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Course Description: 

This course is the third part of our standard four-semester calculus sequence. It includes 

vector calculus; functions of several variables; differentials and applications; and double and 

triple integrals. 

 

Course Objectives/Goals: 

The goals of this course are to enable students to: 

1. Learn the basics of the calculus of functions of two and three variables. 

2. Study vectors in three-dimensional space, derivatives, and integrals. 

3. Apply these ideas to a wide range of problems like motion in space, optimization, arc 

length, etc. 

 

 

Course Learning Outcomes: 

By the end of successful completion of this course, the student will be able to: 

1. Visualize geometry in three-dimensional space; 

2. Perform the calculus of scalar functions of several variables and the calculus of vector 

functions; 

3. Do calculus operations on multivariable functions, including partial derivatives, 

directional derivatives, and multiple integrals; 

4. Apply concepts of multivariable calculus to real world problems. 

 

Text Book(s):  

- Anton, Howard, Irl C. Bivens, and Stephen Davis. Calculus Single Variable. John 

Wiley & Sons, 2012. 

Recommended readings: 

- Any materials on Calculus III like lecture notes or books that are available online. 
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Weekly Distribution of Course Topics/Contents 

Week Topic 

1.  Rectangular Coordinate systems in 3-space. Vectors 

2.  Dot product, projections. Cross product 

3.  Parametric equations of a line. Planes in 3-space 

4.  Introduction to vector-valued functions. Calculus of vector-valued functions 

5.  Change of parameters, Arc Length. Unit Tangent, Normal and Binormal 

vectors 

6.  Curvature 

7.  Quadric Surfaces. Functions of two or more variables 

8.  Mid-term Exam 

9.  Limits and continuity. Partial derivatives 

10.  Differentiability, Local Linearity. The Chain rule 

11.  Directional derivatives and gradients. Tangent planes and normal vectors 

12.  Maxima and minima of functions of two variables. Lagrange multipliers 

13.  Double integrals. Double integrals over non rectangular regions 

14.   Double integrals in polar coordinates. Triple integrals 

15.  Cylindrical and spherical coordinates, Triple integrals in cylindrical and 

Spherical coordinates 

 

Students’ Assessment: 

Students are assessed as follows: 

Assessment Tool(s) Date Weight (%) 

Semester activities. These include quizzes, 

homework, and classroom interactions 
Week-15 10% 

Mid semester exam Week-7 20% 

Progress exam 
Week-4 and 

week-11 
10% 

Final Exam Week-16 60% 

Total  100% 

 

 

 



Chapter 1: Rectangular Coordinate systems in 3-space and Vectors 

 
 

1 
 

1 CHAPTER ONE                                                                             

RECTANGULAR COORDINATE SYSTEMS IN 3-SPACE AND 

VECTORS 

 

1.1 RECTANGULAR COORDINATE SYSTEMS IN 3-SPACE 

-  It will be called three-dimensional space 3-space, two-

dimensional space (a plane) 2-space, and one-dimensional 

space (a line) 1-space.  

- To locate a point in a plane, this point has 2 dimensional 

coordinates (a, b). a is called x-coordinate and b is called 

y-coordinate.  

- To locate a point in a space, three coordinates are 

required. This point has 3 dimensional coordinates (a, b, 

c). Points in 3-space can be placed in one-to-one 

correspondence with triples of real numbers by using three 

mutually perpendicular coordinate lines, called the x-axis, the y-axis, and the z-axis, 

positioned so that their origins coincide (Figure 1-1).  

- The three coordinate axes form a three 

dimensional rectangular coordinate system (or 

Cartesian coordinate system).  

- The point of intersection of the coordinate axes 

is called the origin of the coordinate system. 

- The coordinate axes, taken in pairs, determine 

three coordinate planes: the xy-plane, the xz-

plane, and the yz-plane (Figure 1-2). 

 

- To each point P in 3-space, we can assign a 

triple of real numbers by passing three planes 

through P parallel to the coordinate planes and letting a, b, and c be the coordinates of the 

intersections of those planes with the x-axis, y-axis, and z-axis, respectively (Figure 1-3). We 

 

 

           

 

 Figure 1-2 
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call a, b, and c the x-coordinate, y-coordinate, and z-coordinate of P, respectively, and we 

denote the point P by (a, b, c). 

 

-Just as the coordinate axes in a two-dimensional coordinate system divide 2-space into four 

quadrants, so the coordinate planes of a three-dimensional coordinate system divide 3-space 

into eight parts, called octants. The set of points with three positive coordinates forms the 

first octant; the remaining octants have no standard numbering.  

-You should be able to visualize the following facts about three-dimensional rectangular 

coordinate systems: 

 

 

1.1.1 Distance in 3-Space 

In 2-space, the distance d between the points P1(x1, y1) and P2(x2, y2) is 

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

The distance formula in 3-space has the same form, but it has a third term to account for the 

added dimension. The distance between the points P1(x1, y1, z1) and P2(x2, y2, z2) is 

 
Figure 1-3 



Chapter 1: Rectangular Coordinate systems in 3-space and Vectors 

 
 

3 
 

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 

 

 

Example 1.1 Find the distance d between the points (2, 3, −1) and (4, −1, 3). 

Solution: 

𝑑 = √(4 − 2)2 + (−1 − 3)2 + (3 + 1)2 = √36 = 6 

 

- The standard equation of the circle in 2-space that has centre (x0, y0) and radius r is  

(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 = 𝑟2 

- The standard equation of the sphere in 3-space that has centre (x0, y0, z0) and radius r 

is 

(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 + (𝑧 − 𝑧0)
2 = 𝑟2 

 

Example 1.2: 

 

 

Example 1.3 Find the centre and radius of the sphere 

 

𝑥2 + 𝑦2 + 𝑧2 − 2𝑥 − 4𝑦 + 8𝑧 + 17 = 0 

(𝑥2 − 2𝑥) + (𝑦2 − 4𝑦) + (𝑧2 + 8𝑧) = −17 

(𝑥2 − 2𝑥 + 1) + (𝑦2 − 4𝑦 + 4) + (𝑧2 + 8𝑧 + 16) = −17 + 21 

(𝑥 − 1)2 + (𝑦 − 2)2) + (𝑧 + 4)2 = 4 

From the equation, the centre of the sphere with (1, 2, −4) and radius 2. 

 

- In general, completing the squares in the previous equation produces an equation of the form 

(𝒙 − 𝒙𝟎)
𝟐 + (𝒚 − 𝒚𝟎)

𝟐 + (𝒛 − 𝒛𝟎)
𝟐 = 𝒌 

If k > 0, then the graph of this equation is a sphere with centre (x0, y0, z0) and radius √𝑘. 

If k = 0, then the sphere has radius zero, so the graph is the single point (x0, y0, z0).  

If k < 0, the equation is not satisfied by any values of x, y, and z (why?), so it has no graph. 
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1.1.2 CYLINDRICAL SURFACES 

- Although it is natural to graph equations in two variables in 2-space and equations in 

three variables in 3-space, it is also possible to graph equations in two variables in 3-

space.  

- For example, the graph of the equation y = x
2
 in an xy-coordinate system is a parabola; 

however, there is nothing to prevent us from inquiring about its graph in an xyz-

coordinate system. To obtain this graph we need only observe that the equation y = x
2
 

does not impose any restrictions on z. Thus, if we find values of x and y that satisfy 

this equation, then the coordinates of the point (x, y, z) will also satisfy the equation 

for arbitrary values of z.  

- Geometrically, the point (x, y, z) lies on the vertical line through the point (x, y, 0) in 

the xy-plane, which means that we can obtain the graph of y = x
2
 in an xyz-coordinate 

system by first graphing the equation in the xy-plane and then translating that graph 

parallel to the z-axis to generate the entire graph (Figure 1-4). 

 

- The process of generating a surface by translating a plane curve parallel to some line 

is called extrusion, and surfaces that are generated by extrusion are called cylindrical 

surfaces.  

- A familiar example is the surface of a right circular cylinder, which can be generated 

by translating a circle parallel to the axis of the cylinder.  

 

Figure 1-4 
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Theorem: An equation that contains only two of the variables x, y, and z represents a 

cylindrical surface in an xyz-coordinate system. The surface can be obtained by graphing 

the equation in the coordinate plane of the two variables that appear in the equation and 

then translating that graph parallel to the axis of the missing variable. 

 

Example 1.4 Sketch the graph of x
2
 + z

2
 = 1 in 3-space. 

 

 

 

 

Example 1.5 Sketch the graph of z = sin(y) in 3-space. 

 

 
 

Exercises 

1. The distance between the points (1, −2, 0) and (4, 0, 5) is ………….. 

2. The graph of (x − 3)2 + (y − 2)2 + (z + 1)2 = 16 is a ……… of radius centered at ……….... 

3. The shortest distance from the point (4, 0, 5) to the sphere (x − 1)
2
 + (y + 2)

2
 + z

2
 = 36 is 

………………. 

4. Let S be the graph of x
2
 + z

2
 + 6z = 16 in 3-space. 

(a) The intersection of S with the xz-plane is a circle with centre ……… and radius ………. . 

(b) The intersection of S with the xy-plane is two lines, x = ……….. and x = ………….. 

(c) The intersection of S with the yz-plane is two lines, z = ………… and z = ………….. 
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1.2 VECTOR 

- Scalars are physical quantities such as area, length, mass, and temperature and 

completely described once the magnitude of the quantity is given.  

- Other physical quantities, called “vectors,” are not completely determined until both a 

magnitude and a direction are specified. There are many examples like force, velocity 

and displacement.  

- A particle that moves along a line can move in only two directions, so its direction of 

motion can be described by taking one direction to be positive and the other negative. 

Thus, the displacement or change in position of the point can be described by a signed 

real number. 

- For example, a displacement of +3 describes a position change of 3 units in the 

positive direction, and a displacement of −3 describes a position change of 3 units in 

the negative direction. 

- However, for a particle that moves in two dimensions or three dimensions, a plus or 

minus sign is no longer sufficient to specify the direction of motion—other methods 

are required.  

- One method is to use an arrow, called a vector, that points in the direction of motion 

and whose length represents the distance from the starting point to the ending point; 

this is called the displacement vector for the motion. See Figure 1-5. 

-  
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1.2.1 Geometric vectors 

- Vectors can be represented geometrically by arrows in 2-space or 3-space; the 

direction of the arrow specifies the direction of the vector, and the length of the arrow 

describes its magnitude. 

- The tail of the arrow is called the initial point of the vector, and the tip of the arrow 

the terminal point. 

- We will denote vectors with lowercase boldface type such as a, k, v, w, and x. Two 

vectors, v and w, are considered to be equal (also called equivalent) if they have the 

same length and same direction, in which case we write v = w.  

- If the initial and terminal points of a vector coincide, then the vector has length zero; 

we call this the zero vector and denote it by 0. The zero vector does not have a 

specific direction. 

 

Figure 1-6 

Definition If v and w are vectors, then the sum v + w is the vector from the initial point of v 

to the terminal point of w when the vectors are positioned so the initial point of w is at the 

terminal point of v (Figure 1-6). 

 

- In Figure 1-7, we have constructed two sums, v + w (from purple arrows) and w + v 

(from green arrows). It is evident that 

                                                                     v + w = w + v 

- The sum (gray arrow) coincides with the diagonal of the parallelogram determined by 

v and w when these vectors are positioned so they have the same initial point. Since 

the initial and terminal points of 0 coincide, it follows that 

0 + v = v + 0 = v 
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Definition If v is a nonzero vector and k is a nonzero real number (a scalar), then the scalar 

multiple kv is defined to be the vector whose length is |k| times the length of v and whose 

direction is the same as that of v if k > 0 and opposite to that of v if k < 0. We define kv = 0 if 

k = 0 or v = 0. 

Figure 1-8 shows the geometric relationship between a vector v and various scalar multiples 

of it.  

- Observe that if k and v are nonzero, then the vectors v 

and kv lie on the same line if their initial points coincide 

and lie on parallel or coincident lines if they do not. 

Thus, we say that v and kv are parallel vectors.  

- Observe also that the vector (−1)v has the same length as 

v but is oppositely directed. We call (−1)v the negative 

of v and denote it by −v (Figure 1-9). In particular, −0 = 

(−1)0 = 0. 

Vector subtraction is defined in terms of addition and scalar 

multiplication by 

                                      v - w = v + (- w) 

- The difference v − w can be obtained geometrically by first 

constructing the vector –w and then adding v and −w, say by the 

parallelogram method.  

- However, if v and w are positioned so their initial points coincide, 

then v − w can be formed more directly, as shown in Figure 1-10b, by drawing the 

vector from the terminal point of w (the second term) to the terminal point of v (the 

first term).  

 
Figure 1-7 
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Figure 1-9 
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In the special case where v = w the terminal points of the vectors coincide, so their difference 

is 0; that is, 

v + (- v) = v - v = 0 

 

1.2.2 Vectors in coordinate systems 

- As shown in figure 1-11, if a vector v is positioned with its initial point at the origin 

of a rectangular coordinate system, then its terminal point will have coordinates of the 

form (v1, v2) or (v1, v2, v3), depending on whether the vector is in 2-space or 3-space. 

- We call these coordinates the components of v, and we write v in component form 

using the bracket notation 
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- In particular, the zero vectors in 2-space and 3-space are 

0 = (0, 0) and 0 = (0, 0, 0) 

- Considering the vectors v = (v1, v2) and w = (w1, w2) in 2-space. If v = w, then the 

vectors have the same length and same direction, and this means that their terminal 

points coincide when their initial points are placed at the origin. It follows that v1 = w1 

and v2 = w2, so we have shown that equivalent vectors have the same components.  

- Conversely, if v1 = w1 and v2 = w2, then the terminal points of the vectors coincide 

when their initial points are placed at the origin. It follows that the vectors have the 

same length and same direction, so we have shown that vectors with the same 

components are equivalent.  

- A similar argument holds for vectors in 3-space, so we have the following result. 

 

Theorem Two vectors are equivalent if and only if their corresponding components 

are equal. 
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1.2.3 Arithmetic Operations on Vectors 

Theorem If v = (v1, v2) and w = (w1, w2) are vectors in 2-space and k is any scalar, then 

v + w= (v1 + w1, v2 + w2) 

v - w= (v1 - w1, v2 - w2) 

kv = (kv1, kv2) 

Similarly, if v = (v1, v2, v3) and w = (w1, w2, w3) are vectors in 3-space and k is any scalar, 

then 

v + w= (v1 + w1, v2 + w2, v3 + w3) 

v - w= (v1 - w1, v2 - w2, v3 - w3) 

kv = (kv1, kv2, kv3) 

 

 

Example 1.4 If v = (−2, 0, 1) and w = (3, 5, −4), then 

v + w = (−2, 0, 1) + (3, 5, −4) = (1, 5, -3) 

3v = (-6, 0, 3) 

-w = (-3, -5, 4) 

w – 2v = (3, 5, −4) – (-4, 0, 2) = (7, 5, -6) 
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1.2.4 Vectors with Initial Point Not at the Origin 

To be specific, suppose that P1(x1, y1) and P2(x2, y2) are points in 2-space and we are 

interested in finding the components of the vector 
𝑃1𝑃2
→  . As shown in Figure 1-13, we can 

write this vector as 

𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑂𝑃2⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑂𝑃1⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑥2, 𝑦2) − (𝑥1, 𝑦1) = (𝑥2 − 𝑥1,  𝑦2 − 𝑦1) 

 

Theorem If 𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is a vector in 2-space with initial point P1(x1, y1) and terminal point P2(x2, 

y2), then 

𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝑥2 − 𝑥1, 𝑦2 − 𝑦1) 

Similarly, if 𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is a vector in 3-space with initial point P1(x1, y1, z1) and terminal point 

P2(x2, y2, z2), then 

𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1) 

 

Example 1.5 In 2-space the vector from P1(1, 3) to P2(4,−2) is 

𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (4 − 1,−2 − 3) = (3,−5) 

and in 3-space the vector from A(0,−2, 5) to B(3, 4,−1) is 

𝐴𝐵⃗⃗⃗⃗  ⃗ = (3 − 0, 4 + 2,−1 − 5) = (3, 6, −6) 

 

  
Figure 1-13 
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1.2.5 Rules of Vector Arithmetic 

Theorem For any vectors u, v, and w and any scalars k and l, the following relationships 

hold: 

 

1.2.6 Norm of a Vector 

- The distance between the initial and terminal points of a vector v is called the length, 

the norm, or the magnitude of v and is denoted by ‖𝐯‖.  

- This distance does not change if the vector is translated, so for purposes of calculating 

the norm, we can assume that the vector is positioned with its initial point at the origin 

(Figure 1-14). This makes it evident that the norm of a vector v = (v1, v2) in 2-space is 

given by 

‖v‖ = √𝑣1
2 + 𝑣2

2 

- and the norm of a vector v =(v1, v2, v3) in 3-space is given by 

‖v‖ = √𝑣1
2 + 𝑣2

2 + 𝑣3
2 
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Example 1.6 Find the norms of v = (−2, 3), 10v = (−20, 30), and w = (2, 3, 6). 

Solution 

‖v‖ = √(−2)2 + 32 = √13 

‖10v‖ = √(−20)2 + 302 = √1300 = 10√13 

‖w‖ = √22 + 32 + 62 = √49 = 7 

 

Note:    ‖kv‖ = |k|‖v‖ 

For example                ‖3v‖ = |3|‖v‖ = 3‖v‖ 

‖−2v‖ = |−2|‖v‖ = 2‖v‖ 

1.2.7 Unit Vectors 

- A vector of length 1 is called a unit vector. 

 

In an xy-coordinate system the unit vectors along the x- and y-axes are denoted by i and j, 

respectively; and in an xyz-coordinate system the unit vectors along the x-, y-, and z-axes are 

denoted by i, j, and k, respectively. 

 
 

As shown in figure 1-15, every vector in 2-space is expressible uniquely in terms of i and j, 

and every vector in 3-space is expressible uniquely in terms of i, j, and k as follows: 
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v = (v1, v2) = (v1, 0) + (0, v2) = v1(1, 0) + v2(0, 1) = v1i + v2j 

v = (v1, v2, v3) = v1(1, 0, 0) + v2(0, 1, 0) + v3(0, 0, 1) = v1i + v2j + v3k 

 

Example 1.7 The following table provides some examples of vector notation in 2-space and 

3-space. 

 

1.2.8 Normalizing a Vector 

- A common problem in applications is to find a unit vector u that has the same 

direction as some given nonzero vector v. This can be done by multiplying v by the 

reciprocal of its length; that is, 

u =
1

‖v‖
 v =

v

‖v‖
 

is a unit vector with the same direction as v—the direction is the same because 𝑘 =  1 ‖v‖⁄  is 

a positive scalar, and the length is 1 because 

‖u‖ = ‖𝑘v‖ = |𝑘|‖v‖ =
1

‖v‖
 ‖v‖ = 1 

Example 1.8 find the unit vector that has the same direction as v = 2i + 2j − k. 

‖v‖ = √22 + 22 + (−1)2 = 3 

So the unit vector u in the same direction as v is 

𝐮 =
1

3
𝐯 =

2

3
𝐢 +
2

3
𝐣 −
1

3
𝐤 
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1.2.9 Vectors Determined by Length and Angle 

If v is a nonzero vector with its initial point at the origin of an xy-coordinate system, and if θ 

is the angle from the positive x-axis to the radial line through v, then the x-component of v 

can be written as ‖v‖ cos 𝜃 and the y-component as ‖v‖ sin 𝜃 (Figure 1-16); and hence v 

can be expressed in trigonometric form as 

𝐯 = ‖v‖ (cos 𝜃 , sin 𝜃)    𝑜𝑟   𝐯 = ‖v‖ cos 𝜃 𝐢 + ‖v‖sin 𝜃 𝐣     

 

In the special case of a unit vector u this simplifies to 

𝐮 = (cos𝜃 , sin 𝜃)    𝑜𝑟   𝐮 = cos 𝜃 𝐢 + sin 𝜃 𝐣   

Example 1.9 

(a) Find the vector of length 2 that makes an angle of π/4 with the positive x-axis. 

(b) Find the angle that the vector 𝐯 = −√3 𝐢 + 𝐣 makes with the positive x-axis. 

𝐯 = 2 cos
𝜋

4
𝐢 , +2 sin

𝜋

4
𝐣 = √2 𝐢 + √2 𝐣 

We will normalize v, then use (previous equation) to find sin θ and cos θ, and then use these 

values to find θ. Normalizing v yields 

 

Thus, cos 𝜃 =  −√3 2⁄  and sinθ = 1/2, from which we conclude that θ = 5π/6. 

Chapter 1: Rectangular Coordinate systems in 3-space and Vectors 

 
 

 

Figure 1-16 



Chapter 1: Rectangular Coordinate systems in 3-space and Vectors 

 
 

17 
 

1.2.10 Vectors Determined by Length and a Vector in the Same Direction 

It is a common problem in many applications that a direction in 2-space or 3-space is 

determined by some known unit vector u, and it is of interest to find the components of a 

vector v that has the same direction as u and some specified length‖v‖. This can be done by 

expressing v as 

 

and then reading off the components of ‖v‖u. 

Example 1.10 Figure 1-17 shows a vector v of length √5 that extends along the line through 

A and B.  Find the components of v. 

 

Solution: 
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1.2.11 Resultant of Two Concurrent Forces 

 If two forces F1 and F2 are applied at the same point on an object, then the two forces have 

the same effect on the object as the single force F1 + F2 applied at the point (Figure 1-18).  

 Physicists and engineers call F1 + F2 the resultant of F1 and F2, and they say that the 

forces F1 and F2 are concurrent to indicate that they are applied at the same point. 

 

Figure 1-18 

Example 1.11 Suppose that two forces are applied to 

an eye bracket, as shown in Figure 1-19. Find the 

magnitude of the resultant and the angle θ that it makes 

with the positive x-axis.  

