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Rotating centerline: 
The rotating centerline being defined as the axis about which the rotor would rotate if not 
constrained by its bearings. (Also called the Principle Inertia Axis or PIA). 
 
Geometric centerline: 
The geometric centerline being the physical centerline of the rotor.  
 
When the two centerlines are coincident, then the rotor will be in a state of balance. 
When they are apart, the rotor will be unbalanced. 
 
Different types of unbalance can be defined by the relationship between the two 
centerlines. These include: 
Static Unbalance – where the PIA is displaced parallel to the geometric centerline. 
(Shown above) 
Couple Unbalance – where the PIA intersects the geometric centerline at the center of 
gravity. (CG) 
Dynamic Unbalance – where the PIA and the geometric centerline do not coincide or 
touch. 
The most common of these is dynamic unbalance. 
 
Causes of Unbalance: 
In the design of rotating parts of a machine every care is taken to eliminate any out of 
balance or couple, but there will be always some residual unbalance left in the finished 
part because of 

1. slight variation in the density of the material or 
      2. inaccuracies in the casting or 

3. inaccuracies in machining of the parts. 
 
Why balancing is so important? 
1. A level of unbalance that is acceptable at a low speed is completely unacceptable at a  
    higher speed. 
2. As machines get bigger and go faster, the effect of the unbalance is much more severe. 
3. The force caused by unbalance increases by the square of the speed. 
4. If the speed is doubled, the force quadruples; if the speed is tripled the force increases  
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    by a factor of nine! 
 
Identifying and correcting the mass distribution and thus minimizing the force and 
resultant vibration is very very important 
 
BALANCING: 
 
Balancing is the technique of correcting or eliminating unwanted inertia forces or 
moments in rotating or reciprocating masses and is achieved by changing the location of 
the mass centers.  
The objectives of balancing an engine are to ensure: 
 
1.  That the centre of gravity of the system remains stationery during a complete  
     revolution of the crank shaft and 
2.  That the couples involved in acceleration of the different moving parts  
     balance each other.   
 
Types of balancing: 
 
a) Static Balancing:  
   i) Static balancing is a balance of forces due to action of gravity. 
   ii) A body is said to be in static balance when its centre of gravity is in the   
       axis of rotation. 
b) Dynamic balancing: 
    i)   Dynamic balance is a balance due to the action of inertia forces. 
    ii) A body is said to be in dynamic balance when the resultant moments or  
        couples, which involved in the acceleration of different moving parts is  
        equal to zero. 
    iii) The conditions of dynamic balance are met, the conditions of static  
         balance are also met. 
 
In rotor or reciprocating machines many a times unbalance of forces is produced due to 
inertia forces associated with the moving masses. If these parts are not properly balanced, 
the dynamic forces are set up and forces not only increase loads on bearings and stresses 
in the various components, but also unpleasant and dangerous vibrations. 
 
Balancing is a process of designing or modifying machinery so that the unbalance is 
reduced to an acceptable level and if possible eliminated entirely. 
 

BALANCING OF ROTATING MASSES 
 
When a mass moves along a circular path, it experiences a centripetal acceleration and a 
force is required to produce it. An equal and opposite force called centrifugal force acts 
radially outwards and is a disturbing force on the axis of rotation. The magnitude of this 
remains constant but the direction changes with the rotation of the mass. 
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In a revolving rotor, the centrifugal force remains balanced as long as the centre of the 
mass of rotor lies on the axis of rotation of the shaft. When this does not happen, there is 
an eccentricity and an unbalance force is produced.  This type of unbalance is common in 
steam turbine rotors, engine crankshafts, rotors of compressors, centrifugal pumps etc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The unbalance forces exerted on machine members are time varying, impart vibratory 
motion and noise, there are human discomfort, performance of the machine deteriorate 
and detrimental effect on the structural integrity of the machine foundation. 
 
Balancing involves redistributing the mass which may be carried out by addition or 
removal of mass from various machine members 
Balancing of rotating masses can be of  
1. Balancing of a single rotating mass by a single mass rotating in the same plane.  
2. Balancing of a single rotating mass by two masses rotating in different planes.  
3. Balancing of several masses rotating in the same plane 
4. Balancing of several masses rotating in different planes  
 
STATIC BALANCING: 
 A system of rotating masses is said to be in static balance if the combined mass centre of 
the system lies on the axis of rotation  
DYNAMIC BALANCING; 
When several masses rotate in different planes, the centrifugal forces, in addition to being 
out of balance, also form couples. A system of rotating masses is in dynamic balance 
when there does not exist any resultant centrifugal force as well as resultant couple. 
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CASE 1. 
BALANCING OF A SINGLE ROTATING MASS BY A SINGLE 
MASS ROTATING IN THE SAME PLANE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider a disturbing mass m1 which is attached to a shaft rotating at ω rad/s.  
Let   
 

      

1

11

m mass  the of gravity of centre the

 and shaft the of rotation of axis the between distance

m mass the of rotation of radiusr

=

=

 

 
The centrifugal force exerted by mass m1  on the shaft is given by, 
 

       )(rmFc 11

2

11 −−−−−−−−−−−−−−−−−−ω=  

 
This force acts radially outwards and produces bending moment on the shaft. In order to 
counteract the effect of this force Fc1 , a balancing mass m2 may be attached in the same 
plane of rotation of the disturbing mass m1 such that the centrifugal forces due to the two 
masses are equal and opposite. 
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Let, 
 

      

2

22

m mass the of gravity of centre the     

 and shaft the of rotation of axis the between distance

m mass the of rotation of radiusr

=

=

 

 
Therefore the centrifugal force due to mass m2  will be, 
 
      (2)rωmF

2

2

2c2
−−−−−−−−−−−−−−−−−−=  

 
Equating equations (1) and (2), we get 
 

      
(3)rmrmorrωmrωm

FF

22112

2

21

2

1

c2c1

−−−−−−−−−−−−−−−−==

=
 

   
The product 22 rm   can be split up in any convenient way. As for as possible the radius 

of rotation of mass m2  that is r2 is generally made large in order to reduce the balancing 
mass m2. 
 
 
CASE 2: 
BALANCING OF A SINGLE ROTATING MASS BY TWO MASSES ROTATING 
IN DIFFERENT PLANES.  
 
There are two possibilities while attaching two balancing masses: 
1. The plane of the disturbing mass may be in between the planes of the two 
balancing masses. 
2. The plane of the disturbing mass may be on the left or right side of two planes 
containing the balancing masses. 
 
In order to balance a single rotating mass by two masses rotating in different planes 
which are parallel to the plane of rotation of the disturbing mass i) the net dynamic force 
acting on the shaft must be equal to zero, i.e. the centre of the masses of the system must 
lie on the axis of rotation and this is the condition for static balancing ii) the net couple 
due to the dynamic forces acting on the shaft must be equal to zero, i.e. the algebraic sum 
of the moments about any point in the plane must be zero. The conditions i) and ii) 
together give dynamic balancing. 
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CASE 2(I): 
 
THE PLANE OF THE DISTURBING MASS LIES IN BETWEEN THE PLANES 
OF THE TWO BALANCING MASSES. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider the disturbing mass m lying in a plane A which is to be balanced by two 
rotating masses m1  and m2 lying in two different planes M and N which are parallel to 
the plane A as shown. 
 
Let r, r1 and r2 be the radii of rotation of the masses in planes A, M and N respectively. 
Let L1, L2 and L be the distance between A and M, A and N, and M and N respectively. 
Now, 
The centrifugal force exerted by the mass m in plane A will be, 
 

                (1)rωmF 2

c
−−−−−−−−−−−−−−−−−−=  

 
Similarly, 
The centrifugal force exerted by the mass m1 in plane M will be, 
                 

                (2)rωmF
1

2

1c1
−−−−−−−−−−−−−−−−−−=  
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And the centrifugal force exerted by the mass m2 in plane N will be, 
 

                 (3)rωmF
2

2

2c2
−−−−−−−−−−−−−−−−−−=  

 
For the condition of static balancing, 
 

                

(4)rmrmrmi.e.

rωmrωmrωmor

FFF

2211

2

2

21

2

1

2

c2c1c

−−−−−−−−−−−−−−−−+=

+=

+=

 

 
Now, to determine the magnitude of balancing force in the plane ‘M’ or the dynamic 
force at the bearing ‘O’ of a shaft, take moments about ‘ P ’ which is the point of 
intersection  of the plane N and the axis of rotation. 
 
Therefore, 
 

                 

(5)
L

L
rmrmorLrmLrm

,Therefore

LxrωmLxrωmor

LxFLxF

2

11211

2

2

1

2

1

2cc1

−−−−−−−−==

=

=

 

 
Similarly, in order to find the balancing force in plane ‘N’ or the dynamic force at the 
bearing ‘P’ of a shaft, take moments about ‘ O ’ which is the point of intersection  of the 
plane M and the axis of rotation. 
 
Therefore, 
 

                

(6)
L

L
rmrmorLrmLrm

,Therefore

LxrωmLxrωmor

LxFLxF

1

22122

1

2

2

2

2

1cc2

−−−−−−−−==

=

=

 

 
For dynamic balancing equations (5) or (6) must be satisfied along with equation (4). 
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CASE 2(II): 
 
WHEN THE PLANE OF THE DISTURBING MASS LIES ON ONE END OF THE 
TWO PLANES CONTAINING THE BALANCING MASSES. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For static balancing, 
 

               

(1)rmrmrmi.e.

rωmrωmrωmor

FFF

2211

2

2

2

2

1

2

1

c2cc1

−−−−−−−−−−−−−−−−+=

+=

+=

 

 
For dynamic balance the net dynamic force acting on the shaft and the net couple due to 
dynamic forces acting on the shaft is equal to zero. 
To find the balancing force in the plane ‘M’ or the dynamic force at the bearing ‘O’ of a 
shaft, take moments about ‘P’. i.e.  
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(2)
L

L
rmrmorLrmLrm

,Therefore

LxrωmLxrωmor

LxFLxF

2

11211

2

2

1

2

1

2cc1

−−−−−−−−==

=

=

 

 
Similarly, to find the balancing force in the plane ‘N’ , take moments about ‘O’, i.e., 
 

                  

(3)
L

L
rmrmorLrmLrm

,Therefore

LxrωmLxrωmor

LxFLxF

1

22122

1

2

2

2

2

1cc2

−−−−−−−−==

=

=

 

 
CASE 3: 
BALANCING OF SEVERAL MASSES ROTATING IN THE SAME PLANE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider a rigid rotor revolving with a constant angular velocity ω rad/s. A number of 
masses say, four are depicted by point masses at different radii in the same transverse 
plane. 
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If m1, m2, m3 and m4 are the masses revolving at radii r1, r2, r3 and r4 respectively in the 
same plane. 
The centrifugal forces exerted by each of the masses are Fc1, Fc2, Fc3 and Fc4 respectively. 
Let F be the vector sum of these forces. i.e. 
 

                
(1)rωmrωmrωmrωm

FFFFF

4

2

43

2

32

2

21

2

1

c4c3c2c1

−−−−−−−−−+++=

+++=
 

 
The rotor is said to be statically balanced if the vector sum F is zero. If the vector sum F 
is not zero, i.e. the rotor is unbalanced, then introduce a counterweight ( balance weight) 
of mass ‘m’ at radius ‘r’ to balance the rotor so that, 
 

             

(3)0rmrmrmrmrm

or

(2)0rωmrωmrωmrωmrωm

44332211

2

4

2

43

2

32

2

21

2

1

−−−−−−−−−−−−−−−−=++++

−−−−−−−−−=++++

 

 
The magnitude of either ‘m’ or ‘r’ may be selected and the other can be calculated. 
In general, if ∑ ii rm  is the vector sum of 11 rm , 22 rm , 33 rm , 44 rm  etc, then, 

            
                    ∑ −−−−−−−−=+ (4)0rmrm

ii
 

 
 
The above equation can be solved either analytically or graphically. 
 
1. Analytical Method: 
 
Procedure: 
Step 1: Find out the centrifugal force or the product of mass and its radius of rotation 

exerted by each of masses on the rotating shaft, since 2ω  is same for each mass, 
therefore the magnitude of the centrifugal force for each mass is proportional to the 
product of the respective mass and its radius of rotation. 
Step 2: Resolve these forces into their horizontal and vertical components and find their 
sums. i.e., 
 

       
−−−−−−−−+++==∑

=
333222111

n

1i
iii

θcosrmθcosrmθcosrmθcosrm

componentshorizontaltheofSum
 

 

     
−−−−−−−−+++==∑

=
333222111

n

1i
iii

θsinrmθsinrmθsinrmθsinrm

componentsverticaltheofSum
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Step 3: Determine the magnitude of the resultant centrifugal force 
 

                     
2n

1i
iii

2n

1i
iii

θsinrmθcosrmR 





+






= ∑∑

==

 

 
Step 4: If θ  is the angle, which resultant force makes with the horizontal, then 
 

                                          

∑

∑

=

==
n

1i
iii

n

1i
iii

θcosrm

θsinrm
θtan  

 
Step 5: The balancing force is then equal to the resultant force, but in opposite direction. 
Step 6: Now find out the magnitude of the balancing mass, such that 
 
                                                       rmR=  

 
Where, m = balancing mass and r = its radius of rotation 
 
2. Graphical Method: 
 
Step 1:  
Draw the space diagram with the positions of the several masses, as shown. 
 
Step 2:  
Find out the centrifugal forces or product of the mass and radius of rotation exerted by 
each mass. 
 
Step 3: 
Now draw the vector diagram with the obtained centrifugal forces or product of the 
masses and radii of rotation. To draw vector diagram take a suitable scale. 
Let ab, bc, cd, de represents the forces Fc1, Fc2, Fc3 and Fc4 on the vector diagram.  
Draw ‘ab’ parallel to force Fc1 of the space diagram, at ‘b’ draw a line parallel to force 
Fc2. Similarly draw lines cd, de parallel to Fc3 and Fc4 respectively. 
 
Step 4: 
As per polygon law of forces, the closing side ‘ae’ represents the resultant force in 
magnitude and direction as shown in vector diagram. 
 
 
Step 5:  
The balancing force is then , equal and opposite to the resultant force. 
 
Step 6: 
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Determine the magnitude of the balancing mass ( m ) at a given radius of rotation ( r ), 
such that, 
 

               

44332211

2

c

rmandrm,rm,rmofresultantrm

or

rωmF

=

=

 

 
CASE 4: 
 
BALANCING OF SEVERAL MASSES ROTATING IN DIFFERENT PLANES 
 
When several masses revolve in different planes, they may be transferred to a reference 
plane and this reference plane is a plane passing through a point on the axis of rotation 
and perpendicular to it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When a revolving mass in one plane is transferred to a reference plane, its effect is to 
cause a force of same magnitude to the centrifugal force of the revolving mass to act in 
the reference plane along with a couple of magnitude equal to the product of the force 
and the distance between the two planes. 
In order to have a complete balance of the several revolving masses in different planes,  
1. the forces in the reference plane must balance, i.e., the resultant force must be zero and 
2. the couples about the reference plane must balance i.e., the resultant couple must be  
    zero. 
 
A mass placed in the reference plane may satisfy the first condition but the couple 
balance is satisfied only by two forces of equal magnitude in different planes. Thus, in 
general, two planes are needed to balance a system of rotating masses.  
 

m
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Example: 
Consider four masses m1, m2, m3 and m4 attached to the rotor at radii r1, r2, r3 and r4 
respectively. The masses m1, m2, m3 and m4 rotate in planes 1, 2, 3 and 4 respectively. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
a) Position of planes of masses  
 
Choose a reference plane at ‘O’ so that the distance of the planes 1, 2, 3 and 4 from ‘O’ 
are L1, L2 , L3 and L4 respectively.  The reference plane chosen is plane ‘L’. Choose 
another plane ‘M’ between plane 3 and 4 as shown. 
 
