ME 2201 - Calculus III 2021-2022 First Semester

Instructor: Dr. Abdulrahman M. AI Kawi Email: abd.mohammed@uoanbar.edu.iq

Chapter One

 Vectors

1.1 introduction

Some physical quantities describe only with there values such as temperature, area, length, mass, etc., theses quantities are called scalars.
other physical quantities are not enough to mention only their values, they need to mention also their direction, for example, force, velocity, acceleration, etc. these quantities are called vectors.

The vector usually represents by a directed line segment (arrow). The length is the magnitude of it and the direction of the arrow represents the direction of the vector.

The vector can be denoted by symbol

1.2 Some definitions of vectors

1.2. Magnitude of vector

The magnitude of a vector \vec{a} written $\left.\right|_{\vec{a}} \mid$ is the length of its representative directed line segment.

1.2.2 Unit vector

A unit vector \vec{u} is a vector of unit length, that is $|\vec{u}|=1$.

1.2.3 Equal vectors

Two vectors u and v, which have the same length and same direction, are said to be equal vectors even though they have different initial points and different terminal points. If u and \mathbf{v} are equal vectors we write $u=v$.

1.2.4 Zero vector

The zero vector, denoted 0 , is the vector whose length is 0 . Since a vector of length 0 does have any direction associated with it was shall agree that its direction is arbitrary; that is to say it can be assigned any direction we choose. The zero vector satisfies the property: $v+0=0+v=v$ for every vector v

1.2.5 Negative vector

If u is a nonzero vector, we define the negative of u, denoted $-u$, to be the vector whose magnitude (or length) is the same as the magnitude (or length) of the vector u, but whose direction is opposite to that of u.

1.2.6 Orthogonal vector

Two vectors \vec{A} and \vec{B} are said to be orthogonal when the angle between them is $\mathbf{9 0}$ degree or one of then is a zero vector .

1.3 Vectors algebra

1.3.1 Equality

$$
\begin{aligned}
\vec{a}=a_{1 i}+a_{2 j} & \text { and } \vec{b} \\
& a_{1}=b_{1} \& b_{1 i}+b_{2 j}=b_{2}
\end{aligned}
$$

These are two vectors are equal only if Then $\vec{a}=\vec{b}$

1.3.2 Addition and Subtraction

$\vec{a}=a_{1 i}+a_{2 j}$ and $\vec{b}=b_{1 i}+b_{2 j}$
$\vec{a}+\vec{b}=\left(a_{1}+b_{1}\right) i+\left(a_{2}+b_{2}\right) j$
$\vec{a}-\vec{b}=\left(a_{1}-b_{1}\right) i+\left(a_{2}-b_{2}\right) j$

1.3.3 Multiplication by a scalar

- If $\underset{\boldsymbol{a}}{\vec{a}}=\boldsymbol{a}_{1 i}+\boldsymbol{a}_{2 j}$ and \boldsymbol{S} is the scalar

$$
s \underset{\boldsymbol{a}}{\rightarrow}=\left(s a_{1}\right)_{i}+\left(s a_{2}\right)_{j}
$$

$$
-2 \underset{a}{a}
$$

- If (s) is positive, the direction of vector $\boldsymbol{s} \underset{\boldsymbol{a}}{ }$ at the same direction of vector \vec{a}
- If (s) is negative, the direction of vector $\boldsymbol{s} \underset{\boldsymbol{a}}{ }$ at the opposite direction of vector \vec{a}

Example 1.1 if $\vec{u}=5_{i}+2_{j}$ and $\vec{v}=1_{i}+4_{j}$ Find u+v
Solution

$$
\overrightarrow{u+v}=6_{i}+6_{j}
$$

1.4 unit vectors (i.j, \&k)

Let i, j and k are unit vectors
Where
(i) Is a unit vector in the positive \mathbf{x}-axis direction.
(j) Is a unit vector in the positive \mathbf{y}-axis direction
(k) Is a unit vector in the positive z-axis direction That $\mathrm{m}|\boldsymbol{i}|=|\boldsymbol{j}|=|k|=1$

And

i, j, and k are orthogonal
To find the unit vector for any Let $\quad \vec{a}=\mathbf{3}_{\boldsymbol{i}}+\mathbf{4}_{\boldsymbol{j}}$
unit vector of $a=\frac{a}{|a|}=\frac{3_{i}+4_{j}}{\sqrt{3^{2}+4^{2}}}=\frac{3_{i}+4_{j}}{5}=\frac{3}{5} i+\frac{4}{5} j$

1.5 Vector in plane

If $\overrightarrow{\mathbf{A}}$ is a vector from the origin (0) to the point $P(a, b)$.

$$
\begin{gathered}
\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{O P}}=\mathbf{a}_{\mathbf{i}}+\mathbf{b}_{\mathbf{j}} \\
|\overrightarrow{\mathbf{A}}|=\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}} \\
\propto+\boldsymbol{\beta}=\frac{\pi}{2}
\end{gathered}
$$

Unit vector $=\overrightarrow{\mathbf{U}}=\frac{\overrightarrow{\mathbf{A}}}{|\overrightarrow{\mathbf{A}}|}=\frac{\mathbf{a}_{\mathbf{i}}+\mathbf{b}_{\mathbf{j}}}{|\overrightarrow{\mathbf{A}}|}=\frac{\mathbf{a}}{|\overrightarrow{\mathbf{A}}|} \mathbf{i}+\frac{\mathbf{b}}{|\overrightarrow{\mathbf{A}}|} \mathbf{j}$

$$
\overrightarrow{\mathbf{u}}=\cos \propto i+\cos \beta \boldsymbol{j}
$$

Where
$\cos \alpha=\frac{\mathbf{a}}{|\vec{A}|}, \cos \beta=\frac{b}{|\vec{A}|}$

Example 1.2

Find the direction and the length of $\vec{A}=4 i+3 j$
Solution

$$
\vec{A}=|\vec{A}|=\sqrt{(4)^{2}+(3)^{2}}=5
$$

Length of
Unit vector of

$$
\vec{A}=\frac{A}{|\vec{A}|}=\frac{4}{5} i+\frac{3}{5} j
$$

$$
\cos \alpha=\frac{4}{5} \rightarrow \alpha=\cos ^{-1}\left(\frac{4}{5}\right) \rightarrow \alpha=36.8^{\circ}
$$

1.6 vector in space

- Suppose That A is a vector from the origin to a point $P(a, b, c)$

$$
\begin{aligned}
& \vec{A}=\overrightarrow{o p}=a i+b j+c k \text { then }\left.\right|_{\vec{A}} \mid=\sqrt{a^{2}+b^{2}+c^{2}} \\
& \text { unit vector }=\overrightarrow{\boldsymbol{u}}=\frac{\vec{A}}{|\vec{A}|}=\frac{\boldsymbol{a i}+\boldsymbol{b j}+\boldsymbol{c}}{|\vec{A}|} \boldsymbol{k} \\
& =\frac{a}{|\vec{A}|} i+\frac{b}{|\vec{A}|} j+\frac{c}{|\vec{A}|} k \\
& \vec{u}=\cos \alpha i+\cos \beta+\cos \gamma \\
& |\vec{u}|=1=(\cos \alpha)^{2}+(\cos \beta)^{2}+(\cos \gamma)^{2}
\end{aligned}
$$

Example 1.3

Find the unit vector of vector $\vec{v}=\mathbf{4 i}+\mathbf{3 j}+\mathbf{1 2 k}$
Solution
$|\vec{v}|=\sqrt{(4)^{2}+(3)^{2}+(12)^{2}}=13 \quad$ and $\quad \vec{u}=\frac{\vec{v}}{|\vec{v}|}=\frac{4}{13} i+\frac{3}{13} j+\frac{12}{13} k$

Example 1.4

Find a vector 6 units long in the direction of vector $\vec{A}=2 i+2 j-k$
Solution $\quad \underset{u}{u}=\frac{\vec{A}}{|\vec{A}|}=6 \frac{2 i+2 j-k}{\sqrt{(2)^{2}+(2)^{2}+(-1)^{2}}}=4 i+4 j-2 k$

$$
\text { vector }=6 \underset{u}{\vec{u}}=4 i+4 j-2 k
$$

Example 1.5

Find a vector of length 2 units that makes angle 60 degree with x-axis and 30 degree with \mathbf{y}-axis.
Solution

$$
\alpha=60^{\circ}, \quad B=300^{\circ} \quad \gamma=?
$$

$$
\begin{aligned}
& \quad(\cos \propto)^{2}+(\cos \beta)^{2}+(\cos \gamma)^{2}=1 \\
& \quad 0.25+0.75+(\cos \gamma)^{2}=1 \\
& \quad(\cos \gamma)^{2}=0, \quad \cos \gamma=0, \quad \mathrm{y}=90^{o} \\
& \vec{u}=\cos \alpha i+\cos \beta j+\cos \gamma k=0.5 i+0.86 j \\
& \vec{v}=2|\vec{v}| \cdot \vec{u}=2(0.5 i+0.86 j)=i+1.72 j \\
& 1.7 \text { vector between two points } \\
& \begin{array}{l}
\text { Let } A\left(a_{1}, a_{2}, a_{3}\right) \operatorname{and} B\left(b_{1}, b_{2}, b_{3}\right) \\
\text { Its possible to find a vectorbetwen A\&B } \\
\overrightarrow{A B}=\left(b_{1}-a_{1}\right) i+\left(b_{2}-a_{2}\right) j+\left(b_{3}-a_{3}\right) k
\end{array}
\end{aligned}
$$

Example 1.6
Find a vector and its unit vector from $\mathrm{P}(1,0,1)$ to $\mathrm{P} 2(3,2,0)$
Solution
$\xrightarrow[P_{1} P_{2}]{ }=(3-1) i+(2-0) j+(0-1) k$
$\left|\overrightarrow{P_{1} P_{2}}\right|=\sqrt{(2)^{2}+(2)^{2}+(-1)^{2}}=3 \quad$ and $\underset{u}{\rightarrow}=\frac{\overrightarrow{P_{1} P_{2}}}{\left|\overrightarrow{P_{1} P_{2}}\right|}=\frac{2}{3} i+\frac{2}{3} j-\frac{1}{3} k$

1.8 Mid point of line segments

The coordinates of the mid point M of the line segment joining two points $\mathrm{P} 1(\mathrm{X} 1, \mathrm{Y} 1)$ and $\mathrm{P} 2(\mathrm{X} 2, \mathrm{y} 2)$ and found by averasing the coordinates of P 1 and P2. That is,

$$
\begin{array}{r}
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
M=\left(\frac{3+7}{2}, \frac{-2+4}{2}\right)
\end{array}
$$

$$
P_{1}(3,-2) \text { and } P_{2}(7,4)
$$

Example 1.7

Find the midpoint of the segment joining $A(2,-1), B(-3,2)$ Solution
$c=\left(\frac{2-3}{2}, \frac{-1+2}{2}\right)=\left(\frac{-1}{2}, \frac{1}{2}\right)$
Example 1.8
Find the vector $\overrightarrow{o c}$ where \mathbf{C} is the midpoint between
$\overrightarrow{O C}=\left(-\frac{1}{2}-0\right) i+\left(\frac{1}{2}-0\right) j=-\frac{1}{2} i+\frac{1}{2} j$

Note: The coordinates of a point which divides the line in the ratio ${ }^{m_{1} / m_{2}}$ as shown in the Fig.

$$
M=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)
$$

Example 1.9

Find the vector $\overrightarrow{o M}_{\text {where }} M$ is a point divides the line between
$P_{1}(4,-2)$ and $P_{2}(-8,9)$ with a ratio $3 / 2$.
Solution

$$
m_{1} / m_{2}=3 / 2
$$

$M=\left(\frac{3(-8)+2(4)}{5}, \frac{3(9)+2(-2)}{5}\right)$
$M=\left(\frac{-16}{5}, \frac{23}{5}\right) \underset{O M}{\rightarrow}=\frac{-16}{5} i,+\frac{23}{5} j$

1.9 The Dot Product (Scalar Product)

A product of two vectors A and B can be formed in such a way that the result is a scalar.
The result is written $a \cdot b$ and called the dot product of a and b. The names scalar product and inner product are also used in place of the term dot product.