 

 

 

 

 

Solution. Note that F1 makes an angle of 30
◦
 with the positive x-axis and F2 makes an angle 

of 30
◦
 + 40

◦
 = 70

◦
 with the positive x-axis. Since we are given that ǀǀF1ǀǀ = 200 N and ǀǀF2ǀǀ = 

300 N, 

 

Therefore, the resultant F = F1 + F2 has component form 
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The magnitude of the resultant is then 

 

Let θ denote the angle F makes with the positive x-axis when the initial point of F is at the 

origin.  

 

Since the terminal point of F is in the first quadrant, we have 

 

See Figure 1-20 

 

Figure 1-20 
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1.3 DOT PRODUCT; PROJECTIONS 

1.3.1 Definition of the Dot Product 

Definition If 𝐮 = 〈𝑢1, 𝑢2〉 and 𝐯 = 〈𝑣1, 𝑣2〉 are vectors in 2-space, then the dot product of u 

and v is written as u ∙ v and is defined as 〈𝐮 ∙ 𝐯〉 = 𝑢1𝑣1 + 𝑢2𝑣2 

Similarly, if 𝐮 = 〈𝑢1, 𝑢2, 𝑢3〉 and 𝐯 = 〈𝑣1, 𝑣2, 𝑣3〉are vectors in 3-space, then their dot product 

is defined as 〈𝐮 ∙ 𝐯〉 = 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3 

 

 In words, the dot product of two vectors is formed by multiplying their corresponding 

components and adding the resulting products. Note that the dot product of two 

vectors is a scalar. 

Example 1.12  

 

Here are the same computations expressed another way: 

 

1.3.2 Algebraic Properties of the Dot Product 

Theorem If u, v, and w are vectors in 2- or 3-space and k is a scalar, then: 
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1.3.3 Angle between Vectors 

Suppose that u and v are nonzero vectors in 2-

space or 3-space that are positioned so their 

initial points coincide. We define the angle 

between u and v to be the angle θ determined 

by the vectors that satisfies the condition 0 ≤ θ ≤ 

π (Figure 1-21). In 2-space, θ is the smallest 

counter clockwise angle through which one of 

the vectors can be rotated until it aligns with the 

other. 

 

 

 

 

 

Figure 1-21 

 

Theorem If u and v are nonzero vectors in 2-space or 3-space, and if θ is the angle between 

them, then 

cos 𝜃 =
𝐮 ∙ 𝐯

‖𝐮‖‖𝐯‖
 

Example 1.13 Find the angle between the vector u = i − 2j + 2k and 

(a) v = −3i + 6j + 2k   (b) w = 2i + 7j + 6k   (c) z = −3i + 6j − 6k 

Solution (a). 

 

 

Solution (b). 

 

Thus, θ = π/2, which means that the vectors are perpendicular. 
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Solution (c). 

 

Thus, θ = π, which means that the vectors are oppositely directed. (In retrospect, we could 

have seen this without computing θ, since z = −3u.) 

 

Figure 1-22 

1.3.4 Interpreting the Sign of the Dot Product 

                         (a) 

 

Figure 1-22 

Notes:  

 The terms “perpendicular,” “orthogonal,” and “normal” are all commonly used to 

describe geometric objects that meet at right angles. 

 Although the zero vector does not make a well-defined angle with other vectors, we 

will consider 0 to be orthogonal to all vectors. This convention allows us to say that u 

and v are orthogonal vectors if and only if u . v = 0, and makes Formula (a) valid if u 

or v (or both) is zero. 
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1.3.5 Direction Angles 

In an xy-coordinate system, the direction of a nonzero vector v is completely determined by 

the angles α and β between v and the unit vectors i and j (Figure 1-23), and in an xyz-

coordinate system the direction is completely determined by the angles α, β, and γ between v 

and the unit vectors i, j, and k (Figure 1-23). 

  

Figure 1-23 

 In both 2-space and 3-space the angles between a nonzero vector v and the vectors i, j, 

and k are called the direction angles of v, and the cosines of those angles are called 

the direction cosines of v. 

Theorem The direction cosines of a nonzero vector v = v1i + v2 j + v3k are 

 

 

Example 1-14 Find the direction cosines of the vector v = 2i − 4j + 4k, and approximate the 

direction angles to the nearest degree. 

Solution. First we will normalize the vector v and then read off the components. We have 

 

With the help of a calculating utility we obtain 
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Example 1-15 Find the angle between a diagonal of a cube and one of its edges. 

Solution. Assume that the cube has side a, and introduce a coordinate system as shown in 

Figure 1-24. In this coordinate system the vector 

d = ai + a j + ak 

 

Figure 1-24 

is a diagonal of the cube and the unit vectors i, j, and k run along the edges. By symmetry, 

the diagonal makes the same angle with each edge, so it is sufficient to find the angle 

between d and i (the direction angle α). Thus, 

 

 

 

 

 

 

 

 

 



Chapter 1: Rectangular Coordinate systems in 3-space and Vectors 

 
 

25 
 

1.3.1 Decomposing Vectors into Orthogonal Components 

In many applications it is desirable to “decompose” a vector into a sum of two orthogonal 

vectors with convenient specified directions. For example, Figure 1-25 shows a block on an 

inclined plane. The downward force F that gravity exerts on the block can be decomposed 

into the sum 

F = F1 + F2 

where the force F1 is parallel to the ramp and the force F2 is perpendicular to the ramp. The 

forces F1 and F2 are useful because F1 is the force that pulls the block along the ramp, and F2 

is the force that the block exerts against the ramp.  

 

Figure 1-25 

Thus, our next objective is to develop a computational 

procedure for decomposing a vector into a sum of 

orthogonal vectors. For this purpose, suppose that e1 

and e2 are two orthogonal unit vectors in 2-space, and 

suppose that we want to express a given vector v as a 

sum 

v = w1 + w2 

 

so that w1 is a scalar multiple of e1 and w2 is a scalar 

multiple of e2 (Figure 1-26a). 

v = (v . e1) e1 + (v . e2) e2 

In this formula we call (v . e1)e1 and (v . e2)e2 the 

vector components of v along e1 and e2, respectively;  

 

Figure 1-26 
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and we call v . e1 and v . e2 the scalar components of v along e1 and e2, respectively. If θ 

denotes the angle between v and e1, and the angle between v and e2 is π/2 or less, then the 

scalar components of v can be written in trigonometric form as  

v . e1 = ǀǀvǀǀ cosθ        and       v . e2 = ǀǀvǀǀ sinθ 

(Figure 1-26b). Moreover, the vector components of v can be expressed as 

 

The decomposition can be expressed as 

 

provided the angle between v and e2 is at most π/2. 

Example 1.16 Let 

 

Find the scalar components of v along e1 and e2 and the vector components of v along e1 and 

e2. 

Solution. The scalar components of v along e1 and e2 are 

 

so the vector components are 
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Example 1.17 A rope is attached to a 100 lb block on a ramp that is 

inclined at an angle of 30◦ with the ground (Figure 1-27a). How 

much force does the block exert against the ramp, and how much 

force must be applied to the rope in a direction parallel to the ramp to 

prevent the block from sliding down the ramp? (Assume that the 

ramp is smooth, that is, exerts no frictional forces.) 

Solution. Let F denote the downward force of gravity on the block 

(so ǀǀFǀǀ = 100 lb), and let F1 and F2 be the vector components of F 

parallel and perpendicular to the ramp (as shown in Figure 1-27b). 

The lengths of F1 and F2 are 

 

 

Thus, the block exerts a force of approximately 86.6 lb against the ramp, and it requires a 

force of 50 lb to prevent the block from sliding down the ramp. 

1.3.2 Orthogonal Projections 

The vector components of v along e1 and e2 in previous equation are also called the 

orthogonal projections of v on e1 and e2 and are commonly denoted by 

 

In general, if e is a unit vector, then we define the orthogonal projection of v on e to be 

 

 

Geometrically, if b and v have a common initial point, then projbv is the vector that is 

determined when a perpendicular is dropped from the terminal point of v to the line through b 

(illustrated in Figure 1-28 in two cases). 

Figure 1-27 
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Figure 1-28 

 

Example 1-18 Find the orthogonal projection of v = i + j + k on b = 2i + 2j, and then find the 

vector component of v orthogonal to b. 

Solution. We have 

 

Thus, the orthogonal projection of v on b is 

 

and the vector component of v orthogonal to b is 

 

These results are consistent with Figure 1-29. 

 

Figure 1-29 
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1.4 CROSS PRODUCT 

Some of the concepts that we will develop in this section require basic ideas about 

determinants, which are functions that assign numerical values to square arrays of numbers. 

For example, if a1, a2, b1, and b2 are real numbers, then we define a 2 × 2 determinant by 

|
𝑎1 𝑎2
𝑏1 𝑏2

| = 𝑎1𝑏2 − 𝑎2𝑏1 

 

 The purpose of the arrows is to help you remember the formula—the determinant is 

the product of the entries on the rightward arrow minus the product of the entries on the 

leftward arrow. For example, 

|
3 −2
4 5

| = (3)(5) − (4)(−2) = 15 + 8 = 23 

 
A 3 × 3 determinant is defined in terms of 2 × 2 determinants by 

[

𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3

] = 𝑎1 |
𝑏2 𝑏3
𝑐2 𝑐3

| − 𝑎2 |
𝑏1 𝑏3
𝑐1 𝑐3

| + 𝑎3 |
𝑏1 𝑏2
𝑐1 𝑐2

| 

The right side of this formula is easily remembered by noting that a1, a2, and a3 are the entries 

in the first “row” of the left side, and the 2 × 2 determinants on the right side arise by deleting 

the first row and an appropriate column from the left side. The pattern is as follows: 

 

Example 1-19: 

|
3 −2 −5
1 4 −4
0 3 2

| = 3 |
4 −4
3 2

| − (−2) |
1 −4
0 2

| + (−5) |
1 4
0 3

|

= 3(20) + 2(2) − 5(3) = 49 

 

There are also definitions of 4 × 4 determinants, 5 × 5 determinants, and higher, but we will 

not need them in this text. Properties of determinants are studied in a branch of mathematics 

called linear algebra, but we will only need the two properties stated in the following 

theorem. 
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Theorem 

(a) If two rows in the array of a determinant are the same, then the value of the determinant is 

0. 

(b) Interchanging two rows in the array of a determinant multiplies its value by −1. 

 

Proof (a) 

|
𝑎1 𝑎2
𝑎1 𝑎2

| = 𝑎1𝑎2 − 𝑎2𝑎1 = 0 

 

 

Proof (b) 

|
𝑏1 𝑏2
𝑎1 𝑎2

| = 𝑏1𝑎2 − 𝑏2𝑎1 = −(𝑎1𝑏2 − 𝑎2𝑏1) 

 
Definition  

If u = (u1, u2, u3) and v = (v1, v2, v3) are vectors in 3-space, then the cross product u × v is the 

vector defined by 

𝐮 × 𝐯 = |
𝑢2 𝑢3
𝑣2 𝑣3

| 𝐢 − |
𝑢1 𝑢3
𝑣1 𝑣3

| 𝐣 + |
𝑢1 𝑢2
𝑣1 𝑣2

| 𝐤 

or, equivalently, 

u × v = (u2v3 − u3v2)i − (u1v3 − u3v1) j + (u1v2 − u2v1)k 

 

Observe that the right side of Formula has the same form as the right side of Formula, the 

difference being notation and the order of the factors in the three terms. Thus, we can rewrite 

as 

𝐮 × 𝐯 = |
i j k
𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3

| 

However, this is just a mnemonic device and not a true determinant since the entries in a 

determinant are numbers, not vectors. 
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Example 1-20 Let u = (1, 2, −2) and v = (3, 0, 1). Find   (a) u × v   (b) v × u 

Solution (a) 

𝐮 × 𝐯 = |
𝐢 𝐣 𝐤
1 2 −2
3 0 1

| = |
2 −2
0 1

| 𝐢 − |
1 −2
3 1

| 𝐣 + |
1 2
3 0

| 𝐤 = 2𝐢 − 7𝐣 − 6𝐤  

(b) 

𝐮 × 𝐯 = −(𝐯 × 𝐮) = −2𝐢 + 7𝐣 + 6𝐤   

1.4.1 Algebraic Properties of the Cross Product 

Theorem 

If u, v, and w are any vectors in 3-space and k is any scalar, then: 

(a) u × v = −(v × u) 

(b) u × (v + w) = (u × v) + (u × w) 

(c) (u + v) × w = (u × w) + (v × w) 

(d ) k(u × v) = (ku) × v = u × (kv) 

(e) u × 0 = 0 × u = 0 

( f ) u × u = 0 

The following cross products occur so frequently that it is helpful to be familiar with them: 

i × j =k    j × k = i     k × i = j 

j × i = −k    k × j = −i     i × k = −j 

Example 1-21 

 

1.4.2 Geometric Properties of the Cross Product 

Theorem 

If u and v are vectors in 3-space, then: 

(a) u . (u × v) = 0 (u × v is orthogonal to u) 

(b) v . (u × v) = 0 (u × v is orthogonal to v) 

We will prove part (a). The proof of part (b) is similar. 

Proof (a)  

Let u = (u1, u2, u3) and v = (v1, v2, v3). Then  
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u × v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) 

so that u . (u × v) = u1(u2v3 − u3v2) + u2(u3v1 − u1v3) + u3(u1v2 − u2v1) = 0 

Example 1-22 Find a vector that is orthogonal to both of the vectors u = (2, −1, 3) and v = (−

7, 2, −1). 

Solution: 

 

It can be proved that if u and v are nonzero and nonparallel vectors, then the direction of u × 

v relative to u and v is determined by a right-hand rule; that is, if the fingers of the right hand 

are cupped so they curl from u toward v in the direction of rotation that takes u into v in less 

than 180◦ , then the thumb will point (roughly) in the direction of u × v (Figure 1-30).  

 

Figure 1-30 
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Theorem 

Let u and v be nonzero vectors in 3-space, and let θ be the angle between these vectors when 

they are positioned so their initial points coincide. 

(a) ‖𝐮 × 𝐯‖ = ‖𝐮‖‖𝐯‖ sin 𝜃 

(b) The area A of the parallelogram that has u and v as adjacent sides is 

𝐴 = ‖𝐮 × 𝐯‖  

(c) u × v = 0 if and only if u and v are parallel vectors, that is, if and only if they are scalar 

multiples of one another. 

 

Proof (a) 

 

 

Figure 1-31 

Example 1-23 Find the area of the triangle that is determined by the points P1(2, 2, 0), P2(−1, 

0, 2), and P3(0, 4, 3). 
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Figure 1-32 

1.4.3 Scalar Triple Products 

If u = (u1, u2, u3), v = (v1, v2, v3), and w = (w1, w2, w3) are vectors in 3-space, then the number 

                                                    u . (v × w) 

is called the scalar triple product of u, v, and w. It is not necessary to compute the dot 

product and cross product to evaluate a scalar triple product—the value can be obtained 

directly from the formula 

𝐮 ∙ (𝐯 × 𝐰) = |

𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3
𝑤1 𝑤2 𝑤3

| 

The validity of which can be seen by writing 

 

 

Figure 1-32 
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Example 1-24 Calculate the scalar triple product u . (v × w) of the vectors u = 3i − 2j − 5k, v 

= i + 4j − 4k, w = 3j + 2k 

Solution 

 

 

 

 

 

1.4.4 Geometric Properties of the Scalar Triple Product 

If u, v, and w are nonzero vectors in 3-space that are positioned so their initial points 

coincide, then these vectors form the adjacent sides of a parallelepiped (see figure). The 

following theorem establishes a relationship between the volume of this parallelepiped and 

the scalar triple product of the sides.  

 

Theorem 

 Let u, v, and w be nonzero vectors in 3-space. 

(a) The volume V of the parallelepiped that has u, v, and w 

as adjacent edges is 

𝑉 = |𝐮 . (𝐯 × 𝐰)| 

(b) u . (v × w) = 0 if and only if u, v, and w lie in the same 

plane. 

 

1.4.5 Algebraic Properties of the Scalar Triple Product 

 The expression u × v × w must be avoided because it is ambiguous without 

parentheses. However, the expression u . v × w is not ambiguous—it has to mean u . 

(v × w) and not (u . v) × w because we cannot form the cross product of a scalar and a 

vector.  

 Similarly, the expression u × v . w must mean (u × v) . w and not u × (v . w). Thus, 

when you see an expression of the form u . v × w or u × v . w, the cross product is 

formed first and the dot product second. 
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 Since interchanging two rows of a determinant multiplies its value by −1, making two 

row interchanges in a determinant has no effect on its value. This being the case, it 

follows that 

u . (v × w) = w . (u × v) = v . (w × u) 

 Since the 3 × 3 determinants that are used to compute these scalar triple products can 

be obtained from one another by two row interchanges. 

 Another useful formula can be obtained by rewriting the first equality as 

u . (v × w) = (u × v) . w 

            and then omitting the superfluous parentheses to obtain 

u . v × w = u × v . w 
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1.5  PARAMETRIC EQUATIONS OF LINES 
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1.6 PLANES IN 3-SPACE 

1.6.1 Planes Parallel to the Coordinate Planes 

Based on below figure,  

The graph of x = a is the plane through (a, 0, 0) that is parallel to the yz-plane, 

The graph of y = b is the plane through (0, b, 0) that is parallel to the xz-plane, 

The graph of z = c is the plane through (0, 0, c) that is parallel to the xy-plane. 

 

1.6.2 Planes Determined by a Point and a Normal Vector 

- A plane in 3-space can be determined uniquely by 

specifying a point in the plane and a vector 

perpendicular to the plane (see figure). A vector 

perpendicular to a plane is called a normal to the plane. 

- Suppose that we want to find an equation of the plane 

passing through P0(x0, y0, z0) and perpendicular to the 

vector n = (a, b, c). Define the vectors r0 and r as 

r0 = (x0, y0, z0) and r = (x, y, z) 

- It should be evident from Figure that the plane consists 

precisely of those points P(x, y, z) for which the vector      

r − r0 is orthogonal to n; or, expressed as an equation, 

n . (r − r0) = 0 

If preferred, we can express this vector equation in terms of 

components as                      (a, b, c) . (x − x0, y − y0, z − z0) = 0 

from which we obtain 

a (x − x0) + b (y − y0) + c (z − z0) = 0 

This is called the point-normal form of the equation of a plane.  
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Example: Find an equation of the plane passing through the point (3, −1, 7) and 

perpendicular to the vector n = (4, 2, −5). 

Solution: a point-normal form of the equation is 

4(x − 3) + 2(y + 1) − 5(z − 7) = 0 

(4, 2, −5) . (x − 3, y + 1, z – 7) = 0 

we obtain an equation of the form     

                                                          ax + by + cz + d = 0  

4x + 2y − 5z + 25 = 0 

The following theorem shows that every equation represents a plane in 3-space. 

Theorem 

 If a, b, c, and d are constants, and a, b, and c are not all zero, then the graph of the equation 

ax + by + cz + d = 0  

is a plane that has the vector n = (a, b, c) as a normal. 

Example: Determine whether the planes 3x − 4y + 5z = 0 and − 6x + 8y − 10z − 4 = 0 are 

parallel. 

Solution: It is clear geometrically that two planes are parallel if and only if their normals are 

parallel vectors. A normal to the first plane is 

n1 = (3, −4, 5) 

 and a normal to the second plane is  

n2 = (−6, 8, −10) 

Since n2 is a scalar multiple of n1, the normals are parallel, and hence so are the planes. 

Example: Find an equation of the plane through the points P1(1, 2,−1), P2(2, 3, 1), and 

P3(3,−1, 2). 

Solution: Since the points P1, P2, and P3 lie in the plane, the vectors 𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (1, 1, 2) and 

𝑃1𝑃3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (2,−3, 3) are parallel to the plane. Therefore,  

𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ×  𝑃1𝑃3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = |
𝐢 𝐣 𝐤
1 1 2
2 −3 3

| 

is normal to the plane, since it is orthogonal to both 𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑃1𝑃3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . By using this normal and 

the point P1(1, 2,−1) in the plane, we obtain the point-normal form 

9(x − 1) + (y − 2) − 5(z + 1) = 0 

which can be rewritten as 

9x + y − 5z − 16 = 0 
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Example: Determine whether the line x = 3 + 8t, y = 4 + 5t, z = −3 – t is parallel to the plane 

x − 3y + 5z = 12. 

Solution: The vector v = (8, 5, −1) is parallel to the line and the vector n = (1, −3, 5) is 

normal to the plane. For the line and plane to be parallel, the vectors v and n must be 

orthogonal. But this is not so, since the dot product v . n = (8)(1) + (5)(−3) + (−1)(5) = −12  is 

nonzero. Thus, the line and plane are not parallel. (v . n =0 then right angle) 

 

Example: Find the intersection of the line and plane in the previous example. 

Solution: If we let (x0, y0, z0) be the point of intersection, then the coordinates of this point 

satisfy both the equation of the plane and the parametric equations of the line. Thus, 

x0 − 3y0 + 5z0 = 12                                 (1) 

and for some value of t , say t = t0, 

x0 = 3 + 8t0, y0 = 4 + 5t0, z0 = −3 − t0      (2) 

Substituting (2) in (1) yields 

(3 + 8t0) − 3(4 + 5t0) + 5(−3 − t0) = 12 

Solving for t0 yields t0 = −3 and on substituting this value in (2), we obtain 

(x0, y0, z0) = (−21, −11, 0) 

1.6.3 Intersecting Planes 

- Two distinct intersecting planes determine two positive 

angles of intersection—an (acute) angle θ that satisfies the 

condition 0 ≤ θ ≤ π/2 and the supplement of that angle 

(Figure a).  

- If n1 and n2 are normals to the planes, then depending on 

the directions of n1 and n2, the angle θ is either the angle 

between n1 and n2 or the angle between n1 and −n2 

(Figure b).  