Plane ‘M’ is at a distance of Lm from the reference plane ‘L’. The distances of all the 
other planes to the left of ‘L’ may be taken as negative( -ve) and to the right may be taken 
as positive (+ve). 
 
The magnitude of the balancing masses mL and mM in planes L and M may be obtained 
by following the steps given below. 
 
 
Step 1: 
Tabulate the given data as shown after drawing the sketches of position of planes of 
masses and angular position of masses. The planes are tabulated in the same order in 
which they occur from left to right. 
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Plane 
1 

Mass (m) 
2 

Radius (r) 
3 

Centrifugal 
force/ω2 

(m r) 
4 

Distance 
from Ref. 

plane ‘L’ (L) 
5 

Couple/ ω2 
(m r L) 

6 

1 m1 r1 m1 r1 - L1 - m1 r1 L1 
L mL rL mL rL 0 0 
2 m2 r2 m2 r2 L2 m2 r2 L2 
3 m3 r3 m3 r3 L3 m3 r3 L3 
M mM rM mM rM LM mM rM LM 
4 m4 r4 m4 r4 L4 m4 r4 L4 

 
 
Step 2:  
Construct the couple polygon first. (The couple polygon can be drawn by taking a 
convenient scale) 
Add the known vectors and considering each vector parallel to the radial line of the mass 
draw the couple diagram. Then the closing vector will be  ‘mM rM LM’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The vector  d ’o’ on the couple polygon represents the balanced couple. Since the 
balanced couple CM  is proportional to mM rM LM , therefore, 
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MM

''

M

''

MMMM

L r

odvector
mor

odvectorL r mC

=

==

 

 
From this the value of mM in the plane M can be determined and the angle of inclination 
φ  of this mass may be measured from figure (b). 
 
Step 3: 
Now draw the force polygon (The force polygon can be drawn by taking a convenient 
scale) by adding the known vectors along with ‘mM rM’. The closing vector will be ‘mL 
rL’. This represents the balanced force. Since the balanced force is proportional to ‘mL rL’ 
,  

                                       

L

L

LL

r 

eovector
mor

eovector r m

=

=

 

 
From this the balancing mass mL  can be obtained in plane ‘L’ and the angle of 
inclination of this mass with the horizontal may be measured from figure (b). 
 

Problems and solutions 
Problem 1.  
Four masses A, B, C and D are attached to a shaft and revolve in the same plane. The 
masses are 12 kg, 10 kg, 18 kg and 15 kg respectively and their radii of rotations are 40 
mm, 50 mm, 60 mm and 30 mm. The angular position of the masses B, C and D are 600 , 
1350 and 2700 from mass A. Find the magnitude and position of the balancing mass at a 
radius of 100 mm. 
 
Solution: 
Given: 
 

Mass(m) 
kg 

Radius(r) 
m 

Centrifugal force/ω2 
(m r) 
kg-m 

Angle( θ ) 

mA = 12 kg 
(reference mass) 

rA = 0.04 m mArA = 0.48 kg-m 00=θA                  

mB = 10 kg rB = 0.05 m mBrB = 0.50 kg-m 006=θB  

mC = 18 kg rC = 0.06 m mCrC = 1.08 kg-m 0135=θC  

mD = 15 kg rD = 0.03 m mDrD = 0.45 kg-m 0270=θD  

 
To determine the balancing mass ‘m’ at a radius of r = 0.1 m. 
 
The problem can be solved by either analytical or graphical method. 
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Analytical Method: 
 
Step 1: 
Draw the space diagram or angular position of the masses. Since all the angular position 
of the masses are given with respect to mass A, take the angular position of mass A 

as 00=θA . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tabulate the given data as shown. Since the magnitude of the centrifugal forces are 
proportional to the product of the mass and its radius, the product ‘mr’ can be calculated 
and tabulated. 
 
Step 2: 
Resolve the centrifugal forces horizontally and vertically and find their sum. 
Resolving mArA, mBrB, mCrC and mDrD horizontally and taking their sum gives, 
 

(1)mkg0.03400.764)(0.250.48

270cosx0.45135cosx1.0860cosx0.500cosx0.48

cosθrmcosθrmcosθrmcosθrmθcosrm

0000

DDDCCCBBBAAA

n

1i
iii

−−−−−−−−−−−=+−++=

+++=

+++=∑
=

 
Resolving mArA, mBrB, mCrC and mDrD vertically and taking their sum gives, 
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(2)mkg0.7470.45)(0.7640.4330

270sinx0.45135sinx1.0860sinx0.500sinx0.48

sinθrmsinθrmsinθrmθsinrmθsinrm

0000

DDDCCCBBBAAA

n

1i
iii

−−−−−−−−−−=−+++=

+++=

+++=∑
=

 
 
Step 3:  
Determine the magnitude of the resultant centrifugal force 
 

                         

( ) ( ) mkg0.7480.7470.034

θsinrmθcosrmR

22

2
n

1i
iii

2
n

1i
iii

−=+−=







+






= ∑∑

==  

 
Step 4: 
The balancing force is then equal to the resultant force, but in opposite direction. Now 
find out the magnitude of the balancing mass, such that 
 

                         
Anskg7.48

0.1

0.748

r

R
mTherefore,

mkg0.748rmR

===

−==
 

 
Where, m = balancing mass and r = its radius of rotation 
 
Step 5:  
Determine the position of the balancing mass ‘m’.  
If θ  is the angle, which resultant force makes with the horizontal, then 
 

                              

00

n

1i
iii

n

1i
iii

92.6or87.4θand

21.97
0.034

0.747

θcosrm

θsinrm
θtan

−=

−=
−

==

∑

∑

=

=

 

 
Remember ALL STUDENTS TAKE COPY i.e. in first quadrant all angles 

)tanandcos,sin( θθθ  are positive, in second quadrant only θsin  is positive, in 

third quadrant only θtan   is positive and in fourth quadrant only θcos  is positive.  

 
Since numerator is positive and denominator is negative, the resultant force makes with 
the horizontal, an angle (measured in the counter clockwise direction)  

                                                 0692.=θ  
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The balancing force is then equal to the resultant force, but in opposite direction. 
The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the 

angle of inclination with the horizontal is, 0487.M =θ  angle measured in the 

clockwise direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graphical Method: 
 
Step 1: 
Tabulate the given data as shown. Since the magnitude of the centrifugal forces are 
proportional to the product of the mass and its radius, the product ‘mr’ can be calculated 
and tabulated. 
 
Draw the space diagram or angular position of the masses taking the actual angles( Since 
all  angular position of the masses are given with respect to mass A, take the angular 

position of mass A as 00=θA ). 
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Step 2: 
Now draw the force polygon (The force polygon can be drawn by taking a convenient 
scale) by adding the known vectors as follows.  
Draw a line ‘ab’ parallel to force FCA (or the product mArA to a proper scale) of the space 
diagram. At ‘b’ draw a line ‘bc’ parallel to FCB (or the product mBrB). Similarly draw 
lines ‘cd’, ‘de’ parallel to FCC (or the product mCrC) and FCD (or the product mDrD) 
respectively. The closing side ‘ae’ represents the resultant force ‘R’ in magnitude and 
direction as shown on the vector diagram. 
 
Step 3: 
The balancing force is then equal to the resultant force, but in opposite direction. 
 

                                        
Anskg7.48

r

R
mTherefore,

rmR

==

=
 

 
The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the 

angle of inclination with the horizontal is, 0487.M =θ  angle measured in the 

clockwise direction. 
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Problem 2:  
The four masses A, B, C and D are 100 kg, 150 kg, 120 kg and 130 kg attached to a shaft 
and revolve in the same plane. The corresponding radii of rotations are 22.5 cm, 17.5 cm, 
25 cm and 30 cm and the angles measured from A are 450, 1200 and 2550. Find the 
position and magnitude of the balancing mass, if the radius of rotation is 60 cm. 
 
Solution: 
 
Analytical Method: 
 
Given: 
 

Mass(m) 
kg 

Radius(r) 
m 

Centrifugal force/ω2 
(m r) 
kg-m 

Angle( θ ) 

mA = 100 kg 
(reference mass) 

rA = 0.225 m mArA = 22.5 kg-m 00=θA                  

mB = 150 kg rB = 0.175 m mBrB = 26.25 kg-m 045=θB  

mC = 120 kg rC = 0.250 m mCrC = 30  kg-m 0120=θC  

mD = 130 kg rD = 0.300 m mDrD = 39 kg-m 0255=θD  

m =? r = 0.60   ?=θ  

 
Step 1: 
Draw the space diagram or angular position of the masses. Since all the angular position 
of the masses are given with respect to mass A, take the angular position of mass A 

as 00=θA . 

  
Tabulate the given data as shown. Since the magnitude of the centrifugal forces are 
proportional to the product of the mass and its radius, the product ‘mr’ can be calculated 
and tabulated. 
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Step 2: 
Resolve the centrifugal forces horizontally and vertically and find their sum. 
 
Resolving mArA, mBrB, mCrC and mDrD horizontally and taking their sum gives, 
 

(1)mkg15.9710.1)(15)(18.5622.5

255cosx39120cosx3045cosx26.250cosx22.5

cosθrmcosθrmcosθrmcosθrmθcosrm

0000

DDDCCCBBBAAA

n

1i
iii

−−−−−−−−−−=−+−++=

+++=

+++=∑
=

 

 
Resolving mArA, mBrB, mCrC and mDrD vertically and taking their sum gives, 
 

(2)mkg6.8737.67)(25.9818.560

255sinx39120sinx3045sinx26.250sinx22.5

sinθrmsinθrmsinθrmθsinrmθsinrm

0000

DDDCCCBBBAAA

n

1i
iii

−−−−−−−−−−=−+++=

+++=

+++=∑
=

 

 
Step 3:  
Determine the magnitude of the resultant centrifugal force 
 

                            

( ) ( ) mkg17.396.8715.97

θsinrmθcosrmR

22

2n

1i
iii

2n

1i
iii

−=+=






+





= ∑∑

==
 

 
Step 4: 
The balancing force is then equal to the resultant force, but in opposite direction. Now 
find out the magnitude of the balancing mass, such that 
 

                        
Anskg28.98

0.60
17.39

r
R

mTherefore,

mkg17.39rmR

===

−==
 

 
Where, m = balancing mass and r = its radius of rotation 
 
Step 5:  
Determine the position of the balancing mass ‘m’.  
If θ  is the angle, which resultant force makes with the horizontal, then 
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0

n

1i
iii

n

1i
iii

23.28θand

0.4302
15.97

6.87

θcosrm

θsinrm
θtan

=

===

∑

∑

=

=

 

 
 
The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the 

angle of inclination with the horizontal is,
028.203=θ  angle measured in the 

counter clockwise direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graphical Method: 
 
Step 1: 
Tabulate the given data as shown. Since the magnitude of the centrifugal forces are 
proportional to the product of the mass and its radius, the product ‘mr’ can be calculated 
and tabulated. 
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Step 2: 
 
Draw the space diagram or angular position of the masses taking the actual angles (Since 
all angular position of the masses are given with respect to mass A, take the angular 

position of mass A as 00=θA ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 3: 
Now draw the force polygon (The force polygon can be drawn by taking a convenient 
scale) by adding the known vectors as follows.  
 
 
Draw a line ‘ab’ parallel to force FCA (or the product mArA to a proper scale) of the space 
diagram. At ‘b’ draw a line ‘bc’ parallel to FCB (or the product mBrB). Similarly draw 
lines ‘cd’, ‘de’ parallel to FCC (or the product mCrC) and FCD (or the product mDrD) 
respectively. The closing side ‘ae’ represents the resultant force ‘R’ in magnitude and 
direction as shown on the vector diagram. 
 
Step 4: 
The balancing force is then equal to the resultant force, but in opposite direction. 
 

                                
Anskg29

r

R
mTherefore,

rmR

==

=
 

 
The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the 

angle of inclination with the horizontal is,
0203=θ  angle measured in the counter 

clockwise direction. 
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Problem 3: 
A rotor has the following properties. 
 

Mass 
 

magnitude 
 

 
Radius 

 
Angle 

Axial distance 
from first mass 

1 9 kg 100 mm 00=θA  - 

2 7 kg 120 mm 006=θB  160 mm 

3 8 kg 140 mm 0135=θC  320 mm 

4 6 kg 120 mm 0270=θD  560 mm 

 
If the shaft is balanced by two counter masses located at 100 mm radii and revolving in 
planes midway of planes 1 and 2, and midway of 3 and 4, determine the magnitude of the 
masses and their respective angular positions. 
 
Solution: 
 
Analytical Method: 
 

Plane 
1 

Mass (m) 
kg 
2 

Radius (r) 
m 
3 

Centrifugal 
force/ω2 

(m r) 
kg-m 

4 

Distance 
from Ref. 
plane ‘M’  

m 
5 

Couple/ ω2 
(m r L) 
kg-m2 

6 

Angle 
θ  
 

7 

1 9.0 0.10 m1 r1      = 0.9 -0.08 -0.072 00 

M mM = ? 0.10 mM rM   = 0.1 mM  0 0 ?M =θ  

2 7.0 0.12 m2 r2   = 0.84 0.08 0.0672 600 

3 8.0 0.14 m3 r3   = 1.12 0.24 0.2688 1350 

N mN = ? 0.10 mN rN  = 0.1 mN 0.36 mN rN lN = 0.036 mN ?N =θ  

4 6.0 0.12 m4 r4  = 0.72 0.48 0.3456 2700 

 
For dynamic balancing the conditions required are, 
 

∑

∑

=+

=++

  balance couplefor    -(II)-------------  0 lrmlmr

  balance forcefor    -(I)---------  0 rm r mmr

NNN

NNMM
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Step 1: 
Resolve the couples into their horizontal and vertical components and find their sums. 
 
Sum of the horizontal components gives, 
 

                        

(1)0.2285θcosm0.036i.e.

0θcosm0.036270cos0.3456

135cos0.268860cos0.06720cos0.072

getweonsubstitutiOn

 0 θcoslrmθcoslmr

NN

NN

0

000

NNNN

−−−−−=

=++

++−

=+∑

 

 
Sum of the vertical components gives, 
 

                        

(2)0.09733θsinm0.036i.e.

0θsinm0.036270sin0.3456

sin1350.268860sin0.06720sin0.072

getweonsubstitutiOn

 0 θsinlrmθsinlmr

NN

NN

0

000

NNNN

−−−−−=

=++

++−

=+∑

 

 
Squaring and adding (1) and (2), we get 
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( ) ( )

Anskg6.9
0.036

0.2484
mTherefore,

0.2484m0.036i.e.,

0.097330.2285lrm

N

N

22

NNN

==

=

+=

 

 
Dividing (2) by (1), we get 
 

                             0

NN
23.07θand

0.2285

0.09733
θtan ==  

 
Step 2: 
Resolve the forces into their horizontal and vertical components and find their sums. 
 
Sum of the horizontal components gives, 
 

               

(3)1.1629θcosrmi.e.

023.07s0.1x6.9xcoθcosrm

270cos0.72135cos1.1260cos0.840cos0.9

getweonsubstitutiOn

 0 θcosrmθcosrmθcosmr

MMM

0

MMM

0000

NNNMMM

−−−−−−=

=++

+++

=++∑

 

 
Sum of the vertical components gives, 
 

              

(4)1.0698θsinrmi.e.