As shown in the Fig. where dot or scalar product $0 \leq \theta \leq \pi$. Then the dot product of a and b is defined as the number.

$$
\begin{aligned}
\vec{A} & =a_{1 i}+a_{2 j}+a_{3 k} \\
\vec{B} & =b_{1 i}+b_{2 j}+b_{3 k} \\
\vec{A} \cdot \vec{B} & =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=\left.\right|_{A}| |_{B} \mid \cos \theta
\end{aligned}
$$

1.9.1 Properties of the dot product

- $\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \mathbf{A}$
- $\lambda A \cdot \mu B=\mu A \cdot \lambda B=\lambda \mu A \cdot B$
- $\mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}$
- $\mathbf{A} \cdot(\lambda \mathbf{B}+\mu \mathbf{C})=\lambda \mathbf{A} \cdot \mathbf{B}+\mu \mathbf{A} \cdot \mathbf{C}$
- To find the angle between two vectors

$$
\cos \theta=\frac{A \cdot B}{|A||B|} \quad 0 \leq \theta \leq \pi
$$

- If the two vectors are parallel

$$
A \cdot B=|A||B| \quad \text { and } A \cdot A=|A|^{2}
$$

- if the two vectors are orthogonal

Also

$$
\begin{gathered}
A . B=0 \\
i . i=j \cdot j=k \cdot k=1 \\
i . j=j \cdot i=i . k=k \cdot i=j \cdot k=k \cdot j=0
\end{gathered}
$$

Example 1.10
Find $A \cdot B$ and the angle between the vectors a and b, given that

$$
A=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k} \text { and } B=2 i-j-2 k
$$

Solution

$$
\cos \theta=\frac{A \cdot B}{|A||B|}
$$

$$
|A|=\sqrt{(1)^{2}+(2)^{2}+(3)^{2}}=\sqrt{14} \text { and }|B|=\sqrt{(2)^{2}+(-1)^{2}+(-2)^{2}}=3
$$

$$
A . B=(1.2)+(2 .(-1))+(3 .(-2))=-6 \theta=\cos ^{-1}\left(\frac{-6}{\sqrt{14.3}}\right)=122.3^{\circ}
$$

1.9.1 The projection of a vector onto the line of another vector

The projection of vector a onto the line of vector b is a scalar, and it is the projecting a vector onto a line signed length of the geometrical projection of vector a onto a line parallel to b, with the sign positive for $0 \leq \theta<\pi / 2$ and negative for $\pi / 2<\theta \leq \pi$. This is illustrated in Fig below.

$$
\vec{C}=\operatorname{Proj} \underset{B}{\underset{B}{A}}=\frac{\overrightarrow{A \cdot B} \cdot \vec{B}}{|B|^{2}} \cdot \vec{B}
$$

1.11 Example

Find the vector projection of $\vec{\rightarrow}=i+j+k$ on $\rightarrow=2 i+2 j$ and then find the scalar component of vector A in the direction of vector B.
Solution
Let C is the vector projection

$$
\begin{aligned}
& \vec{C}=\operatorname{Proj} \vec{B} \vec{B}=\frac{\vec{A} \cdot \vec{B}}{|B|^{2}} \cdot \vec{B} \\
& \vec{A} \cdot \vec{B}=2+2+0=4 \quad|\vec{B}|^{2}=|\vec{B}| \cdot|\vec{B}|=4+4=8 \\
& \vec{C}=\frac{4}{8}(2 i+2 j)=i+j
\end{aligned}
$$

Scalar component $\quad|\vec{c}|=\frac{\vec{A} \cdot \vec{B}}{|\vec{B}|}=\frac{4}{2 \sqrt{2}}=\sqrt{2}$

- Example 1.12

Given a triangle $\Delta \mathrm{ABC}$ whose vertices are $\mathrm{A}(1,-1,0), \mathrm{B}(-2,3,1)$ and $C(0,1,-2)$, Find 1- the projection of vector $A B$ onto Vector $A C$.
2- The angle $\alpha=$ ABC
Solution
1- $\overrightarrow{A B}=(-2-1) i+(3+1) j+(1-0) k=-3 i+4 j+k$

$\overrightarrow{A C}=(0-1) i+(1+1) j+(-2-0) k=-i+2 j-2 k$
$\overrightarrow{A B} \cdot \overrightarrow{A C}=(-3)(-1)+(4)(2)+(4)(-2)=3+8-2=9$
$|\overrightarrow{A C}|=\sqrt{(-1)^{2}+(2)^{2}+(-2)^{2}}=3$
$\operatorname{Proj} \underset{A C}{\overrightarrow{A B}}=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|A B|^{2}} \overrightarrow{A C}=\frac{9}{9}(-i+2 j-2 k)=-i+2 j-2 k$

$$
\left.\overrightarrow{B A . B C}=\left.|\overrightarrow{B A}|\right|_{\overrightarrow{B C}}\left|\cos \alpha \rightarrow \quad \cos \alpha=\frac{\overrightarrow{B A} \cdot \overrightarrow{B C}}{|\overrightarrow{B A}|}\right| \overrightarrow{B C} \right\rvert\,
$$

$$
\overrightarrow{B A .}=3 i-4 j-k \text { and } \underset{B A .}{ }=2 i-2 j-3 k \quad \overrightarrow{B A . B C}=6+8+3=17
$$

$$
\left.\left.\right|_{\overrightarrow{B A} .}\right|_{2-}=\sqrt{(3)^{2}+(-4)^{2}+(-1)^{2}}=\sqrt{26} \quad|\overrightarrow{B C}|=\sqrt{(2)^{2}+(-2)^{2}+(-3)^{2}}=\sqrt{17}
$$

$$
\alpha=\cos ^{-1}\left(\frac{17}{\sqrt{26} \sqrt{17}}\right)=36^{\circ}
$$

1.10 Cross product (vector product)

A product of two vectors A and B can be defined in such a way that the result is a vector.
The result is written $A \times B$ and called the cross product of A and A. The name vector product is also used in place of the term cross product.
Let
$\vec{A}=a_{1 i}+a_{2 j}+a_{3 k}$

$$
\vec{B}=b_{1 i}+b_{2 j}+b_{3 k}
$$

$\underset{A}{\vec{A}} \times \underset{B}{\vec{B}}=|\vec{A}|\left|\vec{B}_{\vec{B}}\right| \sin \theta \underset{N}{\vec{N}}$
Where N is a unit vector perpendicular on both vectors A and B.
 1.10.1 Properties

- $\underset{\boldsymbol{A}}{\boldsymbol{A}} \times \underset{\boldsymbol{B}}{\rightarrow}=\boldsymbol{i} \mathbf{A}$ and B vectors are parallel
- $\boldsymbol{i} \times \boldsymbol{i}=\boldsymbol{j} \times \boldsymbol{j}=\boldsymbol{k} \times \boldsymbol{k}=\mathbf{0}$
- $\boldsymbol{i} \times \boldsymbol{j}=k, \quad j \times k=i, \quad k \times i=j$
- $\boldsymbol{j} \times i=-k, \quad i \times k=-j, \quad k \times j=-i$

$$
(s \underset{A}{\vec{A}}) \times(t \underset{B}{\vec{B}})=(s t)(\vec{A} \times \vec{B}), \quad s \& t \text { are scalar }
$$

1.10.1 Determinants

1.10.1.1 2×2 determinat

$$
\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}
$$

For example $\left|\begin{array}{cc}3 & -2 \\ 4 & 5\end{array}\right|=(3 \times 5)-(-2 \times 4)=23$
$=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right.$

1.10.1.2 3×3 determinat

For example

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{cc}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \\
& \left|\begin{array}{ccc}
3 & -2 & -5 \\
1 & 4 & -4 \\
0 & 3 & 2
\end{array}\right|=3\left|\begin{array}{cc}
4 & -4 \\
3 & 2
\end{array}\right|-(-2)\left|\begin{array}{cc}
1 & -4 \\
0 & 2
\end{array}\right|+(-5)\left|\begin{array}{cc}
1 & 4 \\
0 & 3
\end{array}\right| \\
& =3(4 \times 2-(-4) \times 3)+2(1 \times 2-0)-5(1 \times 3-0)=49
\end{aligned}
$$

Assume $\underset{A}{\rightarrow}=a_{1 i}+a_{2 j}+a_{3 k}$ and $\quad \vec{B}=b_{1 i}+b_{2 j}+b_{3 k}$
Then

$$
\begin{aligned}
& \text { ien } \underset{A}{ } \times \vec{B}=\left|\begin{array}{ccc}
i & j & k \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| i-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| j+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| k \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) i-\left(a_{1} b_{3}-a_{3} b_{1}\right) j+\left(a_{1} b_{2}-a_{2} b_{1}\right) k
\end{aligned}
$$

Example 1.13
Let $\vec{A}=i+2 j-2 k$ and $\vec{B}=3 i+k$ find $\vec{A} \times \vec{B}$ \& $\vec{B} \times \vec{A}$
Solution

$$
\begin{aligned}
& \underset{A}{\rightarrow} \times \underset{B}{ }=\left|\begin{array}{ccc}
i & j & k \\
1 & 2 & -2 \\
3 & 0 & 1
\end{array}\right|=\left|\begin{array}{cc}
2 & -2 \\
0 & 1
\end{array}\right| i-\left|\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right| j+\left|\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right| k=2 i-7 j-6 k \\
& \underset{B}{\rightarrow} \times \underset{A}{ }=\left|\begin{array}{ccc}
i & j & k \\
3 & 0 & 1 \\
1 & 2 & -2
\end{array}\right|=\left|\begin{array}{cc}
0 & 1 \\
2 & -2
\end{array}\right| i-\left|\begin{array}{cc}
3 & 1 \\
1 & -2
\end{array}\right| j+\left|\begin{array}{cc}
3 & 0 \\
1 & 1
\end{array}\right| k=-2 i+7 j+6 k \\
& \overrightarrow{\boldsymbol{A}} \times \underset{\boldsymbol{B}}{\vec{A}}=-\underset{\boldsymbol{A}}{\rightarrow} \times \vec{\rightarrow} \quad \text { Proved }!
\end{aligned}
$$

Example 1.14
If $\vec{A}=2 i-3 j+k$ and $\vec{B}=-i+2 j-3 k$, find a vector of length 2 units perpendicular on both $\vec{A}^{\text {and }} \underset{B}{ }$
Solution
Assume vector C is the perpendicular vector on both vectors A\&B.
$\vec{C}=\underset{A}{\vec{A}} \times \vec{B}=\left|\begin{array}{ccc}i & j & k \\ 2 & -3 & 1 \\ -1 & 2 & -3\end{array}\right|=\left|\begin{array}{cc}-3 & 1 \\ 2 & -3\end{array}\right| i-\left|\begin{array}{cc}2 & 1 \\ -1 & -3\end{array}\right| j+\left|\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right| k=7 i+5 j+k$
Unit vector of $\underset{c}{\vec{c}}=\frac{7 i+5 j+k}{\sqrt{(7)^{2}+(5)^{2}+(1)^{2}}}=\frac{1}{5 \sqrt{3}}(7 i+5 j+k)=1$ unit length
The new vector is 2 units length

$$
=\frac{7 i+5 j+k}{\sqrt{(7)^{2}+(5)^{2}+(1)^{2}}}=\frac{2}{5 \sqrt{3}}(7 i+5 j+k)
$$

1.10.2 Area of Parallelogram

If $\quad|\vec{N}|=$ Area of parallogram

Then Area of triangle $=\frac{1}{2}($ Area of parallogram $)$

Example 1.15

Find the area of a triangle $\Delta \mathrm{ABC}$ whose vertices are $\mathbf{A}(\mathbf{1}, \mathbf{- 1 , 3}), \mathrm{B}(\mathbf{2}, \mathbf{0}, 1)$ and $C(-1,2,-3)$ by using vector methods
Solution

$$
\text { Area of triangle } \left.=\left.\frac{1}{2}\right|_{\overrightarrow{A B}} \times \overrightarrow{A C} \right\rvert\,
$$

$$
\overrightarrow{A B}=i+j-2 k \text { and } \overrightarrow{A C}=-2 i+3 j-6 k
$$

$$
\begin{aligned}
& \overrightarrow{A B} \times \rightarrow=\left|\begin{array}{ccc}
i & j & k \\
1 & 1 & -2 \\
-2 & 3 & -6
\end{array}\right|=\left|\begin{array}{cc}
1 & -2 \\
3 & -6
\end{array}\right| i-\left|\begin{array}{cc}
1 & -2 \\
-2 & -6
\end{array}\right| j+\left|\begin{array}{cc}
1 & 1 \\
-2 & 3
\end{array}\right| k=0 i+2 j+5 k \\
& |\overrightarrow{A B} \times \overrightarrow{A C}|=\sqrt{10^{2}+5^{2}}=5 \sqrt{5} \\
& =\frac{1}{2}(5 \sqrt{5})=\frac{5}{2} \sqrt{5} \text { unit area }
\end{aligned}
$$

Area of the triangle $\triangle \mathrm{ABC}$

1.11 Equation of line in space

Suppose L is a straight line in space and parallel to vector V , L passes through the points Po \&P1
$\vec{v}=a i+b \dot{j}+c k \quad P_{o}\left(x_{o}, y_{o}, z_{o}\right), \quad P_{1}(x, y, z)$
$\overrightarrow{P_{o} P_{1}}$ is parallel to $_{\vec{V}}^{\vec{V}}$

$\overrightarrow{P_{o} P_{1}}=t \vec{V}$ tisascalar
$\overrightarrow{P_{o} P_{1}}=(t a) i+(t b) j+(t c) k$
$\overrightarrow{P_{o} P_{1}}=\left(x-x_{0}\right) i+\left(y-y_{0}\right) j+\left(z-z_{0}\right) k$
By equating the two equations

$$
t a=x-x_{o}, \quad t=\frac{x-x_{o}}{a}
$$

$$
\begin{aligned}
t b=y-y_{o}, & t=\frac{y-y_{o}}{\underline{b} z_{o}} \\
t c=z-z_{o}, & t=\frac{z}{c}
\end{aligned}
$$

And then
$x=a t+x_{o}$
$y=b t+y_{o}$
$z=c t+z_{o}$

These equations are called the parametric equations of the line and t is called the parameter.