- In both cases, Theorem yields the following formula for 

the acute angle θ between the planes: 

 

cos 𝜃 =
|𝐧1 ∙ 𝐧2|

‖𝐧1‖‖𝐧2‖
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Example: Find the acute angle of intersection between the two planes 2x − 4y + 4z = 6 and 

6x + 2y − 3z = 4 

Solution: The given equations yield the normals n1 = (2,−4, 4) and n2 = (6, 2,−3). 

  

1.6.4 Distance Problems Involving Planes 

Considering three basic distance problems in 3-space: 

a. Find the distance between a point and a plane. 

b. Find the distance between two parallel planes. 

c. Find the distance between two skew lines. 

Theorem  

The distance D between a point P0(x0, y0, z0) and the plane ax + by 

+ cz + d = 0 is 

𝑫 =
𝒂𝒙𝟎 + 𝒃𝒚𝟎 + 𝒄𝒛𝟎 + 𝒅

√𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐
 

 

Example: Find the distance D between the point (1, −4, −3) and the plane 2x − 3y + 6z = −1 

 

Solution: the plane be rewritten in the form ax +by +cz+d = 0. 

Thus, we rewrite the equation of the given plane as 

2x − 3y + 6z + 1 = 0 

from which we obtain a = 2, b = −3, c = 6, and d = 1.  

 

Example: The planes x + 2y − 2z = 3 and 2x + 4y − 4z = 7 are parallel since their normals, (1, 

2, −2) and (2, 4, −4), are parallel vectors. Find the distance between these planes. 
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Solution: To find the distance D between the planes, we can select an arbitrary point in one 

of the planes and compute its distance to the other plane. By setting y = z = 0 in the equation 

x + 2y − 2z = 3, we obtain the point P0(3, 0, 0) in this plane.  

The distance from P0 to the plane 2x + 4y − 4z = 7 is 

 

Example: It was shown in previous example that the lines L1: x = 1 + 4t, y = 5 − 4t, z = −1 + 

5t    L2: x = 2 + 8t, y = 4 − 3t, z = 5 + t are skew. Find the distance between them. 

 

Solution: Let P1 and P2 denote parallel planes containing L1 and 

L2, respectively (see figure).  

- To find the distance D between L1 and L2, we will 

calculate the distance from a point in P1 to the plane P2. 

- Since L1 lies in plane P1, we can find a point in P1 by 

finding a point on the line L1; we can do this by 

substituting any convenient value of t in the parametric equations of L1. The simplest 

choice is t = 0, which yields the point Q1(1, 5,−1). 

- The next step is to find an equation for the plane P2. For this purpose, observe that the 

vector u1 = (4, −4, 5) is parallel to line L1, and therefore also parallel to planes P1 and 

P2.  

-             Similarly, u2 = (8, −3, 1) is parallel to L2 and hence parallel to P1 and P2. 

Therefore, the cross product 

 

is normal to both P1 and P2. Using this normal and the point Q2(2, 4, 5) found by setting t = 0 

in the equations of L2, we obtain an equation for P2: 

11(x − 2) + 36(y − 4) + 20(z − 5) = 0 

or 

11x + 36y + 20z − 266 = 0 

The distance between Q1(1, 5,−1) and this plane is 
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1.7 QUADRIC SURFACES 

- Although the general shape of a curve in 2-space can be obtained by plotting points, 

this method is not usually helpful for surfaces in 3-space because too many points are 

required. 

- It is more common to build up the shape of a surface 

with a network of mesh lines, which are curves 

obtained by cutting the surface with well-chosen 

planes.  

- For example, the figure shows the graph of z = x
3
 − 

3xy
2
 rendered with a combination of mesh lines and 

colorization to produce the surface detail. This surface 

is called a “monkey saddle” ]].  

- The mesh line that results when a surface is cut by a 

plane is called the trace of the surface in the plane (see 

figure).  

 

 

 We noted that a second-degree equation 

Ax
2
 + Bxy + Cy

2
 + Dx + Ey + F = 0 

represents a conic section (possibly degenerate). The analog of this equation in an xyz-

coordinate system is 

Ax
2
 + By

2
 + Cz

2
 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0 

which is called a second-degree equation in x, y, and z. The graphs of such equations are 

called quadric surfaces or sometimes quadrics. 
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Six common types of quadric surfaces are shown in the following table—ellipsoids, 

hyperboloids of one sheet, hyperboloids of two sheets, elliptic cones, elliptic paraboloids, and 

hyperbolic paraboloids. (The constants a, b, and c that appear in the equations in the table are 

assumed to be positive.)  

 

 

1.7.1 Techniques for Graphing Quadric Surfaces 

A rough sketch of an ellipsoid 

𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
= 1                             (𝑎 > 0, 𝑏 > 0, 𝑐 > 0) 
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can be obtained by first plotting the intersections with the coordinate axes, and then sketching 

the elliptical traces in the coordinate planes.  

Example: Sketch the ellipsoid 

 

Solution: The x-intercepts can be obtained by setting y = 0 and 

z = 0 in. This yields x = ±2. Similarly, the y-intercepts are y = 

±4, and the z-intercepts are z = ±3. Sketching the elliptical 

traces in the coordinate planes yields the graph in the figure. 

 

 

 

Example: Sketch the graph of the hyperboloid of one sheet 

 

Solution: The trace in the xy-plane, obtained by setting z = 0, is 

x
2
 + y

2
 = 1 (z = 0) 

which is a circle of radius 1 centered on the z-axis. The traces in 

the planes z = 2 and z = −2, obtained by setting z = ±2, are given 

by 

x
2
 + y

2
 = 2 (z = ±2) 

which are circles of radius √2 centered on the z-axis. Joining 

these circles by the hyperbolic traces in the vertical coordinate 

planes yields the graph in the following figure. 

Example: Sketch the graph of the hyperboloid of two sheets 

 

Solution: The z-intercepts, obtained by setting x = 0 and y = 

0, are z = ±1. The traces in the planes z = 2 and z = −2, 

obtained by setting z = ±2 in (10), are given by 
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Sketching these ellipses and the hyperbolic traces in the vertical coordinate planes yields the 

following figure. 

 

Example: Sketch the graph of the elliptic cone 

 

Solution: The traces in the planes z = ±1 are given by 

 

Sketching these ellipses and the linear traces in the 

vertical coordinate planes yields the graph in the figure. 

 

Example: Sketch the graph of the elliptic paraboloid 

 

Solution: The trace in the plane z = 1 is 

 

Sketching this ellipse and the parabolic traces in the vertical 

coordinate planes yields the graph in the figure. 

 

Example: Sketch the graph of the hyperbolic paraboloid 

𝒛 =
𝒚𝟐

𝟒
−
𝒙𝟐

𝟗
            (a) 

Solution. Setting x = 0 in (a) yields 

𝒛 =
𝒚𝟐

𝟒
 

which is a parabola in the yz-plane with vertex at the origin and opening in the positive z-

direction (since z ≥ 0), and setting y = 0 yields 

𝒛 = −
𝒙𝟐

𝟗
 

which is a parabola in the xz-plane with vertex at the origin and opening in the negative z-

direction. 
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The trace in the plane z = 1 is 

𝒚𝟐

𝟒
−
𝒙𝟐

𝟗
= 𝟏                  (𝒛 = 𝟏) 

which is a hyperbola that opens along a line parallel to the y-axis, and the trace in the plane z 

= −1 is 

𝒙𝟐

𝟗
−
𝒚𝟐

𝟒
= 𝟏                           (𝒛 = −𝟏) 

which is a hyperbola that opens along a line parallel to the x-axis. Combining all of the above 

information leads to the sketch in Figure. 

 

1.7.2 Translations of Quadric Surfaces 

Example: Describe the surface z = (x − 1)
2
 + (y + 2)

2
 + 3. 

Solution. The equation can be rewritten as 

z − 3 = (x − 1)
2
 + (y + 2)

2
 

This surface is the paraboloid that results by translating the paraboloid 

z = x
2
 + y

2
 

in Figure so that the new “vertex” is at the point (1,−2, 3). A rough sketch of this paraboloid 

is shown in Figure. 
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Example:  Describe the surface 

4x
2
 + 4y

2
 + z

2
 + 8y − 4z = −4 

Solution. Completing the squares yields 

 

Thus, the surface is the ellipsoid that results when the ellipsoid 

 

is translated so that the new “center” is at the point (0,−1, 2). A rough sketch of this ellipsoid 

is shown in Figure. 

 

1.7.3 A Technique for Identifying Quadric Surfaces 
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1.8 CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS 

Three coordinates are required to establish the location of a point in 3-space. We have already 

done this using rectangular coordinates. However, figures (a, b, c) show two other 

possibilities:  

- part (a) of the figure shows the rectangular coordinates (x, y, z) of a point P,  

- part (b) shows the cylindrical coordinates (r, θ, z) of P,  

- part (c) shows the spherical coordinates (ρ, θ, ϕ) of P. 

 In a rectangular coordinate system the coordinates can be any real numbers, but in 

cylindrical and spherical coordinate systems there are restrictions on the allowable values of 

the coordinates. 

 

1.8.1 Constant Surfaces 

In rectangular coordinates the surfaces represented by 

equations of the form 

x = x0, y= y0, and z = z0 

where x0, y0, and z0 are constants, are planes parallel to the 

yz-plane, xz-plane, and xy-plane, respectively (see figure). In 

cylindrical coordinates the surfaces represented by equations 

of the form 

r = r0, θ= θ0, and z = z0 
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where r0, θ0, and z0 are constants, are shown in the following figure: 

 

• The surface r = r0 is a right circular cylinder of radius r0 

centered on the z-axis. 

• The surface θ = θ0 is a half-plane attached along the z-

axis and making an angle θ0 with the positive x-axis. 

• The surface z = z0 is a horizontal plane. 

 

 

 

In spherical coordinates the surfaces represented by equations of the form  

ρ = ρ0, θ= θ0, and φ = φ0 

Where ρ0, θ0, and φ0 are constants, are shown in the following figure: 

• The surface ρ = ρ0 consists of all points whose distance ρ from the origin is ρ0. 

Assuming ρ0 to be nonnegative, this is a sphere of radius ρ0 

centered at the origin. 

• As in cylindrical coordinates, the surface θ = θ0 is a half-plane 

attached along the z-axis, making an angle of θ0 with the 

positive x-axis. 

• The surface φ = φ0 consists of all points from which a line 

segment to the origin makes an angle of φ0 with the positive z-

axis. If 0 < φ0 < π/2, this will be the nappe of a cone opening up, 

while if π/2 < φ0 < π, this will be the nappe of a cone opening down. (If φ0 = π/2, then the 

cone is flat, and the surface is the xy-plane.) 

1.8.2 Converting Coordinates 

Just as we needed to convert between rectangular and polar coordinates in 2-space, so we will 

need to be able to convert between rectangular, cylindrical, and spherical coordinates in 3-

space. The following table provides formulas for making these conversions. 
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 The diagrams in the following figure will help you to 

understand how the formulas in the table are derived.  

 

For example, part (a) of the figure shows that in converting 

between rectangular coordinates (x, y, z) and cylindrical 

coordinates (r, θ, z), we can interpret (r, θ) as polar coordinates 

of (x, y). Thus, the polar-to-rectangular and rectangular-to-polar 

conversion formulas (1) and (2) provide the conversion formulas 

between rectangular and cylindrical coordinates in the table. 

 

Part (b) of Figure suggests that the spherical coordinates (ρ, θ, 

φ) of a point P can be converted to cylindrical coordinates (r, θ, 

z) by the conversion formulas 

r = ρ sin φ, θ = θ, z = ρ cos φ      (1) 

Moreover, since the cylindrical coordinates (r, θ, z) of P can be 

converted to rectangular coordinates (x, y, z) by the conversion 

formulas 

x = r cos θ, y = r sin θ, z = z      (2) 

We can obtain direct conversion formulas from spherical coordinates to rectangular 

coordinates by substituting (1) in (2). This yields 

x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ   (3) 
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Example: 

(a) Find the rectangular coordinates of the point with cylindrical coordinates 

(r, θ, z) = (4, π/3, −3) 

(b) Find the rectangular coordinates of the point with spherical coordinates 

(ρ, θ, φ) = (4, π/3, π/4) 

Solution (a): Applying the cylindrical-to-rectangular conversion formulas in the table yields 

 

Thus, the rectangular coordinates of the point are (x, y, z) = (2, 2√3, −3) (see figure). 

 

Solution (b): Applying the spherical-to-rectangular conversion formulas in the table yields 

 

 

The rectangular coordinates of the point are  
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Example: Find the spherical coordinates of the point that has 

rectangular coordinates 

(x, y, z) = (4, −4, 4√6) 

Solution: From the rectangular-to-spherical conversion 

formulas in the table we obtain 

  
 

 

 

 

From the restriction 0 ≤ θ < 2π and the computed value of tan θ, the possibilities for θ are θ = 

3π/4 and θ = 7π/4. However, the given point has a negative y-coordinate, so we must have θ = 

7π/4. Moreover, from the restriction 0 ≤ φ ≤ π and the computed value of cos φ, the only 

possibility for φ is φ = π/6. Thus, the spherical coordinates of the point are (ρ, θ, φ) = (8√2, 

7π/4, π/6). 

1.8.3 Equations of Surfaces in Cylindrical and Spherical Coordinates 
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2 CHAPTER TWO  

VECTOR-VALUED FUNCTIONS 

2.1 INTRODUCTION TO VECTOR-VALUED FUNCTIONS 

2.1.1 Parametric Curves in 3-Space 

- If f and g are well-behaved functions, then the pair of parametric equations 

                                  x = f(t),    y = g(t)      (2-1) 

 generates a curve in 2-space that is traced in a specific direction as the parameter t increases.  

- We defined this direction to be the orientation of the curve or the direction of increasing 

parameter, and we called the curve together with its orientation the graph of the 

parametric equations or the parametric curve represented by the equations. 

- Analogously, if f, g, and h are three well-behaved functions, then the parametric 

equations 

x = f(t),    y = g(t),     z = h(t)     (2-2) 

- Generate a curve in 3-space that is traced in a specific direction as t increases. As in 2- 

space, this direction is called the orientation or direction of increasing parameter, and 

the curve together with its orientation is called the graph of the parametric equations or 

the parametric curve represented by the equations. If no restrictions are stated explicitly 

or are implied by the equations, then it will be understood that t varies over the interval 

(−∞, +∞). 

Example 2-1: The parametric equations       x = 1 − t,      y = 3t,     z = 2t     

represent a line in 3-space that passes through the point (1, 0, 0) and is parallel to the vector 

(−1, 3, 2). Since x decreases as t increases, the line has the orientation shown in Figure 2-1. 

 
Figure 2-1 
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Example 2-2 Describe the parametric curve represented by the equations 

x = a cos t, y = a sin t, z = ct 

where a and c are positive constants. 

Solution: As the parameter t increases, the value of z = ct also increases, so the point (x, y, z) 

moves upward. However, as t increases, the point (x, y, z) also moves in a path directly over 

the circle 

x = a cos t, y = a sin t 

in the xy-plane. The combination of these upward and circular motions produces a corkscrew- 

shaped curve that wraps around a right circular cylinder of radius a centered on the z-axis 

(Figure 2-2). This curve is called a circular helix. 

 

Figure 2-2 

2.1.2 Parametric Curves Generated with Technology 

Except in the simplest cases, parametric curves can be difficult to visualize and draw without 

the help of a graphing utility. For example, the tricuspoid is the graph of the parametric 

equations 

x = 2 cos(t) + cos(2t),     y = 2 sin(t) – sin(2t) 

Although it would be tedious to plot the tricuspoid by hand, a computer rendering is easy to 

obtain and reveals the significance of the name of the curve (Figure 2-3). 

However, note that the depiction of the tricuspoid in Figure 2-3 is incomplete, since the 

orientation of the curve is not indicated. This is often the case for curves that are generated 

with a graphing utility. 
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Figure 2-3 

Parametric curves in 3-space can be difficult to visualize correctly even with the help of a 

graphing utility. For example, Figure 2-4a shows a parametric curve called a torus knot that 

was produced with a CAS.  

Some graphing utilities provide the capability of enclosing the curve within a thin tube, as in 

Figure 2-4b. Such graphs are called tube plots. 

 

Figure 2-4 

2.1.3 Parametric Equations for Intersections of Surfaces 

Curves in 3-space often arise as intersections of surfaces. For example, Figure 2-5a shows a 

portion of the intersection of the cylinders z = x
3
 and y = x

2
.  

One method for finding parametric equations for the curve of intersection is to choose one of 

the variables as the parameter and use the two equations to express the remaining two 

variables in terms of that parameter. In particular, if we choose x = t as the parameter and 

substitute this into the equations z = x
3
 and y = x

2
, we obtain the parametric equations 

x = t,         y = t
2
,         z= t

3
                           (2-3) 

This curve is called a twisted cubic. The portion of the twisted cubic shown in Figure 2-5a 

corresponds to t ≥ 0; a computer-generated graph of the twisted cubic for positive and 
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negative values of t is shown in Figure 2-5b. Some other examples and techniques for finding 

intersections of surfaces are discussed in the exercises. 

 

Figure 2-5 

2.1.4 Vector-Valued Functions 

The twisted cubic defined by the equations in (2-3) is the set of points of the form (t, t
2
, t

3
) for 

real values of t. If we view each of these points as a terminal point for a vector r whose initial 

point is at the origin, 

r = (x, y, z) = (t, t
2
, t

3
) = t i + t

2
j + t

3
k 

then we obtain r as a function of the parameter t , that is, r = r(t). Since this function 

produces a vector, we say that r = r(t) defines r as a vector-valued function of a real 

variable, or more simply, a vector-valued function. The vectors that we will consider in this 

text are either in 2-space or 3-space, so we will say that a vector-valued function is in 2-space 

or in 3-space according to the kind of vectors that it produces. 

If r(t) is a vector-valued function in 3-space, then for each allowable value of t the vector r = 

r(t) can be represented in terms of components as 

r = r(t) = (x(t), y(t), z(t)) = x(t)i + y(t)j + z(t)k   (2-4) 

The functions x(t), y(t), and z(t) are called the component functions or the components of 

r(t). 

Example 2-3: The component functions of r(t) = (t, t
2
, t

3
) = ti + t

2
j + t

3
k  

                                                    are      x(t) = t, y(t) = t
2
, z(t) = t

3
 

The domain of a vector-valued function r(t) is the set of allowable values for t.  
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If r(t) is defined in terms of component functions and the domain is not specified explicitly, 

then it will be understood that the domain is the intersection of the natural domains of the 

component functions; this is called the natural domain of r(t). 

Example 2-4: Find the natural domain of 

 

Solution: The natural domains of the component functions 

 

respectively. The intersection of these sets is 

[0, 1) ∪ (1, +∞) 

(verify), so the natural domain of r(t) consists of all values of t such that  

0 ≤ t <1    or     t > 1 

 

2.1.5 Graphs of Vector-Valued Functions 

If r(t) is a vector-valued function in 2-space or 3-space, then we define the graph of r(t) to be 

the parametric curve described by the component functions for r(t). For example, if 

r(t) = (1 − t, 3t, 2t) = (1 − t)i + 3t j + 2tk    (2-5) 

then the graph of r = r(t) is the graph of the parametric equations 

x = 1 − t, y = 3t, z = 2t 

Thus, the graph of (2-5) is the line in Figure 2-1. 

 

Example 2-5: Sketch the graph and a radius vector of 

(a) r(t) = cos t i + sin t j, 0 ≤ t ≤ 2π 

(b) r(t) = cos t i + sin t j + 2k, 0 ≤ t ≤ 2π 

Solution (a): The corresponding parametric equations are 
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x = cos t, y = sin t (0 ≤ t ≤ 2π) 

So the graph is a circle of radius 1, centered at the origin, and oriented counter clockwise. 

The graph and a radius vector are shown in Figure 2-6. 

 

Figure 2-6 

Solution (b): The corresponding parametric equations are 

x = cos t, y = sin t, z = 2 (0 ≤ t ≤ 2π) 

From the third equation, the tip of the radius vector traces a curve in the plane z = 2, and from 

the first two equations, the curve is a circle of radius 1 centered at the point (0, 0, 2) and 

traced counter clockwise looking down the z-axis. The graph and a radius vector are shown in 

Figure 2-7. 

 

Figure 2-7 
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2.1.6 Vector Form of a Line Segment 

If r0 is a vector in 2-space or 3-space with its initial point at the origin, then the line that 

passes through the terminal point of r0 and is parallel to- the vector v can be expressed in 

vector form as 

r = r0 + tv 

In particular, if r0 and r1 are vectors in 2-space or 3-space with their initial points at the 

origin, then the line that passes through the terminal points of these vectors can be expressed 

in vector form as 

r = r0 + t(r1 − r0)           (2-6)             or r = (1 − t)r0 + tr1    (2-7) 

as indicated in Figure 2-8. 

It is common to call either (2-6) or (2-7) the two-point vector form of a line and to say, for 

simplicity, that the line passes through the points r0 and r1 (as opposed to saying that it passes 

through the terminal points of r0 and r1). 

It is understood in (6) and (7) that t varies from −∞ to +∞. However, if we restrict t to vary 

over the interval 0 ≤ t ≤ 1, then r will vary from r0 to r1. Thus, the equation 

r = (1 − t)r0 + tr1 (0 ≤ t ≤ 1) (2-8) 

represents the line segment in 2-space or 3-space that is traced from r0 to r1. 

