{9}}=0,0228 \mathrm{rad}=1.3^{\circ}
\end{aligned}
$$

H. We - A Flanged coupling having six bolts placed at a pitch circe diameter of 180 mm connects two lengths of solid steel shafting of the same diameter. The shaft is required to trans mit 80 kw rt 240 veulmin. Assuming the allowable intensities of shearing stress in the shaft and bolts are 75 MRa and SS MPG respectively and the maximum torque is 1.4 times the mean torque, find:-
(a) the diameter of the shaft.
(b) the diameter of the bolts.

Example (C : - Determine the dimensions of a hollow shaft with a diameter valio $3: 4$ which is to transmit 60 kW at 200 reu/min. The maximum shear stress in the shaft is limited to 70 MPa and the angle of twist to 3.8 in alength of um. For the shaft material $G=80 \mathrm{GPa}$.

Solution: $P=T . \omega \Rightarrow T=P / \omega$

$$
\omega=\frac{2 \pi}{60} * 200
$$

$$
\rightarrow \Gamma=\frac{60 * 10^{3}}{\frac{2 \pi}{60} * 200}=2860 \mathrm{~N} \cdot \mathrm{~m}
$$

$$
J=\frac{T \cdot R}{C} \Rightarrow \frac{\pi}{2}\left[R^{4}-(0.75 R)^{4}\right]=\frac{2860 \cdot R}{70 * 10^{6}} \rightarrow R=33.65 \mathrm{~mm}
$$

$$
\theta=3.8 * \frac{\pi}{180} \Rightarrow J=\frac{T . L}{G .0} \Rightarrow \frac{\pi}{2}\left[R^{4}-(0.75 R)^{4}\right]=\frac{2860 * 4}{80 * 10^{9} * 3.8 * \frac{\pi}{180}}
$$

$$
\Rightarrow R=37.65 \mathrm{~mm} \quad \therefore R \quad \therefore \quad=37.65 \mathrm{~mm} .(\mathrm{max})
$$

Example (2) : - A shaft is (5lomm) long and (50 mm) ext. ernal diameter. For part of its length it is bored to a diameter of 25 mm and for the rest to 38 mm diameter such that the angle of twist in both parts is the same. Find 3 -
(1) The maximum power transmitted at a speed of $210 \mathrm{rev} / \mathrm{min}$ if the shear stess is not exceed (700 Mpa).
(2) The total angle of twist $(G=80$ Gpa).

Solution 8- (1)

$$
\begin{aligned}
J & =\frac{\pi}{2}\left(25^{4}-19^{4}\right) \\
& =0.41 * 10^{6} \mathrm{~mm}^{4} \\
\frac{T \cdot R}{J} & =Z \Rightarrow T=\frac{Z \cdot J}{R} \\
& =\frac{70 * 10^{6} * b^{25}}{25 * 10^{-3}}=1150 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\text { Power }=\pi . W=1150 * \frac{2 \pi * 210}{60}=25200 \text { watt }
$$

$$
\begin{align*}
& \text { (2.) } \begin{aligned}
& g_{1}=g_{2} \Rightarrow \frac{T_{1} L_{1}}{J_{1} G_{1}}=\frac{\pi_{2} L_{2}}{G_{2} J_{2}} \Rightarrow \frac{L_{1}}{J_{1}}=\frac{L_{2}}{J_{2}} \\
& \Rightarrow \frac{L_{1}}{L_{2}}=\frac{J_{1}}{J_{2}}=\frac{\frac{\pi}{32}\left(50^{4}-25^{4}\right)}{\frac{\pi}{32}\left(50^{4}-38^{4}\right)} \rightarrow L_{1}=1.43 L_{2} \rightarrow(2) \\
& L_{1}+L_{2}=510 \rightarrow(2) \rightarrow L_{2}=210 \quad L_{1}=300 \mathrm{~mm} \\
& 0=g_{1}+g_{2}=2 G_{1} \\
&=\frac{2 T_{1} L_{1}}{G_{1} J_{1}}=\frac{2 * 1150 * 300 * 10^{-3}}{80 * 10^{9} * \frac{\pi}{32}\left(50^{4}-25^{-4}\right)}=0.93 \mathrm{kad} \\
& * 10^{-3}
\end{aligned}
\end{align*}
$$

$$
=
$$

Example (3) :- A circular bar $(A B C) .3 \mathrm{~m}$ long is rigidly fixed at its ends (A) and (C). The portion ($A B$) is 1.8 m long and of 50 mm diameter, and (BC) is 1.2 mlong and of 25 mm diameter. If a twisting moment of $680 \mathrm{~N} . \mathrm{ml}$ is applied at B. find the value of resisting moment at (A) and (C) and the maximum stress in each section of the shaft. What will be the angle of twist of each portion? $G=80 \mathrm{GNIM}^{2}$.

Slope and deflection of beams

Convention

Deflection (y)

Slope

B. M

S.F

Loading

रelations between (loading, shear force, bending moment ,slope and deflection) $\theta=\frac{d_{y}}{d_{s}} \equiv$ slope Since: θ is small thus $d_{s}=d_{x}$ but $d_{s}=R d \theta \Rightarrow R d \theta=d x \Rightarrow \frac{d \theta}{d x}=\frac{1}{R}$

$$
\therefore \frac{d^{2} y}{d x^{2}}=\frac{1}{R}=\frac{M}{E I} \Rightarrow M=E I \frac{d^{2} y}{d x^{2}} \quad \text { and } Q=\frac{d M}{d x} \Rightarrow Q=E T \frac{d^{3} y}{d x^{3}}
$$

Finally: $Q=\int w d x \Rightarrow w=\frac{d Q}{d x} \Rightarrow W=E I\left(\frac{d^{4} y}{d x^{4}}\right)$

Macaulays method (direct integration)
$M=E I \frac{d^{2} y}{d x^{2}} \Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{1}{E I} \cdot M$ Integrating
$\frac{d y}{d x}=\frac{1}{E I} \int M_{d x}+A$
$Y=\frac{l}{E I} \int M_{d x}+A x+B \quad$ Where A and B constants to be found from boundary conditions

Type of loading:

(1) Cantilever with concentrated load:

$$
E I y^{\prime \prime}=M=-w x
$$

$E I y^{\prime}=-\frac{1}{2} w x^{2}+A \quad \rightarrow(l)$
$E I y=-\frac{1}{6} w x^{3}+A x+B \rightarrow(2)$

Boundary conditions
2. At $x=0 \Rightarrow M=0 \Rightarrow B=0$
3. At $x=L \Rightarrow y^{\prime}=0 \Rightarrow C=\frac{w L^{3}}{4}$
4. At $x=L \Rightarrow y=0 \Rightarrow D=\frac{23}{120} w L^{4}$

$$
y=\frac{1}{E I}\left(-\frac{w x^{4}}{24}-\frac{w x^{5}}{60 L}+\frac{w L^{3} x}{4}-\frac{23}{120} w L^{4}\right)
$$

\& Simply supported beam with concentrated loads:

$$
\begin{aligned}
& \sum M_{B}=0 \Rightarrow R_{A}=15 K N \\
& \sum F y=0 \Rightarrow R_{B}=25 K N
\end{aligned}
$$

$E I y^{\prime \prime}=M=15 x-20(x-3)+10(x-6)-30(x-10)$
EL $y^{\prime}=\frac{15}{2} x^{2}-10(x-3)^{2}+5(x-6)^{2}-15(x-10)^{2}+A \rightarrow(1)$
ELy $=\frac{5}{2} x^{3}-\frac{10}{3}(x-3)^{3}+\frac{5}{3}(x-6)^{2}-5(x-10)^{3}+A x+B$
Boundary conditions