Example 1.16

Find the parametric equations of a line that passes through the points $A(1,2,-1)$ and $B(-1,0,1)$.
Solution

$$
\vec{v}=\overrightarrow{A B}=(-1-1) i+(0-2) j+(1+1) k=-2 i-2 j+2 k
$$

The parametric equations of the line are

$$
\begin{aligned}
& x=x_{o}+a t=1-2 t \\
& y=y_{o}+b t=2-2 t \\
& z=z_{o}+c t=-1+2 t
\end{aligned}
$$

Example 1.17

Find the parametric equations for the line that passes through the point $(1,2,-3)$ and parallel to $\vec{v}=4 i+5 j-7 k$
Solution
$\mathrm{a}=4, \quad \mathrm{~b}=5, \quad \mathrm{c}=-7$

$$
x=1+4 t \quad y=2+5 t \quad z=-3-7 t
$$

1.12 Equation of plane in space

Suppose that a plane passing a through a point $\mathbf{P o}(\mathbf{x o}, \mathrm{yo}, \mathrm{zo})$, and
perpendicular to the vector $N . \quad \underset{N}{\vec{N}}=\boldsymbol{a} i+\boldsymbol{b j}+\boldsymbol{c k}$
$P(x, y, z)$ is any point in the plane.
Now $\underset{P_{o} P}{P}=\left(x-x_{o}\right) i+\left(y-y_{o}\right) j+\left(z-z_{o}\right) k$

$$
\overrightarrow{P_{o} P} \text { and } \underset{N}{\vec{N}} \text { are orthogonal }
$$

and then $\xrightarrow[P_{o} P]{\vec{P}} \cdot \vec{N}=\mathbf{0}=\boldsymbol{a}\left(\boldsymbol{x}-\boldsymbol{x}_{o}\right)+\boldsymbol{b}\left(\boldsymbol{y}-\boldsymbol{y}_{o}\right)+\boldsymbol{c}\left(\mathrm{z}-\mathrm{z}_{o}\right)$
This is the equation of plane, and can be

$$
\begin{gathered}
a x+b y+c z=d \\
d=a x_{o}+b y_{o}+c z_{o}
\end{gathered}
$$

Example 1.18

Find an equation of the plane passing through the point $(3,-1,7)$ and perpendicular to the vector $\underset{N}{\rightarrow}==4 i+2 j-5 k$
Solution

$$
\begin{aligned}
& a\left(x-x_{o}\right)+b\left(y-y_{o}\right)+c\left(z-z_{o}\right)=0 \\
& 4(x-3)+2(y+1)+(5)(z-7) \\
& 4 x-12+2 y-2-5 z+35=0 \\
& 4 x+2 y-5 z=-25 \quad \text { The equation of plane }
\end{aligned}
$$

Example 1.19

Find the equation of the plane that passes through the point $\operatorname{Po}(1,-1,3)$ and is parallel to the plane $3 x+y+z=7$.
Solution

$$
a x+b y+c z=d \quad 3 x+y+z=7
$$

Because both vectors are parallel, Vector \mathbf{N} is normal on both planes. $\quad \vec{N}=\mathbf{3 i}+\boldsymbol{j}+\boldsymbol{k}$

$$
\begin{aligned}
& a\left(x-x_{o}\right)+b\left(y-y_{o}\right)+c\left(z-z_{o}\right)=0 \\
& 3(x-1)+(y+1)+(z-3)=0
\end{aligned}
$$

$$
3 x+y+z=5 \quad \text { The equation of plane }
$$

$$
\text { Example } 1.20
$$

Find the equation of the plane that passes through the points $A(1,1,-1)$, $B(2,0,2)$, and $C(0,-2,1)$.
Solution

$$
\overrightarrow{A B}=i-3 j+3 k \quad \overrightarrow{A C}=-i-3 j+2 k
$$

Now both vectors AB and AC are on the plane.
From cross vector, we got the normal vector

$$
\overrightarrow{A B} \times \overrightarrow{A C}=\vec{N}
$$

$$
\begin{aligned}
& \vec{N}=\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
i & j & k \\
1 & -1 & 3 \\
-1 & -3 & 2
\end{array}\right| \quad \text { vector } \\
& =(-2+9) i-(2+3) j+(-3-1) k \\
& =7 i-5 j-4 k
\end{aligned}
$$

$$
\text { vector } \mathbf{N} \text { is normal on the plane }
$$

The equation of the plane

$$
a\left(x-x_{o}\right)+b\left(y-y_{o}\right)+c\left(z-z_{o}\right)=0
$$

$$
7(x-1)-5(y-1)-4(z+1)=0
$$

$$
7 x-5 y-4 z=6 \quad \text { The equation of plane }
$$

Example 1.21

Find the distance from the point $P(1,1,3)$ to the plane $3 x+2 v+67=\frac{G}{\vec{N}}$ Solution
Let as to take a point on the plane
$\mathrm{x}=0, \mathrm{z}=0$ and then $2 \mathrm{y}=6$
The point is $\mathrm{P}_{0}(0,3,0)$

$=\frac{(3)(1)+(-1)(2)+(3)(6)}{\sqrt{3^{2}+2^{2}+6^{2}}}=\frac{17}{7}$ unit length
Example 1.22
Find the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{2}=\frac{z}{4}$ with the plane $\mathrm{x}+2 \mathrm{y}+\mathrm{z}=11$.
Solution $t=\frac{x-2}{3}=\frac{y+1}{2}=\frac{z}{4}$

$$
x=2+3 t \quad y=-1+2 t \quad z=4 t
$$

Then Sub the parametric equations in the equation of the plane
$(2+2 t)+2(-1+2 t)+(4 t)=11$

$11 t=11$ then $t=1$
$x=2+3=5$,
$y=-1+2=1$
$\mathbf{z}=4$

Example 1.23

Find the parametric equations of the line of the intersection of the two planes $x-y+z=3$ and $x+y+2 z=9$.
Solution

$$
\begin{aligned}
& \overrightarrow{N 1}=i-j+k \quad \overrightarrow{N 2}=i+j+2 k \\
& \vec{w}=\overrightarrow{N 1} \times \overrightarrow{N 2}=\left|\begin{array}{ccc}
i & j & k \\
1 & -1 & 1 \\
1 & 1 & 2
\end{array}\right| \\
& \vec{w}=-3 i-j+2 k \\
& z-y=3----(1) \\
& y+2 z=9---(2)
\end{aligned}
$$

To find a point in the intersection line
Let $\mathrm{x}=0$, and sub it in both planes

$$
\begin{aligned}
& x=x_{o}+a t=0+(-3) t=-3 t \\
& y=y_{o}+b t=1+(-1) t=1-t \\
& z=z_{o}+c t=4+(2) t=4+2 t
\end{aligned}
$$

$\mathrm{Z}=4 \& \mathrm{y}=1$ and the point $(0,1,4)$ lies on the intersection line of both planes The parametric equations of the line are

1.13 Triple Product

1.13.1 Scalar triple product

If
$\vec{A}=a_{1} i+a_{2} j+a_{3} k$
$\vec{B}=b_{1} i+b_{2} j+b_{3} k$
$\vec{c}=c_{1} i+c_{2} j+c_{3} k$
The number $\vec{A} \cdot(\vec{B} \times \vec{C})$ is called the scalar triple product of $\vec{A} \vec{B}^{\prime}$ \& \vec{C}
$\underset{A}{\rightarrow} \cdot(\underset{B}{\rightarrow} \times \underset{c}{\rightarrow})=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left|\begin{array}{ll}b_{2} & b_{3} \\ c_{2} & c_{3}\end{array}\right|-a_{2}\left|\begin{array}{ll}b_{1} & b_{3} \\ c_{1} & c_{3}\end{array}\right|+a_{3}\left|\begin{array}{ll}b_{1} & b_{2} \\ c_{1} & c_{2}\end{array}\right|$
$a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)$

Example 1.24
Find the scalar triple product $\vec{U} \cdot(\vec{V} \times \vec{w})$ of the vectors $U=3 i-2 j-5 k, \quad V=$ $i+4 j-4 k$ and $W=3 j+2 k$.

$$
\begin{aligned}
& \text { Solution } \\
& \vec{U} \cdot(\vec{v} \times \vec{w})=\left|\begin{array}{ccc}
3 & -2 & -5 \\
1 & 4 & -4 \\
0 & 3 & 2
\end{array}\right|=3(8+12)+2(2-0)-5(3-0) \\
&=49
\end{aligned}
$$

1.13.2 vector triple product

If

$$
\begin{aligned}
& \vec{A}=a_{1} i+a_{2} j+a_{3} k \\
& \xrightarrow[B]{\rightarrow}=b_{1} i+b_{2} j+b_{3} k \\
& \vec{c}=c_{1} i+c_{2} j+c_{3} k
\end{aligned}
$$

Then $(\underset{A}{\boldsymbol{C}} \times \vec{B}) \times \overrightarrow{\boldsymbol{C}}=(\vec{A} \cdot \overrightarrow{\boldsymbol{C}}) \underset{\boldsymbol{B}}{\vec{B}}-(\overrightarrow{\boldsymbol{B}} \cdot \overrightarrow{\boldsymbol{C}}) \vec{A} \quad$ this called vector triple product
Example 1.25
If $\vec{A}=i-j+2 k, \vec{B}=2 i+j+k$ and $\vec{c}=i+2 j-k$ find $(\underset{A}{\vec{A}} \times \vec{B}) \times \vec{C}$
Solution

$$
\begin{aligned}
& (\vec{A} \times \vec{B}) \times \vec{C}=(\vec{A} \cdot \vec{C}) \vec{B}-(\vec{B} \cdot \vec{C})_{A} \\
& (\vec{A} \cdot \vec{C})=-3 \operatorname{and}(\vec{B} \cdot \vec{C})=3
\end{aligned}
$$

$$
(\vec{A} \times \vec{B}) \times \underset{c}{\vec{~}}=(-3)(2 i+j+k)-(3)(i-j+2 k)=-9 i-9 k
$$

OR

$$
\begin{gathered}
\underset{A}{\rightarrow} \times \vec{B}=\left|\begin{array}{ccc}
i & j & k \\
1 & -1 & 2 \\
2 & 1 & 1
\end{array}\right|=-3 i+3 j+3 k \\
(\vec{A} \times \vec{B}) \times \underset{C}{\vec{c}}=\left|\begin{array}{ccc}
i & j & k \\
-3 & 3 & 3 \\
1 & 2 & -1
\end{array}\right|=-9 i-9 k
\end{gathered}
$$

1.13.3 volume of parallelepiped

$$
\begin{aligned}
& \text { If } \\
& \vec{A}=a_{1} i+a_{2} j+a_{3} k \\
& \vec{B}=b_{1} i+b_{2} j+b_{3} k \\
& \vec{c}=c_{1} i+c_{2} j+c_{3} k
\end{aligned}
$$

The volume of the parallelepiped is

Volume $=|\vec{A} \cdot(\vec{B} \times \overrightarrow{\boldsymbol{C}})|=$ (area of parallelogram). (height)
Height $=\boldsymbol{h}=\boldsymbol{p r o j}_{\vec{B}} \underset{\vec{C}}{\vec{A}} \times \frac{\vec{A} \cdot(\vec{B} \times \vec{C})}{|\vec{B} \times \vec{C}|}$
Volume $=|\underset{B}{\rightarrow} \times \underset{C}{\vec{C}}| \cdot \frac{\vec{A} \cdot(\underset{B}{\vec{B}} \times \vec{C})}{|\vec{B} \times \vec{C}|}=\underset{A}{\rightarrow} \cdot(\underset{B}{\vec{C}} \times \vec{C})$
Example 1.26
Find the volume of the box (parallelepiped) that determined by

$$
\vec{A}=i+2 j-k, \vec{B}=-2 i+3 k, \text { and } \vec{c}=7 j-4 k
$$

Solution
volume is equal the absolute of $\rightarrow \vec{A} \cdot(\underset{B}{\rightarrow} \times \vec{C})$
$\vec{A} \cdot(\vec{B} \times \vec{C})=(i+2 j-k) \cdot\left|\begin{array}{ccc}i & j & k \\ -2 & 0 & 3 \\ 0 & 7 & -4\end{array}\right|$
$=(i+2 j-k) \cdot(-21 i-8 j-14 k)=-21-16+14=-23$ volume $=|-23|=23$ unit volume

Assignment 1 (Vectors)

1- Given $\mathrm{A}=2 \mathrm{i}-3 \mathrm{j}-3 \mathrm{k}, \mathrm{B}=\mathrm{i}+\mathbf{j}+2 \mathrm{k}$, and $\mathrm{C}=3 \mathrm{i}-2 \mathbf{j}-\mathrm{k}$, find the angles between the following pairs of vectors:
(a) $\mathrm{A}+\mathrm{B}, \quad \mathrm{B}-2 \mathrm{C}$.
(b) $\mathbf{2 A}-\mathbf{C}, \quad \mathbf{A}+\mathbf{B}-\mathbf{C}$.
(c) $\mathrm{B}+3 \mathrm{C}, \quad \mathrm{A}-2 \mathrm{C}$.

2- Find the vector $A B$ from the following of pairs of points
(a) $A(1,2,5) \& B(2,-3,9)(b) A(-3,0,7) \& B(4,-8,0)$

3- Find the initial point of the vector $\underset{A}{\rightarrow}=5 i+4 j-6 \mathbb{R}$ the terminal point is
(a) $(5,4,1) \quad(b)(4,1,3)$

4- Find unit vector that has the same direction of the vector from $A(5,1,3)$ to $b(3,7,6)$
5- By using dot product, find the angle between the following pairs of vectors
(a) $\underset{A}{ }=i+2 j-3 k \rightarrow \underset{B}{ }=-i+j+5 k$ (b) $\vec{A}=4 i-2 j, \vec{B}=7 i+4 j+2 k$

6- Find the cross product of the following pairs of vectors
(a) $\vec{A}=2 i-j+3 k, \quad \vec{B}=i-4 j+5 k$
(b) $\vec{A}=i-2 j+4 k$,
$\vec{B}=-i+2 k$

7- Given that $A=i+2 j+2 k$ and $B=2 i-3 j+k$, find (a) the projection of A onto the line of B, and (b) the projection of B onto the line of A.

8- By using vectors rules, Find the area of the triangle that has vertices $\mathbf{A}(\mathbf{2}, 5$, 3) $B(4,2,4)$ and $C(2,1,4)$.