 

Figure 2-8 
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2.2 CALCULUS OF VECTOR-VALUED FUNCTIONS 

2.2.1 Limits and Continuity 

- A vector-valued function r(t) in 2-space or 3-space to approach 

a limiting vector L as t approaches a number a. That is, we want 

to define  

𝐥𝐢𝐦
𝒕→𝒂

𝐫(𝑡) = 𝐋 

- position r(t) and L with their initial points at the origin and 

interpret this limit to mean that the terminal point of r(t) 

approaches the terminal point of L as t approaches a or, 

equivalently, that the vector r(t) approaches the vector L in both 

length and direction at t approaches a (see figure). Algebraically, this is equivalent to 

stating that 

𝐥𝐢𝐦
𝒕→𝒂

‖𝐫(𝑡) − 𝐋‖ = 𝟎 

(the following figure). Thus, we make the following definition.  

 

Definition Let r(t) be a vector-valued function that is defined for all t in some open interval 

containing the number a, except that r(t) need not be defined at a. 

We will write 

𝐥𝐢𝐦
𝒕→𝒂

𝐫(𝑡) = 𝐋 

if and only if 

𝐥𝐢𝐦
𝒕→𝒂

‖𝐫(𝑡) − 𝐋‖ = 𝟎 
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Example: Let r(t) = t
2
i + e

t
 j − 2 cos (π t) k. Then 

 

Alternatively, using the angle bracket notation for vectors, 

 

 

Motivated by the definition of continuity for real-valued functions, we define a vector valued 

function r(t) to be continuous at t = a if 

𝐥𝐢𝐦
𝒕→𝒂

𝐫(𝑡) = 𝐫(𝑎) 

That is, r(a) is defined, the limit of r(t) as t→a exists, and the two are equal. As in the case 

for real-valued functions, we say that r(t) is continuous on an interval I if it is continuous at 

each point of I [with the understanding that at an endpoint in I the two-sided limit in (above 

equation) is replaced by the appropriate one-sided limit].  

A vector-valued function is continuous at t = a if and only if its component functions are 

continuous at t = a. 
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2.2.2 Derivatives 

The derivative of a vector-valued function is defined by a limit similar to that for the 

derivative of a real-valued function. 

 

Definition If r(t) is a vector-valued function, we define the derivative of r with respect to t to 

be the vector-valued function r given by 

 

The domain of r consists of all values of t in the domain of r(t) for which the limit exists. 

 

-The function r(t) is differentiable at t if the limit exists. 

-The derivative of r(t) can be expressed as 

 

It is important to keep in mind that r(t) is a vector, not a number, and hence has a magnitude 

and a direction for each value of t [except if r(t) = 0, in which case r(t) has magnitude zero 

but no specific direction].  

 

These illustrations show the graph C of r(t) (with its orientation) and the vectors r(t), r(t + h), 

and r(t + h) − r(t) for positive h and for negative h. 

 In both cases, the vector r(t + h) − r(t) runs along the secant line joining the terminal points 

of r(t + h) and r(t), but with opposite directions in the two cases. In the case where h is 

positive the vector r(t + h) − r(t) points in the direction of increasing parameter, and in the 

case where h is negative it points in the opposite direction. However, in the case where h is 

negative the direction gets reversed when we multiply by 1/h, so in both cases the vector 
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points in the direction of increasing parameter and runs along the secant line. As h→0, the 

secant line approaches the tangent line at the terminal point of r(t), so we can conclude that 

the limit 

 

(if it exists and is nonzero) is a vector that is tangent to the curve C at the tip of r(t) and 

points in the direction of increasing parameter (Figure c). We can summarize all of this as 

follows. 

 

Geometric interpretation of the derivative  

Suppose that C is the graph of a vector-valued function r(t) in 2-space or 3-space and that      

r´ (t) exists and is nonzero for a given value of t . If the vector r´ (t) is positioned with its 

initial point at the terminal point of the radius vector r(t), then r´(t) is tangent to C and points 

in the direction of increasing parameter. 

 

Theorem  

If r(t) is a vector-valued function, then r is differentiable at t if and only if each of its 

component functions is differentiable at t, in which case the component functions of r´ (t) are 

the derivatives of the corresponding component functions of r(t). 

 

Proof  

For simplicity, we give the proof in 2-space; the proof in 3-space is identical, except for the 

additional component. Assume that r(t) = x(t)i + y(t)j. Then 
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Example: Let r(t) = t
2 

i + e
t
 j − 2 cos (πt)k. Then 

Solution: 

 

 

2.2.3 Derivative Rules 

Theorem  

(Rules of Differentiation)  

Let r(t), r1(t), and r2(t) be differentiable vector-valued functions that are all in 2-space or all 

in 3-space, and let f(t) be a differentiable real-valued function, k a scalar, and c a constant 

vector (that is, a vector whose value does not depend on t). Then the following rules of 

differentiation hold: 
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2.2.1 Tangent Lines to Graphs of Vector-Valued Functions 

 

Definition Let P be a point on the graph of a vector-valued function r(t), and let r(t0) be the 

radius vector from the origin to P (see below figure). If r′(t0) exists and r′(t0) ≠ 0, then we 

call r′(t0) a tangent vector to the graph of r(t) at r(t0), and we call the line through P that is 

parallel to the tangent vector the tangent line to the graph of r(t) at r(t0). 

 

Let r0 = r(t0) and v0 = r′ (t0). The tangent line to the graph of r(t) at r0 is given by the vector 

equation 

r = r0 + tv0 

 

Example: Find parametric equations of the tangent line to the circular helix 

x = cos t, y = sin t, z = t 

where t = t0, and use that result to find parametric equations for the tangent line at the point 

where t = π. 

Solution: The vector equation of the helix is 

r(t) = cos t i + sin t j + t k 

r0 = r(t0) = cos t0i + sin t0 j + t0k 

v0 = r′(t0) = (−sin t0)i + cos t0 j + k 

The vector equation of the tangent line at t = t0 is 

r = cos t0i + sin t0 j + t0k + t [(−sin t0)i + cos t0 j + k] 

= (cos t0 − t sin t0)i + (sin t0 + t cos t0)j + (t0 + t)k 

Thus, the parametric equations of the tangent line at t = t0 are 

x = cos t0 − t sin t0, y= sin t0 + t cos t0, z= t0 + t 

In particular, the tangent line at t = π has parametric equations 

x = −1, y= −t, z = π + t 

The graph of the helix and this tangent line are shown in figure. 
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Example: Let  

r1(t) = (tan
−1

 t)i + (sin t)j + t
2
k 

and 

r2(t) = (t
2
 − t)i + (2t − 2)j + (ln t)k 

The graphs of r1(t) and r2(t) intersect at the origin. Find the degree measure of the acute angle 

between the tangent lines to the graphs of r1(t) and r2(t) at the origin. 

Solution: The graph of r1(t) passes through the origin at t = 0, where its tangent vector is 

𝑟́1(0) = 〈
1

1 + 𝑡2
, cos 𝑡 , 2𝑡〉|

𝑡=0
= 〈1, 1, 0〉 

The graph of r2(t) passes through the origin at t = 1 (verify), where its tangent vector is 

𝑟́2(1) = 〈2𝑡 − 1, 2,
1

𝑡
〉|

𝑡=1
= 〈1, 2, 1〉 

the angle θ between these two tangent vectors satisfies 

cos 𝜃 =
〈1, 1, 0〉 ∙ 〈1, 2, 1〉

‖〈1, 1, 0〉‖‖〈1, 2, 1〉‖
=

1 + 2 + 0

√2√6
=

3

√12
=

√3

2
 

 

It follows that θ = π/6 radians, or 30
◦
. 
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2.2.2 Derivatives of Dot and Cross Products 

The following rules, which are derived in the exercises, provide a method for differentiating 

dot products in 2-space and 3-space and cross products in 3-space. 

(a) 

(b) 

Theorem 

 If r(t) is a differentiable vector-valued function in 2-space or 3-space and ǀǀr(t)ǀǀ is constant 

for all t, then  

r(t) . r′(t) = 0 

that is, r(t) and r′(t) are orthogonal vectors for all t. 

 

 

 

 

Proof: 

It follows from (a) with r1(t) = r2(t) = r(t) that 

 

2.2.3 Definite Integrals of Vector-Valued Functions 

If r(t) is a vector-valued function that is continuous on the interval a ≤ t ≤ b, then we define 

the definite integral of r(t) over this interval as a limit of Riemann sums. Specifically, we 

define 
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The definite integral of r(t) over the interval a ≤ t ≤ b can be expressed as a vector whose 

components are the definite integrals of the component functions of r(t). For example, if r(t) 

= x(t)i + y(t)j, then 

 

In general, we have 

 

Example: Let r(t) = t
2
i + e

t
 j − (2 cos πt)k. Then 

 

2.2.4 Rules of Integration 

Theorem: 

(Rules of Integration) Let r(t ), r1(t ), and r2(t) be vector-valued functions in 2-space or 3-

space that are continuous on the interval a ≤ t ≤ b, and let k be a scalar. Then the following 

rules of integration hold: 
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2.2.5 Antiderivatives of Vector-Valued Functions 

An antiderivative for a vector-valued function r(t) is a vector-valued function R(t) such that 

R′ (t) = r(t) 

we express Equation using integral notation as 

∫ 𝐫(𝑡) 𝑑𝑡 =  𝐑(𝑡)  +  𝐂 

where C represents an arbitrary constant vector. 

Since differentiation of vector-valued functions can be performed componentwise, it follows 

that anti-differentiation can be done this way as well.  

Example: 

 

where C = C1i + C2j is an arbitrary vector constant of integration. 

 

Most of the familiar integration properties have vector counterparts. For example, vector 

differentiation and integration are inverse operations in the sense that 

 

Moreover, if R(t) is an antiderivative of r(t) on an interval containing t = a and t = b, then we 

have the following vector form of the Fundamental Theorem of Calculus: 
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Example: Evaluate the definite integral           

Solution: Integrating the components yields 

 

Alternative Solution: The function R(t) = t
2
i + t

3
j is an antiderivative of the integrand since 

 R′(t) = 2t i + 3t
2
j. Thus,  

 

 

Example: Find r(t) given that r′(t) = (3, 2t) and r(1) = (2, 5). 

Solution: Integrating r′(t) to obtain r(t) yields 

 

where C is a vector constant of integration. To find the value of C we substitute t = 1 and use 

the given value of r(1) to obtain 

r(1) = (3, 1) + C = (2, 5) 

so that C = (−1, 4). Thus, 

r(t) = (3t, t
2
) + (−1, 4) = (3t − 1, t

2
 + 4) 
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2.3 CHANGE OF PARAMETER; ARC LENGTH 

2.3.1 Arc Length from the Vector Viewpoint 

The arc length L of a parametric curve 

x = x(t),     y = y(t)      (a ≤ t ≤ b) 

is given by the formula 

 

Analogously, the arc length L of a parametric curve 

x = x(t),      y = y(t),       z = z(t)        (a ≤ t ≤ b)  

in 3-space is given by the formula 

 

vector forms that we can obtain by letting 

r(t) = x(t)i + y(t)j              or              r(t) = x(t)i + y(t)j + z(t)k 

It follows that 

 

and hence 

 

Theorem: 

 If C is the graph in 2-space or 3-space of a smooth vector-valued function r(t ), then its arc 

length L from t = a to t = b is 

 
 

Example: Find the arc length of that portion of the circular helix    x = cos t, y = sin t, z = t                    

from t = 0 to t = π. 

 

Solution: Set r(t) = (cos t)i + (sin t)j + tk = (cos t, sin t, t). Then 

 
From Theorem the arc length of the helix is 
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2.3.2 Arc Length as a Parameter 

For many purposes the best parameter to use for representing a curve in 2-space or 3-space 

parametrically is the length of arc measured along the curve from some fixed reference point. 

This can be done as follows: 

Using Arc Length as a Parameter 

Step 1. Select an arbitrary point on the curve C to serve as a reference point. 

Step 2. Starting from the reference point, choose one direction along the curve to be the 

positive direction and the other to be the negative direction. 

Step 3. If P is a point on the curve, let s be the “signed” arc length along C from the reference 

point to P, where s is positive if P is in the positive direction from the reference point and s is 

negative if P is in the negative direction. The below figure illustrates this idea. 

 

By this procedure, a unique point P on the curve is determined when a value for s is given. 

For example, s = 2 determines the point that is 2 units along the curve in the positive 

direction from the reference point, and s = −3/2 determines the point that is 3/2 units along 

the curve in the negative direction from the reference point. 

Let us now treat s as a variable. As the value of s changes, the corresponding point P moves 

along C and the coordinates of P become functions of s. Thus, in 2-space the coordinates of P 

are (x(s), y(s)), and in 3-space they are (x(s), y(s), z(s)). Therefore, in 2-space or 3-space the 

curve C is given by the parametric equations 

x = x(s), y = y(s)     or        x = x(s), y = y(s), z = z(s) 
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A parametric representation of a curve with arc length as the parameter is called an arc 

length parametrization of the curve. Note that a given curve will generally have infinitely 

many different arc length parametrizations, since the reference point and orientation can be 

chosen arbitrarily. 

Example: Find the arc length parametrization of the circle x
2
 + y

2
 = a

2
 with counter-

clockwise orientation and (a, 0) as the reference point. 

Solution: The circle with counter-clockwise orientation can be represented by the parametric 

equations 

x = a cos t,     y = a sin t      (0 ≤ t ≤ 2π) 

 

in which t can be interpreted as the angle in radian measure from the positive x-axis to the 

radius from the origin to the point P(x, y) (see Figure). If we take the positive direction for 

measuring the arc length to be counter-clockwise, and we take (a, 0) to be the reference point, 

then s and t are related by 

s = at or t = s/a 

Making this change of variable and noting that s increases from 0 to 2πa as t increases from 0 

to 2π yields the following arc length parametrization of the circle: 

x = a cos(s/a), y = a sin(s/a) (0 ≤ s ≤ 2πa) 
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2.3.1 Change of Parameter 

In many situations the solution of a problem can be simplified by choosing the parameter in a 

vector-valued function or a parametric curve in the right way. The two most common 

parameters for curves in 2-space or 3-space are time and arc length.  

For example, in analyzing the motion of a particle in 2-space, it is often desirable to 

parametrize its trajectory in terms of the angle φ between the tangent vector and the positive 

x-axis (see below figures). Thus, our next objective is to develop methods for changing the 

parameter in a vector-valued function or parametric curve. This will allow us to move freely 

between different possible parametrizations. 

 

A change of parameter in a vector-valued function r(t) is a substitution t = g(τ ) that 

produces a new vector-valued function r(g(τ )) having the same graph as r(t ), but possibly 

traced differently as the parameter τ increases. 

 

Example: Find a change of parameter t = g(τ ) for the circle 

r(t) = cos t i + sin t j                       (0 ≤ t ≤ 2π) 

such that 

(a) The circle is traced counter-clockwise as τ increases over the interval [0, 1]; 

(b) The circle is traced clockwise as τ increases over the interval [0, 1]. 

Solution (a): The given circle is traced counter-clockwise as t 

increases. Thus, if we choose g to be an increasing function, then 

it will follow from the relationship t = g(τ ) that t increases when τ 

increases, thereby ensuring that the circle will be traced counter-

clockwise as τ increases. We also want to choose g so that t 

increases from 0 to 2π as τ increases from 0 to 1. A simple choice 

of g that satisfies all of the required criteria is the linear function 

graphed in Figure a. The equation of this line is 
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t = g(τ) = 2πτ  

which is the desired change of parameter. The resulting representation of the circle in terms 

of the parameter τ is 

r(g(τ )) = cos 2πτ i + sin 2πτ j      (0 ≤ τ ≤ 1) 

Solution (b): To ensure that the circle is traced clockwise, we will choose g to be a 

decreasing function such that t decreases from 2π to 0 as τ increases from 0 to 1. A simple 

choice of g that achieves this is the linear function 

t = g(τ) = 2π(1 − τ)  

graphed in Figure b. The resulting representation of the circle in terms of the parameter τ is 

r(g(τ )) = cos(2π(1 − τ))i + sin(2π(1 − τ))j (0 ≤ τ ≤ 1) 

which simplifies to (verify) 

r(g(τ )) = cos 2πτi − sin 2πτ j (0 ≤ τ ≤ 1) 

 

Theorem (Chain Rule) Let r(t) be a vector-valued function in 2-space or 3- space that is 

differentiable with respect to t. If t = g(τ) is a change of parameter in which g is differentiable 

with respect to τ, then r(g(τ )) is differentiable with respect to τ and 

𝑑𝑟

𝑑𝜏
=

𝑑𝑟

𝑑𝑡

𝑑𝑡

𝑑𝜏
 

-A change of parameter t = g(τ) in which r(g(τ )) is smooth if r(t) is smooth is called a 

smooth change of parameter. 

-The t = g(τ) will be a smooth change of parameter if dt/dτ is continuous and dt/dτ ≠ 0 for all 

values of τ, since these conditions imply that dr/dτ is continuous and nonzero if dr/dt is 

continuous and nonzero.  

-Smooth changes of parameter fall into two categories—those for which dt/dτ> 0 for all τ 

(called positive changes of parameter) and those for which dt/dτ < 0 for all τ (called negative 

changes of parameter). A positive change of parameter preserves the orientation of a 

parametric curve, and a negative change of parameter reverses it. 

2.3.2 Finding Arc Length Parametrizations 

Theorem Let C be the graph of a smooth vector-valued 

function r(t) in 2-space or 3-space, and let r(t0) be any point 

on C. Then the following formula defines a positive change 
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of parameter from t to s, where s is an arc length parameter having r(t0) as its reference 

point: 

𝑠 = ∫ ‖
𝑑𝑟

𝑑𝑢
‖ 𝑑𝑢

𝑡

𝑡0

 

Example: Find the arc length parametrization of the circular helix 

r = cos t i + sin t j + tk 

that has reference point r(0) = ˂1, 0, 0˃ and the same orientation as the given helix. 

 

Solution: Replacing t by u in r for integration purposes and taking t0 = 0, we obtain 

r = cos ui + sin uj + uk 

 

Example: A bug walks along the trunk of a tree following a path modeled by the circular 

helix in previous example. The bug starts at the reference point (1, 0, 0) and walks up the 

helix for a distance of 10 units. What are the bug’s final coordinates? 

Solution: the arc length parametrization of the helix relative to the reference point (1, 0, 0) is 

 

 

Example: Find the arc length parametrization of the line 

x = 2t + 1,      y= 3t − 2 

that has the same orientation as the given line and uses (1,−2) as the reference point. 
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Solution: The line passes through the point (1, −2) and is parallel to v = 2i + 3j. To find the 

arc length parametrization of the line, we need only rewrite the given equations using v/ǀǀvǀǀ 

rather than v to determine the direction and replace t by s. Since 

 

2.3.3 Properties of Arc Length Parametrizations 

Theorem 

(a) If C is the graph of a smooth vector-valued function r(t) in 2-space or 3-space, where t is 

a general parameter, and if s is the arc length parameter for C defined by previous formula, 

then for every value of t the tangent vector has length 

 

‖
𝑑𝑟

𝑑𝑡
‖ =

𝑑𝑠

𝑑𝑡
 

(b) If C is the graph of a smooth vector-valued function r(s) in 2-space or 3-space, where s is 

an arc length parameter, then for every value of s the tangent vector to C has length 

 

‖
𝑑𝑟

𝑑𝑠
‖ = 1 

 

(c) If C is the graph of a smooth vector-valued function r(t) in 2-space or 3-space, and if 

ǀǀdr/dtǀǀ = 1 for every value of t, then for any value of t0 in the domain of r, the parameter        

s = t − t0 is an arc length parameter that has its reference point at the point on C where t = t0. 
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2.4 UNIT TANGENT, NORMAL, AND BINORMAL VECTORS 

2.4.1 Unit Tangent Vectors 

If C is the graph of a smooth vector-valued function r(t) in 2-space or 3-space, then the vector 

𝐫́(𝑡) is nonzero, tangent to C, and points in the direction of increasing parameter. Thus, by 

normalizing 𝐫́(𝑡) we obtain a unit vector 

𝐓(𝑡) =
𝐫́(𝑡)

‖𝐫́(𝑡)‖
     (1) 

that is tangent to C and points in the direction of increasing parameter. We call T(t) the unit 

tangent vector to C at t. 

 

Example: Find the unit tangent vector to the graph of r(t) = t
2 

i + t
3
 j at the point where t = 2. 

 

Solution: Since 
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2.4.2 Unit Normal Vectors 

If a vector-valued function r(t) has constant norm, then r(t) and 𝐫́(𝑡)are orthogonal vectors. 

In particular, T(t) has constant norm 1, so T(t) and 𝐓́(𝑡) are orthogonal vectors. This implies 

that 𝐓́(𝑡) is perpendicular to the tangent line to C at t, so we say that 𝐓́(𝑡) is normal to C at t. 

It follows that if 𝐓́(𝑡) ≠ 0, and if we normalize 𝐓́(𝑡), then we obtain a unit vector 

𝐍(𝑡) =
𝐓́(𝑡)

‖𝐓́(𝑡)‖
     (2) 

 

That is normal to C and points in the same direction as 𝐓́(𝑡). We call N(t) the principal unit 

normal vector to C at t , or more simply, the unit normal vector. Observe that the unit 

normal vector is defined only at points where 𝐓́(𝑡) ≠ 0. Unless stated otherwise, we will 

assume that this condition is satisfied. In particular, this excludes straight lines. 

Example: Find T(t) and N(t) for the circular helix 

x = a cos t, y = a sin t, z = ct 

where a > 0. 

Solution: The radius vector for the helix is 

r(t) = a cos t i + a sin t j + ctk 

(Figure). Thus, 
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2.4.3 Inward Unit Normal Vectors in 2-Space 

Our next objective is to show that for a nonlinear parametric curve C in 2-space the unit 

normal vector always points toward the concave side of C.  