023.07n0.1x6.9xsiθsinrm

270sin0.72135sin1.1260sin0.840sin0.9

getweonsubstitutiOn

 0 θsinrmθsinrmθsinmr

MMM

0

MMM

0000

NNNMMM

−−−−−−=

=++

+++

=++∑

 

 
Squaring and adding (3) and (4), we get 
 

                              
( ) ( )

Anskg15.8
0.1

1.580
mTherefore,

1.580m0.1i.e.,

1.06981.1629rm

M

M

22

MM

==

=

−+−=

 

 
Dividing (4) by (3), we get 

                            Ans222.61θand
1.1629

1.0698
θtan 0

MM
=

−

−
=  
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Graphical Solution: 

www.getmyuni.com



Problem 4: 
The system has the following data. 
 

kg.m 211 =  
0

1 41131351 .@m.r ∠=  

kg.m 811 =  
0

2 8488220 .@m.r ∠=  

kg.m 421 =  
0

3 4251041 .@m.r ∠=  

 
The distances of planes in metres from plane A are: 
 
           3.097l,2.396l,1.701l,0.854l

B321
====  

 
Find the mass-radius products and their angular locations needed to dynamically balance 
the system using the correction planes A and B. 
 
Solution:                                     Analytical Method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plane 
1 

Mass (m) 
kg 
2 

Radius (r) 
m 
3 

Centrifugal 
force/ω2 

(m r) 
kg-m 

4 

Distance 
from Ref. 
plane ‘A’  

m 
5 

Couple/ ω2 
(m r L) 
kg-m2 

6 

Angle 
θ  
 

7 

A mA  rA mA rA  =?     0 0 ?A =θ  

1 1.2 1.135 1.362  0.854 1.163148 113.40 
2 1.8 0.822 1.4796 1.701 2.5168 48.80 

3 2.4 1.04 2.496 2.396 5.9804 251.40 

B mB  rB mB rB  =? 3.097 3.097 mB rB   ?B =θ  
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Step 1: 
 
Resolve the couples into their horizontal and vertical components and find their sums. 
 
Sum of the horizontal components gives, 
 

                    

(1)
3.097

0.71166
θcosrmi.e.

0θcosrm3.097

251.4cos5.980448.8cos2.5168113.4cos1.163148

getweonsubstitutiOn

 0 θcoslrmθcoslmr

BBB

BBB

000

BBBB

−−−−−=

=+

++

=+∑

 

 
Sum of the vertical components gives, 
 

                   

(2)
3.097

2.7069
θsinrmi.e.

0θsinrm3.097

251.4sin5.980448.8sin2.5168113.4sin1.163148

getweonsubstitutiOn

 0 θsinlrmθsinlmr

BBB

BBB

000

BBBB

−−−−−=

=+

++

=+∑

 

 
Squaring and adding (1) and (2), we get 
 

                            

mkg0.9037

3.097

2.7069

3.097

0.71166
rm

22

BB

−=









+








=

 

 
Dividing (2) by (1), we get 
 

                             Ans75.27θand
0.71166

2.7069
θtan 0

BB
==  

 
 
Step 2: 
Resolve the forces into their horizontal and vertical components and find their sums. 
 
Sum of the horizontal components gives, 
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(3)0.13266θcosrm

Therefore

075.27cos0.9037θcosrm

251.4cos2.49648.8cos1.4796113.4cos1.362

getweonsubstitutiOn

 0 θcosrmθcosrmθcosmr

AAA

0

AAA

000

BBBAAA

−−−−−−−−−=

=++

++

=++∑

 

 
Sum of the vertical components gives, 
 

              

(4)0.87162θsinrm

Therefore

075.27sin0.9037θsinrm

251.4sin2.49648.8sin1.4796113.4sin1.362

getweonsubstitutiOn

 0 θsinrmθsinrmθsinmr

AAA

0

AAA

000

BBBAAA

−−−−−−−−−−=

=++

++

=++∑

 

 
Squaring and adding (3) and (4), we get 
 

                 ( ) ( )

mkg0.8817

0.871620.13266rm
22

AA

−=

−+=  

 
Dividing (4) by (3), we get 
 

                 Ans81.35θand
0.13266

0.87162
θtan 0

AA
−=

−
=  

 
 
Problem 5: 
A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg,   400 kg and 200 
kg respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes 
measured from A at 300 mm, 400 mm and 700 mm. The angles between the cranks 
measured anticlockwise are A to B 450, B to C 700 and C to D 1200. The balancing 
masses are to be placed in planes X and Y. The distance between the planes A and X is 
100 mm, between X and Y is 400 mm and between Y and D is 200 mm. If the balancing 
masses revolve at a radius of 100 mm, find their magnitudes and angular positions. 
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Graphical solution: 
 
Let, mX be the balancing mass placed in plane X and mY be the balancing mass placed in 
plane Y which are to be determined. 
 
Step 1: 
Draw the position of the planes as shown in figure (a).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let X be the reference plane (R.P.). The distances of the planes to the right of the plane X 
are taken as positive (+ve) and the distances of planes to the left of X plane are taken as 
negative(-ve). The data may be tabulated as shown 
 
Since the magnitude of the centrifugal forces are proportional to the product of the mass 
and its radius, the product ‘m r’ can be calculated and tabulated. Similarly the magnitude 
of the couples are proportional to the product of the mass , its radius and the axial 
distance from the reference plane, the product ‘m r l’ can be calculated and tabulated as 
shown.  
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Plane 
1 

Mass 
(m) kg 

2 

Radius (r) 
m 
3 

Centrifugal 
force/ω2 

(m r) 
kg-m 

4 

Distance 
from Ref. 
plane ‘X’  

m 
5 

Couple/ ω2 
(m r L) 
kg-m2 

6 

Angle 
θ  
 

7 

A 200 0.08 mA rA      = 16 -0.10 -1.60 - 

X mX =? 0.10 mX rX   = 0.1 mX  0 0 ?X =θ  

B 300 0.07 mB rB   = 21 0.20 4.20 A to B 450 

C 400 0.06 mC rC   = 24 0.30 7.20 B to C 700 

Y mY =? 0.10 mY rY  = 0.1 mY 0.40 mY rY lY = 0.04 mY ?Y =θ  

D 200 0.08 mD rD  = 16 0.60 9.60 C to D 1200 

 
Step 2: 
 
Assuming the mass A as horizontal draw the sketch of angular position of masses as 
shown in figure (b). 
 
Step 3: 
Draw the couple polygon to some suitable scale by taking the values of ‘m r l’ (column 
no. 6) of the table as shown in figure (c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Draw line o’a’ parallel to the radial line of mass mA.  
At a’ draw line a’b’ parallel to radial line of mass mB. 
Similarly, draw lines b’c’, c’d’ parallel to radial lines of masses mC and mD  respectively. 
Now, join d’ to o’ which gives the balanced couple. 
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We get,  
Anskg182.5mor

mkg7.3o'd'vectorm0.04

Y

2

Y

=

−==
 

 
Step 4: 
To find the angular position of the mass mY draw a line omY in figure (b) parallel to d’o’ 
of the couple polygon. 
 

By measurement we get 0

Y
12θ =  in the clockwise direction from mA. 

 
Step 5: 
Now draw the force polygon by considering the values of ‘m r’ (column no. 4) of the 
table as shown in figure (d). 
Follow the similar procedure of step 3. The closing side of the force polygon i.e. ‘e o’ 
represents the balanced force. 
 

                               
Anskg355mor

mkg35.5oevectorrm

X

XX

=

−==
 

 
Step 6: 
The angular position of mX is determined by drawing a line omX parallel to the line ‘e o’ 
of the force polygon in figure ( b). From figure (b) we get, 

0

X
145θ = , measured clockwise from mA. Ans 

  
Problem 6: 
A, B, C and D are four masses carried by a rotating shaft at radii 100 mm, 125 mm, 200 
mm and 150 mm respectively. The planes in which the masses revolve are spaced 600 
mm apart and the mass of B, C and D are 10 kg, 5 kg and 4 kg respectively. Find the 
required mass A and relative angular settings of the four masses so that the shaft shall be 
in complete balance. 
Solution: 
 
Graphical Method: 
 
Step 1: 
Let, mA be the balancing mass placed in plane A which is to be determined along with the 
relative angular settings of the four masses. 
Let A be the reference plane (R.P.).  
Assume the mass B as horizontal 
Draw the sketch of angular position of mass mB (line omB ) as shown in    figure (b). The 
data may be tabulated as shown. 
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VTU EDUSAT PROGRAMME - 17 

Plane 
1 

Mass 
(m) kg 

2 

Radius (r) 
m 
3 

Centrifugal force/ω2 
(m r) 
kg-m 

4 

Distance 
from Ref. 
plane ‘A’  

m 
5 

Couple/ ω2 
(m r L) 
kg-m2 

6 

Angle 
θ  
 

7 

A 
(R.P.) 

mA= ? 0.1 mA rA      = 0.1 mA 0 0 ?A =θ  

B 10 0.125 mB rB   = 1.25 0.6 0.75 0=θB
 

C 5 0.2 mC rC   = 1.0 1.2 1.2 ?C =θ  

D 4 0.15 mD rD  = 0.6 1.8 1.08 ?D =θ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 2: 
To determine the angular settings of mass C and D the couple polygon is to be drawn first 
as shown in fig (c). Take a convenient scale 
 
 
Draw a line o’b’ equal to 0.75 kg-m2 parallel to the line omB. At point o’ and b’ draw 
vectors o’c’ and b’c’ equal to 1.2 kg-m2 and 1.08 kg-m2 respectively. These vectors 
intersect at point c’. 
 
For the construction of force polygon there are four options.  
 
Any one option can be used and relative to that the angular settings of mass C and D 
are determined. 
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Step 3: 
 
Now in figure (b), draw lines omC and omD parallel to o’c’ and b’c’ respectively. 
 
 From measurement we get, 
 
 
 

                                 Ans240θand100θ 0

C

0

D
==  

 
Step 4: 
In order to find mA and its angular setting draw the force polygon as shown in figure (d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Closing side of the force polygon od represents the product mA rA . i.e. 
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   Ans  kg7 
r

0.70
 m Therefore,

m-kg0.70r m

A

A

AA

==

=

      

 

Step 5: 
 
Now draw line omA parallel to od of the force polygon. By measurement, we get, 
 

                                            Ans155θ 0

A
=  

 
Problem 7: 
A shaft carries three masses A, B and C. Planes B and C are 60 cm and 120 cm from A. 
A , B and C are 50 kg, 40 kg and 60 kg respectively at a radius of 2.5 cm. The angular 
position of mass B and mass C with A are 900  and 2100 respectively. Find the 
unbalanced force and couple. Also find the position and magnitude of balancing mass 
required at 10 cm radius in planes L and M midway between A and B, and B and C. 
 
Solution: 
 
Case (i): 
 

Plane 
1 

Mass 
(m) kg 

2 

Radius (r) 
m 
3 

Centrifugal force/ω2 
(m r) 
kg-m 

4 

Distance 
from Ref. 
plane ‘A’  

m 
5 

Couple/ ω2 
(m r L) 
kg-m2 

6 

Angle 
θ  
 

7 

A 
(R.P.) 

50 0.025 mA rA    = 1.25 0 0 00=θA
 

B 40 0.025 mB rB   = 1.00 0.6 0.6 090=θB
 

C 60 0.025 mC rC   = 1.50 1.2 1.8 0210=θC
 

 
Analytical Method 
 
Step 1: 
Determination of unbalanced couple 
Resolve the couples into their horizontal and vertical components and find their sums. 
 
Sum of the horizontal components gives, 
 

(1)1.559210cos1.890cos0.6θcoslmr 00 −−−−−−=+=∑  

 
Sum of the vertical components gives, 
 

(2)0.3210sin1.890sin0.6θsinlmr 00 −−−−−−=+=∑  
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Squaring and adding (1) and (2), we get 
 

                            ( ) ( )
2

22

unbalanced

mkg1.588

0.3-1.559-C

−=

+=  

 
Step 2: 
Determination of unbalanced force 
 
Resolve the forces into their horizontal and vertical components and find their sums. 
 
Sum of the horizontal components gives, 
 

(3)0.0491.299)(01.25

210cos1.590cos1.00cos1.25 θcosmr 000

−−−−−−−−−−=−++=

++=∑  

 
Sum of the vertical components gives, 
 

(4)0.250.75)(1.00

210sin1.590sin1.00sin1.25 θsinmr 000

−−−−−−−−−=−++=

++=∑  

 
Squaring and adding (3) and (4), we get 
 

                        ( ) ( )

mkg0.2548

0.250.049-F
22

unbalanced

−=

+=  

 
Graphical solution: 
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` 
 
 
 
 
 
 
 
 
 
 
 
Case (ii): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To determine the magnitude and directions of masses mM and mL. 
 
Let, mL be the balancing mass placed in plane L and mM be the balancing mass placed in 
plane M which are to be determined. 
 
The data may be tabulated as shown. 
 
 
 
 
 

 

 

c’

b’

o’

1.8 0.6

Unbalanced couple

Couple polygon

o’

c’

b’

o’

1.8 0.6

Unbalanced couple

Couple polygon

o’

 

 

Unbalanced force 

1.50 

1.00 

1.25 
o a 

b 

c 

Force polygon 
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Plane 
1 

Mass 
(m) kg 

2 

Radius (r) 
m 
3 

Centrifugal 
force/ω2 

(m r) 
kg-m 

4 

Distance 
from Ref. 
plane ‘L’  

m 
5 

Couple/ ω2 
(m r L) 
kg-m2 

6 

Angle 
θ  
 

7 

A  50 0.025 mA rA    = 1.25 -0.3 -0.375 00=θA
 

L 
(R.P.) mL = ? 0.10 0.1 mL 0 0 ?L =θ  

B 40 0.025 mB rB   = 1.00 0.3 0.3 090=θB
 

M mM = ? 0.10 0.1 mM  0.6 0.06 mM ?M =θ  

C 60 0.025 mC rC   = 1.50 0.9 1.35 0210=θC
 

 
 
Analytical Method: 
 
Step 1: 
Resolve the couples into their horizontal and vertical components and find their sums. 
 
Sum of the horizontal components gives, 
 

(1)25.74
0.06

1.54413
θcosm

1.54413θcosm0.06

01.16913)(θcosm0.0600.375-i.e.

0210cos1.35θcosm0.0690cos0.30cos0.375-

getweonsubstitutiOn

 0 θcoslrmθcoslmr

MM

MM

MM

0

MM

00

MMMM

−−−−−==

=

=−+++

=+++

=+∑

 

 
Sum of the vertical components gives, 
 

(2)6.25
0.06

0.375
θsinm

0.375θsinm0.06

00.675)(θsinm0.060.30i.e.

0210sin1.35θsinm0.0690sin0.30sin0.375-

getweonsubstitutiOn

 0 θsinlrmθsinlmr

MM

MM

MM

0

MM

00

MMMM

−−−−−==

=

=−+++

=+++

=+∑

 

 
Squaring and adding (1) and (2), we get 
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Anskg26.5mand701.61mi.e.

701.61(6.25)(25.74))θsin(m)θcos(m

M

2

M

222

MM

2

MM

==

=+=+
 

 
Dividing (2) by (1), we get 
 

                             Ans13.65θand
25.74

6.25
θtan 0

MM
==  

 
 
Step 2: 
Resolve the forces into their horizontal and vertical components and find their sums. 
 