9- Find the parametric equations of the line that passes through the point $\operatorname{Po}(3,4,5)$ and parallel to the vector $\mathrm{A}=\mathbf{2 i}+5 \mathbf{j}-6 \mathrm{k}$.

10- Find an equation of the plane that passes through the point $\operatorname{Po}(2,2,2)$ and parallel to the plane $2 \mathrm{x}+5 \mathrm{y}+7 \mathrm{z}=5$.

11- Find the distance between two parallel planes $4 x-2 y+7 z=-12$ and $4 x-2 y+7 z=0$.

12- Show that the lines L 1 and L 2 are parallel and also find the distance between them.
L1: $\mathrm{x}=2 \mathrm{t}, \quad \mathrm{y}=2 \mathrm{t}, \mathrm{z}=1+\mathrm{t} \quad \mathrm{L} 2: 1+2 \mathrm{t}, \quad \mathrm{y}=3-4 \mathrm{t}, \quad \mathrm{z}=5-2 \mathrm{t}$
13- Find an equation of plane that passes through the point $(-1,4,2)$ and contains the line of intersection of the planes $4 x-y+z=2$ and $2 x+y-2 z=3$.
14- Find the volume of the parallelepiped that determined by

$$
\vec{A}=i-2 j+4 k, \quad \vec{B}=-i+2 k \text { and } \vec{c}=2 i+3 j-4 k
$$

Chapter Two Partial derivatives

Instructor: Dr. Abdulrahman M. Al Rawi
Email: abd.mohammed@uoanbar.edu.iq

2.1 Limits and continues of function with two variables

Recall that for a function of one variable, the mathematical statement

$$
\lim _{x \rightarrow c} f(x)=L
$$

means that for x close enough to c, the difference between $f(x)$ and L is
"small". Very similar definitions exist for functions of two or more
variables;

$$
\begin{aligned}
& |f(x, y)-L|<e \quad\left(x_{o}, y_{o}\right) \\
& \quad \mid(x, y) \rightarrow\left(x_{o}, y_{o}\right) \\
&
\end{aligned}
$$

$\left(\boldsymbol{x}_{o}, y_{o}\right)$
A funditin $\mathbf{f}, \mathrm{ff}\left(\mathrm{F} \mathrm{w}_{\mathrm{w}}\right)$ variables is continuous at a point if
$\lim _{(x, y) \rightarrow\left(x_{o}, y_{o}\right)} f(x, y)=\left(x_{o}, y_{o}\right)$
1- is defined
2-
3-

$$
f^{\prime}(x)=\operatorname{is~}_{\Delta x \rightarrow 0} \frac{\operatorname{limit}_{t}}{} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

$$
\frac{\delta f(x, y)}{\delta y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}
$$

2.2First and higher order partial derivatives.

2.2.1 First order partial derivatives

In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variable with the other held constant.
The partial derivative of a function $f(x, y, \ldots$.$) with respect to the$ variable is variously denoted by

$$
f_{x}^{\prime}, f_{x}, \partial_{x} f, D_{x} f, D_{1} f, \frac{\partial}{\partial x} f, \text { or } \frac{\partial f}{\partial x}
$$

$$
f(x, y)=2 x^{2}+5 y^{3}-2 x y+y \sin x+x \cos y
$$

Example 2.1
Findt the fixst-prytiahdersizativeosfythe
Solytion $15 y^{2}-2 x+\sin x-x \sin y$

$$
f(x, y)=x^{4} \sin \left(x y^{3}\right)
$$

Find the first partial derivative of the
Sylution $x^{x^{4} \cos \left(x y^{3}\right) 3 x y^{2}=3 x^{5} y^{2} \cos \left(x y^{3}\right)}$

2.2.2Higher order partial derivatives $f(x, y)$

2.2.2.1 second-order partial derivatives

It cab be denoted by

$$
\begin{aligned}
& f_{x x}, \frac{\partial 2 f}{\partial x^{2}}, \text { or } \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right) \\
& f_{y y}, \frac{\partial 2 f}{\partial y^{2}}, \text { or } \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)
\end{aligned}
$$

$\underset{\text { Exam }}{\boldsymbol{f}_{x y}}, \frac{\partial 2 f}{\partial \mathrm{O}_{2.2}^{2 x}}$, or $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) \quad f_{y x}, \frac{\partial 2 f}{\partial x \partial y}$,or $\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)$
Find the second order partial derivatives of Solution

$$
f(x, y)=5 x y^{3}-2 x y
$$

$$
\begin{aligned}
& f_{x}=5 y^{3}-2 y \text { and } f_{x x}=0 \\
& f_{y}=15 x y^{2}-2 x \text { and } f_{y y}=30 x y \\
& f_{x y}=15 y^{2}-2
\end{aligned}
$$

$$
f_{x a x m}=1.5 y^{2}-2
$$

if $f(x, t)=\sin (x-c t)$, show that
Solution

$$
\frac{\partial 2 f}{\partial t^{2}}=c^{2} \frac{\partial 2 f}{\partial x^{2}}
$$

$$
\begin{gathered}
\frac{\partial f}{\partial t}=(-c) \cos (x-c t) \text { then } \frac{\partial 2 f}{\partial t^{2}}=-c^{2} \sin (x-c t) \\
\frac{\partial f}{\partial x}=\cos (x-c t) \text { then } \frac{\partial 2 f}{\partial x^{2}}=-\sin (x-c t) \\
\frac{\partial 2 f}{\partial t^{2}}=c^{2} \frac{\partial 2 f}{\partial x^{2}}
\end{gathered}
$$

2.2.3 Third-order partial derivatives $f(x, y)$

$f_{x x x}=\frac{\partial}{\partial x}\left(\frac{\partial 2 f}{\partial x^{2}}\right) f_{y y y}=\frac{\partial}{\partial y}\left(\frac{\partial 2 f}{\partial y^{2}}\right) \quad f_{x y y}=\frac{\partial}{\partial y}\left(\frac{\partial 2 f}{\partial y \partial x}\right) \quad f_{y x x}=\frac{\partial}{\partial x}\left(\frac{\partial 2 f}{\partial x \partial y}\right)$

Find $_{\text {Example }} \boldsymbol{f}_{x \times x} f_{\boldsymbol{Y}^{y y}}, f_{x y y}$ and $f_{y x x}$ of $f(x, y)=\sin x y^{2}$
$f_{x}=y^{2} \cos x y^{2}$, then $f_{x x}=-y^{4} \sin x y^{2}$ then $f_{x x x}=-y^{6} \cos x y^{2}$太foldiey $\cos x y^{2}$, then $f_{y y}=-4 x^{2} y^{2} \sin x y^{2}+2 x \cos x y^{2}$ then $f_{y y y}=\ldots$ $f_{x}=y^{2} \cos x y^{2}$, then $f_{x y}=-2 x y^{3} \sin x y^{2}+2 y \cos x y^{2}$ then $f_{x y y}=\ldots$ $f_{y}=2 x y \cos x y^{2}$, then $f_{y x}=-2 x y^{3} \sin x y^{2}+2 y \cos x y^{2}$ then $f_{y x x}=\ldots$

$$
\begin{gathered}
f_{x x x x}=\frac{\partial}{\partial x}\left(\frac{\partial 3 f}{\partial x^{3}}\right) \\
f_{y y y}=\frac{\partial}{\partial y}\left(\frac{\partial 3 f}{\partial y^{3}}\right)
\end{gathered}
$$

2.2.4 Fourth order partial derivatives $f(x, y)$
$\boldsymbol{f}_{x x y y}=\frac{\boldsymbol{\partial}}{\boldsymbol{\partial y}}\left(\frac{\partial 3 f}{\partial y \partial x^{2}}\right)$
$\boldsymbol{f}_{y y x x}=\frac{\boldsymbol{\partial}}{\boldsymbol{\partial x}}\left(\frac{\partial 3 f}{\partial \boldsymbol{\partial} \boldsymbol{\partial} \boldsymbol{y}^{2}}\right)$

2.3 Chain rule of composite functions and total differential.

2.3.1 Chain rule (Function of function)

If z is a function to x and y, and x is a function to m and n, then to m and n indirectly.

and

$$
\begin{aligned}
& f=x^{2}+y^{2}, \quad x=r \cos s, y=e^{s}-\sin r \text { find } f_{r} \text { and } f_{s} \\
& \text { Examp }_{f_{r}}=\frac{\partial f^{2}}{\partial x} \cdot \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial r}=(2 x)(\cos s)+(2 y)(-\cos r) \\
& =2 x \cos s-2 y \cos r \\
& f_{s}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}=(2 x)(-r \sin s)+(2 y)\left(e^{s}\right) \\
& =-2 r x \sin s-2 y e^{s}
\end{aligned}
$$

Example 2.6
If $Z=e^{x^{2} y}, x=u+v, \quad y=\frac{2 u}{v}, \quad$ find z_{u} and z_{v}
$z_{u}=\frac{g_{2}}{\partial x} \cdot \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}=\left(2 x y e^{x^{2} y}\right)(1)+\left(x^{2} e^{x^{2} y}\right)\left(\frac{2}{v}\right)=e^{x^{2} y}\left(2 x y+\frac{2 x^{2}}{v}\right)$
$=e^{(u+v)^{2}\left(\frac{2 u}{v}\right)}\left(2(u+v)\left(\frac{2 u}{v}\right)+\frac{2(u+v)^{2}}{v}\right)=e^{\frac{2 u^{3}}{v}+4 v u^{2}+2 u v}\left(\frac{4 u^{2}}{v}+8 u+2 v\right)$
$z_{v}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}=\left(2 x y e^{x^{2} y}\right)(1)+\left(x^{2} e^{x^{2} y}\right)\left(-\frac{2 u}{v^{2}}\right)=e^{x^{2} y}\left(2 x y-\frac{2 u x^{2}}{v^{2}}\right)$
$=e^{(u+v)^{2}\left(\frac{2 u}{v}\right)}\left(2(u+v)\left(\frac{2 u}{v}\right)-\frac{2 u(u+v)^{2}}{v^{2}}\right)=e^{\frac{2 u^{3}}{v}+4 v u^{2}+2 u v}\left(2 u-\frac{2 u^{3}}{v^{2}}\right)$

2.3.2 Total differential

If Z is a function of $x s \quad Z=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$x_{1}, x_{2}, \ldots, x_{n}$ are function of y then
$d z=\frac{\partial z}{\partial x_{1}} \cdot d x_{1}+\frac{\partial z}{\partial x_{2}} \cdot d x_{2}+\cdots+\frac{\partial z}{\partial x_{n}} \cdot d x_{n}$
$d z$ is called total differential of z

$$
\frac{d z}{d y}=\frac{\partial z}{\partial x_{1}} \cdot \frac{d x_{1}}{d y}+\frac{\partial z}{\partial x_{2}} \cdot \frac{d x_{2}}{d y}+\cdots+\frac{\partial z}{\partial x_{n}} \cdot \frac{d x_{n}}{d y}
$$

Also

$$
w=x^{2}+y^{2}+z^{2}, \quad \text { where } x=e^{t} \sin t, y=e^{t} \text { cost }, \quad z=e^{t}
$$

find $\frac{d w}{d t}$?
Example 2.7
Given

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial w}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial w}{\partial z} \cdot \frac{d z}{d t}
$$

$\frac{d w}{\text { cotution }}=(2 x)\left(e^{t} \sin t+e^{t} \cos t\right)+(2 y)\left(e^{t} \cos t-e^{t} \sin t\right)+(2 z)\left(e^{t}\right)$
givlution
$\frac{\boldsymbol{d} \boldsymbol{w}}{\boldsymbol{d} t}=\left(2 e^{t} \sin t\right)\left(e^{t} \sin t+e^{t} \cos t\right)+\left(2 e^{t} \cos t\right)\left(e^{t} \cos t-e^{t} \sin t\right)+\left(2 e^{t}\right)\left(e^{t}\right)$
$\frac{d w}{d t}=2 e^{2 t}\left(\sin ^{2} t+\sin t \cos t+\cos ^{2} t-\sin t \cos t+1\right)=4 e^{2 t}$

2.4 Directional derivatives

The directional derivatives of a function $(\boldsymbol{w}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$) is defined as

$$
\frac{d f}{d s}=\nabla f \cdot \rightarrow_{u}=D_{u} f=\left.|\nabla f|\right|_{\vec{u}}|\cos \theta=|\nabla f| \cos \theta
$$

whifre,

\vec{u} is unit vectoe

$$
\begin{aligned}
& \qquad \underset{A}{f(x, y, z)}=x^{3}-x y^{2}-z \\
& \rightarrow 2 i-3 j+6 k
\end{aligned}
$$

 at $\operatorname{Po}(1,1,0)$ in the direction of

$$
f_{x}^{\mathrm{vectgr}} \boldsymbol{x}^{2}-y^{2}, \text { then }\left.f_{x}\right|_{P o}=2
$$

Sofotion- $2 x y$, then $\left.f_{y}\right|_{P o}=-2$

$$
f_{z}=-1 \text { then }\left.f_{z}\right|_{P_{o}}=1
$$

$$
\left.\nabla f\right|_{\mathrm{Po}}=\left.f_{x}\right|_{P_{o}} i+\left.f_{y}\right|_{P_{o}} j+\left.f_{z}\right|_{P_{o}} k=2 i-2 j-k
$$

The directional derivative is $\overline{\boldsymbol{d s}}=\left.\boldsymbol{\nabla} \boldsymbol{f}\right|_{\mathbf{P}_{\mathbf{o}}} \cdot \overrightarrow{\mathbf{u}}$

$$
\begin{gathered}
\frac{d f}{d s}=(2 i-2 j-k) \cdot\left(\frac{2}{7} i-\frac{3}{7} j+\frac{6}{7} k\right)=\frac{4}{7}+\frac{6}{7}-\frac{6}{7}=\frac{4}{7} \\
f(x, y, z)=x e^{y}+y z
\end{gathered}
$$