1. $A t x=0 \Rightarrow y=0 \Rightarrow B=0$

III Note: $(x-3)=0$ for $x \leq 3$

$$
\begin{array}{ll}
(x-5)=0 & \text { for } x \leq 6 \\
(x-6) & x-10)=0
\end{array} \text { for } x \leq 10
$$

2. $\quad A t x=12 \Rightarrow y=0 \Rightarrow 0=\frac{5}{2}(12)^{3}-\frac{10}{3}(9)^{3} \frac{5}{3}(6)^{3}-5(2)^{3}+12 A \Rightarrow A=-184.2$

ELy $=\frac{5}{2} x^{3}-\frac{10}{3}(x-3)^{3}+\frac{5}{3}(x-6)^{3}-5(x-10)^{3}-184.2 x$
Note: Unit used are $(K N, m)$
The deflection at the center $x=6 m \Rightarrow \begin{aligned} & (x-6)=0 \\ & (x-10)=0\end{aligned}$
$E I y=\frac{5}{2}(6)^{3}-\frac{10}{3}(3)^{3}-184.2(6)=-655.2 K N \cdot \mathrm{~m}^{3}$
For $E=208 \mathrm{GPa}$ and $I=82 * 10^{-6} \mathrm{~m}^{4}$
$Y=38.4 * 10^{-3} \mathrm{~m}=38.4 \mathrm{~mm}$
$\pi A t x=L \Rightarrow y^{\prime}=0 \Rightarrow 0=\frac{-1}{2} w L^{2}+A \Rightarrow A=\frac{1}{2} w L^{2}$
2. $A x x=L \Rightarrow y=0 \Rightarrow 0=\frac{-1}{6} w L^{3}+\frac{1}{2} w L^{2} \cdot L+B \Rightarrow B=\frac{-1}{3} w L^{3}$
$\therefore E I y=-\frac{l}{6} w x^{3}+\frac{l}{2} w L^{2} x-\frac{l}{3} w L^{3}$
$A t x=0 \Rightarrow y=y_{\text {max }} \Rightarrow E I y_{\max }=-\frac{I}{3} w L^{3} \Rightarrow y_{\text {max }}=-\frac{w L^{3}}{3 E I}$
< cantilever beam with uniformly distributed load (U.D.L):
$E l y^{*}=M=-w x \cdot \frac{x}{2}$
$E l y^{\prime}=-\frac{I}{6} w x^{3}+A$
$E I y=-\frac{1}{24} w x^{4}+A x+B$
Boundary conditions

1. $A t x=L \Rightarrow y^{\prime}=0 \Rightarrow-\frac{1}{6} w L^{3}+A \Rightarrow A=\frac{1}{6} w L^{3}$
2. $A t x=L \Rightarrow y=0 \Rightarrow-\frac{1}{24} w L^{4}+\frac{1}{6} w L^{3} \cdot L+B \Rightarrow B=-\frac{1}{8} w L^{4}$
$\therefore y=\frac{l}{E I}\left(-\frac{l}{24} w x^{4}+\frac{l}{6} w L^{3} x-\frac{l}{8} w L^{\prime}\right)$
$A t x=0 \Rightarrow y=y_{\text {max }}=-\frac{w L^{4}}{8 E I} \quad y_{\text {max }}^{\prime}=\frac{w L^{3}}{6 E I}$
\& cantilever beam with increasing (U.D.L):
$w x=E I y^{\prime \prime \prime \prime}=-\left(w+\frac{2 w}{L} x\right)$
$E I y^{\prime \prime}=-w x-\frac{w}{L} x^{2}+A=Q \quad \rightarrow(1)$
$E I y^{*}=-\frac{1}{2} w x^{2}-\frac{w}{3 L} x^{3}+A x+B=M \rightarrow(2)$

$E I y^{\prime}=-\frac{l}{6} w x^{3}-\frac{w}{12 L} x^{4}+\frac{1}{2} A x^{2}+B x+C=\theta$
$E l y=-\frac{1}{24} w x^{4}-\frac{w}{60 L} x^{5}+\frac{1}{6} A x^{3}+\frac{1}{2} B x^{2}+C x+D \rightarrow$ (4)
Boundary conditions
3. At $x=0 \Rightarrow Q=0 \Rightarrow A=0$
< Simply supported beam with (U.D.L):
$\sum M_{B}=0 \quad \sum F y=0$
R_{A} and R_{B} are found
$\therefore E I y^{*}=M=R_{A} x-w(x-a) \frac{(x-a)}{2}$
$=R_{A} \cdot x-\frac{l}{2} w(x-a)^{2}$

$E l y^{\prime}=\frac{1}{2} R_{A} x^{2}-\frac{1}{6} w(x-a)^{3}+A$
$E L y=\frac{1}{6} R_{A} x^{3}-\frac{1}{24} w(x-a)^{4}+A x+B$
Boundary conditions:
4. At $x=0 \Rightarrow y=0 \Rightarrow B=0$
5. At $x=a+b=L \Rightarrow y=0 \Rightarrow B=0=\frac{1}{6} R a L^{3}-\frac{1}{24} w(x-a)^{d}+A L \Rightarrow A=$
\& Simply supported with (U.D.L) over a part of the beam:
$E L y^{\prime \prime}=M=R A \cdot x-w(x-a) \frac{(x-a)}{2}+w(x-b) \cdot \frac{(x-b)}{2}$
$=R_{A} \cdot x-\frac{l}{2} w(x-a)^{2}+\frac{l}{2} w(x-b)^{2}$
$E l y^{\prime}=\frac{1}{2} R_{A} x^{2}-\frac{1}{6} w(x-a)^{3}+\frac{l}{6} w(x-b)^{3}+A$
$E I y=\frac{1}{6} R_{A} x^{3}-\frac{I}{24} w(x-a)^{4}+\frac{1}{24} w(x-b)^{4}+A x+B$
Boundary conditions:
6. At $x=o \Rightarrow y=0$
7. At $x=L \Rightarrow y=0$

From these equation A and B are found

< Simply supported beam with a couple:

$$
\begin{aligned}
& \sum M_{B}=0 \\
& \sum F y=0
\end{aligned}
$$

R_{A} and R_{B} are found
$E l y^{\prime \prime}=M=R_{A} x-M_{0}(x-a)^{b}$
$E l y^{\prime}=\frac{1}{2} R_{A} x^{2}-\frac{l}{2} M_{0}(x-a)+A$

$$
E l y=\frac{1}{6} R_{A} x^{3}-\frac{1}{2} M_{0}(x-a)^{2}+A x+B
$$

Boundary conditions :
$\int \begin{aligned} \text { At } x=0 \Rightarrow y=0 \Rightarrow B=0\end{aligned}$
2. At $x=L \Rightarrow y=0 \Rightarrow 0=\frac{1}{6} R_{A} L^{3}-\frac{1}{2} M_{0}(L-a)+A L \Rightarrow A=$

Example (1): Find y_{c} for the beam shown in the figure?
Solution:

$$
\begin{aligned}
& E I y^{\prime \prime}=M=-40(x-1) \\
& E I y^{\prime}=-20(x-1)^{2}+A \rightarrow(1) \\
& E I y=-\frac{20}{3}(x-1)^{3}+A x+B \rightarrow(2)
\end{aligned}
$$