For this purpose, let φ(t) be the angle from the positive x-axis to T(t), and let n(t) be the unit 

vector that results when T(t) is rotated counter-clockwise through an angle of π/2 (see below 

figure). Since T(t) and n(t) are unit vectors, that these vectors can be expressed as 

T(t) = cos φ(t)i + sin φ(t)j 

n(t) = cos[φ(t) + π/2]i + sin[φ(t) + π/2] j = −sin φ(t)i + cos φ(t)j  

Observe that on intervals where φ(t) is increasing the vector n(t) points toward the concave 

side of C, and on intervals where φ(t) is decreasing it points away from the concave side (see 

below figure). 

 

Now let us differentiate T(t) by using previous formula and applying the chain rule. This 

Yields 

 

and thus  

 

But dφ/dt > 0 on intervals where φ(t) is increasing and dφ/dt < 0 on intervals where φ(t) is 

decreasing. Thus,  dT/dt has the same direction as n(t) on intervals where φ(t) is increasing 

and the opposite direction on intervals where φ(t) is decreasing. Therefore, T´(t) = dT/dt 

points “inward” toward the concave side of the curve in all cases, and hence so does N(t). For 

this reason, N(t) is also called the inward unit normal when applied to curves in 2-space. 
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2.4.4 Computing T and N for Curves Parametrized by Arc Length 

In the case where r(s) is parametrized by arc length, the procedures for computing the unit 

tangent vector T(s) and the unit normal vector N(s) are simpler than in the general case. For 

example, we showed in Theorem that if s is an arc length parameter, then ‖𝐫 ́ (𝑠)‖ = 1. Thus, 

Formula (1) for the unit tangent vector simplifies to 

𝐓(𝑠) = 𝐫 ́ (𝑠) 

and consequently Formula (2) for the unit normal vector simplifies to 

𝐍(𝑠) =
𝐫̿(𝑠)

‖𝐫̿(𝑠)‖
 

Example: The circle of radius a with counter-clockwise orientation and centered at the origin 

can be represented by the vector-valued function 

r = a cos t i + a sin t j (0 ≤ t ≤ 2π)  

Parametrize this circle by arc length and find T(s) and N(s). 

Solution: In (8) we can interpret t as the angle in radian measure from the positive x-axis to 

the radius vector (below figure). This angle subtends an arc of length s = at on the circle, so 

we can reparametrize the circle in terms of s by substituting s/a for t. This yields 

r(s) = a cos(s/a)i + a sin(s/a)j              (0 ≤ s ≤ 2πa) 

 

To find T(s) and N(s) from Formulas (6) and (7), we must compute 𝐫 ́ (𝑠), 𝐫"(𝑠), and ‖𝐫"(𝑠)‖. 

Doing so, we obtain 
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2.4.5 Binormal Vectors In 3-Space 

If C is the graph of a vector-valued function r(t) in 3-space, then we define the binormal 

vector to C at t to be 

B(t) = T(t) × N(t)           (9) 

It follows from properties of the cross product that B(t) is orthogonal to both T(t) and N(t) 

and is oriented relative to T(t) and N(t) by the right-hand rule. Moreover, T(t) × N(t) is a unit 

vector since 

ǀǀT(t) × N(t) ǀǀ = ǀǀT(t)ǀǀ ǀǀN(t)ǀǀ sin(π/2) = 1 

Thus, {T(t ),N(t ), B(t)} is a set of three mutually orthogonal unit vectors. 

Just as the vectors i, j, and k determine a right-handed coordinate system in 3-space, so do 

the vectors T(t ), N(t ), and B(t ). At each point on a smooth parametric curve C in 3-space, 

these vectors determine three mutually perpendicular planes that pass through the point— the 

TB-plane (called the rectifying plane), the TN-plane (called the osculating plane), and the 

NB-plane (called the normal plane) (Figure). Moreover, one can show that a coordinate 

system determined by T(t ), N(t ), and B(t) is right-handed in the sense that each of these 

vectors is related to the other two by the right-hand rule (see figure): 

 

B(t) = T(t) × N(t), N(t) = B(t) × T(t ), T(t) = N(t) × B(t) 
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The coordinate system determined by T(t), N(t ), and B(t) is called the TNB-frame or 

sometimes the Frenet frame in honor of the French mathematician Jean Frédéric Frenet 

(1816– 1900) who pioneered its application to the study of space curves. Typically, the xyz-

coordinate system determined by the unit vectors i, j, and k remains fixed, whereas the TNB-

frame changes as its origin moves along the curve C (Figure). Formula expresses B(t) in 

terms of T(t) and N(t). Alternatively, the binormal B(t) can be expressed directly in terms of 

r(t) as 

𝐁(𝑡) =
 𝐫 ́ (𝑡) × 𝐫"(𝑡)

‖𝐫 ́ (𝑡) × 𝐫"(𝑡)‖
 

and in the case where the parameter is arc length it can be expressed in terms of r(s) as 

𝐁(𝑠) =
 𝐫 ́ (𝑠) × 𝐫"(𝑠)

‖𝐫"(𝑠)‖
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2.5 CURVATURE 

2.5.1 Definition of Curvature 

Suppose that C is the graph of a smooth vector-valued 

function in 2-space or 3-space that is parametrized in 

terms of arc length. Figure suggests that for a curve in 2-

space the “sharpness” of the bend in C is closely related 

to dT/ds, which is the rate of change of the unit tangent 

vector T with respect to s. (Keep in mind that T has 

constant length, so only its direction changes.) If C is a 

straight line (no bend), then the direction of T remains 

constant (Figure a); if C bends slightly, then T undergoes 

a gradual change of direction (Figure b); and if C bends 

sharply, then T undergoes a rapid change of direction 

(Figure c). 

 

The situation in 3-space is more complicated because bends in a curve are not limited to a 

single plane—they can occur in all directions. To describe the bending characteristics of a 

curve in 3-space completely, one must take into account dT/ds, dN/ds, and dB/ds. A complete 

study of this topic would take us too far afield, so we will limit our discussion to dT/ds, 

which is the most important of these derivatives in applications. 

 

Definition If C is a smooth curve in 2-space or 3-space that is parametrized by arc length, 

then the curvature of C, denoted by κ = κ(s) (κ = Greek “kappa”), is defined by 

𝑘(𝑠) = ‖
𝑑𝐓

𝑑𝑠
‖ = ‖𝐫"(𝑠)‖                        (1) 

Observe that κ(s) is a real-valued function of s, since it is the length of dT/ds that measures 

the curvature. In general, the curvature will vary from point to point along a curve; however, 

the following example shows that the curvature is constant for circles in 2-space, as you 

might expect. 

Example: the circle of radius a, centered at the origin, can be parametrized in terms of arc 

length as 

r(s) = a cos(s/a)i + a sin(s/a)j          (0 ≤ s ≤ 2πa) 
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so the circle has constant curvature 1/a. 

2.5.2 Formulas for Curvature 

Formula (1) is only applicable if the curve is parametrized in terms of arc length. The 

following theorem provides two formulas for curvature in terms of a general parameter t. 

 

Theorem If r(t) is a smooth vector-valued function in 2-space or 3-space, then for each value 

of t at which T
′
(t) and r

″
(t) exist, the curvature κ can be expressed 

a) 𝑘(𝑡) =
‖𝐓ʹ(𝑡)‖

‖𝐫ʹ(𝑡)‖
                            (2) 

b) 𝑘(𝑡) =
‖𝐫ʹ(𝑡)×𝐫″(𝑡)‖

‖𝐫ʹ(𝑡)‖
𝟑                     (3) 

Proof a: 

 

Proof b: 
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Example: Find κ(t) for the circular helix 

                    x = a cos t, y = a sin t, z = ct              where a > 0. 

Solution: The radius vector for the helix is 

r(t) = a cos t i + a sin t j + ctk 

Thus, 

r
´
(t) = (−a sin t)i + a cos t j + ck 

r
″
(t) = (−a cos t)i + (−a sin t)j 

 

Note that κ does not depend on t , which tells us that the helix has constant curvature. 
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Example: The graph of the vector equation 

r = 2 cos t i + 3 sin t j                              (0 ≤ t ≤ 2π) 

is the ellipse as shown in Figure. Find the curvature of the ellipse at the 

endpoints of the major and minor axes, and use a graphing utility to 

generate the graph of κ(t). 

 

Solution: To apply Formula (3), we must treat the ellipse as a curve in 

the xy-plane of an xyz-coordinate system by adding a zero k component 

and writing its equation as 

r = 2 cos t i + 3 sin t j + 0k 

It is not essential to write the zero k component explicitly as long as you assume it to be there 

when you calculate a cross product. Thus, 

r´(t) = (−2 sin t)i + 3 cos t j 

r″(t) = (−2 cos t)i + (−3 sin t)j 

 
The endpoints of the minor axis are (2, 0) and (−2, 0), which correspond to t = 0 and 

t = π, respectively. Substituting these values in (7) yields the same curvature at both points, 

namely 

 

The endpoints of the major axis are (0, 3) and (0,−3), which correspond to t = π/2 and 

t = 3π/2, respectively; from (7) the curvature at these points is 

 
RADIUS OF CURVATURE 

In the last example we found the curvature at the ends of the minor axis to be 2/9 and the 

curvature at the ends of the major axis to be 3/4. To obtain a better understanding of the 

meaning of these numbers, recall from Example 1 that a circle of radius a has a constant 
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curvature of 1/a; thus, the curvature of the ellipse at the ends of the minor axis is the same as 

that of a circle of radius 9/2, and the curvature at the ends of the major axis is the same as that 

of a circle of radius 4/3 (Figure). 

 

In general, if a curve C in 2-space has nonzero curvature κ at a point P, 

then the circle of radius ρ = 1/κ sharing a common tangent with C at P, and 

centered on the concave side of the curve at P, is called the osculating 

circle or circle of curvature at P (Figure).  

The osculating circle and the curve C not only touch at P but they have 

equal curvatures at that point. In this sense, the osculating circle is the circle that best 

approximates the curve C near P. The radius ρ of the osculating circle at P is called the 

radius of curvature at P, and the center of the circle is called the center of curvature at P 

(previous Figure). 

2.5.3 An Interpretation of Curvature in 2-Space 

A useful geometric interpretation of curvature in 2-space can be obtained 

by considering the angle φ measured counter-clockwise from the direction 

of the positive x-axis to the unit tangent vector T (see below figure). By 

previous formula, we can express T in terms of φ as 

T(φ) = cos φi + sin φ j 
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which tells us that curvature in 2-space can be interpreted as the magnitude of the rate of 

change of φ with respect to s—the greater the curvature, the more rapidly φ changes with s 

(Figure a). In the case of a straight line, the angle φ is constant (Figure b) and consequently 

κ(s) = |dφ/ds| = 0, which is consistent with the fact that a straight line has zero curvature at 

every point. 

 

 

 

 

 

                        Figure a                                                               Figure b 
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2.6 MOTION ALONG A CURVE 

2.6.1 Velocity, Acceleration, and Speed 

Definition 

If r(t) is the position function of a particle moving along a curve in 2-space or 3-space, then 

the instantaneous velocity, instantaneous acceleration, and instantaneous speed of the 

particle at time t are defined by 
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Example:  A particle moves along a circular path in such a way that its x- and y-coordinates 

at time t are 

x = 2 cos t, y = 2 sin t 

(a) Find the instantaneous velocity and speed of the particle at time t . 

(b) Sketch the path of the particle, and show the position and velocity vectors at time t = π/4 

with the velocity vector drawn so that its initial point is at the tip of the position vector. 

(c) Show that at each instant the acceleration vector is perpendicular to the velocity vector. 

Solution (a). At time t , the position vector is 

r(t) = 2 cos t i + 2 sin t j 

so the instantaneous velocity and speed are 

 

Solution (b). The graph of the parametric equations is a circle of radius 2 centered at the 

origin. At time t = π/4 the position and velocity vectors of the particle are 

 

These vectors and the circle are shown in Figure 

 

Solution (c). At time t , the acceleration vector is 

 

One way of showing that v(t) and a(t) are perpendicular is to show that their dot product is 

zero (try it). However, it is easier to observe that a(t) is the negative of r(t), which implies 

that v(t) and a(t) are perpendicular, since at each point on a circle the radius and tangent line 

are perpendicular. 
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Example: A particle moves through 3-space in such a way that its velocity is 

v(t) = i + t j + t
2 

k 

Find the coordinates of the particle at time t = 1 given that the particle is at the point (−1, 2, 

4) at time t = 0. 

Solution. Integrating the velocity function to obtain the position function yields 

 

 

2.6.2 Displacement and Distance Traveled 
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Example: Suppose that a particle moves along a circular helix in 3-space so that its position 

vector at time t is 

r(t) = (4 cos πt)i + (4 sin πt) j + tk 

Find the distance traveled and the displacement of the particle during the time interval 1 ≤ t ≤ 

5. 

Solution. We have 
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Find T(t ), N(t), and B(t) for the given value of t.  

     r(t) = cos t i + sin t j + k; t = π/4 

 

Find an arc length parametrization of the curve that has the same orientation as the given 

curve and for which the reference point corresponds to t = 0. 

r(t) = (3 + cos t)i + (2 + sin t) j; 0 ≤ t ≤ 2π 
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4 CHAPTER FOUR 

     DOUBLE INTEGRALS 

4.1 DOUBLE INTEGRALS 

4.1.1 Volume 

Recall that the definite integral of a function of one variable 

       (1) 

The volume problem Given a function f of two variables that is continuous and nonnegative 

on a region R in the xy-plane, find the volume of the solid enclosed between the surface z = 

f(x, y) and the region R (Figure 1). 

 

Figure 1 

Definition 4.1 (Volume Under a Surface) If f is a function of two variables that is 

continuous and nonnegative on a region R in the xy-plane, then the volume of the solid 

enclosed between the surface z = f(x, y) and the region R is defined by 

                        (2) 

Here, n → +∞ indicates the process of increasing the number of sub-rectangles of the 

rectangle enclosing R in such a way that both the lengths and the widths of the sub-rectangles 

approach zero. 
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Figure 2 

4.1.2 Definition of a Double Integral 

As in Definition 4.1, the notation n→+∞ encapsulate a process in which the enclosing 

rectangle for R is repeatedly subdivided in such a way that both the lengths and the widths of 

the sub-rectangles approach zero.  

 

which is called the double integral of f(x, y) over R. 

If f is continuous and nonnegative on the region R, then the volume formula in (2) can be 

expressed as 

 
 

4.1.3 Evaluating Double Integrals 

The partial derivatives of a function f(x, y) are calculated by holding one of the variables 

fixed and differentiating with respect to the other variable. Let us consider the reverse of this 

process, partial integration. The symbols 

 

denote partial definite integrals; the first integral, called the partial definite integral with 

respect to x, is evaluated by holding y fixed and integrating with respect to x, and the second 

integral, called the partial definite integral with respect to y, is evaluated by holding x fixed 

and integrating with respect to y. As the following example shows, the partial definite integral 

with respect to x is a function of y, and the partial definite integral with respect to y is a 

function of x. 
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Example 4.1 

 
A partial definite integral with respect to x is a function of y and hence can be integrated with 

respect to y; similarly, a partial definite integral with respect to y can be integrated with 

respect to x. This two-stage integration process is called iterated (or repeated) integration. 

We introduce the following notation: 

 

These integrals are called iterated integrals. 

Example 4.2 Evaluate  

 

Solution (a): 

 

Solution (b): 
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Consider the solid S bounded above by the surface z = 40 − 2xy and below by the rectangle R 

defined by 1 ≤ x ≤ 3 and 2 ≤ y ≤ 4. The volume of S is given by 

 

where A(x) is the area of a vertical cross section of S taken perpendicular to the x-axis (Figure 

3). For a fixed value of x, 1 ≤ x ≤ 3, z = 40 − 2xy is a function of y, so the 

 

represents the area under the graph of this function of y. Thus, 

 

is the volume of S. Similarly, by the method of slicing with cross sections of S taken 

perpendicular to the y-axis, the volume of S is given by 

 

(Figure 4). Thus, the iterated integrals in parts (a) and (b) of Example  both measure the 

volume of S, which is the double integral of z = 40 − 2xy over R. That is, 

 

 

 

 

 

 

 

 

 

                          Figure 3                                                          Figure 4 

Theorem (Fubini’s Theorem) Let R be the rectangle defined by the inequalities 

a ≤ x ≤ b, c ≤ y ≤ d 

If f(x, y) is continuous on this rectangle, then 
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Example 4.3 Use a double integral to find the volume of the solid that is bounded above by 

the plane z = 4 − x − y and below by the rectangle R = [0, 1] × [0, 2] (Figure 5). 

Solution: The volume is the double integral of z = 4 − x − y over R. Using Theorem, this can 

be obtained from either of the iterated integrals 

  

    Figure 5 

4.1.4 Properties of Double Integrals 
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4.2 DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS 

4.2.1 Iterated Integrals with Non-constant Limits of Integration 

 

Example 4.4 Evaluate 

 

Solution (a): 

 

Solution (b): 

 

 

4.2.2 Double Integrals over Nonrectangular Regions 

Definition 

(a) A type I region is bounded on the left and right by vertical lines x = a and x = b and is 

bounded below and above by continuous curves y = g1(x) and y = g2(x), where g1(x) ≤ g2(x) 

for a ≤ x ≤ b (Figure a). 

(b) A type II region is bounded below and above by horizontal lines y = c and y = d and is 

bounded on the left and right by continuous curves x = h1(y) and x = h2(y) satisfying h1(y) ≤ 

h2(y) for c ≤ y ≤ d (Figure b). 
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Theorem 

(a) If R is a type I region on which f(x, y) is continuous, then 

      (1) 

(b) If R is a type II region on which f(x, y) is continuous, then 

     (2) 

Example 4.5 Each of the iterated integrals in Example 4.4 is equal to a double integral over a 

region R. Identify the region R in each case. 

Solution: Using Theorem, the integral in Example 4.4(a) is the double integral of the 

function f(x, y) = y
2
x over the type I region R bounded on the left and right by the vertical 

lines x = 0 and x = 1 and bounded below and above by the curves y = −x and y = x
2
 (Figure a). 

The integral in Example 4.4(b) is the double integral of the function f(x, y) = x sin y over the 

type II region R bounded below and above by the horizontal lines y = 0 and y = π/3 and 

bounded on the left and right by the curves x = 0 and x = cos y (Figure b). 

  

 

 

 

 

 

 

 

                               Figure a                                        Figure b 
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4.2.3 Setting up Limits of Integration for Evaluating Double Integrals 

Determining Limits of Integration: Type I Region 

Step 1. Since x is held fixed for the first integration, we draw a vertical line through the 

region R at an arbitrary fixed value x (below figure). This line crosses the boundary of R 

twice. The lower point of intersection is on the curve y = g1(x) and the higher point is on the 

curve y = g2(x). These two intersections determine the lower and upper y-limits of integration 

in Formula (1). 

Step 2. Imagine moving the line drawn in Step 1 first to the left and then to the right (below 

figure). The leftmost position where the line intersects the region R is x = a, and the rightmost 

position where the line intersects the region R is x = b. This yields the limits for the x-

integration in Formula (1). 
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Example 4.6 Evaluate  

 

over the region R enclosed between y = 1/2 x, y =√x, x = 2, and x = 4. 

Solution: 

We view R as a type I region. The region R and a vertical line corresponding to a fixed x are 

shown in Figure a. This line meets the region R at the lower boundary y = (½)x and the upper 

boundary y =√x. These are the y-limits of integration. Moving this line first left and then right 

yields the x-limits of integration, x = 2 and x = 4. Thus, 

 

 

Determining Limits of Integration: Type II Region 

Step 1. Since y is held fixed for the first integration, we draw a horizontal line through the 

region R at a fixed value y (following figure). This line crosses the boundary of R twice. The 

leftmost point of intersection is on the curve x = h1(y) and the 

rightmost point is on the curve x = h2(y). These intersections 

determine the x-limits of integration in (2). 

Step 2. Imagine moving the line drawn in Step 1 first down and 

then up (following figure). The lowest position where the line 

intersects the region R is y = c, and the highest position where the 

line intersects the region R is y = d. This yields the y-limits of 

integration in (2). 
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Example 4.7 Evaluate 

 

over the triangular region R enclosed between the lines y = −x + 1, y = x + 1, and y = 3. 

Solution: We view R as a type II region. The region R and a horizontal line corresponding to 

a fixed y are shown in below figure. This line meets the region R at its left-hand boundary x = 

1 − y and its right-hand boundary x = y − 1. These are the x-limits of integration. Moving this 

line first down and then up yields the y-limits, y = 1 and y = 3. Thus, 

 

 

Example 4.8 Find the volume of the solid bounded by the cylinder x
2
 + y

2
 

= 4 and the planes y + z = 4 and z = 0. 

Solution: The solid shown in below figure is bounded above by the plane 

z = 4 – y and below by the region R within the circle x
2
 + y

2
 = 4. The 

volume is given by 
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4.3 DOUBLE INTEGRALS IN POLAR COORDINATES 

4.3.1 Simple Polar Regions 

Definition A simple polar region in a polar coordinate system is a region that is enclosed 

between two rays, θ = α and θ = β, and two continuous polar curves, r = r1(θ) and r = r2(θ), 

where the equations of the rays and the polar curves satisfy the following conditions: 

(i) α ≤ β      (ii) β − α ≤ 2π       (iii) 0 ≤ r1(θ) ≤ r2(θ) 

 

A polar rectangle is a simple polar region for which the bounding polar curves are circular 

arcs. For example, the following Figure shows the polar rectangle R given by 1.5 ≤ r ≤ 2,     

π/6 ≤ θ ≤ π/4 

 

 

4.3.2 Double Integrals in Polar Coordinates 

The volume problem in polar coordinates Given a 

function f(r, θ) that is continuous and non-negative on a 

simple polar region R, find the volume of the solid that 

is enclosed between the region R and the surface whose 

equation in cylindrical coordinates is z = f(r, θ) (see the  

figure). 