Example 2.9

 $\left.\delta g|u|_{0}{ }^{\operatorname{lon}} f_{f_{x}}\right|_{P_{o}} i+\left.f_{y}\right|_{P_{o}} j+\left.f_{z}\right|_{P_{o}} k$

$$
f_{x}=e^{y} \text { then }\left.f_{x}\right|_{P o}=1
$$

$$
f_{y}=x e^{y}+z, \text { then }\left.f_{y}\right|_{P o}=2
$$

$$
f_{z}=y \text { then }\left.f_{z}\right|_{P o}=0
$$

$$
\left.\nabla f\right|_{\mathrm{Po}_{o}}=\left.f_{x}\right|_{P_{o}} i+\left.f_{y}\right|_{P_{o}} j+\left.f_{z}\right|_{P_{o}} k=i+2 j
$$

$$
\frac{d f}{d s}=\left.\nabla f\right|_{\mathrm{Po} \cdot \vec{u}}=(1+j)\left(\frac{2}{3} i+\frac{1}{3} j-\frac{2}{3} k\right)=\frac{4}{3}
$$

$$
d s=(0.1) \cdot\left(\frac{4}{3}\right)=0.13
$$

2.5 Linear Approximation of Function

The linear approximation Of function
$f(x, y)$ near the point $\operatorname{Po}\left(x o, y_{0}\right)$ is
$L(x, y)=f(x, y) \cong f\left(x_{o}, y_{o}\right)+\left.\left(x-x_{o}\right) \frac{\partial f}{\partial x}\right|_{P_{o}}+\left.\left(y-y_{o}\right) \frac{\partial f}{\partial y}\right|_{P_{o}}$

$$
f(x, y)=\frac{1}{10}
$$

Example 2.10
Show that

Can be approximation near tlaff $\operatorname{Po}(0,0)$ by
$\underset{1-x+y}{f(x, y)} \underset{f}{f\left(x_{o}, y_{o}\right)}+\left.\left(x-x_{o}\right) \frac{\partial f}{\partial x}\right|_{P_{o}}+\left.\left(y-y_{o}\right) \frac{\partial f}{\partial y}\right|_{P_{o}}$

$\frac{\partial f}{\partial y}=\left.\frac{1}{(1+x-y)^{2}}\right|_{P_{0}}=1$
$f(0,0)=1$
$f(x, y)=1+(x-0)(-1)+(y-0)(\mathbf{1})=\mathbf{1}-x+y$

2.6 Tangent plane and normal lines

If the equation of a surface is defined by $f(x, y, z)=c$ and passes through the point $\operatorname{Po}\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ as shown. $f(x, y, z)=c$ $\nabla \mathbf{f}=f_{x} \boldsymbol{i}+f_{y} \boldsymbol{j}+f_{z} k=\vec{u}$

The nargmth fuel to thte surface at point y_{o}^{o} is $\left.f_{y}\right|_{P_{o}} \cdot t$ $z=z_{o}+\left.f_{z}\right|_{P_{o}} \cdot t$
$\frac{x-x_{o}}{f_{x}}=\frac{y-y_{o}}{f_{y}}=\frac{z-z_{o}}{f_{z}}$
$\mathcal{F} \mathrm{Pr}_{\boldsymbol{P}_{o}}\left(x-x_{o}\right)+f_{y_{P_{o}}}\left(y-y_{o}\right)+f_{z_{P_{o}}}\left(z-z_{o}\right)=0$

The tangent plane of surface at point Po is

Example 2.11

Find the equation of thex, tangent plane $\boldsymbol{y}^{2 n d}$ normanize of the surface that has the function at point $\operatorname{Po}(1,2,3)$
$\left.\boldsymbol{f}_{x_{P_{o}}}^{\text {olutiop }}-x_{o}\right)+f_{y_{P_{o}}}\left(y-y_{o}\right)+f_{z_{P_{o}}}\left(z-z_{o}\right)=0$
$\nabla f=f_{x} i+f_{y} j+f_{z} k=2 x i+2 y j+k$
$\left.\nabla f\right|_{P_{o}}=2 i+4 j+k$
$2\left(x-x_{o}\right)+4\left(y-y_{o}\right)+\left(z-z_{o}\right)=0$
The x tangent pane is 2$)+(z-3)=0$
$2 x-2+4 y-8+z-3=0$
$2 x+4 y+z=13$
$x=1+2 t$
$y=2+4 t$
$z=3+t$
The normal line is

Example 2.12
Find the point on the surface $\begin{gathered}x^{2}+y^{2}+z^{2}=9 \\ x-2 y+z=4\end{gathered}$ at which the tangent palne that is parallel to the plane

$\underset{N 1}{ }$ Solution $_{j}+k$

$$
\begin{aligned}
& \overrightarrow{N 2}=g r a d f=\nabla f=f_{x} i+f_{y} j+f_{z} k \\
& \overrightarrow{N 2}=2 x_{o} i+2 y_{o} j+2 z_{o} k \\
& \overrightarrow{N 1} / / \overrightarrow{N 2} \text { then } \overrightarrow{N 1} \times \overrightarrow{N 2}=0 \\
& \overrightarrow{N 1} \times \overrightarrow{N 2}=\left|\begin{array}{ccc}
i & j & k \\
1 & -2 & 1 \\
2 x_{o} & 2 y_{o} & 2 z_{o}
\end{array}\right|=0
\end{aligned}
$$

$$
\left(-4 z_{o}-2 y_{o}\right) i+\left(2 z_{o}-2 x_{o}\right) j+\left(2 y_{o}+4 x_{o}\right) k=0
$$

$$
\begin{equation*}
-4 z_{o}-2 y_{o}=0 \text { then } y_{o}=-2 z_{o} \ldots \tag{1}
\end{equation*}
$$

$2 z_{o}-2 x_{o}=0$ then $x_{o}=z_{o} \ldots$ (2)

$$
\begin{gather*}
x^{2}+y^{2}+z^{2}=9 \quad x_{o}^{2}+y_{o}^{2}+z_{o}^{2}=9 \tag{3}\\
z_{o}^{2}+4 z_{o}^{2}+z_{o}^{2}=9
\end{gather*}
$$

Sub. Po(xo, yo, zo) in equ.
To get

2.7. Maximum and minimum values

One of the main uses of ordinary derivatives is finding maximum and minimum values. In this section we are going to see how the partial derivatives are used to find the local maximum and minimum values of the function for two or more variables. $f_{x}=0$ and $f_{y}=0$ at a point (a,b)

This point called critical point
Whether absolute point or local point

the critical point from this equation
(a) $\mathrm{D}>0$ and \mathbf{f}_{Xx} at (a.b) >0 then $f(a, b)$ is local minimum
(b) $\mathbf{D}>0$ and $f_{X x}$ at (a.b) < 0 then $f(a, b)$ is
local maximum

Example 2.13
Let $f(x, y)=x^{2}+y^{2}-2 x-6 y+14$ find the critical point
Solution
$\boldsymbol{f}_{\boldsymbol{x}}=2 \boldsymbol{x}-2$
$f_{y}=2 y-6$
if $f_{x}=0$ then $x=1$
if $f_{y}=0$ then $y=3$
$\mathrm{z}_{(1,3)}=1^{2}+3^{2}-2-18+14=4$

The critical point is $\left.(1,3,4)^{x}, y\right)=y^{2}-x^{2}$
$f_{x}=-2 x$ and $f_{y}=2 y$
Example 2.14
Find the critical point
For points on the y-axis ($\mathbf{x}=0$)

$$
\begin{gathered}
f(x, y)=-x^{2}<0 \\
f(x, y)=y^{2}>0
\end{gathered}
$$

The critical point is $(\mathbf{0}, 0)$
For points on the \mathbf{x}-axis $(\mathbf{y}=0)$

Example 2.15
Find the local $\boldsymbol{x}^{4}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{y}^{4}-\mathbf{4 x} \boldsymbol{x} \boldsymbol{y}+1$

Solution

$$
x^{9}-x=0=x\left(x^{8}-1\right)=x\left(x^{4}-1\right)\left(x^{4}+1\right)=x\left(x^{2}-1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)
$$

$\mathrm{D}_{\mathrm{x}=0, y, 1,-1}=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=144 x^{2} y^{2}-16$
$D_{0} 00, \overline{-1} 144 x^{2} y^{2}-16=-16<0$ its a saddle point
$\mathrm{y}=0,1,-1$
$\boldsymbol{D}_{(1,1)}=144-16=128>0 \quad f_{x x_{(1,1)}}=12>0$ it is a local minimum
$D_{(-1,-1)}=144-16=128>0 \quad f_{x x_{(-1,-1)}}=12>0$ it is a local minimum

$$
\begin{aligned}
& f_{1}=4 x^{3}-4 y=0, f_{y}=4 y^{3}-4 x=0
\end{aligned}
$$

$$
\begin{aligned}
& y=x^{3} \text { and } x=y^{3}
\end{aligned}
$$

2.8Absolute maximum and minimum values

To find the absolute maximum and minimum values of continuous function $f(x, y)$ on a closed bounded set D.
1- Find the value of f at the critical point of f in D
2 - Find the extreme values of f
3 - The largest of the values from steps 1 and 2 is the absolute maximum and
 Example 2.16
Find the absolute maximum and minimum value: $f_{x}=2 x-2 y=0$ and $f_{y n \bar{n}}$ the ${ }^{2 x} x^{2}$ ctangular Solution $\quad y=1$
To find the critical points

$y=0, \quad x=0 \rightarrow 3$
$f(x, 0)=x^{2}$
The critical point is $(1,1)$
To find the points on the boundary
$\underline{L 1}$

$$
\begin{gathered}
\underline{L 2} \\
x=3, \quad y=0 \rightarrow 2 \\
f(3, y)=9-4 y
\end{gathered}
$$

Maximum value is $f(3,0)=9$
Minimum value is $f(\mathbf{3 , 2})=1$

$$
\begin{aligned}
& y=2, \quad x=0 \rightarrow 3 \\
& \boldsymbol{f}(-\boldsymbol{3}, 2)=x^{2}-4 x+4=(x-2)^{2}
\end{aligned}
$$

Maximum value is $f(0,2)=4$
Minimum value is $f(2,2)=0$

$$
\begin{aligned}
& x=0, \quad y=0 \rightarrow 2 \\
& f(0, y)=2 y
\end{aligned}
$$

Maximum value is $f(0,2)=4$
Wnimum value is $f(0,0)=0$

2.9 Lagrange Multipliers Method

This method is used to find the stationary points (maximum and minimum) of the function $\mathbf{w}=\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathrm{z})$ with constraint $\mathrm{g}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathrm{k}$ as shown in Figure below.
The figure shows a $g(x, y)$ curve together with several curves of $f(x, y)$. To maximize $f(x, y)$ subject to $g(x, y)=k$ to find largest value of C such that the level curve $f(x, y)=c$ intersect $g(x, y)=k$. its appear from the figure that this happens when these curves just touch each other.
This mean the normal lines at intersection point ($\mathbf{x o}, \mathbf{y o}$) are identical

The gradient vectors are paralle
$\nabla f\left(x_{o}, y_{o}, z_{o}\right)=\lambda \nabla g\left(x_{o}, y_{o}, z_{o}\right)$

For 3D (threa variables)

$$
\lambda \quad \nabla f(x, y, z)=\lambda \nabla g(x, y, z)
$$

The number in the equation is called a Lagrange Multiplier

Example 2.17
A rectangular box with out cover is to be made from ${ }_{2}^{12 \mathrm{~m}}$ of cardboard, find the maximum value of such box.