$E I=65 \mathrm{MN} / \mathrm{m}^{2}$

Boundary conditions:

$$
\text { At } x=4 \Rightarrow y^{\prime}=0=-20(3)^{2}+A
$$

$$
\Rightarrow A=180
$$

2. At $x=4 \Rightarrow y=0 \Rightarrow 0=-\frac{20}{3}(3)^{3}+180(4)+B \Rightarrow B=-540$

At $x=0 \Rightarrow y_{C}=\frac{l}{E I}\left(-0+0-540=\frac{-540}{65 * 10^{3}}\right)=-8.31 * 10^{-3} \mathrm{~m}$

Example: (2) find y_{d} and $y_{\text {max }}$ for the beam shown in the figure if $E=200 \mathrm{GN} / \mathrm{m}^{2}$ and $I=83^{*} 10^{-6} \mathrm{~m}^{+}$?
Solution:
$\sum M=0 \Rightarrow R A=60 K N$
$\sum F y=0 \Rightarrow R B=130 K N$
$E l y^{n}=M=60 x-20(x-1)-50(x-3)-\frac{1}{2} .60(x-3)^{2}$
$E L y^{\prime}=M=30 x^{2}-10(x-1)^{2}-25(x-3)^{2}-10(x-3)^{3}+A$
Ely $=M=10 x^{3}-\frac{10}{3}(x-1)^{3}-\frac{25}{3}(x-3)^{3}-\frac{10}{4}(x-3)^{4}+A x+B$
Boundary conditions:

1. At $x=5 \Rightarrow y=0 \Rightarrow 0=10(50)^{3}-\frac{10}{3}(4)^{3}-\frac{25}{3}(2)^{4}+5 A \Rightarrow A=-186$
2. $A t x=3 \Rightarrow E L y_{d}=I 0(3)^{3}-\frac{10}{3}(2)^{3}-186^{*} 3 \Rightarrow y_{d}=-19 \mathrm{~mm}$
(2) at $x=0 \quad y=0$
$E L y_{D}^{\prime}=30(3)^{2}-10(2)^{2}-186=44$
Ely $y_{C}^{\prime}=30(1)^{2}-186=-156$
y max occurs between C and $D(l \succ x \stackrel{\star}{\succ})$
Ely $y^{\prime}=30 x^{2}-10(x-1)^{2}-186=0 \Rightarrow x=2.67 \mathrm{~m}$
$\therefore E l y_{\text {max }}=321.8 \mathrm{KN} \cdot \mathrm{m}^{3} \Rightarrow y_{\text {max }}=\frac{321.8}{200^{*} 10^{6} * 83^{*} 10^{-6}}=-19.4 \mathrm{~mm}$
Example (3): Find y_{C} and y_{c}^{\prime}
if $p=0$ and $E I=20 \mathrm{MN} / \mathrm{m}^{2}$
Solution:
$E l y^{n}=M=-20 x-20 x \cdot \frac{x}{2}=-20 x-10 x^{2}$
$E I y^{\prime}=-10 x^{2}-\frac{10}{3} x^{3}+A$

Ely $=-\frac{10}{3} x^{3}-\frac{10}{12} x^{4}+A x+B$
Boundary conditions : (1) At $x=4 m \Rightarrow y^{\prime}=0=-10(4)^{2}-\frac{10}{3}(4)^{3}+A \Rightarrow A=373.3$

$$
\text { (2) At } x=4 m
$$

$$
\Rightarrow y=0=-\frac{10}{3}(4)^{3}-\frac{5}{6}(4)^{t}+4^{* 373.3 \Rightarrow B=-1066.6}
$$

$y_{c}^{\prime} a t x=0=\frac{1}{20^{*} 10^{3}}(373.3)=18.667 * 10^{-3} \mathrm{rad}$
$y_{c} a t x=0=\frac{-1}{20^{*} 10^{3}}(1066.6)=-53^{*} 10^{-3} \mathrm{~m}$
Example; (3B): Find the value of the force P to reduce the deflection of point c to the half?

Solution :

(1) $E I y^{n}=M=-20 x-20 x \cdot \frac{x}{2}=-20 x-10 x^{2}+P(x-2)$
$E l y^{\prime}=-10 x^{2}-\frac{10}{3} x^{3}+\frac{1}{2} P(x-2)^{2}+A$
$E I y=-\frac{10}{3} x^{3}-\frac{10}{12} x^{4}+\frac{1}{6} P(x-2)^{3}+A x+B$
Boundary conditions:

1. At $x=0 \Rightarrow y=26.5 * 10^{-3} m \Rightarrow B=-20 * 10^{3} * 26.5 * 10^{-3}=-530$
2. At $x=4 m \Rightarrow y=0=-\frac{10}{3}(4)^{3}-\frac{5}{6}(4)^{4}+\frac{1}{6} P(2)^{3}+4 A-530 \rightarrow(1)$
3. At $x=4 m \Rightarrow y^{\prime}=0=-10(4)^{2}-\frac{10}{3}(4)^{3}+\frac{1}{2} P(2)^{2}+A \rightarrow(2)$

From (1) and (2) $P=80 \mathrm{KN}$
Example (4): Find y at the mid-point if
$d=450 \mathrm{~mm} \sigma_{\max }=100 \mathrm{MN} / \mathrm{m}^{2}$
and $E=210 \mathrm{GN} / \mathrm{m}^{2}$
Solution: Ely ${ }^{\prime \prime \prime \prime}=W x=-15-\frac{45 x}{L}$
$E I y^{\prime \prime}=-15 x-\frac{45 x^{2}}{2 L}+A=Q x$
$E l y^{\prime \prime}=-\frac{15}{2} x^{2}-\frac{45}{6 L} x^{3}+A x+B=M x$
$E I y^{\prime}=-\frac{15}{6} x^{3}-\frac{45}{24 L} x^{4}+\frac{1}{2} A x^{2}+B x+C$
Ely $=-\frac{15}{24} x^{4}-\frac{45}{120 L} x^{5}+\frac{1}{6} A x^{3}+\frac{1}{2} B x^{2}+C x+D$
Boundary conditions:
l. $A t x=0 \Rightarrow y=0 \Rightarrow D=0$
3. $A t x=7 m \Rightarrow M=0=-7.5(7)^{2}-\frac{45}{7 * 6}(7)^{3}+7 A \Rightarrow A=105$
4. At $x=7 m \Rightarrow y=0=-\frac{15}{24}(7)^{2}-\frac{45}{120^{*} 7}(7)^{3}+\frac{1}{6}(105)(7)^{3}+7 C \Rightarrow C=-514.5$
$\therefore E l y=-\frac{15}{24} x^{4}-\frac{45}{120 L} x^{5}+\frac{105}{6} x^{3}-514.5 x$
$E l y^{*}=-15 x-\frac{45}{2 L} x^{2}+105$
At $x=3.5 m \quad E I y=-1172.35$
(8) $\sigma_{\text {max }}=\frac{M_{\operatorname{matit}} y_{\max }}{I}$
$M_{\max }$ Occur at $Q_{x}=0 \Rightarrow-15 x-\frac{45}{2 L} x^{2}+105=0$
$\Rightarrow x^{2}+4.667 x-32.667=0 \Rightarrow x_{y}=-8.5 m($ Neglect $)$

$$
x_{2}=3.8 \mathrm{~m}
$$

Substituting this value in equation of M_{x}
$M_{\max }=-\frac{15}{2}(3.84)^{2}-\frac{45}{6 * 7}(3.84)^{3}+105(3.84)=232 \mathrm{KN} . \mathrm{m}$
$100 * 10^{6}=\frac{232 * 10^{3} * \frac{450}{2} * 10^{-3}}{I} \Rightarrow I=552 * 10^{-6} \mathrm{~m}^{*}$
$552 * 10^{-6} * 210^{*} 10^{6} y=-1172.36 \Rightarrow y=-10.67 \mathrm{~mm}$

INDETERMINATE BEAMS

DEPTNTT7ONS They are beams with extra supports. The reactions at these supports can not be determined using the equations of equilibrium only, rather the deflection and slope of beams must be concerned.