 

 



Chapter 4: Double Integrals 

156 
 

If f(r, θ) is continuous on R and has both positive and negative values, then the limit 

 

represents the net signed volume between the region R and the surface z = f(r, θ) (as with 

double integrals in rectangular coordinates). The sums are called polar Riemann sums, and 

the limit of the polar Riemann sums is denoted by 

 

which is called the polar double integral of f(r, θ) over R. If f(r, θ) is continuous and 

nonnegative on R, then the volume can be expressed as 

 

4.3.3 Evaluating Polar Double Integrals 

Theorem  

If R is a simple polar region whose boundaries are the rays θ = α and θ = β and the curves r 

= r1(θ) and r = r2(θ) shown in the below figure, and if f(r, θ) is continuous on R, then 

                    (1) 

 

Determining Limits of Integration for a Polar Double Integral: Simple Polar Region 

Step 1. Since θ is held fixed for the first integration, draw a radial line from the origin 

through the region R at a fixed angle θ (Figure a). This line crosses the boundary of R at most 

twice. The innermost point of intersection is on the inner boundary curve r = r1(θ) and the 

outermost point is on the outer boundary curve r = r2(θ). These intersections determine the r-

limits of integration in (1). 
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Step 2. Imagine rotating the radial line from Step 1 about the origin, thus sweeping out the 

region R. The least angle at which the radial line intersects the region R is θ = αand the 

greatest angle is θ = β (Figure b). This determines the θ-limits of integration. 

 

 

Example 4.11 Evaluate 

∬ sin 𝜃 𝑑𝐴
1

𝑅

 

where R is the region in the first quadrant that is outside the circle r = 2 and inside the 

cardioid r = 2(1 + cos θ). 

Solution: The region R is sketched in the following figure. Following the two steps outlined 

above we obtain 
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Example 4.12 The sphere of radius a centered at the origin is expressed in rectangular 

coordinates as x
2
 + y

2
 + z

2
 = a

2
, and hence its equation in cylindrical coordinates is r

2
 + z

2
 = 

a
2
. Use this equation and a polar double integral to find the volume of the sphere. 

Solution: In cylindrical coordinates the upper hemisphere is 

given by the equation 

 

so the volume enclosed by the entire sphere is 

 

where R is the circular region shown in following figure. 

Thus, 

 

 

4.4 TRIPLE INTEGRALS 

4.4.1 Definition of a Triple Integral 

To define the triple integral of f(x, y, z) over G, we first divide the box into n “sub-boxes” by 

planes parallel to the coordinate planes. We then discard those sub-boxes that contain any 

points outside of G and choose an arbitrary point in each of the remaining sub-boxes. As 

shown in the figure, we denote the volume of the kth remaining sub-box by ΔVk and the point 

selected in the kth sub-box by (𝑥𝑘
∗ , 𝑦𝑘

∗ , 𝑧𝑘
∗). Next we form the product 
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for each sub-box, then add the products for all of the sub-boxes to obtain the Riemann sum 

 

Finally, we repeat this process with more and more subdivisions in such a way that the 

length, width, and height of each sub-box approach zero, and n approaches +∞. The limit 

 

is called the triple integral of f(x, y, z) over the region G.   

4.4.2 Properties of Triple Integrals 

 

Moreover, if the region G is subdivided into two sub-regions G1 and G2 (following figure), 

then 
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4.4.3 Evaluating Triple Integrals over Rectangular Boxes 

Theorem (Fubini’s Theorem∗) Let G be the rectangular box defined by the inequalities 

a ≤ x ≤ b, c ≤ y ≤ d, k ≤ z ≤ l 

If f is continuous on the region G, then 

      (1) 

Moreover, the iterated integral on the right can be replaced with any of the five other iterated 

integrals that result by altering the order of integration. 

Example 4.15 Evaluate the triple integral 

 

over the rectangular box G defined by the inequalities −1 ≤ x ≤ 2, 0 ≤ y ≤ 3, 0 ≤ z ≤ 2. 

Solution: Of the six possible iterated integrals we might use, we will choose the one in (1). 

Thus, we will first integrate with respect to z, holding x and y fixed, then with respect to y, 

holding x fixed, and finally with respect to x. 

 

 

 



Chapter 4: Double Integrals 

161 
 

4.4.4 Evaluating Triple Integrals over More General Regions 

Theorem Let G be a simple xy-solid with upper surface z = g2(x, y) and lower surface z = 

g1(x, y), and let R be the projection of G on the xy-plane. If f(x, y, z) is continuous on G, then 

    (2) 

 

 

Determining Limits of Integration: Simple xy-Solid 

Step 1. Find an equation z = g2(x, y) for the upper surface and an equation z = g1(x, y) for the 

lower surface of G. The functions g1(x, y) and g2(x, y) determine the lower and upper z-limits 

of integration. 

Step 2. Make a two-dimensional sketch of the projection R of the solid on the xy-plane. From 

this sketch determine the limits of integration for the double integral over R in (2). 

 Example 4.16 Let G be the wedge in the first octant that is cut from the cylindrical solid y
2
 + 

z
2
 ≤ 1 by the planes y = x and x = 0. Evaluate 

 

Solution. The solid G and its projection R on the xy-plane are shown 

in the figure. The upper surface of the solid is formed by the 

cylinder and the lower surface by the xy-plane. Since the portion of 

the cylinder y
2
 + z

2
 = 1 that lies above the xy-plane has the equation 

𝑧 = √1 − 𝑦2, and the xy-plane has the equation z = 0, it follows 

from (2) that 
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For the double integral over R, the x- and y-integrations can be performed in either order, 

since R is both a type I and type II region. We will integrate with respect to x first. With this 

choice, yields 

 

4.4.5 Volume Calculated As a Triple Integral 

 

Example 4.17 Use a triple integral to find the volume of the solid within the cylinder x
2
 + y

2
 

= 9 and between the planes z = 1 and x + z = 5. 

Solution: The solid G and its projection R on the xy-plane are shown in Figure. The lower 

surface of the solid is the plane z = 1 and the upper surface is the plane x + z = 5 or, 

equivalently, z = 5 − x. Thus, 

 

For the double integral over R, we will integrate with respect to y first. Thus,  
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Example 4.18 Find the volume of the solid enclosed between the paraboloids z = 5x
2
 + 5y

2
 

and z = 6 − 7x
2
 − y

2
 

Solution: The solid G and its projection R on the xy-plane are shown in Figure. The 

projection R is obtained by solving the given equations simultaneously to determine where 

the paraboloids intersect. We obtain 

5x
2
 + 5y

2
 = 6 − 7x

2
 − y

2
 

or 

2x
2
 + y

2
 = 1 

which tells us that the paraboloids intersect in a curve on the elliptic cylinder given by (2x
2
 + 

y
2
 = 1). The projection of this intersection on the xy-plane is an ellipse with this same 

equation. Therefore, 
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2 CHAPTER THREE 

3 PARTIAL DERIVATIVES 

3.1 FUNCTIONS OF TWO OR MORE VARIABLES 

3.1.1 Notation and Terminology 

There are many familiar formulas in which a given variable depends on two or more other 

variables. For example, the area A of a triangle depends on the base length b and height h by 

the formula 𝐴 =
1

2
𝑏ℎ; the volume V of a rectangular box depends on the length l, the width w, 

and the height h by the formula V = lwh; and the arithmetic average 𝑥̅ of n real numbers, x1, 

x2, . . . , xn, depends on those numbers by the formula 

𝑥̅ =
1

𝑛
(𝑥1 +  𝑥2, + ⋯ + 𝑥𝑛) 

Thus, we say that 

A is a function of the two variables b and h; 

V is a function of the three variables l, w, and h; 

𝑥̅ is a function of the n variables x1, x2, . . . , xn. 

The terminology and notation for functions of two or more variables is similar to that for 

functions of one variable. For example, the expression 

z = f(x, y) 

means that z is a function of x and y in the sense that a unique value of the dependent variable 

z is determined by specifying values for the independent variables x and y. Similarly, 

w = f(x, y, z) 

expresses w as a function of x, y, and z, and 

u = f(x1, x2, . . . , xn) 

expresses u as a function of x1, x2, . . . , xn. 

As with functions of one variable, the independent variables of a function of two or more 

variables may be restricted to lie in some set D, which we call the domain of f.  

The domain consists of all points for which the formula yields a real value for the dependent 

variable. We call this the natural domain of the function.  
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Definition 3.1 A function f of two variables, x and y, is a rule that assigns a unique real 

number f(x, y) to each point (x, y) in some set D in the xy-plane. 

Definition 3.2 A function f of three variables, x, y, and z, is a rule that assigns a unique real 

number f(x, y, z) to each point (x, y, z) in some set D in three dimensional space. 

Example 3.1 Let 𝑓(𝑥, 𝑦)  = √𝑦 +  1  +  ln(𝑥2  −  𝑦). Find f(e, 0) and sketch the natural 

Solution: By substitution, 

 

 

To find the natural domain of f , we note that √y + 1 is defined only when y ≥ −1, while     

ln(x
2
 − y) is defined only when 0 < x

2
 − y or y < x

2
. Thus, the natural domain of f consists of 

all points in the xy-plane for which −1 ≤ y < x
2
. To sketch the natural domain, we first sketch 

the parabola y = x
2
 as a “dashed” curve and the line y = −1 as a solid curve. The natural 

domain of f is then the region lying above or on the line y = −1 and below the parabola y = x
2
. 

 

Example 3.2 Let 𝑓(𝑥, 𝑦, 𝑧)  = √1 − 𝑥2 − 𝑦2 − 𝑧2 Find f(0,1/2 ,−1/2) and the natural domain 

of f. 

Solution: By substitution, 

 

Because of the square root sign, we must have 0 ≤ 1 − x
2
 − y

2
 − z

2
 in order to have a real value 

for f(x, y, z). Rewriting this inequality in the form 

x
2
 + y

2
 + z

2
 ≤ 1 

We see that the natural domain of f consists of all points on or within the sphere 

x
2
 + y

2
 + z

2
 = 1 

 

 

 



Chapter 3: Partial Derivatives 

100 
 

3.1.2 Graphs of Functions of Two Variables 

Example 3.3 In each part, describe the graph of the function in an xyz-coordinate system. 

 

 Solution (a): By 

definition, the graph of the given function is the graph of the equation 

𝑧 =  1 −  𝑥 – 
1

2
𝑦        (1) 

which is a plane. A triangular portion of the plane can be sketched by plotting the 

intersections with the coordinate axes and joining them with line segments (Figure a). 

Solution (b): By definition, the graph of the given function is the graph of the equation 

𝑧 = √1 −  𝑥2  −  𝑦2        (2) 

After squaring both sides, this can be rewritten as 

x
2
 + y

2
 + z

2
 = 1 

which represents a sphere of radius 1, centered at the origin. Since (2) imposes the added 

condition that z ≥ 0, the graph is just the upper hemisphere (Figure b). 

Solution (c): The graph of the given function is the graph of the equation 

𝑧 = −√𝑥2 +  𝑦2             (3) 

After squaring, we obtain 

z
2
 = x

2
 + y

2
 

which is the equation of a circular cone. Since (3) imposes the condition that z ≤ 0, the graph 

is just the lower nappe of the cone (Figure c). 
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3.1.3 Level Curves 

 

Contour maps are also useful for studying functions of two variables. If the surface z = f(x, y) 

is cut by the horizontal plane z = k, then at all points on the intersection we have f(x, y) = k. 

The projection of this intersection onto the xy-plane is called the level curve of height k or 

the level curve with constant k (below figure). A set of level curves for z = f(x, y) is called a 

contour plot or contour map of f. 

 

Example 3.4 Sketch the contour plot of f(x, y) = 4x
2
 + y

2
 using level curves of height k = 0, 1, 

2, 3, 4, 5. 

Solution: The graph of the surface z = 4x
2
 + y

2
 is the paraboloid shown in the left part of the 

below figure, so we can reasonably expect the contour plot to be a family of ellipses centered 

at the origin. The level curve of height k has the equation 4x
2
 + y

2
 = k. If k = 0, then the graph 

is the single point (0, 0). For k > 0 we can rewrite the equation as 

 

which represents a family of ellipses with x-intercepts ± √k/2 and y-intercepts ± √k. The 

contour plot for the specified values of k is shown in the right part of the following figure. 
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3.1.4 Graphing Functions Using Technology 

Graphing utilities can only show a portion of xyz-space in a viewing screen, so the first step 

in graphing a surface is to determine which portion of xyz-space you want to display. This 

region is called the viewing box or viewing window. 

For example, the following figure shows the graph of the paraboloid z = x
2
 + y

2
 from three 

different viewpoints using the first viewing box. 
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3.2 LIMITS AND CONTINUITY 

3.2.1 Limits along Curves 

For a function of one variable there are two one-sided limits at a point x0, namely, 

 

reflecting the fact that there are only two directions from which x can approach x0, the right or 

the left. 

 For functions of two or three variables the situation is more complicated because there are 

infinitely many different curves along which one point can approach another.  

The limit of f(x, y) as (x, y) approaches a point (x0, y0) along a curve C (and similarly for 

functions of three variables). 

If C is a smooth parametric curve in 2-space or 3-space that is represented by the equations 

x = x(t), y = y(t) or x = x(t), y = y(t), z = z(t) 

and if x0 = x(t0), y0 = y(t0), and z0 = z(t0), then the limits 

 

In these formulas the limit of the function of t must be treated as a one-sided limit if (x0, y0) 

or (x0, y0, z0) is an endpoint of C. 

Example 3.5 below figure shows a computer-generated graph of the function 

 

The graph reveals that the surface has a ridge above the line y = −x, which is to be expected 

since f(x, y) has a constant value of 1/2 for y = −x, except at (0, 0) where f is undefined 

(verify). Moreover, the graph suggests that the limit of f(x, y) as (x, y)→(0, 0) along a line 

through the origin varies with the direction of the line. Find this limit along 

(a) the x-axis     (b) the y-axis      (c) the line y = x    (d) the line y = −x   (e) the parabola y = x
2 
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Solution (a): The x-axis has parametric equations x = t, y = 0, with (0, 0) corresponding to t = 

0, so 

 

Solution (b): The y-axis has parametric equations x = 0, y = t, with (0, 0) corresponding to t 

= 0, so 

 

Solution (c): The line y = x has parametric equations x = t, y = t, with (0, 0) corresponding to 

t = 0, so 

 

Solution (d): The line y = −x has parametric equations x = t, y = −t, with (0, 0) 

corresponding to t = 0, so 

 

Solution (e): The parabola y = x
2
 has parametric equations x = t, y = t

2
, with (0, 0) 

corresponding to t = 0, so 

 

This is consistent with Figure c, which shows the parametric curve 
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3.2.2 Open and Closed Sets 

Let C be a circle in 2-space that is centered at (x0, y0) and has positive radius δ.  

-The set of points that are enclosed by the circle, but do not lie on the circle, is called the 

open disk. 

- The set of points that lie on the circle together with those enclosed by the circle is called the 

closed disk. 

- If S is a sphere in 3-space that is centered at (x0, y0, z0) and has positive radius δ: 

-The set of points that are enclosed by the sphere, but do not lie on the sphere, is called the 

open ball  

-The set of points that lie on the sphere together with those enclosed by the sphere is called 

the closed ball. 

- If D is a set of points in 2-space, then a point (x0, y0) is called an interior point of D if there 

is some open disk centered at (x0, y0) that contains only points of D,  

- (x0, y0) is called a boundary point of D if every open disk centered at (x0, y0) contains both 

points in D and points not in D.  

 

 

 

 

 

 

 

 

3.2.3 General Limits of Functions of Two Variables 

Definition Let f be a function of two variables, and assume that f is defined at all points of 

some open disk centered at (x0, y0), except possibly at (x0, y0). We will write 

 

if given any number ϵ > 0, we can find a number δ > 0 such that f(x, y) satisfies 

 

whenever the distance between (x, y) and (x0, y0) satisfies 
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As in below figure, this figure is intended to convey the idea that the values of f (x, y) can be 

forced within ϵ units of L on the z-axis by restricting (x, y) to lie within δ units of (x0, y0) in 

the xy-plane. We used a white dot at (x0, y0) to suggest that the epsilon condition need not 

hold at this point. 

 

Example 3.6 

 

3.2.4 Relationships between General Limits and Limits along Smooth Curves 

Theorem 

(a) If f(x, y)→L as (x, y)→(x0, y0), then f(x, y)→L as (x, y)→(x0, y0) along any smooth curve. 

(b) If the limit of f(x, y) fails to exist as (x, y)→(x0, y0) along some smooth curve, or if f(x, y) 

has different limits as (x, y)→(x0, y0) along two different smooth curves, then the limit of     

f(x, y) does not exist as (x, y)→(x0, y0). 

Example 3.7 The limit 

 

does not exist because in previous example we found two different smooth curves along 

which this limit had different values. Specifically, 
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3.2.5 CONTINUITY 

Definition  

A function f(x, y) is said to be continuous at (x0, y0) if f(x0, y0) is defined and if  

 

In addition, if f is continuous at every point in an open set D, then we say that f is continuous 

on D, and if f is continuous at every point in the xy-plane, then we say that f is continuous 

everywhere. 

Theorem 

(a) If g(x) is continuous at x0 and h(y) is continuous at y0, then f(x, y) = g(x)h(y) is continuous 

at (x0, y0). 

(b) If h(x, y) is continuous at (x0, y0) and g(u) is continuous at u = h(x0, y0), then the 

composition f (x, y) = g(h(x, y)) is continuous at (x0, y0). 

(c) If f (x, y) is continuous at (x0, y0), and if x(t) and y(t) are continuous at t0 with x(t0) = x0 

and y(t0) = y0, then the composition f (x(t ), y(t)) is continuous at t0. 

Example 3.8 Use Theorem to show that the functions f(x, y) = 3x
2
y

5
 and f(x, y) = sin(3x

2
y

5
) 

are continuous everywhere. 

Solution: The polynomials g(x) = 3x
2
 and h(y) = y

5
 are continuous at every real number, and 

therefore by part (a) of Theorem, the function f(x, y) = 3x
2
y

5
 is continuous at every point (x, 

y) in the xy-plane. Since 3x
2
y

5
 is continuous at every point in the xy-plane and sin u is 

continuous at every real number u, it follows from part (b) of Theorem that the composition 

f(x, y) = sin(3x
2
y

5
) is continuous everywhere. 

 

Recognizing Continuous Functions 

• A composition of continuous functions is continuous. 

• A sum, difference, or product of continuous functions is continuous. 

• A quotient of continuous functions is continuous, except where the denominator is zero. 

Example 3.9 Evaluate 

 

Solution: Since f(x, y) = xy/(x
2
 + y

2
) is continuous at (−1, 2) (why?), it follows from the 

definition of continuity for functions of two variables that 
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Example 3.10 Since the function 

 

is a quotient of continuous functions, it is continuous except where 1 − xy = 0. Thus, f(x, y) is 

continuous everywhere except on the hyperbola xy = 1. 

 

3.2.6 Limits at Discontinuities 

Sometimes it is easy to recognize when a limit does not exist. For example, it is evident that 

 

which implies that the values of the function approach +∞ as (x, y)→(0, 0) along any smooth 

curve (below figure). However, it is not evident whether the limit 

 

exists because it is an indeterminate form of type 0 · ∞. Although L’Hôpital’s rule cannot be 

applied directly, the following example illustrates a method for finding this limit by 

converting to polar coordinates. 

 

Example 3.11 Find 

 

Solution: Let (r, θ) be polar coordinates of the point (x, y) with r ≥ 0. Then we have 

x = r cos θ, y = r sin θ, r
2
 = x

2
 + y

2 
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3.2.7 Continuity at Boundary Points 

Recall that in our study of continuity for functions of one variable, we first defined continuity 

at a point, then continuity on an open interval, and then, by using one-sided limits, we 

extended the notion of continuity to include the boundary points of the interval. Similarly, for 

functions of two variables one can extend the notion of continuity of f (x, y) to the boundary 

of its domain by modifying previous definition appropriately so that (x, y) is restricted to 

approach (x0, y0) through points lying wholly in the domain of f .  

Example 3.12 The graph of the function 𝑓 (𝑥, 𝑦)  = √1 −  𝑥2  −  𝑦2  is the upper 

hemisphere shown in below figure, and the natural domain of f is the closed unit disk 

x
2
 + y

2
 ≤ 1 

The graph of f has no tears or holes, so it passes our “intuitive test” of continuity. In this case 

the continuity at a point (x0, y0) on the boundary reflects the fact that 

 

when (x, y) is restricted to points on the closed unit disk x
2
 + y

2
 ≤ 1. It follows that f is 

continuous on its domain. 

 

3.2.8 Extensions to Three Variables 

Definition Let f be a function of three variables, and assume that f is defined at all points 

within a ball centered at (x0, y0, z0), except possibly at (x0, y0, z0). We will write 
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if given any number ϵ > 0, we can find a number δ > 0 such that f(x, y, z) satisfies 

 

whenever the distance between (x, y, z) and (x0, y0, z0) satisfies 

 

As with functions of one and two variables, we define a function f(x, y, z) of three variables to 

be continuous at a point (x0, y0, z0) if the limit of the function and the value of the function are 

the same at this point; that is, 
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3.3 PARTIAL DERIVATIVES 

3.3.1 Partial Derivatives of Functions of Two Variables 

Definition 

 If z = f(x, y) and (x0, y0) is a point in the domain of f, then the partial derivative of f with 

respect to x at (x0, y0) [also called the partial derivative of z with respect to x at (x0, y0)] is the 

derivative at x0 of the function that results when y = y0 is held fixed and x is allowed to vary. 