Sum of the horizontal components gives, 
 

   

(3)25.251
0.1

2.5251
θcosmand

02.5251θcosm0.1

Therefore

01.299)(2.57410θcosm0.11.25

0210cos1.513.65cos2.64990cos1.0θcosm0.10cos1.25

getweonsubstitutiOn

 0 θcosrmθcosrmθcosmr

LL

LL

LL

000

LL

0

MMMLLL

−−−−−−−−−−=
−

=

=+

=−++++

=++++

=++∑

 

 
Sum of the vertical components gives, 
 

    

(4)8.751
0.1

0.8751
θsinmand

00.8751θsinm0.1

Therefore

00.75)(0.62511θsinm0.10

0210sin1.513.65sin2.64990sin1.0θsinm0.10sin1.25

getweonsubstitutiOn

 0 θsinrmθsinrmθsinmr

LL

LL

LL

000

LL

0

MMMLLL

−−−−−−−−−−=
−

=

=+

=−++++

=++++

=++∑

 

 
Squaring and adding (3) and (4), we get 
 

   

Anskg26.72mand714.193mi.e.

714.193(-8.751)(-25.251))θsin(m)θcos(m

L

2

L

222

LL

2

LL

==

=+=+
 

 
Dividing (4) by (3), we get 
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           Ans19.11θand
25.251-

8.751
θtan 0

LL
=

−
=  

 
The balancing mass mL is at an angle 19.110 + 1800 = 199.110 measured in counter 
clockwise direction. 
 
Graphical Method: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.35 

0.3 

0.375 

0.06 mM 

COUPLE  POLYGON 
 

 

0.1 mL 

0.1 mM 

1.5 

1.25 

1.0 

FORCE POLYGON 
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Problem 8: 
 
Four masses A, B, C and D are completely balanced. Masses C and D make angles of 900 
and 2100 respectively with B in the same sense. The planes containing B and C are 300 
mm apart. Masses A, B, C and D can be assumed to be concentrated at radii of 360 mm, 
480 mm, 240 mm and 300 mm respectively. The masses B, C and D are 15 kg, 25 kg and 
20 kg respectively. Determine i) mass A and its angular position ii) position of planes A 
and D. 
  
Solution:                                   Analytical Method 
 
Step 1: 
Draw the space diagram or angular position of the masses. Since the angular position of 
the masses C and D are given with respect to mass B, take the angular position of mass B 

as 00=θB . 

 
 Tabulate the given data as shown.  
 

Plane 
1 

Mass 
(m) kg 

2 

Radius (r) 
m 
3 

Centrifugal force/ω2 
(m r) 
kg-m 

4 

Distance 
from Ref. 
plane ‘A’  

m 
5 

Couple/ ω2 
(m r L) 
kg-m2 

6 

Angle 
θ  
 

7 

A 
(R.P.) 

mA= ? 0.36 mA rA      = 0.36 mA 0 0 ?A =θ  

B 15 0.48 mB rB   = 7.2 lB = ? 7.2 lB 0=θB
 

C 25 0.24 mC rC   = 6.0 lC = ? 6.0 lC 090=θC
 

D 20 0.30 mD rD  = 6.0 lD = ? 6.0 lD 0210=θD
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Step 2: 
Mass mA be the balancing mass placed in plane A which is to be determined along with 
its angular position. 
 
Refer column 4 of the table. Since mA is to be determined ( which is the only unknown) 
,resolve the forces into their horizontal and vertical components and find their sums. 
 
Sum of the horizontal components gives, 
 

        

(1)2.004-θcosm0.36

Therefore

0 210cos6.090cos6.00cos7.2θcosm 0.36

getweonsubstitutiOn

 0 θcosrmθcosrmθcosrmθcosrmθcosmr

AA

00

AA

DDDCCCBBBAAA

−−−−−−−−−=

=+++

=+++=∑

0  

 
Sum of the vertical components gives, 
 

       

(2)3.0-θsinm0.36

Therefore

0 210sin6.090sin6.00sin7.2θsinm 0.36

getweonsubstitutiOn

 0 θsinrmθsinrmθsinrmθsinrmθsinmr

AA

000

AA

DDDCCCBBBAAA

−−−−−−−−−=

=+++

=+++=∑

 

 
Squaring and adding (1) and (2), we get 
 

       
Anskg10.02

0.36

13.016
m

13.0163.0)(2.004)((m0.36

2A

222

A

2

==

=−+−=)
 

 
Dividing (2) by (1), we get 
 

           
Ans236.26θ of angle an makes Amass balancing The

56.26angleanmakesResutltantand
2.004-

3.0
θtan

0

A

0

A

=

=
−

=
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Step 3: 
 
Resolve the couples into their horizontal and vertical components and find their sums. 
 
Sum of the horizontal components gives, 
    

(3)----------- 0 l5.1962l7.2                                   

 0 210cosl6.090cosl6.00cosl7.20                             

getweonsubstitutiOn

 0 θcoslrmθcoslrmθcoslrmθcoslrm θcoslmr

DB

0

D

0

C

0

B

DDDDCCCCBBBBAAAA

=−

=+++

=+++=∑

 
Sum of the vertical components gives, 
 

(4)----------- 0 ll6.00

 0 210sl6.090sl6.00sl7.20

getweonsubstitutiOn

 0 θslrmθslrmθslrmθslrm θslmr

DC

0

D

0

C

0

B

DDDDCCCCBBBBAAAA

=−++

=+++

=+++=∑

30

ininin

ininininin

 

         

m976.0andm353.1

3

,

3

3)3.0(

getwe),4(equationinthisngsubstitutiOn

3.0

−=−=

=−

=−

=−

=−+

+=

BD

DB

DB

DB

DB

DB

BC

ll

get we equations, the solving On

-(5)---------1.8 ll6.0                                

(3)----------- 0 l5.1962l7.2                                

llunknownstwoand (5), and 3) ( equations two have we Thus

-(5)---------1.8 ll6.0i.e.

 0 ll 6.0

l l  have, we figure fromBut 

 

 
As per the position of planes of masses assumed the distances shown are positive (+ ve ) 
from the reference plane A. But the calculated values of distances lB and lD are negative. 
The corrected positions of planes of masses is shown below. 
 
 
 
 
 

www.getmyuni.com



 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
References: 
 
1. Theory of Machines by S.S.Rattan, Third Edition, Tata McGraw Hill Education 
Private Limited. 
2. Kinematics and Dynamics of Machinery by R. L. Norton, First Edition in SI units, Tata 
McGraw Hill Education Private Limited. 
3. Primer on Dynamic Balancing “Causes, Corrections and Consequences” By 
Jim Lyons International Sales Manager IRD Balancing Div. EntekIRD International 
 
 
 
 
 
 
 
 
 

 

www.getmyuni.com















































428      �               Theory of Machines

Gear Gear Gear Gear Gear TTTTTrainsrainsrainsrainsrains

13
FFFFFeaeaeaeaeaturturturturtureseseseses
1. Introduction.

2. Types of Gear Trains.

3. Simple Gear Train.

4. Compound Gear Train.

5. Design of Spur Gears.

6. Reverted Gear Train.

7. Epicyclic Gear Train.

8. Velocity Ratio of Epicyclic
Gear Train.

9. Compound Epicyclic Gear
Train (Sun and Planet
Wheel).

10. Epicyclic Gear Train With
Bevel Gears.

11. Torques in Epicyclic Gear
Trains.

13.1.13.1.13.1.13.1.13.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction
Sometimes, two or more gears are made to mesh with

each other to transmit power from one shaft to another. Such
a combination is called gear train or train of toothed wheels.
The nature of the train used depends upon the velocity ratio
required and the relative position of the axes of shafts. A
gear train may consist of spur, bevel or spiral gears.

13.2.13.2.13.2.13.2.13.2. TTTTTypes of Gear ypes of Gear ypes of Gear ypes of Gear ypes of Gear TTTTTrainsrainsrainsrainsrains
Following are the different types of gear trains, de-

pending upon the arrangement of wheels :

1. Simple gear train, 2. Compound gear train, 3. Re-
verted gear train, and 4. Epicyclic gear train.

In the first three types of gear trains, the axes of the
shafts over which the gears are mounted are fixed relative to
each other. But in case of epicyclic gear trains, the axes of
the shafts on which the gears are mounted may move relative
to a fixed axis.

13.3.13.3.13.3.13.3.13.3. Simple Gear Simple Gear Simple Gear Simple Gear Simple Gear TTTTTrainrainrainrainrain
When there is only one gear on each shaft, as shown

in Fig. 13.1, it is known as simple gear train. The gears are
represented by their pitch circles.

When the distance between the two shafts is small,
the two gears 1 and 2 are made to mesh with each other to

428
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transmit motion from one shaft to the other, as shown in Fig. 13.1 (a). Since the gear 1 drives the gear
2, therefore gear 1 is called the driver and the gear 2 is called the driven or follower. It may be noted
that the motion of the driven gear is opposite to the motion of driving gear.

 

(a) (b) (c)

  Fig. 13.1. Simple gear train.

Let N1 = Speed of gear 1(or driver) in r.p.m.,

N2 = Speed of gear 2 (or driven or follower) in r.p.m.,

T1 = Number of teeth on gear 1, and

T2 = Number of teeth on gear 2.

Since the speed ratio (or velocity ratio) of gear train is the ratio of the speed of the driver to
the speed of the driven or follower and ratio of speeds of any pair of gears in mesh is the inverse of
their number of teeth, therefore

                                   Speed ratio 1 2

2 1

N T

N T
= =

It may be noted that ratio of the speed of the driven or follower to the speed of the driver is
known as train value of the gear train. Mathematically,

                                   Train value 2 1

1 2

N T

N T
= =

From above, we see that the train value is the reciprocal of speed ratio.

Sometimes, the distance between the two gears is large. The motion from one gear to another,
in such a case, may be transmitted by either of the following two methods :

1. By providing the large sized gear, or 2. By providing one or more intermediate gears.

A little consideration will show that the former method (i.e. providing large sized gears) is
very inconvenient and uneconomical method ; whereas the latter method (i.e. providing one or more
intermediate gear) is very convenient and economical.

It may be noted that when the number of intermediate gears are odd, the motion of both the
gears (i.e. driver and driven or follower) is like as shown in Fig. 13.1 (b).

But if the number of intermediate gears are even, the motion of the driven or follower will be
in the opposite direction of the driver as shown in Fig. 13.1 (c).

Now consider a simple train of gears with one intermediate gear as shown in Fig. 13.1 (b).

Let N1 = Speed of driver in r.p.m.,

N2 = Speed of intermediate gear in r.p.m.,
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N3 = Speed of driven or follower in r.p.m.,

T1 = Number of teeth on driver,

T2 = Number of teeth on intermediate gear, and

T3 = Number of teeth on driven or follower.

Since the driving gear 1 is in mesh with the intermediate gear 2, therefore speed ratio for
these two gears is

1 2

2 1

=N T

N T
...(i)

Similarly, as the intermediate gear 2 is in mesh with the driven gear 3, therefore speed ratio
for these two gears is

32

3 2

=
TN

N T
...(ii)

The speed ratio of the gear train as shown in Fig. 13.1 (b) is obtained by multiplying the
equations (i) and (ii).

∴ 31 2 2

2 3 1 2

× = ×
TN N T

N N T T
or 31

3 1

=
TN

N T

i.e. Speed of driver No. of teeth on driven
Speed ratio = =

Speed of driven No. of teeth on driver

and
Speed of driven No. of teeth on driver

Train value = =
Speed of driver No. of teeth on driven

Similarly, it can be proved that the
above equation holds good even if there are
any number of intermediate gears. From
above, we see that the speed ratio and the
train value, in a simple train of gears, is in-
dependent of the size and number of inter-
mediate gears. These intermediate gears are
called idle gears, as they do not effect the
speed ratio or train value of the system. The
idle gears are used for the following two pur-
poses :

1. To connect gears where a large
centre distance is required, and

2. To obtain the desired direction of
motion of the driven gear (i.e. clockwise or
anticlockwise).

13.4. Compound Gear Train
When there are more than one gear on a shaft, as shown in Fig. 13.2, it is called a compound

train of gear.

We have seen in Art. 13.3 that the idle gears, in a simple train of gears do not effect the speed
ratio of the system. But these gears are useful in bridging over the space between the driver and the
driven.

Gear trains inside a mechanical watch
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But whenever the distance between the driver and the driven or follower has to be bridged

over by intermediate gears and at the same time a great ( or much less ) speed ratio is required, then
the advantage of intermediate gears is intensified by providing compound gears on intermediate shafts.
In this case, each intermediate shaft has two gears rigidly fixed to it so that they may have the same
speed. One of these two gears meshes with the driver and the other with the driven or follower
attached to the next shaft as shown in Fig.13.2.

Fig. 13.2. Compound gear train.
In a compound train of gears, as shown in Fig. 13.2, the gear 1 is the driving gear mounted on

shaft A , gears 2 and 3 are compound gears which are mounted on shaft B. The gears 4 and 5 are also
compound gears which are mounted on shaft C and the gear 6 is the driven gear mounted on shaft D.

Let N1 = Speed of driving gear 1,
T1 = Number of teeth on driving gear 1,

N2 ,N3 ..., N6 = Speed of respective gears in r.p.m., and
T2 ,T3..., T6 = Number of teeth on respective gears.

Since gear 1 is in mesh with gear 2, therefore its speed ratio is

1 2

2 1

N T

N T
= ...(i)

Similarly, for gears 3 and 4, speed ratio is

3 4

4 3

N T

N T
= ...(ii)

and for gears 5 and 6, speed ratio is

5 6

6 5

N T

N T
= ...(iii)

The speed ratio of compound gear train is obtained by multiplying the equations (i), (ii) and (iii),

∴ 3 5 61 2 4

2 4 6 1 3 5

N N TN T T

N N N T T T
× × = × × or

*
2 4 61

6 1 3 5

T T TN

N T T T

× ×
=

× ×

* Since gears 2 and 3 are mounted on one shaft B, therefore N2 = N3. Similarly gears 4 and 5 are mounted on
shaft C, therefore N4 = N5.
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i.e. Speed of the first driver
Speed ratio = 

Speed of the last driven or follower

Product of the number of teeth on the drivens
= 

Product of the number of teeth on the drivers 

and
Speed of the last driven or follower

Train value = 
Speed of the first driver 

Product of the number of teeth on the drivers
= 

Product of the number of teeth on the drivens 

The advantage of a compound train over a simple gear train is that a much larger speed
reduction from the first shaft to the last shaft can be obtained with small gears. If a simple gear train
is used to give a large speed reduction, the last gear has to be very large. Usually for a speed reduction
in excess of 7 to 1, a simple train is not used and a compound train or worm gearing is employed.

Note: The gears which mesh must have the same circular pitch or module. Thus gears 1 and 2 must have the
same module as they mesh together. Similarly gears 3 and 4, and gears
5 and 6 must have the same module.

Example 13.1. The gearing of a machine tool is shown
in Fig. 13.3. The motor shaft is connected to gear A and rotates
at 975 r.p.m. The gear wheels B, C, D and E are fixed to parallel
shafts rotating together. The final gear F is fixed on the output
shaft. What is the speed of gear F ? The number of teeth on
each gear are as given below :

Gear A B C D E F

No. of teeth 20 50 25 75 26 65

Solution. Given : NA = 975 r.p.m. ;
TA = 20 ; TB = 50 ; TC = 25 ; TD = 75 ; TE = 26 ;
TF = 65

From Fig. 13.3, we see that gears A , C
and E are drivers while the gears B, D and F are
driven or followers. Let the gear A  rotates in
clockwise direction. Since the gears B and C are
mounted on the same shaft, therefore it is a
compound gear and the direction or rotation of
both these gears is same (i.e. anticlockwise).
Similarly, the gears D and E are mounted on the
same shaft, therefore it is also a compound gear
and the direction of rotation of both these gears
is same (i.e. clockwise). The gear F will rotate in
anticlockwise direction.