1. Built - in beams with concentrated loads:

$$
\begin{aligned}
& \sum F y=0 \Rightarrow R_{d}+R_{d}=W \quad \rightarrow(l) \\
& \sum M_{n}=0 \Rightarrow-M_{d}+R_{A} \cdot L-W \cdot b+M_{N}=0 \quad \rightarrow(2) \\
& E y^{\prime \prime}=M_{x}=-M_{A} x^{\prime \prime}+R_{1} x-W(x-a) \\
& E l y^{\prime}=-M_{d} x+\frac{l}{2} R_{d} x^{2}-\frac{l}{2} W(x-a)^{2}+A \\
& E l y=-\frac{l}{2} M_{A} x^{2}+\frac{l}{6} R_{A} x^{3}-\frac{l}{6} W(x-a)^{3}+A x+B
\end{aligned}
$$

Boundary conditions:

1. At $x=0 \quad \Rightarrow y=0 \quad \Rightarrow B=0$
2. At $x=0 \quad \Rightarrow y^{\prime}=0 \quad \Rightarrow A=0$
3. At $x=L \quad \Rightarrow y^{\prime}=0=-M_{A} L+\frac{1}{2} R_{A} L^{2}-\frac{I}{2} W(L-a)^{2} \rightarrow(3)$
4. At $x=L \quad \Rightarrow y=0=-\frac{1}{2} M_{A} L^{2}+\frac{1}{6} R_{A} L^{3}-\frac{1}{6} W(L-a)^{3} \rightarrow(4)$

Four equations with Four unknown ($R_{d}, R_{B}, M_{+}, M_{B}$)
2. Simply supported beam with concentrated loads:

$$
\begin{aligned}
& \sum F y=0 \quad \Rightarrow R_{A}+R_{n}+R_{t}=W \quad \rightarrow(1) \\
& \sum M_{c}=0 \quad \Rightarrow R_{A} L-W \cdot a+R_{n} b=0 \quad \rightarrow(2) \\
& E I y^{\prime \prime}=M=R_{A} x-W(x-c)+R_{n}(x-d) \\
& E l y^{\prime}=\frac{1}{2} R_{A} x^{2}-\frac{1}{2} W(x-c)^{2}+\frac{1}{2} R_{n}(x-d)^{2}+A \\
& E I y=\frac{1}{6} R_{A} x^{3}-\frac{1}{6} W(x-c)^{2}+\frac{1}{6} R_{n}(x-d)^{3}+A x+B
\end{aligned}
$$

Boundary conditions:

1. At $x=0 \quad \Rightarrow y=0 \quad \Rightarrow B=0$
2. At $x=d \quad \Rightarrow y=0=\frac{1}{6} R_{A} d^{3}-\frac{1}{6} W(d-c)^{4}+A d \quad \rightarrow(3)$
3. At $x=L \quad \Rightarrow y=0=\frac{1}{6} R_{i} L^{3}-\frac{1}{6} W(L-c)^{\prime}+\frac{1}{6} R_{n}(L-d)^{\prime}+A L \quad \rightarrow(4)$

Four equations with Four unknown (R_{A}, R_{B}, R_{C}, A)
3. Built - in beams with movement of support:
$\sum F y=0 \quad \Rightarrow R_{A}=R_{B} \quad \rightarrow(l)$
$\sum M B=0 \quad \Rightarrow M_{A}+M_{B}=R_{A} \cdot L$
$E I y^{\prime \prime}=M=-M_{d} x^{0}+R_{d} x$
$E I y^{\prime}=-M_{A} x+\frac{l}{2} R_{A} x^{2}+A$

$$
E I y=-\frac{l}{2} M_{A} x^{2}+\frac{l}{6} R_{A} x^{3}+A x+B
$$

Boundary conditions:
7. At $x=0 \quad \Rightarrow y=0 \quad \Rightarrow B=0$
2. At $x=0 \quad \Rightarrow y^{\prime}=0 \quad \Rightarrow A=0$
3. At $x=L \quad \Rightarrow y=\delta \Rightarrow E I \delta=-\frac{1}{2} M_{A} L^{2}+\frac{1}{6} R_{A} L^{3} \quad \rightarrow(3)$
4. At $x=L \quad \Rightarrow y^{\prime}=0 \Rightarrow 0=-M_{A} L+\frac{I}{2} R_{A} L^{2} \quad \rightarrow(4)$

Four equations with Four unknown ($R_{A}, R_{B}, M_{f}, M_{R}$)

Example (1): $I=42 * 10^{-6} \mathrm{~m}^{+} \quad y_{\max }=100 \mathrm{~mm}$ Find $\sigma_{\max }$.
Solution:
$\sum F y=0 \Rightarrow R_{A}+R_{B}+20=40+30 * 3 \rightarrow(I)$

$\sum M B=0 \Rightarrow R A * 3-M A+20 * 1.8-40 * 1.2-30 * 3 * 1.5+M B=0 \rightarrow(2)$
$E l y^{\prime \prime}=M=-M_{A} x^{a}+R_{A} x+20(x-1.2)-40(x-1.8)-30 x * \frac{x}{2}$
$E l y^{\prime}=-M_{d} x+\frac{1}{2} R_{A} x^{2}+10(x-1.2)^{2}-20(x-1.8)^{2}-5 x^{3}+A$
$E I y=-\frac{1}{2} M_{A} x^{2}+\frac{1}{6} R_{A} x^{3}+\frac{10}{3}(x-1.2)^{3}-\frac{20}{3}(x-1.8)^{3}-\frac{5}{4} x^{4}+A x+B$

Boundary conditions:

1. At $x=0 \quad \Rightarrow y=0 \quad \Rightarrow B=0$
2. At $x=0 \quad \Rightarrow y^{\prime}=0 \quad \Rightarrow A=0$
3. At $x=3 m \Rightarrow y^{\prime}=0=-M_{A}(3)+\frac{1}{2} R_{A}(3)^{2}+10(1.8)^{2}-20(1.2)^{2}-5(3)^{3} \rightarrow(3)$
4. At $x=3 m \quad \Rightarrow y=0=-\frac{1}{2} M_{1}(3)^{2}+\frac{1}{6} R_{1}(3)^{3}+\frac{10}{3}(1.8)^{1}-\frac{21}{3}(1.28)^{1}-\frac{1}{4}(3)^{\prime} \rightarrow(d)$

From equations (3) and (4) $\Rightarrow M_{1}=25.4 \mathrm{KN} . \mathrm{m}$ $R_{1}=46 . / \mathrm{KN}$
Substituting $R_{A}=46.1 \mathrm{KN}$ in eq.(1) $R_{\theta}=63.9 \mathrm{KN}$
Substituting R_{1} and M_{1} in eq.(2) $\quad M_{n}=349 \mathrm{KN} . \mathrm{m}$
Depending on shear force diagram the maximum bending momen occur at one of three points $(A, B, a t, x=1,8 m)$
At $x=1.8 \mathrm{~m} \Rightarrow M=-24.4+46.1(1.8)+20(0.6)-15(1.8)^{2}=21.04 \mathrm{KN} . \mathrm{m}$
$\therefore M_{\max }=34 K N . m$ at B
I) $\sigma_{\max }=\frac{M_{\max } Y_{\max }}{I}=\frac{34 * 10^{3} * 100 * 10^{-3}}{42 * 10^{-6}}=81 * 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$