This partial derivative is denoted by fx(x0, y0) and is given by 

  (1) 

Similarly, the partial derivative of f with respect to y at (x0, y0) [also called the partial 

derivative of z with respect to y at (x0, y0)] is the derivative at y0 of the function that results 

when x = x0 is held fixed and y is allowed to vary. This partial derivative is denoted by      

fy(x0, y0) and is given by 

            (2) 

Example 3.13 Find fx(1, 3) and fy(1, 3) for the function f(x, y) = 2x
3
y

2
 + 2y + 4x. 

Solution: Since 

 

3.3.2 The Partial Derivative Functions 

Formulas (1) and (2) define the partial derivatives of a function at a specific point (x0, y0). 

However, often it will be desirable to omit the subscripts and think of the partial derivatives 

as functions of the variables x and y. These functions are 
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Example 3.14 Find fx(x, y) and fy(x, y) for f(x, y) = 2x
3
y

2
 + 2y + 4x, and use those partial 

derivatives to compute fx(1, 3) and fy(1, 3). 

Solution: Keeping y fixed and differentiating with respect to x yields 

 

and keeping x fixed and differentiating with respect to y yields 

 

3.3.3 Partial Derivative Notation 

If z = f(x, y), then the partial derivatives fx and fy are also denoted by the symbols 

 

Some typical notations for the partial derivatives of z = f(x, y) at a point (x0, y0) are 

 

Example 3.15 Find ∂z/∂x and ∂z/∂y if z = x
4
 sin(xy

3
). 

Solution: 

 

3.3.4 Partial Derivatives Viewed As Rates of Change and Slopes 

Recall that if y = f(x), then the value of f(x0) can be interpreted either as the rate of change of 

y with respect to x at x0 or as the slope of the tangent line to the graph of f at x0. Partial 

derivatives have analogous interpretations. To see that this is so, suppose that C1 is the 

intersection of the surface z = f(x, y) with the plane y = y0 and that C2 is its intersection with 

the plane x = x0 (below figure). Thus, fx(x, y0) can be interpreted as the rate of change of z 
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with respect to x along the curve C1, and fy(x0, y) can be interpreted as the rate of change of z 

with respect to y along the curve C2. In particular, fx(x0, y0) is the rate of change of z with 

respect to x along the curve C1 at the point (x0, y0), and fy(x0, y0) is the rate of change of z 

with respect to y along the curve C2 at the point (x0, y0). 

 

Example 3.16 Let f(x, y) = x
2
y + 5y

3
. 

(a) Find the slope of the surface z = f(x, y) in the x-direction at the point (1, −2). 

(b) Find the slope of the surface z = f(x, y) in the y-direction at the point (1, −2). 

Solution (a): Differentiating f with respect to x with y held fixed yields  

fx(x, y) = 2xy 

Thus, the slope in the x-direction is fx(1,−2) = −4; that is, z is decreasing at the rate of 4 units 

per unit increase in x. 

Solution (b): Differentiating f with respect to y with x held fixed yields 

fy(x, y) = x
2
 + 15y

2
 

Thus, the slope in the y-direction is fy(1,−2) = 61; that is, z is increasing at the rate of 61 units 

per unit increase in y 

3.3.5 Implicit Partial Differentiation 

Example 3.17 Find the slope of the sphere x
2
 + y

2
 + z

2
 = 1 in the y-direction at the points 

(2/3, 1/3, 2/3) and (2/3, 1/3, -2/3) (see figure). 

Solution: The point (2/3, 1/3, 2/3) lies on the upper hemisphere                          

𝑧 = √1 −  𝑥2  −  𝑦2, and the point (2/3, 1/3, -2/3) lies on the 

lower hemisphere 𝑧 = −√1 − 𝑥2  − 𝑦2. We could find the 

slopes by differentiating each expression for z separately with 

respect to y and then evaluating the derivatives at x = 2/3 and y = 

1/3. However, it is more efficient to differentiate the given equation 

x
2
 + y

2
 + z

2
 = 1 
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To perform the implicit differentiation, we view z as a function of x and y and differentiate 

both sides with respect to y, taking x to be fixed. The computations are as follows: 

 

Substituting the y- and z-coordinates of the points (2/3, 1/3, 2/3) and (2/3, 1/3, -2/3) in this 

expression, we find that the slope at the point (2/3, 1/3, 2/3) is -1/2 and the slope at (2/3, 1/3, 

-2/3) is ½. 

 

3.3.6 Partial Derivatives and Continuity 

In contrast to the case of functions of a single variable, the existence of partial derivatives for 

a multivariable function does not guarantee the continuity of the function. This fact is shown 

in the following example. 

Example 3.18 Let 

 

(a) Show that fx(x, y) and fy(x, y) exist at all points (x, y). 

(b) Explain why f is not continuous at (0, 0). 

Solution (a):  

Except that here we have assigned f a value of 0 at (0, 0). Except at this point, the partial 

derivatives of f are 

 

It is not evident from previous formula whether f has partial derivatives at (0, 0), and if so, 

what the values of those derivatives are. To answer that question we will have to use the 

definitions of the partial derivatives (Definition). Applying previous formulas and we obtain 
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Solution (b):  

 

does not exist. Thus, f is not continuous at (0, 0). 

3.3.7 Partial Derivatives of Functions with More Than Two Variables 

For a function f(x, y, z) of three variables, there are three partial derivatives: 

fx(x, y, z), fy(x, y, z), fz(x, y, z) 

The partial derivative fx is calculated by holding y and z constant and differentiating with 

respect to x. For fy the variables x and z are held constant, and for fz the variables x and y are 

held constant. If a dependent variable 

w = f(x, y, z) 

is used, then the three partial derivatives of f can be denoted by 

 

Example 3.18 

 

3.3.8 Higher-Order Partial Derivatives 

Suppose that f is a function of two variables x and y. Since the partial derivatives ∂f/∂x and 

∂f/∂y are also functions of x and y, these functions may themselves have partial derivatives. 

This gives rise to four possible second-order partial derivatives of f, which are defined by 
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The last two cases are called the mixed second-order partial derivatives or the mixed second 

partials. Also, the derivatives ∂f /∂x and ∂f /∂y are often called the first-order partial 

derivatives when it is necessary to distinguish them from higher-order partial derivatives. 

Similar conventions apply to the second-order partial derivatives of a function of three 

variables. 

Example 3.20 Find the second-order partial derivatives of f(x, y) = x
2
y

3
 + x

4
y. 

Solution: We have 

 

Third-order, fourth-order, and higher-order partial derivatives can be obtained by successive 

differentiation. Some possibilities are 

 

3.3.9 Equality of Mixed Partials 

Theorem Let f be a function of two variables. If fxy and fyx are continuous on some open disk, 

then fxy = fyx on that disk. 
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3.4 DIFFERENTIABILITY, DIFFERENTIALS, AND LOCAL 

LINEARITY 

3.4.1 Differentiability 

Recall that a function f of one variable is called differentiable at x0 if it has a derivative at x0, 

that is, if the limit 

                  (1) 

exists. As a consequence of (1) a differentiable function enjoys a number of other important 

properties: 

• The graph of y = f(x) has a non-vertical tangent line at the point (x0, f(x0)); 

• f may be closely approximated by a linear function near x0; 

• f is continuous at x0. 

Our primary objective in this section is to extend the notion of differentiability to functions of 

two or three variables in such a way that the natural analogs of these properties hold. For 

example, if a function f(x, y) of two variables is differentiable at a point (x0, y0), we want it to 

be the case that 

• the surface z = f(x, y) has a non-vertical tangent plane at the point (x0, y0, f(x0, y0)) (see 

below figure); 

• the values of f at points near (x0, y0) can be very closely approximated by the values of a 

linear function; 

• f is continuous at (x0, y0). 

 

Definition A function f of two variables is said to be differentiable at (x0, y0) provided fx(x0, 

y0) and fy(x0, y0) both exist and 

    (4) 
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Example 3.21 Use Definition prove that f (x, y) = x
2
 + y

2
 is differentiable at (0, 0). 

Solution: The increment is 

 

Therefore, f is differentiable at (0, 0). 

 

We now derive an important consequence of limit (4). Define a function 

(5) 

In other words, if f is differentiable at (x0, y0), then Δf may be expressed as shown in (5), 

where ϵ →0 as (Δx, Δy)→(0, 0) and where ϵ = 0 if (Δx, Δy) = (0, 0). 

For functions of three variables we have an analogous definition of differentiability in terms 

of the increment Δf = f (x0 + Δx, y0 + Δy, z0 + Δz) − f (x0, y0, z0). 

 

Definition A function f of three variables is said to be differentiable at(x0, y0, z0) provided 

fx(x0, y0, z0), fy(x0, y0, z0), and fz(x0, y0, z0) exist and 

 

3.4.2 Differentiability and Continuity 

 

Theorem If a function is differentiable at a point, then it is continuous at that point. 

Theorem If all first-order partial derivatives of f exist and are continuous at a point, then f is 

differentiable at that point. 
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3.4.3 Differentials 

As with the one-variable case, the approximations 

 

for a function of two variables and the approximation 

    (1) 

for a function of three variables have a convenient formulation in the language of 

differentials. If z = f (x, y) is differentiable at a point (x0, y0), we let 

                       (2) 

denote a new function with dependent variable dz and independent variables dx and dy. We 

refer to this function (also denoted df ) as the total differential of z at (x0, y0) or as the total 

differential of f at (x0, y0). Similarly, for a function w = f(x, y, z) of three variables  

we have the total differential of w at (x0, y0, z0), 

            (3) 

which is also referred to as the total differential of f at (x0, y0, z0). It is common practice to 

omit the subscripts and write Equations (2) and (3) as 

 

In the two-variable case, the approximation 

 

can be written in the form 

Δf ≈ df                   (6) 

for dx = Δx and dy = Δy. Equivalently, we can write approximation (6) as 

Δz ≈ dz                  (7) 

In other words, we can estimate the change Δz in z by the value of the differential dz where 

dx is the change in x and dy is the change in y. Furthermore, it follows from (4) that if Δx and 

Δy are close to 0, then the magnitude of the error in approximation (7) will be much smaller 

than the distance √(∆𝑥)2 + (∆𝑦)2 between (x0, y0) and (x0 + Δx, y0 + Δy). 

 

(4) 

(5) 
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Example 3.22 Use (7) to approximate the change in z = xy
2
 from its value at (0.5, 1.0) to its 

value at (0.503, 1.004). Compare the magnitude of the error in this approximation with the 

distance between the points (0.5, 1.0) and (0.503, 1.004). 

Solution: For z = xy
2
 we have dz = y

2
 dx + 2xy dy. Evaluating this differential at 

(x, y) = (0.5, 1.0), dx = Δx = 0.503 − 0.5 = 0.003, and dy = Δy = 1.004 − 1.0 = 0.004 

yields 

dz = 1.0
2
(0.003) + 2(0.5)(1.0)(0.004) = 0.007 

Since z = 0.5 at (x, y) = (0.5, 1.0) and z = 0.507032048 at (x, y) = (0.503, 1.004), we have 

Δz = 0.507032048 − 0.5 = 0.007032048 

and the error in approximating Δz by dz has magnitude 

|dz − Δz| = |0.007 − 0.007032048| = 0.000032048 

Since the distance between (0.5, 1.0) and (0.503, 1.004) = (0.5 + Δx, 1.0 + Δy) is 

 

3.4.4 Local Linear Approximations 

If a function f is differentiable at a point, then it can be very closely approximated by a linear 

function near that point. For example, suppose that f (x, y) is differentiable at the point (x0, 

y0). Then approximation can be written in the form 

 

If we let x = x0 + Δx and y = x0 + Δy, this approximation becomes 

     (1) 

Since the error in this approximation is equal to the error in approximation (3), we conclude 

that for (x, y) close to (x0, y0), the error in (1) will be much smaller than the distance between 

these two points. When f (x, y) is differentiable at (x0, y0) we get 

 

and refer to L(x, y) as the local linear approximation to f at (x0, y0). 

 

Example 3.23 Let L(x, y) denote the local linear approximation to 𝑓(𝑥, 𝑦)  =  √𝑥2 + 𝑦2 at the 

point (3, 4). Compare the error in approximating 
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by L(3.04, 3.98) with the distance between the points (3, 4) and (3.04, 3.98). 

Solution: We have 

 

 

For a function f (x, y, z) that is differentiable at (x0, y0, z0), the local linear approximation is 

 

 

3.5 THE CHAIN RULE 

3.5.1 Chain Rules for Derivatives 

Theorem (Chain Rules for Derivatives) If x = x(t) and y = y(t) are differentiable at t, and if z 

= f(x, y) is differentiable at the point (x, y) = (x(t ), y(t )), then z = f(x(t ), y(t)) is differentiable 

at t and 

 

where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at 

(x, y). 

If each of the functions x = x(t), y = y(t), and z = z(t) is differentiable at t, and if w = f(x, y, z) 

is differentiable at the point (x, y, z) = (x(t ), y(t ), z(t )), then the function w = f(x(t ), y(t ), 

z(t)) is differentiable at t and 
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where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at 

(x, y, z). 

Example 3.24 Suppose that 

z = x
2
y,    x = t

2
,   y= t

3
 

Use the chain rule to find dz/dt, and check the result by expressing z as a function of t and 

differentiating directly. 

Solution: By the chain rule 

 

Alternatively, we can express z directly as a function of t, 

z = x
2
y = (t

2
)
2
(t

3
) = t

7
 

and then differentiate to obtain dz/dt = 7t
6
. However, this procedure may not always be 

convenient. 

Example 3.25 Suppose that 

 

Use the chain rule to find dw/dθ when θ = π/4. 

Solution:  
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3.5.2 Chain Rules for Partial Derivatives 

Theorem (Chain Rules for Partial Derivatives) 

 If x = x(u, v) and y = y(u, v) have first-order partial derivatives at the point (u, v), and if z = 

f(x, y) is differentiable at the point (x, y) = (x(u, v), y(u, v)), then z = f(x(u, v), y(u, v)) has 

first-order partial derivatives at the point (u, v) given by 

 

If each function x = x(u, v), y = y(u, v), and z = z(u, v) has first-order partial derivatives at the 

point (u, v), and if the function w = f(x, y, z) is differentiable at the point (x, y, z) = (x(u, v), 

y(u, v), z(u, v)), then w = f(x(u, v), y(u, v), z(u, v)) has first-order partial derivatives at the 

point (u, v) given by 

 

Example 3.26 Given that  z = e
xy

, x= 2u + v, y = u/v find ∂z/∂u and ∂z/∂v using the chain rule. 

Solution: 

  

3.5.3 Implicit Differentiation 

Theorem If the equation f(x, y) = c defines y implicitly as a differentiable function of x, and if 

∂f /∂y ≠ 0, then 

   
 

Example 3.27 Given that x
3
 + y

2
x − 3 = 0 

find dy/dx using the above equation, and check the result using implicit differentiation. 
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Solution: 

 

 
 

Theorem If the equation f(x, y, z) = c defines z implicitly as a differentiable function of x and 

y, and if ∂f /∂z ≠ 0, then 

 

Example 3.28 Consider the sphere x
2
 + y

2
 + z

2
 = 1. Find ∂z/∂x and ∂z/∂y at the point (2/3, 1/3, 

2/3) 

Solution: 

 

At the point (2/3, 1/3, 2/3), evaluating these derivatives gives ∂z/∂x = −1 and ∂z/∂y = −1/2. 
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3.6 DIRECTIONAL DERIVATIVES AND GRADIENTS  

3.6.1 Directional Derivatives 

Definition If f(x, y) is a function of x and y, and if u = u1 i + u2 j is a unit vector, then the 

directional derivative of f in the direction of u at (x0, y0) is denoted by Duf(x0, y0) and is 

defined by 

 

provided this derivative exists. 

 

Geometrically, Duf(x0, y0) can be interpreted as the slope of the surface z = f (x, y) in the 

direction of u at the point (x0, y0, f(x0, y0)) (Figure a). Usually the value of Duf(x0, y0) will 

depend on both the point (x0, y0) and the direction u. Thus, at a fixed point the slope of the 

surface may vary with the direction (Figure b). Analytically, the directional derivative 

represents the instantaneous rate of change of f (x, y) with respect to distance in the 

direction of u at the point (x0, y0). 

  

 

 

 

 

 

 

 

 

Figure a     Figure b 

Example 3.28 Let f(x, y) = xy. Find and interpret Duf(1, 2) for the unit vector 

𝐮 =
√𝟑

𝟐
𝐢 +

𝟏

𝟐
𝐣 

Solution: 
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Since 1/2+√3 ≈ 2.23, we conclude that if we move a small distance from the point (1, 2) in 

the direction of u, the function f(x, y) = xy will increase by about 2.23 times the distance 

moved. 

 

Definition  

If u = u1i + u2j + u3k is a unit vector, and if f(x, y, z) is a function of x, y, and z, then the 

directional derivative of f in the direction of u at (x0, y0, z0) is denoted by Duf(x0, y0, z0) and 

is defined by 

 

provided this derivative exists. 

 

Theorem 

(a) If f(x, y) is differentiable at (x0, y0), and if u = u1i + u2j is a unit vector, then the 

directional derivative Duf(x0, y0) exists and is given by 

 

(b) If f(x, y, z) is differentiable at (x0, y0, z0), and if u = u1i + u2j + u3k is a unit vector, 

then the directional derivative Duf(x0, y0, z0) exists and is given by 

 

Example 3.29 Find the directional derivative of f(x, y) = e
xy

 at (−2, 0) in the direction of the 

unit vector that makes an angle of π/3 with the positive x-axis. 

Solution: The partial derivatives of f are 
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The unit vector u that makes an angle of π/3 with the positive x-axis is 

 

 

Example 3.30 Find the directional derivative of f (x, y, z) = x
2
y − yz

3
 + z at the point (1, −2, 

0) in the direction of the vector a = 2i + j − 2k. 

Solution: 

 

3.6.2 The Gradient 

Definition 

(a) If f is a function of x and y, then the gradient of f is defined by 

∇f(x, y) = fx(x, y)i + fy(x, y)j 

(c) If f is a function of x, y, and z, then the gradient of f is defined by 

∇f(x, y, z) = fx(x, y, z)i + fy(x, y, z)j + fz(x, y, z)k 

 

The symbol ∇ (read “del”) is a “nabla”  

Formulas can now be written as 

Duf(x0, y0) = ∇f(x0, y0) . u  

Duf(x0, y0, z0) = ∇f(x0, y0, z0) . u 

For example, using above formula our solution to Example 3.30 would take the form 

Duf (1, −2, 0) = ∇f(1, −2, 0) . u = (−4i + j + k) = 2/3 i + 1/3j – 2/3k 

= (−4) (2/3) + 1/3 −2/3 = −3 
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3.6.3 Properties of the Gradient 

Theorem 

 Let f be a function of either two variables or three variables, and let P denote the point    

P(x0, y0) or P(x0, y0, z0), respectively. Assume that f is differentiable at P. 

(a) If ∇f = 0 at P, then all directional derivatives of f at P are zero. 

(b) If ∇f ≠0 at P, then among all possible directional derivatives of f at P, the derivative in the 

direction of ∇f at P has the largest value. The value of this largest directional derivative is 

ǀǀ∇f ǀǀ at P. 

(c) If ∇f ≠ 0 at P, then among all possible directional derivatives of f at P, the derivative in 

the direction opposite to that of ∇f at P has the smallest value. The value of this smallest 

directional derivative is −ǀǀ∇f ǀǀ at P. 

 

Example 3.31 Let f(x, y) = x
2
e

y
. Find the maximum value of a directional derivative at       

(−2, 0), and find the unit vector in the direction in which the maximum value occurs. 

Solution: 
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3.7 TANGENT PLANES AND NORMAL VECTORS 

3.7.1 Tangent Planes and Normal Vectors to Level Surfaces F(x, y, z) = c 

Definition 

Assume that F(x, y, z) has continuous first-order partial derivatives and that P0(x0, y0, z0) is a 

point on the level surface S: F(x, y, z) = c. If ∇F(x0, y0, z0) ≠ 0, then n = ∇F(x0, y0, z0) is a 

normal vector to S at P0 and the tangent plane to S at P0 is the plane with equation 

Fx(x0, y0, z0)(x − x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0 

  

Example 3.32 Consider the ellipsoid x
2
 + 4y

2
 + z

2
 = 18. 

(a) Find an equation of the tangent plane to the ellipsoid at the point (1, 2, 1). 

(b) Find parametric equations of the line that is normal to the ellipsoid at the point (1, 2, 1). 

(c) Find the acute angle that the tangent plane at the point (1, 2, 1) makes with the xy-plane. 

Solution: 

Solution (a): We apply Definition with F(x, y, z) = x
2
 + 4y

2
 + z

2
 and (x0, y0, z0) = (1, 2, 1). 

Since 

∇F(x, y, z) = (Fx(x, y, z), Fy(x, y, z), Fz(x, y, z)) = (2x, 8y, 2z) 

we have 

n = ∇F(1, 2, 1) = (2, 16, 2) 

Hence, the equation of the tangent plane is 

2(x − 1) + 16(y − 2) + 2(z − 1) =0 or x + 8y + z = 18 

Solution (b): Since n = (2, 16, 2) at the point (1, 2, 1), it follows that parametric equations 

for the normal line to the ellipsoid at the point (1, 2, 1) are 

x = 1 + 2t, y = 2 + 16t, z = 1 + 2t 

Solution (c): To find the acute angle θ between the tangent plane and the xy-plane,  

n1 = n = (2, 16, 2) and n2 = (0, 0, 1). This yields 
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3.7.2 Tangent Planes to Surfaces of The Form z = f (x, y) 

Example 3.33 Find an equation for the tangent plane and parametric equations for the normal 

line to the surface z = x
2
y at the point (2, 1, 4). 