Let NF  = Speed of gear F, i.e. last driven or follower.

We know that

Speed of the first driver Product of no. of teeth on drivens
=

Speed of the last driven Product of no. of teeth on drivers

Fig. 13.3

Battery Car: Even though it is run by batteries,
the power transmission, gears, clutches,
brakes, etc. remain mechanical in nature.
Note : This picture is given as additional information
and is not a direct example of the current chapter.
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or A B D F

F A C E

50 75 65
18.75

20 25 26

N T T T

N T T T

× × × ×= = =
× × × ×

∴ A
F

975
52 r. p. m.

18.75 18.75

N
N = = =  Ans.

13.5. Design of Spur Gears
Sometimes, the spur gears (i.e. driver and driven) are to be designed for the given velocity

ratio and distance between the centres of their shafts.

Let x = Distance between the centres of two shafts,

N1 = Speed of the driver,

T1 = Number of teeth on the driver,

d1 = Pitch circle diameter of the driver,

N2 , T2 and d2 = Corresponding values for the driven or follower, and
pc = Circular pitch.

We know that the distance between the centres of two shafts,

1 2

2

d d
x

+
= ...(i)

and speed ratio or velocity ratio,

1 2 2

2 1 1

N d T

N d T
= = ...(ii)

From the above equations, we can conveniently find out the values of d1 and d2 (or T1 and T2)
and the circular pitch ( pc ). The values of T1 and T2, as obtained above, may or may not be whole
numbers. But in a gear since the number of its teeth is always a whole number, therefore a slight
alterations must be made in the values of x, d1 and d2, so that the number of teeth in the two gears may
be a complete number.

Example 13.2. Two parallel shafts, about 600 mm apart are to be connected by spur gears.
One shaft is to run at 360 r.p.m. and the other at 120 r.p.m. Design the gears, if the circular pitch is
to be 25 mm.

Solution. Given : x = 600 mm ; N1 = 360 r.p.m. ; N2 = 120 r.p.m. ; pc = 25 mm

Let d1 = Pitch circle diameter of the first gear, and
d2 = Pitch circle diameter of the second gear.

We know that speed ratio,

1 2

2 1

360
3

120

N d

N d
= = = or d2 = 3d1 ...(i)

and centre distance between the shafts (x),

1 2
1

600 ( )
2

d d= + or d1 + d2 = 1200 ...(ii)

From equations (i) and (ii), we find that

d1 = 300 mm, and d2 = 900 mm

∴  Number of teeth on the first gear,

2
1

300
37.7

25c

d
T

p

π π ×= = =
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and number of teeth on the second gear,

2
2

c

900
113.1

25

d
T

p

π π ×= = =

Since the number of teeth on both the gears are to be in complete numbers, therefore let us
make the number of teeth on the first gear as 38. Therefore for a speed ratio of 3, the number of teeth
on the second gear should be 38 × 3 = 114.

Now the exact pitch circle diameter of the first gear,

1
1

38 25
302.36 mmcT p

d
× ×′ = = =
π π

and the exact pitch circle diameter of the second gear,

2
2

114 25
907.1 mmcT p

d
× ×′ = = =
π π

∴  Exact distance between the two shafts,

1 2 302.36 907.1
604.73 mm

2 2

d d
x

′ ′+ +′ = = =

Hence the number of teeth on the first and second gear must be 38 and 114 and their pitch
circle diameters must be 302.36 mm and 907.1 mm
respectively. The exact distance between the two shafts
must be 604.73 mm. Ans.

13.6. Reverted Gear Train
When the axes of the first gear (i.e. first driver)

and the last gear (i.e. last driven or follower) are co-axial,
then the gear train is known as reverted gear train as
shown in Fig. 13.4.

We see that gear 1 (i.e. first driver) drives the
gear 2 (i.e. first driven or follower) in the opposite direc-
tion. Since the gears 2 and 3 are mounted on the same
shaft, therefore they form a compound gear and the gear
3 will rotate in the same direction as that of gear 2. The
gear 3 (which is now the second driver) drives the gear 4
(i.e. the last driven or follower) in the same direction as
that of gear 1. Thus we see that in a reverted gear train,
the motion of the first gear and the last gear is like.

Let  T1 = Number of teeth on gear 1,

 r1 = Pitch circle radius of gear 1, and

N1 = Speed of gear 1 in r.p.m.

Similarly,

     T2, T3, T4 = Number of teeth on respective gears,

      r2, r3, r4 = Pitch circle radii of  respective gears, and

   N2, N3, N4 = Speed of respective gears in r.p.m.

Fig. 13.4.  Reverted gear train.
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Since the distance between the centres of the shafts of gears 1 and 2 as well as gears 3 and 4

is same, therefore

r1 + r2 = r3 + r4 ...(i)

Also, the circular pitch or module of all the gears is assumed to be same, therefore number of
teeth on each gear is directly proportional to its circumference or radius.

∴ *T1 + T2 = T3 + T4 ...(ii)

and Product of number of teeth on drivens
Speed ratio =

Product of number of teeth on drivers

or 1 2 4

4 1 3

×=
×

N T T

N T T
... (iii)

From equations (i), (ii) and (iii), we can determine the number of teeth on each gear for the
given centre distance, speed ratio and module only when
the number of teeth on one gear is chosen arbitrarily.

The reverted gear trains are used in automotive trans-
missions, lathe back gears, industrial speed reducers, and in
clocks (where the minute and hour hand shafts are co-axial).

Example 13.3. The speed ratio of the reverted gear
train, as shown in Fig. 13.5, is to be 12. The module pitch of
gears A and B is 3.125 mm and of gears C and D is 2.5 mm.
Calculate the suitable numbers of teeth for the gears. No
gear is to have less than 24 teeth.

Solution. Given : Speed ratio, NA/ND = 12 ;
mA = mB = 3.125 mm ; mC = mD = 2.5 mm

Let NA = Speed of gear A ,

TA = Number of teeth on gear A ,

rA = Pitch circle radius of gear A ,

NB, NC , ND = Speed of respective gears,

TB, TC , TD = Number of teeth on respective gears, and

rB, rC , rD = Pitch circle radii of respective gears.

Fig. 13.5

* We know that circular pitch,

                            2
c

r
p m

T

π= = π         or      .
2

mT
r = , where m is the module.

∴                          1
1

.
2

m T
r =  ; 2

2
.
2

m T
r =  ; 3

3
.
2

mT
r =  ; 4

4
.
2

m T
r =

Now from equation (i),

                    31 2 4.. . .
2 2 2 2

m Tm T m T m T+ = +

                            T1 + T2 = T3 + T4
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Since the speed ratio between the gears A  and B and between the gears C and D are to be
same, therefore

* CA

B D

12 3.464
NN

N N
= = =

Also the speed ratio of any pair of gears in mesh is the inverse of their number of teeth,
therefore

B D

A C

3.464
T T

T T
= = ...(i)

We know that the distance between the shafts

x = rA + rB = rC + rD = 200 mm

or C CA A B B D D.. . .
200

2 2 2 2

m Tm T m T m T
+ = + =

.
...

2

m T
r

 =  
�

3.125 (TA + TB) = 2.5 (TC + TD) = 400 ...(∵ mA = mB, and mC = mD)

∴ TA + TB = 400 / 3.125 = 128 ...(ii)

and TC  + TD = 400 / 2.5 = 160 ...(iii)

From equation (i), TB = 3.464 TA. Substituting this value of TB in equation (ii),

TA + 3.464 TA = 128 or TA = 128 / 4.464 = 28.67 say 28  Ans.

and TB = 128 – 28 = 100 Ans.

Again from equation (i), TD = 3.464 TC. Substituting this value of TD in equation (iii),

TC + 3.464 TC = 160 or TC = 160 / 4.464 = 35.84 say 36  Ans.

and TD = 160 – 36 = 124 Ans.

Note : The speed ratio of the reverted gear train with the calculated values of number of teeth on each gear is

A B D

D A C

100 124
12.3

28 36

N T T

N T T

× ×= = =
× ×

13.7. Epicyclic Gear Train
We have already discussed that in an epicyclic gear train, the axes of the shafts, over which

the gears are mounted, may move relative to a fixed axis. A simple epicyclic gear train is shown in
Fig. 13.6, where a gear A  and the arm C have a common axis at O1 about which they can rotate. The
gear B meshes with gear A  and has its axis on the arm at O2, about which the gear B can rotate. If the

*  We know that speed ratio A

D
v

Speed of first driver
12

Speed of last dri en
N

N
= = =

Also CA A

D B D

NN N

N N N
= × ...(NB = NC, being on the same shaft)

For 
A

B

N

N  and 
C

D

N

N  to be same, each speed ratio should be 12  so that

CA A

D B D

12 12 12
NN N

N N N
= × = × =
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arm is fixed, the gear train is simple and gear A  can drive gear B
or vice- versa, but if gear A  is fixed and the arm is rotated about
the axis of gear A  (i.e. O1), then the gear B is forced to rotate
upon and around gear A . Such a motion is called epicyclic and
the gear trains arranged in such a manner that one or more of
their members move upon and around another member are
known as epicyclic gear trains (epi. means upon and cyclic
means around). The epicyclic gear trains may be simple or com-
pound.

The epicyclic gear trains are useful for transmitting
high velocity ratios with gears of moderate size in a compara-
tively lesser space. The epicyclic gear trains are used in the
back gear of lathe, differential gears of the automobiles, hoists,
pulley blocks, wrist watches etc.

13.8. Velocity Ratioz of Epicyclic Gear Train
The following two methods may be used for finding out the velocity ratio of an epicyclic

gear train.

1. Tabular method, and 2. Algebraic method.

These methods are discussed, in detail, as follows :

1. Tabular method. Consider an epicyclic gear train as shown in Fig. 13.6.

Let TA = Number of teeth on  gear A , and

TB = Number of teeth on gear B.

First of all, let us suppose that
the arm is fixed. Therefore the axes of
both the gears are also fixed relative to
each other. When the gear A  makes one
revolution anticlockwise, the gear B will
make *TA / TB revolutions, clockwise.
Assuming the anticlockwise rotation as
positive and clockwise as negative, we
may say that when gear A  makes + 1
revolution, then the gear B will make
(– TA / TB) revolutions. This statement
of relative motion is entered in the first
row of the table (see Table 13.1).

Secondly, if the gear A  makes
+ x revolutions, then the gear B will
make – x × TA / TB  revolutions. This
statement is entered in the second row
of the table. In other words, multiply
the each motion (entered in the first row) by x.

Thirdly, each element of an epicyclic train is given + y revolutions and entered in the third
row. Finally, the motion of each element of the gear train is added up and entered in the fourth row.

* We know that NB / NA = TA / TB. Since NA = 1 revolution, therefore NB = TA / TB.

Fig. 13.6. Epicyclic gear train.

Inside view of a car engine.
Note : This picture is given as additional information and is not

a direct example of the current chapter.
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Arm fixed-gear A  rotates through + 1
revolution i.e. 1 rev. anticlockwise

Arm fixed-gear A  rotates through + x
revolutions

Add + y revolutions to all elements

Total motion

Table 13.1. Table of motions

Revolutions of elements

Step No. Conditions of motion Arm C Gear A Gear B

1. 0 + 1
A

B
–

T

T

2. 0 + x
A

B
–

T
x

T
×

3. + y + y + y

4. + y x + y
A

B
–

T
y x

T
×

A little consideration will show that when two conditions about the motion of rotation of any
two elements are known, then the unknown speed of the third element may be obtained by substitut-
ing the given data in the third column of the fourth row.

2. Algebraic method. In this method, the motion of each element of the epicyclic train relative
to the arm is set down in the form of equations. The number of equations depends upon the number of
elements in the gear train. But the two conditions are, usually, supplied in any epicyclic train viz. some
element is fixed and the other has specified motion. These two conditions are sufficient to solve all the
equations ; and hence to determine the motion of any element in the epicyclic gear train.

Let the arm C be fixed in an epicyclic gear train as shown in Fig. 13.6. Therefore speed of the
gear A  relative to the arm C

= NA – NC
and speed of the gear B relative to the arm C,

= NB – NC
Since the gears A  and B are meshing directly, therefore they will revolve in opposite directions.

∴ B C A

A C B

–
–

–

N N T

N N T
=

Since the arm C is fixed, therefore its speed, NC = 0.

∴ B A

A B

–
N T

N T
=

If the gear A  is fixed, then NA = 0.

B C A

C B

–
–

0 –

N N T

N T
= or B A

C B

1
N T

N T
= +

Note : The tabular method is easier and hence mostly used in solving problems on epicyclic gear train.

Example 13.4. In an epicyclic gear train, an arm carries
two gears A and B having 36 and 45 teeth respectively. If the arm
rotates at 150 r.p.m. in the anticlockwise direction about the centre
of the gear A which is fixed, determine the speed of gear B. If the
gear A instead of being fixed, makes 300 r.p.m. in the clockwise
direction, what will be the speed of gear B ?

Solution. Given : TA = 36 ; TB = 45 ; NC = 150 r.p.m.
(anticlockwise)

The gear train is shown in Fig. 13.7. Fig. 13.7
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Arm fixed-gear A  rotates through + 1
revolution (i.e. 1 rev. anticlockwise)

Arm fixed-gear A  rotates through + x
revolutions

Add + y revolutions to all elements

Total motion

We shall solve this example, first by tabular method and then by algebraic method.

1. Tabular method

First of all prepare the table of motions as given below :

Table 13.2. Table of motions.
Revolutions of elements

Step No. Conditions of motion Arm C Gear A Gear B

1. 0 + 1
A

B
–

T

T

2. 0 + x
A

B
–

T
x

T
×

3. + y + y + y

4. + y x + y
A

B
–

T
y x

T
×

Speed of gear B when gear A is fixed

Since the speed of arm is 150 r.p.m. anticlockwise, therefore from the fourth row of the table,

y = + 150 r.p.m.

Also the gear A  is fixed, therefore

x + y = 0 or x = – y = – 150 r.p.m.

∴  Speed of gear B,   A
B

B

36
– 150 150 270 r.p.m.

45

T
N y x

T
= × = + × = +

= 270 r.p.m. (anticlockwise)  Ans.
Speed of gear B when gear A makes 300 r.p.m. clockwise

Since the gear A  makes 300 r.p.m.clockwise, therefore from the fourth row of the table,

x + y = – 300 or x = – 300 – y = – 300 – 150 = – 450 r.p.m.

∴  Speed of gear B,

       
A

B
B

36
– 150 450 510 r.p.m.

45

T
N y x

T
= × = + × = +

      = 510 r.p.m. (anticlockwise)   Ans.
2.  Algebraic method

Let NA = Speed of gear A .

NB = Speed of gear B, and

NC = Speed of arm C.

Assuming the arm C to be fixed, speed of gear A  relative to arm C

= NA – NC

and speed of gear B relative to arm  C = NB – NC
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Since the gears A  and B revolve in opposite directions, therefore

B C A

A C B

–
–

–

N N T

N N T
= ...(i)

Speed of gear B when gear A is fixed

When gear A  is fixed, the arm rotates at 150 r.p.m. in the anticlockwise direction, i.e.

NA = 0, and NC = + 150 r.p.m.

∴ B – 150 36
– – 0.8

0 – 150 45

N = = ...[From equation (i)]

or NB = – 150 × – 0.8 + 150 = 120 + 150 = 270 r.p.m.  Ans.

Speed of gear B when gear A makes 300 r.p.m. clockwise

Since the gear A  makes 300 r.p.m. clockwise, therefore

NA = – 300 r.p.m.