Example(2): $E I=14 \mathrm{MN} / \mathrm{m}^{2}$
Find $R A, R B, M A, M B$ and $y c$
Sol:

$\sum F y=0 \Rightarrow R_{1}+R_{B}=40+2.4(30) \quad \rightarrow(l)$
$\sum M B=0$
$\Rightarrow-M_{A}+R_{A}(4)-40(2.4)-30(2.4) \frac{2.4}{2}+M_{B}=0 \quad \rightarrow(2)$
EI $y^{\prime \prime}=M=-M_{A} x^{0}+R_{A} x--40(x-1.6)-\frac{1}{2}(30)(x-1.6)^{2}$
El $y^{\prime}=-M_{4} x+\frac{1}{2} R_{4} x^{2}--20(x-1.6)^{2}-5(x-1.6)^{2}+A$
El $y=-\frac{1}{2} M_{1} x^{2}+\frac{1}{6} R_{1} x^{3}--\frac{20}{3}(x-1.6)^{+}-\frac{5}{4}(x-1.6)^{4}+A x+B$

1. At $x=0 \quad \Rightarrow y=0 \quad \Rightarrow B=0$
2. At $x=0 \quad \Rightarrow y^{\prime}=0 \quad \Rightarrow A=0$
3. Al $x=4 m \quad \Rightarrow y^{\prime}=0=-M_{4}(4)+\frac{1}{2} R_{1}(4)^{2}+20(2.4)^{2}-5(2.4)^{\prime} \rightarrow(3)$
4. $A t x=3 m \quad \Rightarrow y=0=-\frac{1}{2} M_{A}(4)^{2}+\frac{1}{6} R_{A}(4)^{3}+\frac{20}{3}(2.4)^{3}-\frac{5}{4}(2.4)^{t} \rightarrow(4)$

From equations (3) and (4) $\Rightarrow R A=44.1 K N, M A=42.12 \mathrm{KN} . \mathrm{m}$
Substituting these values in equation (l) $\Rightarrow R B=67.9 \mathrm{KN}$
Substituting these values in equation (2) $\Rightarrow M B=48.12 \mathrm{KN} \mathrm{m}$
$\therefore E I Y_{c}=-\frac{1}{2}(42.12)(1.6)^{2}+\frac{1}{6}(44.1)(1.6)^{1}$
$\therefore Y_{C}=\frac{-23.75}{14^{*} 10^{3}}=-1.7^{*} 10^{-1} \mathrm{~m}=-1.7 \mathrm{~mm}$
Example : 3: $E=210 G N / m^{2} \quad l=90^{*} 10^{*} m^{\prime}$ find R_{A}, R_{n}, M_{A} and M_{N}
$\sum F y=0 \quad \Rightarrow R_{d}=R_{g} \quad \rightarrow(l)$
$\sum M B=0 \quad \Rightarrow M_{1}+M_{\mathrm{n}}=R_{d} .8 \quad \rightarrow(2)$

$E l y^{n}=M_{x}=-M_{A} x^{0}+R_{d} x$
$E l y^{\prime}=-M_{A} x+\frac{l}{2} R_{A} x^{2}+A$
$E l y=-\frac{l}{2} M_{A} x^{2}+\frac{l}{6} R_{A} x^{3}+A x+B$
Boundary conditions:

1. At $x=0 \quad \Rightarrow y^{\prime}=0 \quad \Rightarrow A=0$
2. At $x=0 \quad \Rightarrow y=12 \mathrm{~mm} \quad \Rightarrow 90^{*} 10^{-8} * 210^{*} 10^{6} * 0.012=B=226.8$
3. $A\left(x=8 m \quad \Rightarrow y^{\prime}=0=-\frac{1}{2} R_{1}(8)^{2}-M_{1}(8) \Rightarrow R_{1}=\frac{M_{A}}{4} \rightarrow(3)\right.$
4. At $x=8 m \quad \Rightarrow y=0 \Rightarrow 0=\frac{1}{6} R_{A}(8)^{7}-\frac{1}{2} M_{A}(8)^{7}+226.8$

$$
\Rightarrow 85.33 R_{A}-32 M_{1}+226.8=0 \quad \rightarrow(4)
$$

From equations (3) and (4) $\Rightarrow R_{4}=5.3156 \mathrm{KN} \quad M_{A}=21.26 \mathrm{KN} \mathrm{m}$
Substituting these values in (1) and (2) to get :
$R_{n}=5.3156 \mathrm{KN} \quad M_{n}=21.26 \mathrm{KN} . \mathrm{m}$

Thin Cylinders and spheres

When the thickness of the wall of the cylinderis less than $(1 / 20)$ of the diameter of cylinder then the cylinder is considered as thin cylinder. Otherwise it is termed as thick cylinder.

Equilibrium of half of the cylinder:
P.d. $L=2 \sigma_{H}, T . L$

L=Length of the cylinder $d=$ Diameter of cylinder $t=$ thickness , of cylinder $P=$ Internal Pressure due to fluid. Circumferential Stress or Hoop Stress $\left(\sigma_{H}\right)$. Longitudinal Stress (σ_{L})

$\sigma_{H}=\frac{P_{A t}}{2 . t}$
Longitudinal stress: Consider now the cylinder as shown. Total force on the end of the cylinder owing to internal pressure: pressure \times area $=p \times \pi d^{2} / 4=$ $\sigma_{\text {L. T. }}$ D.t

$$
\sigma_{l}=\frac{P \cdot d}{4 . t}
$$

Change in Length:
The change in length of the cylinder may be determined from the longitudinal strain, i.e. neglecting the radial stress.

$$
\text { Longitudinal strain }=\frac{1}{E}\left[\sigma_{L}-v \sigma_{H}\right]
$$

and

$$
\begin{aligned}
\text { change in length } & =\text { longitudinal strain } \times \text { original length } \\
& =\frac{1}{E}\left[\sigma_{L}-v \sigma_{H}\right] L \\
& =\frac{p d}{4 t E}[1-2 v] L
\end{aligned}
$$

Change in Diameter:

$$
\begin{gathered}
\epsilon_{H}=\frac{1}{E}\left(\sigma_{H}-v \sigma_{L}\right) \\
\frac{\pi(D+\Delta D)}{\pi D}=\frac{1}{E}\left(\frac{P D}{2 t}-v \frac{P D}{4 t}\right) \\
\Delta D=\frac{P D^{2}}{4 t E}(2-v)
\end{gathered}
$$

Change in Internal volume:

$$
\begin{aligned}
V=\frac{\pi}{4} D^{2} L & \rightarrow \Delta V=\frac{\pi}{4}\left(D^{2} \Delta L+L \cdot D \cdot \Delta D\right) \\
\Delta V & =\frac{\pi}{4} D^{2} L\left(\frac{\Delta L}{L}+2 \frac{\Delta D}{D}\right)
\end{aligned}
$$

$$
\begin{gathered}
\Delta V=V\left[\frac{P D}{4 t E}(1-2 v)+\frac{P D}{4 t E}(2-v)\right] \\
\Delta V=V\left[\frac{P D}{4 t E}(5-4 v)\right]
\end{gathered}
$$