Splution $y z$

$$
\begin{array}{ll}
g(x, y, z)=2 x z+2 y z+x y=12 \\
\nabla f=\lambda \nabla g & \\
v_{x}=\lambda g_{x} \quad v_{y}=\lambda g_{y} & v_{z}=\lambda g_{z} \\
y z=\lambda(2 z+y) & \text { (1) } \\
x z=\lambda(2 z+x) & \text { (2) } \\
x y=\lambda(2 x+2 y) & \text { (3) } \\
2 x z+2 y z+x y=12 & \text { (4) } \tag{4}
\end{array}
$$

Multiply eq. 1 by x, eq. 2 by y and eq. 3 by z

$$
\begin{gather*}
x y z=\lambda(2 x z+x y) \tag{5}\\
x y z=\lambda(2 y z+x y) \tag{6}\\
x y z=\lambda(2 x z+2 y z) \tag{7}
\end{gather*}
$$

From Eqs. (5)and (6) $2 x z+y x=2 y z+x y$ then $y=x$
From Eqs. (6)and (7) $2 y z+y x=2 x z+2 y z$ then $y=x=2 z$
Sub.in eq.(4) $\quad 4 z^{2}+4 z^{2}+4 z^{2}=12$
$z^{2}=1$ then $z=1 \quad x=2 y=2$
$V=2 * 2 * 1=4 m^{2}$

Example 2.18

Find the extreme values of the function

$$
f(x, y)=x^{\text {h }} \text { thequizcle }
$$

$x^{2}+y^{2}=1$
Solution

$$
\begin{align*}
& g(x, y)=x^{2}+y^{2}=1 \\
& f_{x}=\lambda g_{x} \quad f_{y}=\lambda g_{y} \quad f_{z}=\lambda g_{z} \\
& 2 x=\lambda 2 x \tag{1}
\end{align*}
$$

From eq.(1) $x=0$ or $\lambda=1$
if $x=0 \quad y= \pm 1$ from Eq. 3

if $\lambda=1 \quad y=0$ from Eq. 2
Therefore the possible extreme values at the points $(0,1),(0,-1)(1,0)$ and $(-1,0)$
$f(\mathbf{0}, \mathbf{1})=\mathbf{2}$
$f(0,-1)=2$
$f(\mathbf{1}, 0)=1$
Fhe maximum value of f is $f(0,1)=f(0,-1)=2$
The minimum value of f is $f(1,0)=f(-1,0)=1$

Assignment 2(Partial Derivatives)

(1) Find the first partial derivatives of the following functions
(a) $f(x, y)=y^{5}-3 x y$
(b) $f(x, y)=e^{-t} \cos \pi x(c) \quad f(x, y, z)=x y z^{2} \tan (y z$
(2) Find the second partial derivatives of the functions
(a) $f(x, y)=x^{3} y^{5}+2 x^{4} y(b) \quad f(x, y)=\sin ^{2}(m x+n(b)$

$$
f(x, y)=\frac{x y}{x-y}
$$

(3) Show that $u_{x y}=u_{y x}$ for the following
(a) $u=x \sin (x+2 y)$

$$
\begin{equation*}
u=\boldsymbol{x}^{4} \boldsymbol{y}^{2}-2 \boldsymbol{x} \boldsymbol{y}_{(\mathbf{c})}^{5} \tag{b}
\end{equation*}
$$

$$
u=x y e^{y}
$$

(4) Find the indicated partial derivafives
(b) $w=\frac{x}{y+2 z} ; \frac{\partial 3 w}{\partial z \partial y \partial z}, \frac{\partial 3 w}{\partial x^{2} \partial y}$
(5) Verify that $\frac{b z}{\partial x}+\frac{\text { fuction }}{\partial y} \stackrel{1}{=}$ equation

$$
\begin{equation*}
Z=\ln \left(e^{x}+e^{y}\right) \text { is a solution of the deferential } \tag{a}
\end{equation*}
$$

(6) $L \frac{C D R W}{\partial L}+$ thadehe $_{\boldsymbol{k}}^{\partial k}=(\alpha+\beta)_{P} P=b L^{\alpha} k^{\beta}$ satisfies the equation

$$
\begin{equation*}
\frac{d z}{d t} \text { or } \frac{d w}{d t} \tag{b}
\end{equation*}
$$

(a)
(8) The temperature at a point (\mathbf{x}, y) on a flat plate is given by

$$
T(x, y)=\frac{60}{\left(1+x^{2}+y^{2}\right)}
$$ Where T is measured in adrex,y in meters. Find the rate of change of temperature with respect to distance at the point (2.1) in

(a) The x-direction (b) the y-direction
(9) Use the chain Rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$
(a) $z=\sin \theta \cos \varnothing, \quad \theta=s t^{2}, \varnothing=(\delta)^{2} t \quad z=e^{r} \cos \theta, r=s t, \theta=\sqrt{s^{2}+t^{2}}$
(10) Find the directional derivative of f at the given point in the direction indicated by the angle θ.
(a) $\underset{f(x, y)}{\text { angle } \theta .}=x^{2} y^{3}-y^{4}(2,1), \theta=\frac{\pi}{(4)}$ $f(x, y)=x \sin (x y),(2,0), \theta=\frac{\pi}{3}$
(11) Find the directional derivative of the function
(b) $f(x, y, z)=x e^{y}+y e^{z}+z e^{x}, P=(2,3,1), V=(4,-2,1)$
(12) Find equation of the tangent plane and the normal line to the given surface at the 2 specified point $\left.^{2}\right)^{2}(\underline{y})^{2}+(z-3)^{2}=10,(3,3,5) \quad z+1=x e^{y} \cos z,(1,0,0)$
(13) Find the local maximum and minimum values and saddle point of the following fractigns $x^{3} y+12 x^{2}-8 y$

$$
\begin{equation*}
f(x, y)=e^{y} \cos y \tag{a}
\end{equation*}
$$

(14) Find the absolute maximum and minimum values of f on the set D.
(a) $f(x, y)=3+x y-x-2 y$

(b)
(15) By Lagrange multipliers
(a) Find the three positive numbers whose their sumis 48 , and such that their product is a large as possible
(b) Find the maximum volume of box with three faces in the coordinate planes and vertex in the first octant of the plane

Chapter Three

Differential Equations

Instructor: Dr. Abdulrahman M. Al Rawi Email: abd.mohammed@uoanbar.edu.iq

3.1 Introduction

A differential equation is an equation that contains unknown factors and one or more of its derivative. The order of differential equation is the order of the highest derivative that occurs in the equation.

3.2 order and degree of differential equation

Differential equation	Order	Degree
$\frac{d y}{d x}=3 x+e^{x}$	1	1
$\left(\frac{d y}{d x}\right)^{5}-\left(\frac{d 2 y}{d x^{2}}\right)^{3}+\left(\frac{d 3 y}{d x^{3}}\right)^{2}=\sin x$	3	5

3.3 First order Differential Equations

That equations which can be classified to the following types
1-1 ${ }^{\text {st }}$ order differential equation (Separable Type)
2-1 ${ }^{\text {st }}$ order differential equation (Homogenous Type)
3- $\mathbf{1}^{\text {st }}$ order differential equation (Exact Type)
4- $1^{\text {st }}$ order differential equation (Linear Type)
5-1 ${ }^{\text {st }}$ order differential equation (Bernoulli's Type)

3.3.1 $1^{\text {st }}$ order differential equation (Separable Type)

A separable equation is a first-order differential equation in which the expression for
$d x / d y$ can be factored as a function of x times a function of y. In other words it can written in the form

$$
\frac{d y}{d x}=g(x) f(y)
$$

The name of separable comes from the fact that expression on the right side can be separable and can put the equation

$$
h(y) d y=g(x) d x \quad h(y)=\frac{1}{f(y)}
$$

The solution is $\quad \int \boldsymbol{h}(\boldsymbol{y}) d y=\int \boldsymbol{g}(\boldsymbol{x}) d x+c$
Example 3.1

$$
\frac{d y}{d x}=\frac{x^{2}}{y^{2}}
$$

Solve the differential equation and find the solution of this equation satisfies the
initial condition $y(0) \bar{z}^{2}$
Solution
$\frac{d y}{d x}=\frac{x^{2}}{y^{2}} \rightarrow y^{2} d y=x^{2} d x$
$\int y^{2} d y+c_{1}=\int x^{2} d x+c_{2} \quad \frac{1}{3} y^{3}=\frac{1}{3} x^{2}+c \quad c=c_{2}-c_{1}$
$\begin{array}{ll}y=\sqrt[3]{x^{3}+3 c} & \begin{array}{c}\text { Let } k=3 c \\ x^{3}+k\end{array} \quad x=0 y=2 \quad \rightarrow 2=\sqrt[3]{0+k} \rightarrow k=8\end{array}$
$y=\sqrt[3]{x^{3}+8}$

Example 3.2

Solve the differential equation

$$
\frac{d y}{d x}=\frac{6 x^{2}}{2 y+\cos y}
$$

Solution

$$
\begin{aligned}
& (2 y+\cos y) d y=6 x^{2} d x \\
& \int(2 y+\cos y) d y=\int 6 x^{2} d x+c \\
& y^{2}+\sin y=2 x^{3}+c
\end{aligned}
$$

3.3.2 $1^{\text {st }}$ order differential equation (Homogenous Type)

 The general form is $\quad \frac{d y}{d x}=f\left(\frac{y}{x}\right)$Put

$$
V=\frac{y}{x}
$$

$1^{\text {st }}$ order differential equation is sajd to be homogenous if it satisfy the following condition $F(\lambda x, \lambda y)=f(x, y)$

$$
\frac{d y}{d x}=-\frac{(x, y)}{N(x, y)} \text { and } \frac{M(x, y)}{N(x, y)}=\frac{M(\lambda x, \lambda y)}{N(\lambda x, \lambda y)}
$$

The general solution $\quad \ln x=\int \frac{d V}{F(V)-V}+c$

Example 3.3
Solve $x^{2} y d x=\left(x^{3}-y^{3}\right) d y \quad y(1)=1$
Solution $\frac{d y}{d x}=\frac{x^{2} y}{x^{3}-y^{3}}=f(x, y) \quad V=\frac{y}{x} \quad f(x, y)=\frac{x^{2} y}{x^{3}-y^{3}}$

$$
F(\lambda x, \lambda y)=\frac{(\lambda x)^{2} \lambda y}{(\lambda x)^{3}-(\lambda y)^{3}}=\frac{\lambda^{3} x^{2} y}{\lambda^{3}\left(x^{3}-y^{3}\right)}=\frac{x^{2} y}{\left(x^{3}-y^{3}\right)}=f(x, y)
$$

The equation is $\frac{d y}{d x}=F(V)=\frac{\frac{x^{2} y}{x^{3}}}{\frac{x^{3}}{x^{3}}-\frac{y^{3}}{x^{3}}}=\frac{V}{1-V^{3}}$

$$
\ln x=\int \frac{d V}{F(V)-V}+c
$$

$\ln x=\int \frac{d V}{\frac{V}{}+\boldsymbol{V}}+\boldsymbol{c}=\int \frac{d V}{\frac{V-V+V^{4}}{1-V^{3}}}+c \rightarrow \ln x=\int \frac{\left(1-V^{3}\right) d V}{V^{4}}+c$
General soutionn
$\ln x=\int\left(V^{-4}-\frac{1}{V}\right) d V+c \rightarrow \ln x=-\frac{1}{3 V^{3}}-\ln V+c$
$\ln x=-\frac{x^{3}}{3 y^{3}}-\ln \frac{y}{x}+c \quad$ at $x=1 \quad y=1$
$\ln (\mathbf{1})=-\frac{(\mathbf{1})^{3}}{\mathbf{3 (1)}}-\ln (\mathbf{1})+\boldsymbol{c} \rightarrow \mathbf{0}=-\frac{1}{3}-\mathbf{0}+\boldsymbol{c} \rightarrow \boldsymbol{c}=\frac{1}{3}$
$\ln x=-\frac{x^{3}}{3 y^{3}}-\ln \frac{y}{x}+\frac{1}{3}$

Example 3.4
Solve ${ }^{\left(x^{2}-y^{2}\right) d x+x y d y=0}$
Solution
$\frac{\text { dy }}{d x}=-\frac{\left(x^{2}+y^{2}\right)}{x y}, f(x, y)=-\frac{\left(x^{2}+y^{2}\right)}{x y}$
$F(\lambda x, \lambda y)=-\frac{\left[(\lambda x)^{2}+(\lambda y)^{2}\right]}{\lambda x \lambda y}=-\frac{\lambda^{2}}{\lambda^{2}} \frac{\left(x^{2}+y^{2}\right)}{x y}=-\frac{\left(x^{2}+y^{2}\right)}{x y}=f(x, y)$

$\ln x=\int \frac{d V}{F(V)-V}+c$

$\ln x=\int \frac{-V}{1+2 V^{2}}+c \rightarrow \ln x=-\frac{1}{4} \ln \left|1+2 V^{2}\right|+c$
$\ln x=-\frac{1}{4} \ln \left|1+2\left(\frac{y}{x}\right)^{2}\right|+c$

3.3.3 $1^{\text {st }}$ order differential equation (Exact Type)

The general form is
$M(x, y) d x+N(x, y) d y=0$

$$
\frac{\partial f(x, y)}{\partial x} d x+\frac{\partial f(x, y)}{\partial y} d y=0
$$

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

$1^{\text {st }}$ order differential equation is said to be exact if it satisfy the following

$$
\operatorname{cog}(x, y y)=\int M(x, y) d x+\varnothing(y)
$$

$$
\frac{\partial f(x, y)}{\text { oneneval solution }}\left(\int_{\text {ha }} M(x, y) d x\right)^{+} \phi(y)^{\prime}
$$

The genexal solution shall be endergoes the following routes as below
1-

$$
\begin{equation*}
\varnothing(\boldsymbol{y})^{\prime} \quad \varnothing(\boldsymbol{y})=\int \varnothing(\boldsymbol{y})^{\prime}+\boldsymbol{c} \tag{*}
\end{equation*}
$$

$$
\begin{aligned}
& f(x, y)=\int N(x, y) d y+g(x) \\
& \frac{\partial f(x, y)}{\partial x}=\frac{\partial}{\partial x}\left(\int N(x, y) d y\right)+g(x)^{\prime}+c
\end{aligned}
$$

$$
\mathbf{T o ~ f i n d ~}_{\boldsymbol{g}(\boldsymbol{x})}=\int \boldsymbol{g}(x)^{\prime}+c
$$

sub. In eq. (*) to get the G.S.