∴ B – 150 36
– – 0.8

–300 – 150 45

N = =

or NB = – 450 × – 0.8 + 150 = 360 + 150 = 510 r.p.m. Ans.

Example 13.5. In a reverted epicyclic gear
train, the arm A carries two gears B and C and a
compound gear D - E. The gear B meshes with gear E
and the gear C meshes with gear D. The number of teeth
on gears B, C and D are 75, 30 and 90 respectively.
Find the speed and direction of gear C when gear B is
fixed and the arm A makes 100 r.p.m. clockwise.

Solution. Given : TB = 75 ; TC = 30 ; TD  = 90 ;
NA = 100 r.p.m. (clockwise)

The reverted epicyclic gear train is
shown in Fig. 13.8. First of all, let us find the
number of teeth on gear E (TE). Let dB , dC , dD
and dE be the pitch circle diameters of gears B,
C, D and E respectively. From the geometry of
the figure,

 dB + dE = dC + dD

Since the number of teeth on each gear,
for the same module, are proportional to their
pitch circle diameters, therefore

 TB + TE = TC + TD

      ∴         TE = TC + TD – TB = 30 + 90 – 75 = 45

The table of motions is drawn as
follows :

Fig. 13.8

A gear-cutting machine is used to cut gears.
Note : This picture is given as additional information
and is not a direct example of the current chapter.
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Arm fixed-compound gear D-E
rotated through + 1 revolution ( i.e.
1 rev. anticlockwise)

Arm fixed-compound gear D-E
rotated through + x revolutions

Add + y revolutions to all elements

Total motion

 Table 13.3. Table of motions.

Revolutions of elements

Step Conditions of motion Arm A Compound Gear B Gear C
No. gear D-E

1. 0 + 1
E

B
–

T

T
D

C
–

T

T

2. 0 + x
E

B
–

T
x

T
× D

C
–

T
x

T
×

3. + y + y + y + y

4. + y x + y
E

B
–

T
y x

T
× D

C
–

T
y x

T
×

Since the gear B is fixed, therefore from the fourth row of the table,

E

B

– 0
T

y x
T

× = or
45

– 0
75

y x × =

∴ y – 0.6 = 0 ...(i)

Also the arm A  makes 100 r.p.m. clockwise, therefore

y = – 100 ...(ii)

Substituting y = – 100 in equation (i), we get

– 100 – 0.6 x = 0 or x = – 100 / 0.6 = – 166.67

 Model of sun and planet gears.

INPUT
Spline to Accept
Motor Shaft

Housing OD Designed to meet
RAM Bore Dia, and Share Motor
Coolant Supply

OUTPUT- External Spline to
Spindle

Ratio Detection SwitchesHydraulic or Pneumatic Speed
Change Actuator

Round Housing With O-ring
Seated Cooling Jacket

Motor Flange

Hollow Through Bore for
Drawbar Integration
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From the fourth row of the table, speed of gear C,

D
C

C

90
– – 100 166.67 400 r.p.m.

30

T
N y x

T
= × = + × = +

= 400 r.p.m. (anticlockwise) Ans.

13.9. Compound Epicyclic Gear Train—Sun and Planet Gear
A compound epicyclic

gear train is shown in Fig. 13.9.
It consists of two co-axial shafts
S1 and S2, an annulus gear A which
is fixed, the compound gear (or
planet gear) B-C, the sun gear D
and the arm H. The annulus gear
has internal teeth and the com-
pound gear is carried by the arm
and revolves freely on a pin of the
arm H. The sun gear is co-axial
with the annulus gear and the arm
but independent of them.

The annulus gear A
meshes with the gear B and the
sun gear D meshes with the gear
C. It may be noted that when the
annulus gear is fixed, the sun gear
provides the drive and when the
sun gear is fixed, the annulus gear
provides the drive. In both cases, the arm acts as a follower.

Note : The gear at the centre is called the sun gear and the gears whose axes move are called planet gears.

Fig. 13.9. Compound epicyclic gear train.

Sun and Planet gears.

Speed Change
Shift Axis

Bearing Housing
Output Belt Pulley

Slide Dog
Clutch

Output Sun
Gear

Motor
Flange

Input Sun
Gear

Planet
Gears

Oil
Collector
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Arm fixed-gear C rotates through
+ 1 revolution (i.e. 1 rev.
anticlockwise)

Arm fixed-gear C rotates through
+ x revolutions

Add + y  revolutions to all
elements

Total motion

Arm fixed-gear D rotates
through + 1 revolution

Arm fixed-gear D rotates
through + x revolutions

Add + y revolutions to all
elements

Total motion

Let TA , TB , TC , and TD be the teeth and NA, NB, NC  and ND  be the speeds for the gears A , B,
C and D respectively. A little consideration will show that when the arm is fixed and the sun gear D is
turned anticlockwise, then the compound gear B-C and the annulus gear A will rotate in the clockwise
direction.

The motion of rotations of the various elements are shown in the table below.

Table 13.4. Table of motions.

Revolutions of elements

Step Conditions of motion Arm Gear D Compound gear Gear A
No. B-C

1. 0 + 1
D

C
–

T

T
D B

C A
–

T T

T T
×

2. 0 + x
D

C
–

T
x

T
× D B

C A

–
T T

x
T T

× ×

3. + y + y + y  + y

4. + y x + y
D

C
–

T
y x

T
× D B

C A
–

T T
y x

T T
× ×

Note : If the annulus gear A  is rotated through one revolution anticlockwise with the arm fixed, then the
compound gear rotates through TA / TB revolutions in the same sense and the sun gear D rotates through
 TA / TB × TC / TD revolutions in clockwise direction.

Example 13.6. An epicyclic gear consists of three gears A, B and C as shown in Fig. 13.10.
The gear A has 72 internal teeth and gear C has 32 external teeth. The gear B meshes with both A
and C and is carried on an arm EF which rotates about the centre of A at 18 r.p.m.. If the gear A is
fixed, determine the speed of gears B and C.

Solution. Given : TA = 72 ; TC = 32 ; Speed of arm EF = 18 r.p.m.

Considering the relative motion of rotation as shown in Table 13.5.

Table 13.5. Table of motions.

Revolutions of elements

Step No. Conditions of motion Arm EF Gear C Gear B Gear A

1. 0 + 1
C

B
–

T

T
C B C

B A A
– –

T T T

T T T
× =

2. 0 + x
C

B
–

T
x

T
× C

A
–

T
x

T
×

3. + y + y + y + y

4. + y x + y
C

B
–

T
y x

T
× C

A
–

T
y x

T
×
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Speed of gear C

We know that the speed of the arm is 18 r.p.m. therefore,

y = 18 r.p.m.

and the gear A  is fixed, therefore

C

A

– 0
T

y x
T

× = or 32
18 – 0

72
x × =

∴ x = 18 × 72 / 32 = 40.5

∴   Speed of gear C         = x + y = 40.5 + 18

= + 58.5 r.p.m.

= 58.5 r.p.m. in the direction
of arm.  Ans.

Speed of gear B

Let dA, dB and dC be the pitch circle diameters of gears
A , B and C respectively. Therefore, from the geometry of Fig. 13.10,

                C A
B 2 2

d d
d + = or 2 dB + dC = dA

Since the number of teeth are proportional to their pitch circle diameters, therefore

               2 TB  + TC = TA         or            2 TB + 32 = 72 or TB = 20

∴   Speed of gear B          C

B

32
– 18 – 40.5 – 46.8 r.p.m.

20

T
y x

T
= × = × =

               = 46.8 r.p.m. in the opposite direction of arm.  Ans.

Example 13.7. An epicyclic train of gears is arranged as shown in
Fig.13.11. How many revolutions does the arm, to which the pinions B and
C are attached, make :

1. when A makes one revolution clockwise and D makes half a
revolution anticlockwise, and

2. when A makes one revolution clockwise and D is stationary ?

The number of teeth on the gears A and D are 40 and 90
respectively.

Solution. Given : TA = 40 ; TD = 90

First of all, let us find the number of teeth on gears B and C (i.e. TB and TC). Let  dA, dB, dC
and dD be the pitch circle diameters of gears A , B, C and D respectively. Therefore from the geometry
of the figure,

dA + dB + dC = dD or dA + 2 dB = dD ...(�  dB = dC)

Since the number of teeth are proportional to their pitch circle diameters, therefore,

TA + 2 TB = TD or 40 + 2 TB = 90

∴ TB = 25, and TC = 25 ...(�  TB = TC)

Fig. 13.10

Fig. 13.11
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The table of motions is given below :

Table 13.6. Table of motions.

Revolutions of elements

Step No. Conditions of motion Arm Gear A Compound Gear D
gear B-C

1. 0 – 1
A

B

T

T
+ A B A

B D D

T T T

T T T
+ × = +

2. 0 – x
A

B

T
x

T
+ × A

D

T
x

T
+ ×

3. – y – y – y – y

4. – y – x – y
A

B
–

T
x y

T
× A

D
–

T
x y

T
×

1. Speed of arm when A makes 1 revolution clockwise and D makes half revolution anticlockwise

Since the gear A  makes 1 revolution clockwise, therefore from the fourth row of the table,

– x – y = –1 or x + y = 1 ...(i)

Also, the gear D makes half revolution anticlockwise, therefore

A

D

1
–

2

T
x y

T
× = or 40 1

–
90 2

x y× =

∴ 40 x – 90 y = 45 or x – 2.25 y = 1.125 ...(ii)

From equations (i) and (ii),   x = 1.04 and y = – 0.04

∴            Speed of arm = – y = – (– 0.04) = + 0.04

= 0.04 revolution anticlockwise  Ans.

2. Speed of arm when A makes 1 revolution clockwise and D is stationary

Since the gear A  makes 1 revolution clockwise, therefore from the fourth row of the
table,

– x – y = – 1 or x + y = 1 ...(iii)

Also the gear D is stationary, therefore

A

D

– 0
T

x y
T

× = or 40
– 0

90
x y× =

∴ 40 x – 90 y = 0 or x – 2.25 y = 0 ...(iv)

From equations (iii) and (iv),

x = 0.692 and y = 0.308

∴      Speed of arm = – y = – 0.308 = 0.308 revolution clockwise Ans.

Arm fixed , gear A  rotates
through – 1 revolution (i.e. 1
rev. clockwise)

Arm fixed, gear A  rotates
through – x revolutions

Add – y  revolutions to all
elements

Total motion
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Example 13.8. In an epicyclic gear train, the internal wheels A and B and compound wheels
C and D rotate independently about axis O. The wheels E and F rotate on pins fixed to the arm G. E
gears with A and C and F gears with B and D. All the wheels have
the same module and the number of teeth are :  TC = 28;  TD = 26;
TE = TF = 18.

1. Sketch the arrangement ; 2. Find the number of teeth on
A and B ; 3. If the arm G makes 100 r.p.m. clockwise and A is fixed,
find the speed of B ; and 4. If the arm G makes 100 r.p.m. clockwise
and wheel A makes 10 r.p.m. counter clockwise ; find the speed of
wheel B.

Solution. Given : TC = 28 ; TD = 26 ; TE = TF = 18

1. Sketch the arrangement

The arrangement is shown in Fig. 13.12.

2. Number of teeth on wheels A and B

Let              TA = Number of teeth on wheel A , and

            TB = Number of teeth on wheel B.

If dA , dB , dC , dD , dE and dF are the pitch circle diameters of wheels A , B, C, D, E and F
respectively, then from the geometry of Fig. 13.12,

            dA = dC + 2 dE

and             dB  = dD + 2 dF

Since the number of teeth are proportional to their pitch circle diameters, for the same
module, therefore

           TA = TC + 2 TE = 28 + 2 × 18 = 64 Ans.

and            TB = TD + 2 TF = 26 + 2 × 18 = 62 Ans.

3. Speed of wheel B when arm G makes 100 r.p.m. clockwise and wheel A is fixed

First of all, the table of motions is drawn as given below :

Table 13.7. Table of motions.

Revolutions of elements

Step Conditions of Arm Wheel Wheel Compound Wheel F Wheel B
No. motion G A E wheel C-D

1. 0 + 1
A

E

T

T
+ A E

E C
–

T T

T T
× A D

C F

T T

T T
+ × A D F

C F B

T T T

T T T
+ × ×

2. 0 + x
A

E

T
x

T
+ × A

C
–

T
x

T
× A D

C F

T T
x

T T
+ × × A D

C B

T T
x

T T
+ × ×

3. + y + y + y + y + y + y

4. + y x + y
A

E

T
y x

T
+ × A

C
–

T
y x

T
× A D

C F

T T
y x

T T
+ × × A D

C B

T T
y x

T T
+ × ×

Fig. 13.12

Arm fixed- wheel A
rotates through + 1
revolution (i.e. 1 rev.
anticlockwise)

Arm fixed-wheel A
rotates through + x
revolutions

Add + y revolutions
to all elements

Total motion

A

C

–
T

T
= A D

C B

T T

T T
= + ×
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Since the arm G makes 100 r.p.m. clockwise, therefore from the fourth row of the table,

y = – 100 ...(i)

Also, the wheel A  is fixed, therefore from the fourth row of the table,

x + y = 0 or x = – y = 100 ...(ii)

∴    Speed of wheel A D

C B

64 26
– 100 100 – 100 95.8 r.p.m.

28 62

T T
B y x

T T
= + × × = + × × = +

= – 4.2 r.p.m. = 4.2 r.p.m. clockwise  Ans.
4. Speed of wheel B when arm G makes 100 r.p.m. clockwise and wheel A makes 10 r.p.m. counter

clockwise
Since the arm G makes 100 r.p.m. clockwise, therefore from the fourth row of the

table
y = – 100 ...(iii)

Also the wheel A  makes 10 r.p.m. counter clockwise, therefore from the fourth row of the
table,

x + y = 10 or x = 10 – y = 10 + 100 = 110 ...(iv)

∴ Speed of wheel A D

C B

64 26
– 100 110 – 100 105.4 r.p.m.

28 62

T T
B y x

T T
= + × × = + × × = +

= + 5.4 r.p.m. = 5.4 r.p.m. counter clockwise  Ans.
Example 13.9. In an epicyclic gear of the ‘sun and planet’ type shown

in Fig. 13.13, the pitch circle diameter of the internally toothed ring is to be
224 mm and the module 4 mm. When the ring D is stationary, the spider A,
which carries three planet wheels C of equal size, is to make one revolution in
the same sense as the sunwheel B for every five revolutions of the driving
spindle carrying the sunwheel B. Determine suitable numbers of teeth for all
the wheels.

Solution. Given : dD = 224 mm ; m = 4 mm ; NA = NB / 5
Let TB , TC  and TD be the number of teeth on the sun wheel B ,

planet wheels C and the internally toothed ring D. The table of motions is given below :

Table 13.8. Table of motions.

Revolutions of elements

Step No. Conditions of motion Spider A Sun wheel B Planet wheel C Internal gear D

1. 0 + 1
B

C
–

T

T
B C B

C D D
– –

T T T

T T T
× =

2. 0 + x
B

C
–

T
x

T
× B

D
–

T
x

T
×

3. + y + y + y + y

4. + y x + y
B

C
–

T
y x

T
× B

D
–

T
y x

T
×

Fig. 13.13

Spider A  fixed, sun wheel
B  rotates through + 1
revolution (i.e. 1 rev.
anticlockwise)
Spider A  fixed, sun wheel
B  rotates through + x
revolutions
Add + y revolutions to all
elements

Total motion
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We know that when the sun
wheel B makes + 5 revolutions, the spi-
der A  makes + 1 revolution. Therefore
from the fourth row of the table,

          y = + 1 ;  and  x + y = + 5

∴        x = 5 – y = 5 – 1 = 4

Since the internally toothed ring
D is stationary, therefore from the fourth
row of the table,

B

D

– 0
T

y x
T

× =

or B

D

1 – 4 0
T

T
× =

∴ B

D

1

4

T

T
= or TD = 4 TB ...(i)

We know that TD = dD / m = 224 / 4 = 56 Ans.