Thin shperes under internal pressure:
Equilibrium of half of the sphere:
Total force on the end of the cylinder owing to
internal pressure: pressure \times area $=p \times \pi d^{2} /$ $4=\sigma_{H} \cdot \pi \cdot$.D.t

$$
\begin{gathered}
\sigma_{H}=\frac{P \cdot d}{4 . t} \\
\epsilon_{H}=\frac{1}{E}\left(\sigma_{H}-v \sigma_{L}\right) \\
\frac{\pi(D+\Delta D)}{\pi D}=\frac{1}{E}\left(\frac{P D}{4 t}-v \frac{P D}{4 t}\right) \\
\Delta D=\frac{P D^{2}}{4 t E}(1-v) \\
V=\frac{\pi}{6} D^{3} \quad \rightarrow \Delta V=\frac{\pi}{6}\left(3 D^{2} \Delta D\right) \\
\Delta V=V \cdot\left(3 \frac{\Delta D}{D}\right)=\Delta D=\frac{3 P D}{4 t E}(1-v)
\end{gathered}
$$

Vessels subjected to fluid pressure :

If a fluid is used as the pressurisation medium the fluid itself will change in volume as pressure is increased and this must be taken into account when calculating the amount of fluid which must be pumped into the cylinder in order to raise the pressure by a specified amount, the cylinder being initially full of fluid at atmospheric pressure. Now the bulk modulus of a fluid is defined as follows:

$$
\text { bulk modulus } K=\frac{\text { volumetric stress }}{\text { volumetric strain }}
$$

where, in this case, volumetric stress $=$ pressure p
and

$$
\text { volumetric strain }=\frac{\text { change in volume }}{\text { original volume }}=\frac{\delta V}{V}
$$

\therefore

$$
K=\frac{p}{\delta V / V}=\frac{p V}{\delta V}
$$

i.e.

$$
\text { change in volume of fluid under pressure }=\frac{p V}{K}
$$

The extra fluid required to raise the pressure must, therefore, take up this volume together with the increase in internal volume of the cylinder itself.
$\therefore \quad$ extra fluid required to raise cylinder pressure by p

$$
=\frac{p d}{4 t E}[5-4 v] V+\frac{p V}{K}
$$

Similarly, for spheres, the extra fluid required is

$$
=\frac{3 p d}{4 t E}[1-v] V+\frac{p V}{K}
$$

Abstract

Example: (a) A sphere, 1 m internal diameter and 6 mm wall thickness, is to be pressure-tested for safety purposes with water as the pressure medium. Assurning that the sphere is initially filled with water at atmospheric pressure, what extra volume of water is required to be pumped in to produce a pressure of $3 \mathrm{MN} / \mathrm{m}^{2}$ gauge? For water, $\mathrm{K}=2.1 \mathrm{GN} / \mathrm{m}^{2}$. (b) The sphere is now placed in service and filled with gas until there is a volume change of $72 \times 10^{-6} \mathrm{~m}^{3}$. Determine the pressure exerted by the gas on the walls of the sphere. (c) To what value can the gas pressure be increased before failure occurs according to the maximum principal stress theory of elastic failure? For the material of the sphere $E=200 \mathrm{GN} / \mathrm{m}^{2}, \mathrm{v}=0.3$ and the yield stress σ_{y}, in simple tension $=280 \mathrm{MN} / \mathrm{m}^{2}$.

Solution

(a) Bulk modulus $K=\frac{\text { volumetric stress }}{\text { volumetric strain }}$

Now volumetric stress $=$ pressure $p=3 \mathrm{MN} / \mathrm{m}^{2}$
and volumetric strain $=$ change in volume \div original volume
i.e.

$$
K=\frac{p}{\delta V / V}
$$

$\therefore \quad$ change in volume of water $=\frac{p V}{K}=\frac{3 \times 10^{6}}{2.1 \times 10^{9}} \times \frac{4 \pi}{3}(0.5)^{3}$

$$
=0.748 \times 10^{-3} \mathrm{~m}^{3}
$$

(b) From eqn. (9.9) the change in volume is given by

Cylindrical vessel with hemispherical ends:

Consider now the vessel as shown in which the wall thickness of the cylindrical and hemispherical portions may be different (this is sometimes necessary since the hoop stress in the cylinder is twice that in a sphere of the
 same radius and wall thickness). For the purpose of the calculation the internal diameter of both portions is assumed equal. From the preceding sections the following formulae are known to apply.
(a) For the cylindrical portion:

$$
\text { hoop or circumferential stress }=\sigma_{H_{c}}=\frac{p d}{2 t_{c}}
$$

$$
\text { longitudinal stress }=\sigma_{L_{\mathrm{r}}}=\frac{p d}{4 t_{c}}
$$

hoop or circumferential strain $=\frac{1}{E}\left[\sigma_{H_{c}}-v \sigma_{L_{c}}\right]=\frac{p d}{4 t_{c} E}[2-v]$
(b) For the hemispherical ends:

$$
\text { hoop stress }=\sigma_{H_{s}}=\frac{p d}{4 t_{s}}
$$

$$
\text { hoop strain }=\frac{1}{E}\left[\sigma_{H_{3}}-v \sigma_{H_{3}} \cdot=\frac{p d}{4 t_{3} E}[1-v]\right.
$$

Thus equating the two strains in order that there shall be no distortion of the junction

$$
\frac{p d}{4 t_{c} E}[2-v]=\frac{p d}{4 t_{s} E}[1-v] \quad \text { i.e. } \quad \frac{t_{s}}{t_{c}}=\frac{(1-v)}{(2-v)}
$$

$$
\begin{aligned}
\delta V & =\frac{3 p d}{4 t E}(1-v) V \\
\therefore \quad 72 \times 10^{-6} & =\frac{3 p \times 1 \times \frac{4}{3} \pi(0.5)^{3}(1-0.3)}{4 \times 6 \times 10^{-3} \times 200 \times 10^{9}} \\
\therefore \quad p & =\frac{72 \times 10^{-6} \times 4 \times 6 \times 200 \times 10^{5} \times 3}{3 \times 4 \pi(0.5)^{3} \times 0.7} \\
& =314 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}=314 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

(c) The maximum stress set up in the sphere will be the hoop stress,
i.e.

$$
\sigma_{1}=\sigma_{H}=\frac{p d}{4 t}
$$

Now, according to the maximum principal stress theory failure will occur when the maximum principal stress equals the value of the yield stress of a specimen subjected to simple tension,
i.e. when

$$
\begin{aligned}
\sigma_{1} & =\sigma_{y}=280 \mathrm{MN} / \mathrm{m}^{2} \\
280 \times 10^{6} & =\frac{p d}{4 t} \\
p & =\frac{280 \times 10^{6} \times 4 \times 6 \times 10^{-3}}{1} \\
& =6.72 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}=6.7 \mathrm{MN} / \mathrm{m}^{2}
\end{aligned}
$$

Thus

The sphere would therefore yield at a pressure of $6.7 \mathrm{MN} / \mathrm{m}^{2}$.

With the normally accepted value of Poisson's ratio for general steel work of 0.3 , the thickness ratio becomes :

$$
\frac{t_{s}}{t_{c}}=\frac{0.7}{1.7}
$$

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the hemispherical ends for no distortion of the junction to occur.

Example: A cylinder has an internal diameter of 230 mm , has walls 5 mm thick and is 1 m long. It is found to change in internal volume by $12.0 \times \mathrm{m}^{3}$ when filled with a liquid at a pressure p. If $E=200 \mathrm{GN} / \mathrm{m}^{2}$ and $\gamma=0.25$, and assuming rigid end plates, determine:
(a) the values of hoop and longitudinal stresses;
(c) the necessary change in pressure p to produce a further increase in internal volume of (longitudinal) are assumed; 15%. The liquid may be assumed incompressible.