3- $f(x, y)=\int M(x, y) d x+\int N(x, y) d y+c$

$$
f(x, y)=\int^{\text {regardless all terms containing variable } x)}
$$

4-
(regardless all terms containing variable y)
$\left(2 x y+e^{y}\right) d x+\left(x^{2}+x e^{y}\right) d y=0$
Example 3.5 $\quad M(x, y) d x+N(x, y) d y=0$
$\operatorname{Sol}(\mathrm{y}, y)=2 x y+e^{y}=\frac{\partial f(x, y)}{\partial x} \quad N(x, y)=x^{2}+x e^{y}=\frac{\partial f(x, y)}{\partial y}$
$\frac{\text { Ondtany }}{\text { Compare it with }}=2 x \quad \frac{\partial N(x, y)}{\partial x}=2 x+e^{y}$

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

$f(x, y)=\int \boldsymbol{M}(x, y) d x+\emptyset(y)$
$f(x, y)=\int\left(2 x y+e^{y}\right) d x+\emptyset(y)$
$f(x, y)=x^{2} y+x e^{y}+\varnothing(y) \quad$ It is exact

$$
\begin{aligned}
& \frac{\partial f(x, y)}{\partial y}=N(x, y)=x^{2}+x e^{y}+\emptyset(y)^{\prime}=x^{2}+x e^{y} \rightarrow \emptyset(y)^{\prime}=0 \\
& \emptyset(y)=\int \emptyset(y)^{\prime}+c \rightarrow=c \\
& f(x, y)=x^{2} y+x e^{y}+c
\end{aligned}
$$

Method 2 I Practice for yqu $\int N(x, y) d y+c$
Method 3
(regardless all terms containing variable x)
$f(x, y)=\int\left(2 x y+e^{y}\right) d x+\int 0+c$ $f(x, y)=x^{2} y+x e^{y}+c$
$\left(2 x y+x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y=0$
Method 4 practice for you

Other practices

3.3.4 $1^{\text {st }}$ order differential equation (Linear Type)

The general form is $\frac{d y}{d x}+P(x) y=Q(x)$
The general solữóntuhatl lee $I(x) Q(x) d x+c$
$I(x)$ is an integrating factor $=e^{\int P(x) d x}$
$\frac{d x}{d y}+P(y) x=Q(y)$
Or the general form can be written as
$x I(y)=\int I(y) Q(y) d y+c \quad I(y)=e^{\int P(y) d y}$
The gengral solution capekexwritten as

$$
\frac{d y}{d x}+y \tan x=\sec x \quad \frac{d y}{d x}+P(x) y=Q(x)
$$

ExampI $\left(x^{3}\right) 6=\int I(x) Q(x) d x+c \quad I(x)=e^{\int P(x) d x}$
$\mathrm{I}(\mathrm{Q} \mathrm{d}) \mathrm{e}=\mathrm{e}^{\int \tan x d x}=e^{\ln \sec x}=\operatorname{secx}$
Sobetéon= $=\int \sec x \sec x d x+c$
$y \sec x=\int \sec ^{2} d x+c \quad$ comparequitit $\tan x d x+c$
G.S

3.3.5 $1^{\text {st }}$ order differential equation (Bernoulli's Eq.)

The general form is $\frac{d y}{d x}+P(x) y=Q(x) y^{n}$

$$
\frac{d x}{d y}+P(y) x=Q(y) x^{n} \quad z=x^{1-n} \text { where } \frac{d z}{d y}=(1-n) x^{-n} \frac{d x}{d y}
$$

Or

$$
y^{\prime}+\frac{y}{x}=\ln x y^{2}
$$

Example $3.7 \frac{d y}{d x}+P(x) y=Q(x) y^{n}$
Solve $y^{1-n} \quad n=2 z=y^{-1}$
Sidution $_{d x}^{d)^{-2}} \frac{d y}{d x} \rightarrow \frac{d y}{d x}=\frac{-1}{y^{-2}} \frac{d z}{d x}=-y^{2} \frac{d z}{d x}$ sub in above Eq.

$z I(x)=\int I(x) Q(x) d x+c$
$I(x)=e^{-\int_{\frac{1}{x}}}=e^{-\ln x}=e^{\ln \frac{1}{x}}=\frac{1}{x}$
$z\left(\frac{1}{x}\right)=-\int \frac{1}{x} \ln x d x+c$
$\frac{1}{\gamma^{x}}=-\frac{(\ln x)^{2}}{2}+c$

$$
H W y^{\prime}+\frac{y}{x}+\frac{y^{2}}{x}=0
$$

3.4 Second order differential equations

Those equation which can be classified to the following types
3.4.1 $2^{\text {nd }}$ order differential equation, linear, homogenous with constant coefficients ${ }^{\prime \prime}+P y^{\prime}+g y=0$

The general farm is

Or

$$
\begin{array}{r}
\left(D^{2}+P D+g\right) y=0 \\
y^{\prime /}+5 y^{\prime}+6 y=0
\end{array}
$$

$$
D=\frac{d}{d x}=\text { Differential operator }
$$

To get
where
Likewise

$$
m^{2}+P m+g=0 \ldots \ldots(*)
$$

the above equation can be solved by introducing a certain equation that is
 differential Z petator ffom thafrequanting to zero after replacing each D ifertaif prowndthoth m_{1} and m_{2} are real roots

$$
\boldsymbol{y}(x)=\boldsymbol{C}_{1} e^{\frac{1}{m x}}+C_{2} x e^{m x}
$$

if m_{1} and m_{2} are both imagenary and they are of form $m_{1,2}=a+i b$
The equation takefithe collocringsoxtef $\boldsymbol{C}_{2} \sin b x$)
1-

Example 3.8

Solve $\quad y^{/ /}+5 y^{\prime}+6 y=0$
Solution

$$
\begin{aligned}
& \frac{d z y}{d x^{2}+5 \frac{d y}{d x}+6 y=0 \quad\left(D^{2}+5 D+6\right) y=0} \\
& m^{2}+5 m+6=0 \quad \rightarrow \quad(m+3)(m+2)=0 \quad \rightarrow m=-3, m=-2
\end{aligned}
$$

G.S. $y(x)=C_{1} e^{-3 x}+C_{2} e^{-2 x}$

Example $\frac{d 2 y}{\frac{d x^{2}}{d .9}}-2 \frac{d y}{d x}+y=0$
Solve $\left.{ }^{2}-2 D+1\right) y=0$
$\xrightarrow{\rightarrow} \boldsymbol{m}^{2}-2 m+1=0 \quad \rightarrow(m-1)(m-1)=0 \quad m=1, \quad m=1$
Gosutigh(x) $=C_{1} e^{x}+C_{2} x e^{x}$

$$
\frac{d 2 y}{d x^{2}}-2 \frac{d y}{d x}+5 y=0 \quad y(0)=y(0)^{\prime}=1
$$

$\left(D^{2}-2 D+5\right) y=0$
$\mathrm{Mxample}_{4} 1 \mathrm{~S}=\mathrm{o} \rightarrow \mathrm{m}_{1,2}=\frac{2 \mp \sqrt{2^{2}-4(1)(5)}}{2(1)}=\frac{2 \mp 4 i}{2}=1 \mp 2 i \quad$ a $=1, b=2$
Salve $y(x)=e^{a x}\left(C_{1} \cos b x+C_{2} \sin b x\right)=e^{x}\left(C_{1} \cos 2 x+C_{2} \sin 2 x\right)$
Sadztion $0, y=1 \rightarrow e^{0}\left(C_{1} \cos 2(0)+C_{2} \sin 2(0)\right) \rightarrow C_{1}=1$

$$
\text { at } x=0, y^{\prime}=1 \rightarrow e^{x}\left(-2 C_{1} \sin 2 x+2 C_{2} \cos 2 x\right)+e^{x}\left(C_{1} \cos 2 x+C_{2} \sin 2 x\right)
$$

$$
\mathbf{1}=e^{0}\left(\mathbf{0}+2 C_{2}\right)+e^{0}\left(C_{1}+\mathbf{0}\right) \rightarrow \mathbf{1}=2 C_{2}+C_{1} \rightarrow C_{2}=\mathbf{0}
$$

$$
y(x)=e^{x} \cos 2 x
$$

3.4.2 $2^{\text {nd }}$ order differential equation, non, homogenous, linear with constant coefficients

$$
\frac{d 2 y}{d x^{2}}+P \frac{d y}{d x}+q y=f(x) \quad\left(D^{2}+P D+q\right) y=f(x)
$$

Or

$$
y(x)=y h+y P
$$

The general solution of above equation shall be
yh : Transient solution

$$
\left(y^{/ /}+P y^{\prime}+q y=0\right)
$$

$y P$: Steady state solution

yh can be	f(x)	Suggested solution	that discussed on $f(x)$ where if $f(x)$ is of a following table
previo	C: constant	$\begin{array}{\|l} \hline \text { K: constant } \\ \hline \text { e }^{a x} \end{array}$	
	x^{n}	$a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$	
yP can be standa	$\begin{aligned} & \sin a x \\ & \cos a x \\ & \sin a x+\cos a x \end{aligned}$	$k_{1} \cos a x+k_{2} \sin a x$	
	$\sinh a x$ $\cosh a x$ $\sinh a x+\cosh a x$	$k_{1} \cosh a x+k_{2} \sinh a x$	

Note

Each solution taken from the previous table shall be compared with yh. If there is certain similarities between them suggested solution shall be multiplied by (X).
If $f(x)$ is now f fthesemqntioned before, then $y P$ shall be evaluated using (variation parameters)
$\mathbf{y} 1$ and $\mathbf{y} 2$ shall be evaluated from yh regardless their constant while u1 and

Where $\mathbf{w}(\mathbf{x})$ is aowrongkian function. Grammar-wromslian

$$
u_{1}=\int \frac{\left|f(x) y_{2}\right|}{w(x)} d x \quad u_{2}=\int \frac{\left|y_{1}^{\prime}, f(x)\right|}{w(x)} d x
$$

$$
y^{\prime /}+y=\tan x+4 e^{3 x}+x^{2}+\sin x+5
$$

$y(x)=y h+y P$
d2y $\begin{aligned} & \text { Exantple } \\ & 3.91 \rightarrow\left(D^{2}+1\right) y=0\end{aligned}$
Shlal $_{+1}=0 \rightarrow m^{2}=-1 \rightarrow m=\mp \sqrt{-1}=0 \mp i$ compare with $a \mp i b$ Colntion
$y h=e^{a x}\left(c_{1} \cos b x+c_{2} \sin b x\right) \rightarrow y h=e^{0}\left(c_{1} \cos x+c_{2} \sin x\right)$ $y h=c_{1} \cos x+c_{2} \sin x$

$$
y P=y P_{1}+y P_{2}+y P_{3}+y P_{4}+y P_{5}
$$

To find $y P$

$$
f(x)=\tan x
$$

$$
y p_{1}=y_{1} u_{1}+y_{2} u_{2} \quad y_{1}=\cos x \quad y_{2}=\sin x
$$

$$
\begin{aligned}
& w(x)=\operatorname{Det}\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \\
& w(x)=\operatorname{Det}\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=\cos ^{2} x+\sin ^{2} x=1
\end{aligned}
$$

$$
u_{1}=\int \frac{\left|\begin{array}{cc}
0 & y_{2} \\
f(x) & y_{2}
\end{array}\right|}{w(x)} d x=\int \frac{\left|\begin{array}{cc}
0 & \sin x \\
\tan x & \cos x
\end{array}\right|}{1} d x=\int-\sin x \tan x d x=\int \frac{-\sin ^{2} x}{\cos x} d x
$$

$$
=-\int \frac{\left(1-\cos ^{2} x\right)}{\cos x} d x=-\int(\sec x-\cos x) d x=\sin x-\ln (\sec x+\tan x)
$$

$$
u_{1}=\int \frac{\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1} f & f(x)
\end{array}\right|}{w(x)} d x=\int \frac{\left|\begin{array}{cc}
\cos x & 0 \\
-\sin x & \tan x
\end{array}\right|}{1} d x=\int \cos x \tan x d x=\int \sin x d x=\operatorname{con} x
$$

$$
y p_{1}=y_{1} u_{1}+y_{2} u_{2} \rightarrow y p_{1}=\cos x[\sin x-\ln (\sec x+\tan x)]-\sin x \cos x
$$

$$
y p_{1}=\cos x \sin x-\cos x \ln (\sec x+\tan x)-\sin x \cos x
$$

$$
y p_{1}=\frac{1}{\ln (\sec x+\tan x)} \cos x
$$

To find $\mathbf{y P 2}$

$$
\text { Topfind } y P_{1} 3+2 a_{2} x
$$

$$
\text { yp }_{3} / /=2 a_{2} \quad \text { sub.in }(*)
$$

$$
2 a_{2}+a_{0}+a_{1} x+a_{2} x^{2}=x^{2}
$$

$$
a_{2}=\mathbf{1}, \quad a_{1}=\mathbf{0}
$$

$$
2 a_{2}+a_{0}=0 \rightarrow a_{0}=-2
$$

$$
y p_{3}=-2+x^{2}
$$

$$
y^{/ /}+y=\sin x \ldots(*)
$$

$$
y p_{4}=k_{1} \cos x+k_{2} \sin x \operatorname{not} O K
$$

$$
y p_{4}=x\left(k_{1} \cos x+k_{2} \sin x\right) \quad O K
$$

$$
y p_{4}^{\prime}=x\left(-k_{1} \sin x+k_{2} \cos x\right)+\left(k_{1} \cos x+k_{2} \sin x\right)
$$

$$
y \bar{p} / / \operatorname{tind} k\left(P R_{1} \cos x-k_{2} \sin x\right)+\left(-k_{1} \sin x+k_{2} \cos x\right)+\left(-k_{1} \sin x+k_{2} \cos x\right)
$$

$$
y p_{4} / /=-x\left(k_{1} \cos x+k_{2} \sin x\right)+2\left(-k_{1} \sin x+k_{2} \cos x\right)
$$

$$
\begin{aligned}
& y P_{2}^{\prime}=3 k e^{3 x} \quad y P_{2} / /=9 k e^{3 x} \text { sub in eq. (*) } \\
& 9 \boldsymbol{k e}^{3 x}+\mathrm{ke}^{3 x}=4 \mathrm{e}^{3 x} \rightarrow 10 \mathrm{ke}^{3 x}=4 \mathrm{e}^{3 x} \rightarrow \mathrm{k}=\frac{2}{5} \\
& y P \overrightarrow{2}=\underline{5} e_{5}^{2} d P_{3}=a_{0}+a_{1} x+a_{2} x^{2} \\
& y^{\prime /}+y=x^{2} \ldots(*) \quad \rightarrow \operatorname{let} y p_{3}=a_{0}+a_{1} x+a_{2} x^{2}
\end{aligned}
$$