∴ TB = TD / 4 = 56 / 4 = 14 Ans. ...[From equation (i)]

Let dB, dC and dD be the pitch circle diameters of sun wheel B, planet wheels C and internally
toothed ring D respectively. Assuming the pitch of all the gears to be same, therefore from the geom-
etry of Fig. 13.13,

dB + 2 dC = dD

Since the number of teeth are proportional to their pitch circle diameters, therefore

TB + 2 TC = TD or 14 + 2 TC = 56

∴ TC = 21 Ans.

Example 13.10. Two shafts A and B are co-axial. A gear C (50 teeth) is rigidly mounted
on shaft A. A compound gear D-E gears with C and an internal gear G. D has 20 teeth and gears
with C and E has 35 teeth and gears with an internal gear G. The gear G is fixed and is concen-
tric with the shaft axis. The compound gear D-E is mounted on a pin which projects from an arm
keyed to the shaft B. Sketch the arrangement and find the number of teeth on internal gear G
assuming that all gears have the same module. If the shaft A rotates at 110 r.p.m., find the speed
of shaft B.

Solution. Given : TC = 50 ; TD = 20 ; TE = 35 ; NA = 110 r.p.m.

The arrangement is shown in Fig. 13.14.

Number of teeth on internal gear G

Let dC , dD , dE and dG  be the pitch circle diameters of gears C, D, E and G respectively. From
the geometry of the figure,

G C D E

2 2 2 2

d d d d= + +

or dG = dC + dD + dE

Power transmission in a helicopter is essentially through
gear trains.

Note : This picture is given as additional information and is not a
direct example of the current chapter.

Main rotor Tail rotor

Tail boom

Landing skids Engine, transmis-
sion fuel, etc.

Cockpit

Drive shaft
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Let TC , TD , TE and TG be the number of teeth on gears C, D, E and G respectively. Since all

the gears have the same module, therefore number of teeth are proportional to their pitch circle
diameters.

   ∴ TG = TC + TD + TE = 50 + 20 + 35 = 105 Ans.

Fig. 13.14

Speed of shaft B

The table of motions is given below :

Table 13.9. Table of motions.

Revolutions of elements

Step Conditions of motion Arm Gear C (or Compound Gear G
No. shaft A) gear D-E

1. 0 + 1
C

D
–

T

T
C E

D G
–

T T

T T
×

2. 0 + x
C

D
–

T
x

T
× C E

D G
–

T T
x

T T
× ×

3. + y + y + y + y

4. + y x + y
C

D
–

T
y x

T
× C E

D G
–

T T
y x

T T
× ×

Since the gear G is fixed, therefore from the fourth row of the table,

C E

D G

– 0
T T

y x
T T

× × = or 50 35
– 0

20 105
y x × × =

∴ 5
– 0

6
y x = ...(i)

Arm fixed - gear C rotates through + 1
revolution

Arm fixed - gear C rotates through + x
revolutions

Add + y revolutions to all elements

Total motion
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Since the gear C is rigidly mounted on shaft A , therefore speed of gear C and shaft A  is same.
We know that speed of shaft A  is 110 r.p.m., therefore from the fourth row of the table,

x + y = 100 ...(ii)

From equations (i) and (ii), x = 60, and    y = 50

∴                Speed of shaft B = Speed of arm = + y = 50 r.p.m. anticlockwise Ans.

Example 13.11.  Fig. 13.15 shows diagrammatically a compound
epicyclic gear train. Wheels A , D and E are free to rotate independently
on spindle O, while B and C are compound and rotate together on spindle
P, on the end of arm OP. All the teeth on different wheels have the same
module. A has 12 teeth, B has 30 teeth and C has 14 teeth cut externally.
Find the number of teeth on wheels D and E which are cut internally.

If the wheel A is driven clockwise at 1 r.p.s. while D is driven
counter clockwise at 5 r.p.s., determine the magnitude and direction of
the angular velocities of arm OP and wheel E.

Solution. Given : TA = 12 ; TB = 30 ;TC = 14 ; NA = 1 r.p.s. ; ND = 5 r.p.s.

Number of teeth on wheels D and E

Let TD and TE  be the number of teeth on wheels D and E respectively. Let dA , dB , dC , dD and dE
be the pitch circle diameters of wheels A , B, C, D and E respectively. From the geometry of the figure,

dE = dA + 2dB and dD = dE – (dB – dC)

Since the number of teeth are proportional to their pitch circle diameters for the same module,
therefore

TE = TA + 2TB = 12 + 2 × 30 = 72  Ans.

and TD = TE – (TB – TC) = 72 – (30 – 14) = 56  Ans.

Magnitude and direction of angular velocities of arm OP and wheel E

The table of motions is drawn as follows :

Table 13.10. Table of motions.

Revolutions of elements

Step Conditions of motion Arm Wheel A Compound Wheel D Wheel E
No. wheel B-C

1. 0 – 1
A

B

T

T
+ A C

B D

T T

T T
+ × A B

B E

T T

T T
+ ×

A

E

T

T
= +

 2. 0 – x
A

B

T
x

T
+ × A C

B D

T T
x

T T
+ × × A

E

T
x

T
+ ×

3. – y – y – y – y – y

4. – y – x – y
A

B
–

T
x y

T
× A C

B D
–

T T
x y

T T
× × A

E
–

T
x y

T
×

Fig. 13.15

Arm fixed A  rotated through
– 1 revolution (i.e. 1 revolu-
tion clockwise)

Arm fixed-wheel A  rotated
through – x revolutions

Add – y revolutions to all ele-
ments

Total motion
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Since the wheel A  makes 1 r.p.s. clockwise, therefore from the fourth row of the table,

– x – y = – 1 or x + y = 1 ...(i)
Also, the wheel D makes 5 r.p.s. counter clockwise, therefore

CA

B D

– 5
TT

x y
T T

× × = or 12 14
– 5

30 56
x y× × =

∴ 0.1 x – y = 5 ...(ii)
From equations (i) and (ii),

x = 5.45 and y = – 4.45

∴  Angular velocity of arm OP

          = – y = –(– 4.45) = 4.45 r.p.s

= 4.45 × 2 π = 27.964 rad/s (counter clockwise) Ans.

and angular velocity of wheel A

E

12
– 5.45 – (– 4.45) 5.36 r.p.s.

72

T
E x y

T
= × = × =

= 5.36 × 2 π = 33.68 rad/s (counter clockwise)  Ans.
Example 13.12. An internal wheel B with 80 teeth is keyed to a shaft F. A fixed internal

wheel C with 82 teeth is concentric
with B. A compound wheel D-E
gears with the two internal wheels;
D has 28 teeth and gears with C
while E gears with B. The compound
wheels revolve freely on a pin which
projects from a disc keyed to a shaft
A co-axial with F. If the wheels have
the same pitch and the shaft A makes
800 r.p.m., what is the speed of the
shaft F ? Sketch the arrangement.

Solution. Given : TB = 80 ; TC
= 82 ; TD = 28 ; NA = 500 r.p.m.

The arrangement is shown in Fig. 13.16.

Fig. 13.16

First of all, let us find out the number of teeth on wheel E (TE). Let dB , dC , dD and dE be the
pitch circle diameter of wheels B, C, D and E respectively. From the geometry of the figure,

dB = dC – (dD – dE )

Helicopter
Note : This picture is given as additional information and is not a

direct example of the current chapter.
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or dE = dB + dD – dC

Since the number of teeth are proportional to their pitch circle diameters for the same pitch,
therefore

TE = TB + TD – TC = 80 + 28 – 82 = 26

The table of motions is given below :

Table 13.11. Table of motions.

Revolutions of elements

Step Conditions of motion Arm (or Wheel B (or Compound Wheel C
No. shaft A) shaft F)  gear D-E

1. 0 + 1
B

E

T

T
+ B D

E C

T T

T T
+ ×

2. 0 + x
B

E

T
x

T
+ × B D

E C

T T
x

T T
+ × ×

3. + y + y + y + y

4. + y x + y
B

E

T
y x

T
+ × B D

E C

T T
y x

T T
+ × ×

Since the wheel C is fixed, therefore from the fourth row of the table,

B D

E C

0
T T

y x
T T

+ × × = or
80 28

0
26 82

y x+ × × =

∴ y + 1.05 x = 0 ...(i)

Also, the shaft A  (or the arm) makes 800 r.p.m., therefore from the fourth row of the table,

y = 800 ...(ii)

From equations (i) and (ii),

x = – 762

∴  Speed of shaft F = Speed of wheel B = x + y = – 762 + 800 = + 38 r.p.m.

= 38 r.p.m. (anticlockwise) Ans.

Example 13.13. Fig. 13.17 shows an epicyclic gear
train known as Ferguson’s paradox. Gear A is fixed to the
frame and is, therefore, stationary. The arm B and gears C
and D are free to rotate on the shaft S. Gears A, C and D have
100, 101 and 99 teeth respectively. The planet gear has 20
teeth. The pitch circle diameters of all are the same so that the
planet gear P meshes with all of them. Determine the
revolutions of gears C and D for one revolution of the arm B.

Solution. Given : TA = 100 ; TC = 101 ; TD = 99 ;
TP = 20 Fig. 13.17

Arm fixed - wheel B  rotated
through + 1 revolution (i.e. 1
revolution anticlockwise)

Arm fixed - wheel B  rotated
through + x revolutions

Add + y  revolutions to all
elements

Total motion
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The table of motions is given below :

Table 13.12. Table of motions.

Revolutions of elements

Step No. Conditions of motion Arm B Gear A Gear C Gear D

1. 0 + 1
A

C

T

T
+ A C A

C D D

T T T

T T T
+ × = +

2. 0 + x
A

C

T
x

T
+ × A

D

T
x

T
+ ×

3. + y + y + y + y

4. + y x + y
A

C

T
y x

T
+ × A

D

T
y x

T
+ ×

The arm B makes one revolution, therefore
y = 1

Since the gear A  is fixed, therefore from the fourth row of the table,
x + y = 0 or x = – y = – 1

Let NC and ND  = Revolutions of gears C and D respectively.
From the fourth row of the table, the revolutions of gear C,

A
C

C

100 1
1 – 1

101 101

T
N y x

T
= + × = × =+ Ans.

and the revolutions of gear D,

A
D

D

100 1
1 –

99 99

T
N y x

T
= + × = = –  Ans.

From above we see that for one revolution of the arm B, the gear C rotates through 1/101
revolutions in the same direction and the gear D rotates through 1/99 revolutions in the opposite
direction.

Example 13.14. In the gear drive as shown in Fig.
13.18, the driving shaft A rotates at 300 r.p.m. in the clock-
wise direction, when seen from left hand. The shaft B is the
driven shaft. The casing C is held stationary. The wheels E
and H are keyed to the central vertical spindle and wheel F
can rotate freely on this spindle. The wheels K and L are
rigidly fixed to each other and rotate together freely on a
pin fitted on the underside of F. The wheel L meshes with
internal teeth on the casing C. The numbers of teeth on the
different wheels are indicated within brackets in Fig. 13.18.

Find the number of teeth on wheel C and the speed
and direction of rotation of shaft B.

Solution. Given : NA = 300 r.p.m. (clockwise) ;
TD = 40 ; TB = 30 ; TF = 50 ; TG = 80 ; TH = 40 ; TK = 20 ; TL = 30

In the arrangement shown in Fig. 13.18, the wheels D and G are auxillary gears and do not
form a part of the epicyclic gear train.

Fig. 13.18

Arm B fixed, gear A  rotated
through + 1 revolution (i.e. 1
revolution anticlockwise)

Arm B fixed, gear A  rotated
through + x revolutions

Add + y  revolutions to all
elements

Total motion
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Speed of wheel E, D
E A

E

40
300 400 r.p.m. (clockwise)

30

T
N N

T
= × = × =

Number of teeth on wheel C
Let TC = Number of teeth on wheel C.
Assuming the same module for all teeth and since the pitch circle diameter is proportional to

the number of teeth ; therefore from the geometry of Fig.13.18,
TC = TH + TK + TL = 40 + 20 + 30 = 90 Ans.

Speed and direction of rotation of shaft B
The table of motions is given below. The wheel F acts as an arm.

Table 13.13. Table of motions.

Revolutions of elements

Step Conditions of motion Arm or Wheel E Wheel H Compound Wheel C
No. wheel F wheel K-L

1. 0 – 1
H

K

T

T
+ H L

K C

T T

T T
+ ×

2. 0 – x – x
H

K

T
x

T
+ × H L

K C

T T
x

T T
+ × ×

3. – y – y – y – y – y

4. – y – x – y – x – y
H

K
–

T
x y

T
× H L

K C
–

T T
x y

T T
× ×

Since the speed of wheel E is 400 r.p.m. (clockwise), therefore from the fourth row of the table,

– x – y = – 400 or x + y = 400 ...(i)
Also the wheel C is fixed, therefore

                
H L

K C

– 0
T T

x y
T T

× × =

or                    
40 30

– 0
20 90

x y× × =

∴                         
2

– 0
3

x
y = ...(ii)

From equations (i) and (ii),

x = 240 and y = 160

∴  Speed of wheel F, NF = – y = – 160 r.p.m.

Since the wheel F is in mesh with wheel G, therefore speed of wheel G or speed of shaft B

F
F

G

50
– – – 160 100 r.p.m.

80

T
N

T
 = × = × =  

...(�  Wheel G will rotate in opposite direction  to that of wheel F.)

= 100 r.p.m. anticlockwise i.e. in opposite direction of
shaft A . Ans.

Arm  fixed-wheel  E
rotated through – 1
revolution (i.e. 1
revolution clockwise)

Arm fixed-wheel E
rotated through – x
revolutions

Add – y revolutions to
all elements

Total motion

– 1(� E and
H are on the
same shaft)
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Example 13.15. Fig. 13.19 shows a compound epicyclic gear in which the casing C contains

an epicyclic train and this casing is inside the larger casing D.
Determine the velocity ratio of the output shaft B to the input shaft A when the casing D is

held stationary. The number of teeth on various wheels are as follows :
Wheel on A = 80 ; Annular wheel on B = 160 ; Annular wheel on C = 100 ; Annular wheel

on D = 120 ; Small pinion on F = 20 ; Large pinion on F = 66.

Fig. 13.19

Solution. Given : T1 = 80 ;  T8 = 160 ;  T4 = 100;  T3 = 120 ;  T6 = 20 ;  T7 = 66
First of all, let us consider the train of wheel 1 (on A ), wheel 2 (on E), annular wheel 3 (on D)

and the arm i.e. casing C. Since the pitch circle diameters of wheels are proportional to the number of
teeth, therefore from the geometry of Fig. 13.19,

T1 + 2 T2 = T3 or 80 + 2 T2 = 120
∴ T2 = 20
The table of motions for the train considered is given below :

Table 13.14. Table of motions.

Revolutions of elements

Step No. Conditons of motion Arm Wheel 1 Wheel 2 Wheel 3

1. 0 + 1
1

2
–

T

T
1 2 1

2 3 3
– –

T T T

T T T
× =

2. 0 + x
1

2
–

T
x

T
× 1

3
–

T
x

T
×

3. + y + y + y + y

4. y x + y
1

2
–

T
y x

T
× 1

3
–

T
y x

T
×

Arm fixed - wheel 1 rotated
through + 1 revolution
(anticlockwise)

Arm fixed - wheel 1 rotated
through + x revolutions

Add + y   revolutions to all
elements

Total motion



456  �   Theory of Machines

Let us assume that wheel 1 makes 1 r.p.s. anticlockwise.