1. Determine the change in volume of a thin cylinder of original volume $65.5 \times 10-\mathrm{m} 3$ and length 1.3 m if its wall thickness is 6 mm and the internal pressure $14 \mathrm{bar}\left(1.4 \mathrm{MN} / \mathrm{m}^{2}\right)$. For the ylinder material $\mathrm{E}=210 \mathrm{GN} / \mathrm{m}^{2} ; v=0.3$. ans: $17.5 \times 10.6 \mathrm{~m}^{3}$.]
2. What must be the wall thickness of a thin spherical vessel of diameter 1 m if it is to withstand an internal pressure of 70 bar ($7 \mathrm{MN} / \mathrm{m}^{2}$) and the hoop stresses are limited to $270 \mathrm{MN} / \mathrm{m}^{2}$
3. A steel cylinder 1 m long, of 150 mm internal diameter and plate thickness 5 mm , is subjected to an internal pressure of 70 bar ($7 \mathrm{MN} / \mathrm{m}^{2}$); the increase in volume owing to the pressure is $16.8 \times \mathrm{m} 3$. Find the values of Poisson's ratio and the modulus of rigidity. Assume $\mathrm{E}=210 \mathrm{GN} / \mathrm{m}^{2}$.
4. A spherical vessel of 1.7 m diameter is made from 12 mm thick plate, and it is to be subject4 to a hydraulic test. Determine the additional volume of water which it is necessary to pump into the vessel, which the vessel is initially just filled with water, in order to raise the pressure to the proof pressure of $116 \mathrm{bar}\left(11.6 \mathrm{MN} / \mathrm{m}^{2}\right.$). The bulk modulus of water is $2.9 \mathrm{GN} / \mathrm{m}^{2}$. For the material of the vessel, $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}, \mathrm{v}=0.3$. ans $26.14 \times 10-6 \mathrm{~m}^{3}$

Thick cylinders:

Lame theory:

Consider the thick cylinder as shown. The stresses acting on an element of unit length at radius rare as shown in Fig. the radial stress increasing from σ, to $\sigma,+d \sigma$, over the element thickness dr (all stresses are assumed tensile), For radial equilibrium of the element:

$$
\sum \mathrm{F}_{\mathrm{r}}=\left(\sigma_{r}+d \sigma_{r}\right)(r+d r) d \theta \times 1-\sigma_{r} \times r d \theta \times 1=2 \sigma_{H} \times d r \times 1 \times \sin \frac{d \theta}{2}
$$

For small angles:

$$
\sin \frac{d \theta}{2}=\frac{d \theta}{2} \text { radian }
$$

Therefore, neglecting second-order small quantities,

$$
\begin{align*}
r d \sigma_{r}+\sigma_{r} d r & =\sigma_{H} d r \quad \sigma_{r}+r \frac{d \sigma_{r}}{d r}=\sigma_{H} \\
\text { Or: } \quad \sigma_{H}-\sigma_{r} & =r \frac{d \sigma_{r}}{d r} \tag{1}
\end{align*}
$$

Assuming now that plane sections remain plane, i.e. the longitudinal strain. zL is constant across the wall of the cylinder:

$$
\varepsilon_{L}=\frac{1}{E}\left[\sigma_{L}-v \sigma_{r}-v \sigma_{H}=\frac{1}{E}\left[\sigma_{L}-v\left(\sigma_{r}+\sigma_{H}\right)\right]=\right.\text { constant }
$$

It is also assumed that the longitudinal stress σ_{l} is constant across the cylinder walls at points remote from the ends

$$
\begin{equation*}
\sigma_{r}+\sigma_{H}=\text { constant }=2 A(\text { say }) \tag{2}
\end{equation*}
$$

Substituting in (1) for $\sigma_{r}: \quad 2 A-\sigma_{r}-\sigma_{r}=r \frac{d \sigma_{r}}{d r}$

Multiplying through by r and rearranging, $\quad 2 \sigma_{r} r+r^{2} \frac{d \sigma_{r}}{d r}-2 A r=0$

$$
\frac{d}{d r}\left(\sigma, r^{2}-A r^{2}\right)=0
$$

Therefore, integrating,

$$
\sigma_{r} \mathrm{r}^{2}-A r^{2}=\text { constant }=-B(\text { say }) \quad \sigma_{r}=A-\frac{B}{r^{2}}
$$

And from equation (2) :

$$
\sigma_{H}=A+\frac{B}{r^{2}}
$$

Thick cylinder - internal pressure only:
Consider now the thick cylinder as shown subjected to an internal pressure P, the extemal pressure being zero:

$$
\text { At } r=R_{1} \quad \sigma_{r}=-P \quad \text { and } \quad \text { at } r=R_{2} \quad \sigma,=0
$$

The internal pressure is considered as a negative radial stress since it will produce a radial compression (i.e. thinning) of the cylinder walls and the normal stress convention takes compression as negative.
Substituting the above conditions in radial stress equation:

$$
\begin{gathered}
-P=A-\frac{B}{R_{1}^{2}} \quad \text { And } \quad 0=A-\frac{B}{R_{2}^{2}} \\
A=\frac{P R_{1}^{2}}{\left(R_{2}^{2}-R_{1}^{2}\right)} \quad \text { and } \quad B=\frac{P R_{1}^{2} R_{2}^{2}}{\left(R_{2}^{2}-R_{1}^{2}\right)}
\end{gathered}
$$

radial stress $\sigma_{r}=A-\frac{B}{r^{2}}=\frac{P R_{1}^{2}}{\left(R_{2}^{2}-R_{1}^{2}\right)}\left[1-\frac{R_{2}^{2}}{r^{2}}\right]$
where k is the diameter ratio $D_{2} / D_{1}=R_{2} / R_{1}$
and

$$
\text { hoop stress } \begin{aligned}
\sigma_{H} & =\frac{P R_{1}^{2}}{\left(R_{2}^{2}-R_{1}^{2}\right)}\left[1+\frac{R_{2}^{2}}{r^{2}}\right] \\
& =\frac{P R_{1}^{2}}{\left(R_{2}^{2}-R_{1}^{2}\right)}\left[\frac{r^{2}+R_{2}^{2}}{r^{2}}\right]=P\left[\frac{\left(R_{2} / r\right)^{2}+1}{k^{2}-1}\right]
\end{aligned}
$$

Longitudinal stress: Consider now the cross-section of a thick cylinder with closed ends subjected to an internal pressure P^{\prime} and an external pressure P_{2},

For horizontal equilibrium:

$$
P_{1} \times \pi R_{1}^{2}-P_{2} \times \pi R_{2}^{2}=\sigma_{L} \times \pi\left(R_{2}^{2}-R_{1}^{2}\right)
$$

where σ_{L} is the longitudinal stress set up in the cylinder walls,

$$
\text { longitudinal stress } \sigma_{L}=\frac{P_{1} R_{1}^{2}-P_{2} R_{2}^{2}}{R_{2}^{2}-R_{1}^{2}}
$$

$\sigma_{L}=A$

Cbange of cylinder dimensions: (a) change in diameter

$$
\begin{aligned}
\varepsilon_{H} & =\frac{1}{E}\left[\sigma_{H}-v \sigma_{r}-v \sigma_{L}\right] \\
\Delta D & =\frac{2 r}{E}\left[\sigma_{H}-v \sigma_{r}-v \sigma_{L}\right]
\end{aligned}
$$