$-x\left(k_{1} \cos x+k_{2} \sin x\right)+2\left(-k_{1} \sin x+k_{2} \cos x\right)+x\left(k_{1} \cos x+k_{2} \sin x\right)=\sin x$ $-2 k_{1} \sin x-2 k_{2} \cos x=\sin x \rightarrow-2 k_{1}=1 \rightarrow k_{1}=-\frac{1}{2}, \quad k_{2}=0 \operatorname{sub} . \operatorname{in}(*)$ $y p_{4}=x\left(-\frac{1}{2} \cos x+0 \sin x\right)=-\frac{1}{2} x \cos x$
$y^{/ /}+\boldsymbol{y}=5 \ldots(*) \rightarrow \operatorname{Let} y P_{5}=k$
To find $_{5} y^{y p} p_{5} / /=0$ sub. in (*)
$\mathbf{0}+\boldsymbol{k}=5$
$\boldsymbol{y p} \boldsymbol{p}_{5}=\mathbf{5}$
$y p=y p_{1}+y p_{2}+y p_{3}+y p_{4}+y p_{5}=\ln \frac{1}{\sec x \tan x} \cos x+\frac{2}{5} e^{3 x}+x^{2}-\frac{1}{2} x \cos x+5$
$y(x)=y h+y p$
$y(x)=c_{1} \cos x+c_{2} \sin x+\ln \frac{1}{\sec x \tan x} \cos x+\frac{2}{5} e^{3 x}+x^{2}-\frac{1}{2} x \cos x+5$

$$
\begin{gathered}
\left(D^{2}-16\right) y=e^{4 x} \\
y^{/ /}+y=\frac{1}{1+\cos x}
\end{gathered}
$$

Practices

1-

3.5 Higher Order Differential Equations

3.5.1 Third order differential equations, Linear with constant coefficient
((DUPRAPfDFm $\left.\mathrm{i}_{\&} D+s\right) y=0$ homogenous
$y(x)=y h: h o m o g e n o u s$ solution
$m^{3}+P m^{2}+\boldsymbol{q m}+s=0$
Homogenous solution can be achieved by considering
if $m_{1} \neq m_{2} \neq m_{3}$ Real roots

1- if $m_{1}=m_{2}=m_{3}$ Real roots
$y(x)=y h=C_{1} e^{m x}+C_{2} x e^{m x}+C_{3} e x^{2^{m x}}$
if $\left(m_{1}=m_{2}=m\right) \neq m_{3}$ Real roots
2- $y(x)=y h=C_{1} e^{m x}+C_{2} x e^{m x}+C_{3} e^{m_{3} x}$
if $\left(m_{1,2}=a+i b\right) \neq m_{3}$
$y(x)=y h=e^{a x}\left(C_{1} \cos b x+C_{2} \sin b x\right)+C_{3} e^{m_{3} x}$
3-

While If $\left(D^{3}+P D^{2}+q D+s\right) y=f(x)$ represents third order-non

yp shall be taken out from the suggested solution table, if $f(x)$ is of a standard form. But if it is not, yp shall be

Where $110 y 2$ and $_{2} y 3$ shall be from yh that is mentioned befoys while u1,u2
and u30shallyzz' evaduzat ed by using "Gran wiol-wromskiave" ${ }_{3}$ nlethod.

$u_{2}=\int \frac{\mid y_{1} / / \quad f(x) \quad y_{3} / /}{w(x)} d x$
$u_{3}=\int \frac{\left|\begin{array}{ccc}y_{1} & y_{2} & 0 \\ y_{1}^{\prime} & \boldsymbol{y}_{2}^{\prime} & 0 \\ \boldsymbol{y}_{1} / \prime & y_{2} / \prime & f(x)\end{array}\right|}{w(x)} d x$

$$
w(x)=\text { Det. }\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1} 1^{\prime} & y_{2} y^{\prime} & y_{3}{ }^{\prime} \\
y_{1} / / & y_{2} / / & y_{3} / /
\end{array}\right|
$$

$$
\left(D^{3}+P D^{2}+q D+s\right) y=0
$$

wh choll ho ovoluotod by concidaring

3.5.2 Forth order differential equation, Linear with constant coefficient.

(Bhe-gempralfqua if $s D+R$) $y=0$ homogenous
$m^{4}+\mathrm{Pm}^{3}+\mathrm{qm}^{2}+\boldsymbol{s m}+\mathrm{R}=\mathrm{o}$
It can be solve by
if $m_{1} \neq m_{2} \neq m_{3} \neq m_{4}$ Real roots

1- $y(x)=y h=C_{1} e^{m x}+C_{2} x e^{m x}+C_{3} x^{2} e^{m x}+C_{4} x^{3} e^{m x}$
if $\left(m_{1}=m_{2}=m_{3}=m\right) \neq m_{4}$ Real roots
$2-$

$$
y(x)=y h=C_{1} e^{m x}+C_{2} x e^{m x}+C_{3} x^{2} e^{m x}+C_{4} e^{m_{4} x}
$$

if $\left(m_{1}=m_{2}=m\right) \neq m_{3} \neq m_{4}$ Real roots
$y(x)=y h=C_{1} e^{m x}+C_{2} x e^{m x}+C_{3} e^{m_{3} x}+C_{4} e^{m_{4} x}$
3- if ($m_{1}=m_{2}=m$) and ($m_{3}=m_{4}=m^{-}$) Real roots $y(x)=y h=C_{1} e^{m x}+C_{2} x e^{m x}+C_{3} e^{m^{-x}}+C_{4} x e^{m^{-x}}$
if $\left(m_{1} \neq m_{2}\right)$ and $m_{3,4}=a \mp$ ib
4-
$y(x)=y h=C_{1} e^{m_{1} x}+C_{2} e^{m_{2} x}+e^{a x}\left(C_{3} \cos b x+C_{4} \sin b x\right)$
if $\left(m_{1}=m_{2}=m\right)$ and $m_{3,4}=a \mp i b$
5- $\boldsymbol{y}(x)=y h=C_{1} e^{m_{1} x}+C_{2} x e^{m_{2} x}+e^{a x}\left(C_{3} \cos b x+C_{4} \sin b x\right)$
if $m_{1,2}=a \mp$ ib and $m_{3,4}=u \mp i v$
$y(x)=y h=e^{a x}\left(C_{3} \cos b x+C_{4} \sin b x\right)+e^{u x}\left(C_{3} \cos v x+C_{4} \sin v x\right)$
6- if $m_{1,2}=m_{3,4}=a \mp$ ib
$y(x)=y h=e^{a x}\left(C_{3} \cos b x+C_{4} \sin b x\right)+x e^{a x}\left(C_{3} \cos b x+C_{4} \sin b x\right)$
 order differential equation it can be solve by
$y(x)=y h+y p$
yh : shall be as mentioned before
yp: shall be taken out from suggested solution in the table that mentioned
 following

$$
u_{3}=\int \frac{\left|\begin{array}{cccc}
y_{1} & y_{2} & 0 & y_{4} \\
y_{1} / & y_{2} / & 0 & y_{4} / \\
y_{1} / / & y_{2} / / & 0 & y_{4} / / \\
y_{1} / / / & y_{2} / / / & f(x) & y_{4} / / /
\end{array}\right|}{w(x)} d x
$$

$$
u_{4}=\int \frac{\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & 0 \\
y_{1} / & y_{2} / & y_{3} / & 0 \\
y_{1} / / & y_{2} / / & y_{3} / / & 0 \\
y_{1} / / / & y_{2} / / / & y_{3} / / / & f(x)
\end{array}\right|}{w(x)} d x
$$

$$
w(x)=\text { Det. }\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1} / & y_{2} / & y_{3} / & y_{4} / \\
y_{1} / / & y_{2} / / & y_{3} / / & y_{4} / / \\
y_{1} / / / & y_{2} / / / & y_{3} / / / & y_{4} / / /
\end{array}\right|
$$

Example 3.12

Solve $y^{/ / /}-6 y^{/ /}+11 y^{\prime}-6 y=4 e^{4 x}$
364)tionyh $+y p$
y^{\prime} To find ${ }^{\prime} y^{\prime} y^{\prime}$ consider $-6 y=0$
$\left(D^{3}-6 D^{2}+11 D-6\right) y=0 \rightarrow m^{3}-6 m^{2}+11 m-6=0$
$m_{1}=1$ satisfy the equation, using long divition principle to get m_{2} and m_{2}
$(m-1)\left(m^{2}-5 m+6\right)=0$
$(m-1)(m-3)(m-2)=0$
$m_{1}=1, m_{2}=3, m_{3}=2$
$y h=C_{1} e^{x}+C_{2} e^{3 x}+C_{3} e^{2 x}$
$y p=k e^{4 x}$

$$
\begin{aligned}
& \begin{array}{c}
m^{2}-5 m+6 \\
\underline{m-1} \begin{array}{l}
m^{3}-6 m^{2}+11 m-6
\end{array}
\end{array} \\
& \frac{m^{3}-m^{2}}{-5 m^{2}+11 m-6} \\
& -5 m^{2}+5 m \\
& 6 m-6 \\
& \begin{array}{c}
6 m-6 \\
\hline 0 \quad 0
\end{array}
\end{aligned}
$$

$y p^{\prime}=4 k^{4 x}, y p^{\prime /}=16 k^{4 x}, y p^{/ / /}=64 k^{4 x}$ sub.in the eq.
64kfind yp ${ }^{4 x}$ ke $^{4 x}+44 k e^{4 x}-6 k e^{4 x}=4 e^{4 x}$
$6 \boldsymbol{k e}^{4 x}=4 e^{4 x} \rightarrow k=\frac{2}{3} \rightarrow y p=\frac{2}{3} e^{4 x}$
$y(x)=C_{1} e^{x}+C_{2} e^{3 x}+C_{3} e^{2 x}+\frac{2}{3} e^{4 x}$

Example 3.13
Solve

$$
\left(D^{4}-1\right) y=0
$$

Solution

$$
\begin{aligned}
& \text { Considel } 1=0 \rightarrow\left(m^{2}-1\right)\left(m^{2}+1\right)=0 \rightarrow(m-1)(m+1)\left(m^{2}+1\right)=0 \\
& m_{1}=1, m_{2}=-1, m_{3,4}=0 \mp i a=0, b=1 \\
& y(x)=C_{1} e^{x}+C_{2} e^{-x}+e^{0}\left(C_{3} \cos x+C_{4} \sin x\right) \\
& y(x)=c_{1} e^{x}+C_{2} e^{-x}+C_{3} \cos x+C_{4} \sin x
\end{aligned}
$$

$$
((D-1)(D-2)(D-3)(D-4)) y=4 e^{5 x}
$$

$$
y^{/ / / /}-5 y^{/ /}+4 y=x^{4}+8 e^{-3 x}
$$

Practices

1 -

2-

Sheet 3 (Differential Equations)

$1^{\text {st }}$ order differential equations

1. $y^{\prime}=-2 x y$
2. $2(x y+x) y^{\prime}=y$
3. $y e^{x+y} d y=d x$
4. $2 x d x-d y=x(x d y-2 y d x) \quad y(-3)=1$
5. $\left(x^{2}+y^{2}\right) d x=2 x y d y$
6. $\left(x y+y^{2}\right) d x=\left(x^{2}+x y+y^{2}\right) d y$
7. $x^{2} d y=\left(x y-y^{2}\right) d x$
8. $\left(2 x y+x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y=0$
9. $(\sin y-y \sin x y) d x+(x \cos y-x \sin x y) d y=0$
10. $\left(x^{2}-y^{2}\right) y^{\prime}+(2 x y+1)=0$
11. $\left(5 x^{2}+1\right) y^{\prime}-(20 x y)=10 x \quad y(0)=\frac{1}{2}$
12. $y^{\prime}+y=e^{-x} \quad y(0)=3$
13. $\left(x^{2}+1\right) d y=\left(x^{3}-2 x y+x\right) d x \quad y(1)=1$
14. $y^{\prime}+2 x y-x=e^{-x^{2}}$
15. $y y^{\prime}+x y^{2}-x=0 \quad y(0)=-1$
16. $y d y=\left(x-y^{2}\right) d x$

$2^{\text {nd }}$ order differential equations

1. $\left(D^{2}+3 D+2\right) y=\frac{-e^{-x}}{x}+x^{2}$
2. $\left(D^{2}+D\right) y=\cos ^{2} x+\sin ^{2} x x^{2}$
3. $y^{/ /}-2 y^{\prime}+2 y=e^{-x} \cos x$
4. $y^{/ /}+4 y^{\prime}+3 y=x-1$
5. $y^{\prime /}-5 y^{\prime}+6 y=\cosh x$
6. $y^{\prime /}+y^{\prime}=\sin x+2 \cos 2 x$
7. $y^{/ /}+5 y^{\prime}+6 y=3 e^{-2 x}+4 x^{2}$
8. $\left(D^{2}-2 D+1\right) y=x \ln x$
9. $(D+2)\left(D^{2}+2 D+2\right) y=x-\sin x$
10. $\left(D^{3}+D\right) y=4 \cos 2 x$
11. $\left(D^{4}-16\right)$ Higher order differential equations
12. $\left(D^{3}+D^{2}+3 D-5\right) y=e^{x}$
13. $(D+1)^{4} y=e^{x}+12$
14. $\left(D^{2}+1\right)\left(D^{2}+5\right) y=e^{x}$