Solution: Let F(x, y, z) = z − x
2
y. Then F(x, y, z) = 0 on the surface, so we can find the find 

the gradient of F at the point (2, 1, 4): 

∇F(x, y, z) = −2xyi − x
2
j + k 

∇F(2, 1, 4) = −4i − 4j + k 

the tangent plane has equation 

−4(x − 2) − 4(y − 1) + 1(z − 4) =0 or − 4x − 4y + z = −8 

and the normal line has equations 

x = 2 − 4t, y = 1 − 4t, z = 4 + t 

Theorem  If f(x, y) is differentiable at the point (x0, y0), then the tangent plane to the surface 

z = f(x, y) at the point P0(x0, y0, f (x0, y0)) [or (x0, y0)] is the plane 

z = f(x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) 

3.7.3 Using Gradients to Find Tangent Lines to Intersections of Surfaces 

Example 3.34 Find parametric equations of the tangent line to the curve of intersection of the 

paraboloid z = x
2
 + y

2
 and the ellipsoid 3x

2
 + 2y

2
 + z

2
 = 9 at the point (1, 1, 2) 

Solution: We begin by rewriting the equations of the surfaces as 

x
2
 + y

2
 − z = 0 and 3x

2
 + 2y

2
 + z

2
 − 9 = 0 

and we take 

F(x, y, z) = x
2
 + y

2
 − z and G(x, y, z) = 3x

2
 + 2y

2
 + z

2
 − 9 

We will need the gradients of these functions at the point (1, 1, 2). The 

computations are 

∇F(x, y, z) = 2xi + 2y j − k, ∇G(x, y, z) = 6xi + 4y j + 2zk 

∇F(1, 1, 2) = 2i + 2j − k, ∇G(1, 1, 2) = 6i + 4j + 4k 

Thus, a tangent vector at (1, 1, 2) to the curve of intersection is 
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Since any scalar multiple of this vector will do just as well, we can multiply by 1/2 to reduce 

the size of the coefficients and use the vector of 6i − 7j − 2k to determine the direction of the 

tangent line. This vector and the point (1, 1, 2) yield the parametric equations 

x = 1 + 6t, y = 1 − 7t, z = 2 − 2t 

3.8 MAXIMA AND MINIMA OF FUNCTIONS OF TWO VARIABLES 

3.8.1 Extrema 

Definition A function f of two variables is said to have a relative maximum at a point (x0, y0) 

if there is a disk centered at (x0, y0) such that f(x0, y0) ≥ f(x, y) for all points (x, y) that lie 

inside the disk, and f is said to have an absolute maximum at (x0, y0) if f(x0, y0) ≥ f(x, y) for all 

points (x, y) in the domain of f. 

 

Definition A function f of two variables is said to have a relative minimum at a point (x0, y0) 

if there is a disk centered at (x0, y0) such that f(x0, y0) ≤ f(x, y) for all points (x, y) that lie 

inside the disk, and f is said to have an absolute minimum at (x0, y0) if f(x0, y0) ≤ f(x, y) for all 

points (x, y) in the domain of f. 

 

If f has a relative maximum or a relative minimum at (x0, y0), then we say that f has a relative 

extremum at (x0, y0), and if f has an absolute maximum or absolute minimum at (x0, y0), then 

we say that f has an absolute extremum at (x0, y0). 
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3.8.2 Bounded Sets 

- (finite intervals and infinite intervals on the real line),  

- Distinguish between regions of “finite extent” and regions of “infinite extent” in 2-

space and 3-space.  

- A set of points in 2-space is called bounded if the entire set can be contained within 

some rectangle,  

- called unbounded if there is no rectangle that contains all the points of the set. 

- Similarly, a set of points in 3-space is bounded if the entire set can be contained 

within some box, and is unbounded otherwise (see below Figure ). 

 

3.8.3 The Extreme-Value Theorem 

Theorem (Extreme-Value Theorem) If f(x, y) is continuous on a closed and bounded set R, 

then f has both an absolute maximum and an absolute minimum on R. 

Example 3.35 The square region R whose points satisfy the inequalities 

0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 

is a closed and bounded set in the xy-plane. The function f 

whose graph is shown in Figure is continuous on R; thus, it is 

guaranteed to have an absolute maximum and minimum on R 

by the last theorem. These occur at points D and A that are 

shown in the figure. 
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3.8.4 Finding Relative Extrema 

Theorem If f has a relative extremum at a point (x0, y0), and if the first-order partial 

derivatives of f exist at this point, then 

fx(x0, y0) = 0 and fy(x0, y0) = 0 

 

Definition A point (x0, y0) in the domain of a function f(x, y) is called a critical point of the 

function if fx(x0, y0) = 0 and fy(x0, y0) = 0 or if one or both partial derivatives do not exist at 

(x0, y0). 

Example: consider the function 

f(x, y) = y
2
 − x

2
 

This function, whose graph is the hyperbolic paraboloid 

shown in the figure, has a critical point at (0, 0), since 

fx(x, y) = −2x and fy(x, y) = 2y 

from which it follows that 

fx(0, 0) = 0 and fy(0, 0) = 0 

 

 

The function f has neither a relative maximum nor a relative minimum at (0, 0). For obvious 

reasons, the point (0, 0) is called a saddle point of f.  

In general, we will say that a surface z = f(x, y) has a saddle point at (x0, y0) if there are two 

distinct vertical planes through this point such that the trace of the surface in one of the 

planes has a relative maximum at (x0, y0) and the trace in the other has a relative minimum at 

(x0, y0). 

 

Example The three functions graphed in the following figure all have critical points at (0, 0). 

For the paraboloids, the partial derivatives at the origin are zero. You can check this 

algebraically by evaluating the partial derivatives at (0, 0), but you can see it geometrically 
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by observing that the traces in the xz-plane and yz-plane have horizontal tangent lines at (0, 

0). 

 

3.8.5 The Second Partials Test 

Theorem (The Second Partials Test) Let f be a function of two variables with continuous 

second-order partial derivatives in some disk centered at a critical point (x0, y0), and let 

D = fxx(x0, y0) fyy(x0, y0) − f
2

xy(x0, y0) 

(a) If D > 0 and fxx(x0, y0) > 0, then f has a relative minimum at (x0, y0). 

(b) If D > 0 and fxx(x0, y0) < 0, then f has a relative maximum at (x0, y0). 

(c) If D < 0, then f has a saddle point at (x0, y0). 

(d) If D = 0, then no conclusion can be drawn. 

Example 3.36 Locate all relative extrema and saddle points of 

f(x, y) = 3x
2
 − 2xy + y

2
 − 8y 

Solution: Since fx(x, y) = 6x − 2y and fy(x, y) = −2x + 2y − 8, the critical points of f satisfy 

the equations 

6x − 2y = 0 

−2x + 2y − 8 = 0 

Solving these for x and y yields x = 2, y = 6 (verify), so (2, 6) is the only critical point. 

To apply Theorem, we need the second-order partial derivatives 

fxx(x, y) = 6,    fyy(x, y) = 2,   fxy(x, y) = −2 

At the point (2, 6) we have 

D = fxx(2, 6) fyy(2, 6) − f
2

xy(2, 6) = (6)(2) − (−2)
2
 = 8 > 0 

and 

fxx(2, 6) = 6 > 0 
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so f has a relative minimum at (2, 6) by part (a) of the second partials test. The below figure 

shows a graph of f in the vicinity of the relative minimum. 

 

Example 3.37 Locate all relative extrema and saddle points of 

f(x, y) = 4xy − x
4
 − y

4
 

Solution: Since 

fx(x, y) = 4y − 4x
3
 

                             fy(x, y) = 4x − 4y
3
                           (1) 

the critical points of f have coordinates satisfying the equations 

 

4y − 4x
3
 = 0   y = x

3 

or 

                      4x − 4y
3
 = 0    x = y

3
                   (2) 

Substituting the top equation in the bottom yields x = (x
3
)
3
 or, equivalently, x

9
 − x = 0 or     

x(x
8
 − 1) = 0, which has solutions x = 0, x = 1, x = −1. Substituting these values in the top 

equation of (2), we obtain the corresponding y-values y = 0, y = 1, y = −1. Thus, the critical 

points of f are (0, 0), (1, 1), and (−1, −1). 

From (1), 

fxx(x, y) = −12x
2
,     fyy(x, y) = −12y

2
,        fxy(x, y) = 4 

which yields the following table: 
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At the points (1, 1) and (−1,−1), we have D > 0 and fxx < 0, so relative maxima occur at these 

critical points. At (0, 0) there is a saddle point since D < 0. The surface and a contour plot are 

shown in the below figure. 

  

 

 

 

 

 

 

 

 

 

 

Theorem If a function f of two variables has an absolute extremum (either an absolute 

maximum or an absolute minimum) at an interior point of its domain, then this extremum 

occurs at a critical point. 

3.8.6 Finding Absolute Extrema on Closed and Bounded Sets 

How to Find the Absolute Extrema of a Continuous Function f of Two Variables on a 

Closed and Bounded Set R 

Step 1. Find the critical points of f that lie in the interior of R. 

Step 2. Find all boundary points at which the absolute extrema can occur. 

Step 3. Evaluate f(x, y) at the points obtained in the preceding steps. The largest of these 

values is the absolute maximum and the smallest the absolute minimum. 

Example 3.38 Find the absolute maximum and minimum values of 

f(x, y) = 3xy − 6x − 3y + 7      (1) 

on the closed triangular region R with vertices (0, 0), (3, 0), and (0, 5). 

Solution: The region R is shown in Figure.  

Step 1: find critical points 

∂f/∂x = 3y − 6 and 

∂f/∂y = 3x − 3 

so all critical points occur where 

3y − 6 = 0 and 3x − 3 = 0 
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Solving these equations yields x = 1 and y = 2, so (1, 2) is the only critical point. As shown in 

Figure, this critical point is in the interior of R. 

Step 2: Determine the locations of the points on the boundary of R at which the absolute 

extrema might occur. The boundary of R consists of three line segments, each of which we 

will treat separately: 

The line segment between (0, 0) and (3, 0): On this line segment we have y = 0, so (1) 

simplifies to a function of the single variable x, 

u(x) = f(x, 0) = −6x + 7, 0 ≤ x ≤ 3 

This function has no critical points because u(x) = −6 is nonzero for all x. Thus the extreme 

values of u
′
(x) occur at the endpoints x = 0 and x = 3, which correspond to the points (0, 0) 

and (3, 0) of R. 

The line segment between (0, 0) and (0, 5): On this line segment we have x = 0, so (1) 

simplifies to a function of the single variable y, 

v(y) = f(0, y) = −3y + 7, 0 ≤ y ≤ 5 

This function has no critical points because v
′
(y) = −3 is nonzero for all y. Thus, the extreme 

values of v(y) occur at the endpoints y = 0 and y = 5, which correspond to the points (0, 0) 

and (0, 5) of R. 

The line segment between (3, 0) and (0, 5): In the xy-plane, an equation for this line segment 

is 

 

so (1) simplifies to a function of the single variable x, 

 

Since w
′
(x) = −10x + 14, the equation w(x) = 0 yields x = 7/5 as the only critical point of w. 

Thus, the extreme values of w occur either at the critical point x = 7/5 or at the endpoints x = 

0 and x = 3. The endpoints correspond to the points (0, 5) and (3, 0) of R, and from (4) the 

critical point corresponds to (7/5, 8/3). 

Final step: the below table lists the values of f(x, y) at the interior critical point and at the 

points on the boundary where an absolute extremum can occur. From the table we conclude 

that the absolute maximum value of f is f(0, 0) = 7 and the absolute minimum value is f(3, 0) 

= −11. 
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Example 3.39 Determine the dimensions of a rectangular box, open at the top, having a 

volume of 32 ft
3
, and requiring the least amount of material for its construction. 

Solution: Let 

x = length of the box (in feet) 

y = width of the box (in feet) 

z = height of the box (in feet) 

S = surface area of the box (in square feet) 

We may reasonably assume that the box with least surface area requires the least amount of 

material, so our objective is to minimize the surface area 

S = xy + 2xz + 2yz       (1) 

(Figure) subject to the volume requirement 

xyz = 32          (2)  

From (2) we obtain z = 32/xy, so (1) can be rewritten as 

         (3) 

Differentiating (3) we obtain 

 

The solutions of this equation are x = 0 and x = 4. Since we require x > 0, the only solution of 

significance is x = 4. Substituting this value into (y=64/x
2
) yields y = 4. We conclude that the 

point (x, y) = (4, 4) is the only critical point of S in the first quadrant. Since S = 48 if x = y = 

4, this suggests we try to show that the minimum value of S on the open first quadrant is 48. 
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It immediately follows from Equation (3) that 48 < S at any point in the first quadrant for 

which at least one of the inequalities 

xy > 48,    64/y > 48,     64/x > 48 

is satisfied. Therefore, to prove that 48 ≤ S, we can restrict attention to the set of points in the 

first quadrant that satisfy the three inequalities 

xy ≤ 48,     64/y ≤ 48,    64/x ≤ 48 

These inequalities can be rewritten as 

xy ≤ 48,        y≥ 4/3,        x≥ 4/3 

and they define a closed and bounded region R within the first quadrant (below figure). The 

function S is continuous on R, so Theorem guarantees that S has an absolute minimum value 

somewhere on R. Since the point (4, 4) lies within R, and 48 < S on 

the boundary of R (why?), the minimum value of S on R must 

occur at an interior point. It then follows from Theorem that the 

mimimum value of S on R must occur at a critical point of S. 

Hence, the absolute minimum of S on R (and therefore on the entire 

open first quadrant) is S = 48 at the point (4, 4). Substituting x = 4 

and y = 4 into (6) yields z = 2, so the box using the least material 

has a height of 2 ft and a square base whose edges are 4ft long. 
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3.9 LAGRANGE MULTIPLIERS 

3.9.1 Extremum Problems with Constraints 

Three-Variable Extremum Problem with One Constraint 

Maximize or minimize the function f(x, y, z) subject to the constraint g(x, y, z) = 0. 

Two-Variable Extremum Problem with One Constraint 

Maximize or minimize the function f(x, y) subject to the constraint g(x, y) = 0. 

Theorem (Constrained-Extremum Principle for Two Variables and One Constraint) Let f 

and g be functions of two variables with continuous first partial derivatives on some open set 

containing the constraint curve g(x, y) = 0, and assume that ∇g ≠ 0 at any point on this curve. 

If f has a constrained relative extremum, then this extremum occurs at a point (x0, y0) on the 

constraint curve at which the gradient vectors ∇f(x0, y0) and ∇g(x0, y0) are parallel; that is, 

there is some number λ such that 

∇f(x0, y0) = λ∇g(x0, y0) 

Example 3.40 At what point or points on the circle x
2
 + y

2
 = 1 does f(x, y) = xy have an 

absolute maximum, and what is that maximum? 

Solution: The circle x
2
 + y

2
 = 1 is a closed and bounded set and f(x, y) = xy is a continuous 

function, so it follows from the Extreme-Value Theorem that f has an absolute maximum and 

an absolute minimum on the circle. To find these extrema, we will use Lagrange multipliers 

to find the constrained relative extrema, and then we will evaluate f at those relative extrema 

to find the absolute extrema. 

We want to maximize f(x, y) = xy subject to the constraint 

g(x, y) = x
2
 + y

2
 − 1 = 0                           (1) 

First we will look for constrained relative extrema. For this purpose we will need the 

gradients                                        ∇f = y i + x j      and      ∇g = 2x i + 2y j 

From the formula for ∇g we see that ∇g = 0 if and only if x = 0 and y = 0, so ∇g ≠ 0 at any 

point on the circle x
2
 + y

2
 = 1. Thus, at a constrained relative extremum we must have  

∇f = λ∇g  or   y i + x j = λ(2x i + 2y j) 

which is equivalent to the pair of equations 

y = 2xλ and x = 2yλ 
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It follows from these equations that if x = 0, then y = 0, and if y = 0, then x = 0. In either case 

we have x
2
 + y

2
 = 0, so the constraint equation x

2
 + y

2
 = 1 is not satisfied. Thus, we can 

assume that x and y are nonzero, and we can rewrite the equations as 

λ = y/2x                     and                 λ = x/2y 

from which we obtain 

y/2x= x/2y 

or 

                                y
2
 = x

2
                            (2) 

Substituting this in (1) yields 

2x
2
 − 1 = 0 

from which we obtain x = ±1/√2. Each of these values, when substituted in Equation (2), 

produces y-values of y = ±1/√2. Thus, constrained relative extrema occur at the points (1/√2, 

1/√2 ), (1/√2,−1/√2 ), (−1/√2, 1/√2 ), and (−1/√2,−1/√2 ). The values of xy at these points are 

as follows: 

 

Thus, the function f(x, y) = xy has an absolute maximum of 1/2 occurring at the two points 

(1/√2, 1/√2 ) and (−1/√2,−1/√2 ). Although it was not asked for, we can also see that f has an 

absolute minimum of −1/2 occurring at the points (1/√2,−1/√2 ) and(−1/√2, 1/√2 ). The below 

figure shows some level curves xy = c and the constraint curve 

 

Example 3.41 Use the method of Lagrange multipliers to find the dimensions of a rectangle 

with perimeter p and maximum area. 

Solution: Let 

x = length of the rectangle,     y = width of the rectangle,      A = area of the rectangle 
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We want to maximize A = xy on the line segment 

2x + 2y = p, 0 ≤ x, y                  (1) 

that corresponds to the perimeter constraint. This segment is a closed and bounded set, and 

since f(x, y) = xy is a continuous function, it follows from the Extreme-Value Theorem that f 

has an absolute maximum on this segment. This absolute maximum must also be a 

constrained relative maximum since f is 0 at the endpoints of the segment and positive 

elsewhere on the segment. If g(x, y) = 2x + 2y, then we have 

∇f = yi + x j and ∇g = 2i + 2j 

Noting that ∇g ≠ 0, it follows from (4) that 

y i + x j = λ(2 i + 2 j) 

at a constrained relative maximum. This is equivalent to the two equations 

y = 2λ     and    x = 2λ 

Eliminating λ from these equations we obtain x = y, which shows that the rectangle is actually 

a square. Using this condition and constraint (1), we obtain x = p/4, y = p/4. 

 

3.9.2 Three Variables and One Constraint 

Theorem (Constrained-Extremum Principle for Three Variables and One Constraint) Let f 

and g be functions of three variables with continuous first partial derivatives on some open 

set containing the constraint surface g(x, y, z) = 0, and assume that ∇g ≠ 0 at any point on 

this surface. If f has a constrained relative extremum, then this extremum occurs at a point 

(x0, y0, z0) on the constraint surface at which the gradient vectors ∇f(x0, y0, z0) and ∇g(x0, y0, 

z0) are parallel; that is, there is some number λ such that 

∇f(x0, y0, z0) = λ∇g(x0, y0, z0) 

Example 3.41 Find the points on the sphere x
2
 + y

2
 + z

2
 = 36 that are closest to and farthest 

from the point (1, 2, 2). 

Solution: To avoid radicals, we will find points on the sphere that minimize and maximize 

the square of the distance to (1, 2, 2). Thus, we want to find the relative extrema of 

f(x, y, z) = (x − 1)
2
 + (y − 2)

2
 + (z − 2)

2
 

subject to the constraint 

x
2
 + y

2
 + z

2
 = 36                         (1) 

If we let g(x, y, z) = x
2
 + y

2
 + z

2
, then ∇g = 2xi + 2y j + 2zk. Thus, ∇g = 0 if and only if x = y = 

z = 0. It follows that ∇g ≠ 0 at any point of the sphere (1), and hence the constrained relative 

extrema must occur at points where 
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∇f(x, y, z) = λ∇g(x, y, z) 

That is, 

2(x − 1)i + 2(y − 2) j + 2(z − 2)k = λ(2xi + 2y j + 2zk) 

which leads to the equations 

2(x − 1) = 2xλ, 2(y − 2) = 2yλ, 2(z − 2) = 2zλ                  (2) 

We may assume that x, y, and z are nonzero since x = 0 does not satisfy the first equation, 

y = 0 does not satisfy the second, and z = 0 does not satisfy the third. Thus, we can rewrite 

(2) as  

 

The first two equations imply that 

 

from which it follows that 

y = 2x                (3) 

Similarly, the first and third equations imply that 

z = 2x                (4) 

Substituting (3) and (4) in the constraint equation (1), we obtain 

9x
2
 = 36 or x = ±2 

Substituting these values in (3) and (4) yields two points: 

(2, 4, 4) and (−2, −4,−4) 

Since f(2, 4, 4) = 9 and f(−2,−4,−4) = 81, it follows that (2, 4, 4) is the point on the sphere 

closest to (1, 2, 2), and (−2,−4,−4) is the point that is farthest (the following figure). 
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Example 3.42 Use Lagrange multipliers to determine the dimensions of a rectangular box, 

open at the top, having a volume of 32 ft
3
, and requiring the least amount of material for its 

construction. 

Solution: the problem is to minimize the surface area 

S = xy + 2xz + 2yz 

subject to the volume constraint 

xyz = 32       (1) 

If we let f(x, y, z) = xy + 2xz + 2yz and g(x, y, z) = xyz, then 

∇f = (y + 2z) i + (x + 2z) j + (2x + 2y) k and ∇g = yz i + xz j + xy k 

It follows that ∇g ≠ 0 at any point on the surface xyz = 32, since x, y, and z are all nonzero on 

this surface. Thus, at a constrained relative extremum we must have ∇f = λ∇g, that is, 

(y + 2z)i + (x + 2z)j + (2x + 2y)k = λ(yzi + xzj + xyk) 

This condition yields the three equations 

y + 2z = λyz, x + 2z = λxz, 2x + 2y = λxy 

Because x, y, and z are nonzero, these equations can be rewritten as 

 

From the first two equations, 

y = x        (2) 

and from the first and third equations, 

z = (½) x    (3) 

Substituting (2) and (3) in the volume constraint (1) yields 

(1/2) x
3
 = 32 

This equation, together with (13) and (14), yields 

x = 4, y= 4, z= 2 

 