(b) Change of length:

$$
\Delta L=\frac{L}{E}\left[\sigma_{L}-\sigma v_{r}-v \sigma_{H}\right]
$$

Compound cylinders:

(a) shrinkage-internal cylinder:

$$
\text { At } r=R_{1}, \quad \sigma_{r}=0
$$

At $r=R_{c}, \quad \sigma_{r}=-p \quad$ (compressive since it tends to reduce the wall thickness) condition (b) shrinkage -external cylinder:

$$
\begin{array}{ll}
\text { At } r=R_{2}, & \sigma_{r}=0 \\
\text { At } r=R_{f}, & \sigma_{r}=-p
\end{array}
$$

condition (c) internal pressure -compound cylinder:
At $r=R_{2}, \quad \sigma_{r}=0$
At $r=R_{1}, \quad \sigma_{r}=-P_{1}$

Shrinkage or interference allowance:

$$
\begin{aligned}
& \text { since circumferential strain }=\text { diametral strain } \\
& \text { circumferential strain at radius } r \text { on outer cylinder }=\frac{2 \delta_{0}}{2 r}=\frac{\delta_{e}}{r}=\varepsilon_{H_{0}} \\
& \text { circumferential strain at radius } r \text { on inner cylinder }=\frac{2 \delta_{i}}{2 r}=\frac{\delta_{i}}{r}=-\varepsilon_{H_{4}}
\end{aligned}
$$

(negative since it is a decrease in diameter).

$$
\begin{aligned}
\text { Total interference or shrinkage } & =\delta_{o}+\delta_{i}=r \varepsilon_{H_{o}}+r\left(-\varepsilon_{H_{i}}\right) \\
& =\left(\varepsilon_{H_{e}}-\varepsilon_{H_{i}}\right) r
\end{aligned}
$$

Now assuming open ends, i.e. $\sigma_{L}=0$,

$$
\varepsilon_{H_{o}}=\frac{\sigma_{H_{0}}}{E_{1}}-\frac{v_{1}}{E_{1}}(-p) \quad \text { since } \sigma_{t_{0}}=-p
$$

and

$$
\varepsilon_{H_{i}}=\frac{\sigma_{H_{i}}}{E_{2}}-\frac{v_{2}}{E_{2}}(-p) \quad \text { since } \sigma_{r_{4}}=-p
$$

Therefore total interference or shrinkage allowance $\quad=\left[\frac{1}{E_{1}}\left(\sigma_{\mathrm{B}_{\mathrm{t}}}+v_{1} p\right)-\frac{1}{E_{2}}\left(\sigma_{n_{\mathrm{i}}}+v_{2} p\right)\right] r$
Generally, however, the tubes are of the same material.

$$
\text { Shrinkage allowance }=\frac{r}{E}\left(\sigma_{\mu_{*}}-\sigma_{\mu_{i}}\right)
$$

Example1:

A thin cylinder 75 mm internal diameter, 250 mm long with walls 2.5 mm thick is subjected to an internal pressure of $7 \mathrm{MN} / \mathrm{m}^{2}$. Determine the change in internal diameter and the change in length.

If, in addition to the internal pressure, the cylinder is subjected to a torque of 200 N m , find the magnitude and nature of the principal stresses set up in the cylinder. $E=200 \mathrm{GN} / \mathrm{m}^{2}$. $v=0.3$.

Example 1: A thick cylinder of 100 mm internal radius and 150 mm external radius is subjected to an internal pressure of $60 \mathrm{MN} / \mathrm{m}^{2}$ and an external pressure of $30 \mathrm{MN} / \mathrm{m}^{2}$. Determine the hoop and radial stresses at the inside and outside of the cylinder together with the longitudinal stress if the cylinder is assumed to have closed ends.

Solution:

$$
\begin{aligned}
& \text { at } r=0.1 \mathrm{~m}, \quad \sigma_{r}=-60 \mathrm{MN} / \mathrm{m}^{2} \quad \text { at } r=0.15 \mathrm{~m}, \quad \sigma_{r}=-30 \mathrm{MN} / \mathrm{m}^{2} \\
& -60=A-100 B \quad-30=A-44.5 B \\
& \mathrm{~B}=0.54 \text { and } \mathrm{A}=-6 \\
& \sigma_{H}=A+\frac{B}{r^{2}}=-6+0.54 \times 100=48 \mathrm{MN} / \mathrm{m}^{2} \\
& \text { and at } r=0.15 \mathrm{~m}, \quad \sigma_{H}=-6+0.54 \times 44.5=-6+24 \\
& =18 \mathrm{MN} / \mathrm{m}^{2}
\end{aligned}
$$

From eqn. (10.7) the longitudinal stress is given by

$$
\begin{aligned}
\sigma_{L} & =\frac{P_{1} R_{1}^{2}-P_{2} R_{2}^{2}}{\left(R_{2}^{2}-R_{1}^{2}\right)}=\frac{\left(60 \times 0.1^{2}-30 \times 0.15^{2}\right)}{\left(0.15^{2}-0.1^{2}\right)} \\
& =\frac{10^{2}(60-30 \times 2.25)}{1.25 \times 10^{2}}=-6 \mathrm{MN} / \mathrm{m}^{2} \quad \text { i.e. compressive }
\end{aligned}
$$

Example An external pressure of $10 \mathrm{MN} / \mathrm{m}^{2}$ is applied to a thick cylinder of internal diameter 160 mm and external diameter 320 mm . If the maximum hoop stress permitted on the inside wall of the cylinder is limited to $30 \mathrm{MN} / \mathrm{m}^{2}$, what maximum internal pressure can be applied assuming the cylinder has closed ends? What will be the change in outside diameter when this pressure is applied? $\mathrm{E}=207 \mathrm{GN} / \mathrm{m}^{2}, v=0.29$.

Combined stresses:

The circle used in the preceding section to derive some of the basic formulas relating to the transformation of plane stress was first introduced by the German engineer Otto Mohr (18351918) and is known as Mohr's circle for plane stress. This method is based on simple geometric considerations and does not require the use of specialized formulas. While originally designed for graphical solutions.

Example1: For the state of plane stress already considered as shown in figure, (a) Construct Mohr's circle, (b) Determine the principal stresses, (c) Determine the maximum shearing stress and the corresponding normal stress.

Solution:

(a)

Example2: single horizontal force P of magnitude 150 lb is applied to end D of lever ABD . Knowing that portion AB of the lever has a diameter of 1.2 in., determine (a) the normal and shearing stresses on an element located at point H and having sides parallel to the x and y axes, (b) the principal planes and the principal stresses at point H .

Example3: A stress element has $\sigma_{\mathrm{x}}=80 \mathrm{MPa}$ and $\tau_{\mathrm{xy}}=50 \mathrm{MPa}$ cw, as shown in Figure. Using Mohr's circle, find the principal stresses and directions, and show these on a stress element correctly aligned with respect to the xy coordinates. Draw another stress element to show τ_{1} and τ_{2}, find the corresponding normal stresses, and label the drawing completely.

Solution:

H.w:

1. Determine the principal stress developed at point A on the cross section of the beam at section $\mathrm{a}-\mathrm{a}$.

2. Determine the maximum in-plane shear stress developed at point A on the cross section of the beam at section $\mathrm{a}-\mathrm{a}$, which is located just to the left of the $60-\mathrm{kN}$ force. Point A is just below the flange.

3. Determine the equivalent state of stress if an element is oriented 25° counterclockwise from the element shown.

4. Determine the principal stress, the maximum in-plane shear stress, and average normal stress. Specify the orientation of the element in each case.