∴ x + y = 1 ...(i)

Also the wheel 3 is stationary, therefore from the fourth row of the table,

1

3

– 0
T

y x
T

× = or 80
– 0

120
y x × =

∴ 2
– 0

3
y x = ...(ii)

From equations (i) and (ii), x = 0.6,   and y = 0.4

∴   Speed of arm or casing  C = y = 0.4  r.p.s.

and speed of wheel 2 or arm E 1

2

80
– 0.4 – 0.6 – 2 r.p.s.

20

T
y x

T
= × = × =

= 2 r.p.s. (clockwise)

Let us now consider the train of annular wheel 4 (on C), wheel 5 (on E), wheel 6 (on F) and
arm E. We know that

T6 + 2 T5  = T4 or 20 + 2 T5 = 100

∴ T5 = 40

The table of motions is given below :

Table 13.15. Table of motions.

Revolutions of elements

Step Conditions of motion Arm E or Wheel 6 Wheel 5 Wheel 4
No. wheel 2

1. 0 + 1
6

5
–

T

T
6 5 6

5 4 4
– –

T T T

T T T
× =

2. 0 x1

6
1

5
–

T
x

T
× 6

1
4

–
T

x
T

×

3. + y1 + y1 + y1 + y1

4. + y1 x1 + y1

6
1 1

5
–

T
y x

T
× 6

1 1
4

–
T

y x
T

×

We know that speed of arm E = Speed of wheel 2 in the first train

∴ y1 = – 2 ...(iii)

             Also speed of wheel 4 = Speed of arm or casing C in the first train

∴ 6
1 1

4

– 0.4
T

y x
T

× = or 1
20

–2 – 0.4
100

x × = ...(iv)

or 1
100

(–2 – 0.4) –12
20

x = =

Arm  fixed, wheel  6  rotated
through + 1 revolution

Arm  fixed, wheel  6  rotated
through + x1 revolutions

Add + y1 revolutions to all
elements

Total motion
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∴  Speed of wheel 6 (or F)

= x1 + y1 = – 12 – 2 = – 14 r.p.s. = 14 r.p.s. (clockwise)

Now consider the train of wheels 6 and 7 (both on F), annular wheel 8 (on B) and the arm i.e.
casing C. The table of motions is given below :

Table 13.16. Table of motions.

Revolutions of elements

Step No. Conditions of motion Arm Wheel 8 Wheel 7

1. 0 + 1
8

7

T

T
+

2. 0 + x2

8
2

7

T
x

T
+ ×

3. + y2 + y2 + y2

4. y2 x2 + y2

8
2 2

7

T
y x

T
+ ×

We know that the speed of C in the first train is 0.4 r.p.s., therefore

y2 = 0.4 ...(v)

Also the speed of wheel 7 is equal to the speed of F or wheel 6 in the second train, therefore

8
2 2

7

–14
T

y x
T

+ × = or
2

160
0.4 –14

66
x+ × = ...(vi)

∴ 2
66

( 14 0.4) 5.94
160

x = − − = −

∴ Speed of wheel 8 or of the shaft B

x2 + y2 = – 5.94 + 0.4 = – 5.54 r.p.s. = 5.54 r.p.s. (clockwise)

We have already assumed that the speed of wheel 1 or the shaft A  is 1 r.p.s. anticlockwise

∴  Velocity ratio of the output shaft B to the input shaft A

= – 5.54 Ans.
Note : The – ve sign shows that the two shafts A  and B rotate in opposite directions.

13.10. Epicyclic Gear Train with Bevel Gears
The bevel gears are used to make a more compact epicyclic system and they permit a very

high speed reduction with few gears. The useful application of the epicyclic gear train with bevel
gears is found in Humpage’s speed reduction gear and differential gear of an automobile as discussed
below :

1. Humpage’s speed reduction gear. The Humpage’s speed reduction gear was originally
designed as a substitute for back gearing of a lathe, but its use is now considerably extended to all
kinds of workshop machines and also in electrical machinery. In Humpage’s speed reduction gear, as
shown in Fig. 13.20, the driving shaft X  and the driven shaft Y  are co-axial. The driving shaft carries
a bevel gear A  and driven shaft carries a bevel gear E. The bevel gear B meshes with gear A  (also
known as pinion) and a fixed gear C. The gear E meshes with gear D which is compound with gear B.

Arm  fixed, wheel  8  rotated through
+ 1 revolution

Arm  fixed, wheel  8  rotated through
+ x2 revolutions

Add  + y 2  revolutions  to  all
elements

Total motion
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This compound gear B-D is mounted on the arm or spindle F which is rigidly connected with a hollow
sleeve G. The sleeve revolves freely loose on the axes of the driving and driven shafts.

Fig. 13.20. Humpage’s speed reduction gear.
2. Differential gear of an automobile. The differential gear used in the rear drive of an

automobile is shown in Fig. 13.21. Its function is

(a) to transmit motion from the engine shaft to the rear driving wheels, and
(b) to rotate the rear wheels at different speeds while the automobile is taking a turn.
As long as the automobile is running on a straight path, the rear wheels are driven directly by

the engine and speed of both the wheels is same. But when the automobile is taking a turn, the outer
wheel will run faster than the * inner wheel because at that time the outer rear wheel has to cover more
distance than the inner rear wheel. This is achieved by epicyclic gear train with bevel gears as shown
in Fig. 13.21.

The bevel gear A  (known as pinion) is keyed to
the propeller shaft driven from the engine shaft through
universal coupling. This gear A  drives the gear B (known
as crown gear) which rotates freely on the axle P. Two
equal gears C and D are mounted on two separate parts P
and Q of the rear axles respectively. These gears, in turn,
mesh with equal pinions E and F which can rotate freely
on the spindle provided on the arm attached to gear B.

When the automobile runs on a straight path, the
gears C and D must rotate together. These gears are rotated
through the spindle on the gear B. The gears E and F do
not rotate on the spindle. But when the automobile is taking
a turn, the inner rear wheel should have lesser speed than
the outer rear wheel and due to relative speed of the inner and outer gears D and C, the gears E and F
start rotating about the spindle axis and at the same time revolve about the axle axis.

Due to this epicyclic effect, the speed of the inner rear wheel decreases by a certain amount
and the speed of the outer rear wheel increases, by the same amount. This may be well understood by
drawing the table of motions as follows :

Fig. 13.21. Differential gear of an automobile.

* This difficulty does not arise with the front wheels as they are greatly used for steering purposes and are
mounted on separate axles and can run freely at different speeds.
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Table 13.17. Table of motions.

Revolutions of elements

Step No. Conditions of motion Gear B Gear C Gear E Gear D

1. 0 + 1
C

E

T

T
+ C E

E D
– – 1

T T

T T
× =

( )C DT T=�

2. 0 + x
C

E

T
x

T
+ × –x

3. + y + y + y + y

4. + y x + y
C

E

T
y x

T
+ × –y x

From the table, we see that when the gear B, which derives motion from the engine shaft,
rotates at y revolutions, then the speed of inner gear D (or the rear axle Q) is less than y by x  revolu-
tions and the speed of the outer gear C (or the rear axle P) is greater than y by x revolutions. In other
words, the two parts of the rear axle and thus the two wheels rotate at two different speeds. We also
see from the table that the speed of gear B is the mean of speeds of the gears C and D.

Example 13.16. Two bevel gears A and B (having 40 teeth and 30 teeth) are rigidly mounted
on two co-axial shafts X and Y. A bevel gear C (having
50 teeth) meshes with A and B and rotates freely on one
end of an arm. At the other end of the arm is welded a
sleeve and the sleeve is riding freely loose on the axes of
the shafts X and Y. Sketch the arrangement.

If the shaft X rotates at 100  r.p.m. clockwise  and
arm rotates at 100 r.p.m.anitclockwise, find the
speed of shaft Y.

Solution. Given : TA = 40 ; TB = 30 ; TC = 50 ; NX
= NA = 100 r.p.m. (clockwise) ; Speed of arm = 100 r.p.m.
(anticlockwise)

The arangement is shown in Fig. 13.22.
The table of motions is drawn as below :

Table 13.18. Table of motions.
Revolutions of elements

Step No. Conditions of motion Arm Gear A Gear C Gear B

1. 0 + 1
A

C

T

T
± A C A

C B B
– –

T T T

T T T
× =

2. 0 + x
A

C

T
x

T
± × A

B
–

T
x

T
×

3. + y + y + y + y

4. + y x + y
A

C

T
y x

T
± × A

B
–

T
y x

T
×

Fig. 13.22

* The ± sign is given to the motion of the wheel C because it is in a different plane. So we cannot indicate the
direction of its motion specifically, i.e. either clockwise or anticlockwise.

Gear B fixed-Gear C rotated
through + 1 revolution (i.e.
1 revolution anticlockwise )

Gear B fixed-Gear C rotated
through + x revolutions

Add + y  revolutions to all
elements

Total motion

Arm B fixed, gear A  rotated
through + 1 revolution (i.e. 1
revolution anticlockwise)

Arm B fixed, gear A  rotated
through + x revolutions
Add + y  revolutions to all
elements

Total motion

*
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Since the speed of the arm is 100 r.p.m. anticlockwise, therefore from the fourth row of the
table,

y = + 100

Also, the speed of the driving shaft X  or gear A  is 100 r.p.m. clockwise.

∴ x + y = – 100 or x = – y – 100 = – 100 – 100 = – 200

∴  Speed of the driven shaft i.e. shaft Y ,

NY = Speed of gear A

B

40
– 100 – – 200

30

T
B y x

T
 = × = ×  

= + 366.7 r.p.m. = 366.7 r.p.m. (anticlockwise) Ans.

Example 13.17. In a gear train, as
shown in Fig. 13.23, gear B is connected to the
input shaft and gear F is connected to the output
shaft. The arm A carrying the compound wheels
D and E, turns freely on the output shaft. If the
input speed is 1000 r.p.m. counter- clockwise
when seen from the right, determine the speed of
the output shaft under the following conditions :

1. When gear C is fixed, and 2. when
gear C is rotated at 10 r.p.m. counter clockwise.

Solution. Given : TB = 20 ; TC = 80 ;
TD = 60 ; TE = 30 ; TF = 32 ; NB = 1000 r.p.m.
(counter-clockwise)

The table of motions is given below :

Table 13.19. Table of motions.

Revolutions of elements

Step Conditions of motion Arm A Gear B Compound Gear C Gear F (or
No. (or input wheel D-E output shaft)

shaft)

1. 0 + 1
B

D

T

T
+ B D

D C
–

T T

T T
× B E

D F
–

T T

T T
×

B

C
–

T

T
=

2. 0 + x
B

D

T
x

T
+ × B

C
–

T
x

T
× B E

D F
–

T T
x

T T
× ×

3. + y + y + y + y + y

4. + y x + y
B

D

T
y x

T
+ × B

C
–

T
y x

T
× B E

D F
–

T T
y x

T T
× ×

Fig. 13.23

Arm fixed, gear B rotated
through + 1 revolution (i.e.
1 revolution anticlockwise)

Arm fixed, gear B rotated
through + x revolutions

Add + y revolutions to all
elements

Total motion
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1. Speed of the output shaft when gear C is fixed

Since the gear C is fixed, therefore from the fourth row of the table,

B

C

– 0
T

y x
T

× = or 20
– 0

80
y x × =

∴ y – 0.25 x = 0 ...(i)
We know that the input speed (or the speed of gear B) is 1000 r.p.m. counter clockwise,

therefore from the fourth row of the table,
x + y = + 1000 ...(ii)

From equations (i) and (ii), x = + 800, and y = + 200

∴   Speed of output shaft = Speed of gear B E

D F

–
T T

F y x
T T

= × ×

20 30
200 – 800 200 – 187.5 12.5 r.p.m.

80 32
= × × = =

= 12.5 r.p.m. (counter clockwise) Ans.

2. Speed of the output shaft when gear C is rotated at  10 r.p.m. counter clockwise

Since the gear C is rotated at 10 r.p.m. counter clockwise, therefore from the fourth row of the table,

B

C

– 10
T

y x
T

× = + or
20

– 10
80

y x × =

∴ y – 0.25 x = 10 ...(iii)
From equations (ii) and (iii),

x = 792, and y = 208

∴    Speed of output shaft

= Speed of gear B E

D F

20 30
– 208 – 792

80 32

T T
F y x

T T
= × × = × ×

= 208 – 185.6 = 22.4 r.p.m. = 22.4 r.p.m. (counter clockwise)  Ans.
Example 13.18. Fig. 13.24 shows a differential

gear used in a motor car. The pinion A on the propeller
shaft has 12 teeth and gears with the crown gear B which
has 60 teeth. The shafts P and Q form the rear axles to
which the road wheels are attached. If the propeller
shaft rotates at 1000 r.p.m. and the road wheel attached
to axle Q has a speed of 210 r.p.m. while taking a turn,
find the speed of road wheel attached to axle P.

Solution. Given : TA = 12 ; TB = 60 ; NA = 1000
r.p.m. ; NQ = ND = 210 r.p.m.

Since the propeller shaft or the pinion A  rotates at
1000 r.p.m., therefore speed of crown gear B,

                                  
A

B A
B

12
1000

60

T
N N

T
= × = ×

                                 = 200 r.p.m.

The table of motions is given below :

Fig. 13.24
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Table 13.20. Table of motions.

Revolutions of elements

Step No. Conditions of motion Gear B Gear C Gear E Gear D

1. 0 + 1
C

E

T

T
+ C E

E D
– – 1

T T

T T
× =

C D( )T T=�

2. 0 + x
C

E

T
x

T
+ × – x

3. + y + y + y + y

4. + y x + y
C

E

T
y x

T
+ × y – x

Since the speed of gear B is 200 r.p.m., therefore from the fourth row of the table,

y = 200 ...(i)

Also, the speed of road wheel attached to axle Q or the speed of gear D is 210 r.p.m., there-
fore from the fourth row of the table,

y – x = 210 or x = y – 210 = 200 – 210 = – 10

∴   Speed of road wheel attached to axle P

= Speed of gear C = x + y

= – 10 + 200 = 190 r.p.m. Ans.

13.11. Torques in Epicyclic Gear Trains

Fig. 13.25. Torques in epicyclic gear trains.

When the rotating parts of an epicyclic gear train, as shown in Fig. 13.25, have no angular
acceleration, the gear train is kept in equilibrium by the three externally applied torques, viz.

1. Input torque on the driving member (T1),

2. Output torque or resisting or load torque on the driven member (T2),

3. Holding or braking or fixing torque on the fixed member (T3).

Gear B fixed-Gear C rotated
through + 1 revolution (i.e. 1
revolution anticlockwise)

Gear B  fixed-Gear C rotated
through + x revolutions

Add + y  revolutions to all
elements

Total motion
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The net torque applied to the gear train must be zero. In other words,

T1 + T2 + T3  = 0 ...(i)

∴ F1.r1 + F2.r2 + F3.r3 = 0 ...(ii)

where F1, F2 and F3 are the corresponding externally applied forces at radii r1, r2 and r3.

Further, if ω1, ω2 and ω3 are the angular speeds of the driving, driven and fixed members
respectively, and the friction be neglected, then the net kinetic energy dissipated by the gear train
must be zero, i.e.

T1.ω1 + T2.ω2 + T3.ω3 = 0 ...(iii)

But, for a fixed member, ω3 = 0

∴ T1.ω1 + T2.ω2 = 0 ...(iv)

Notes : 1. From equations (i) and (iv), the holding or braking torque T3 may be obtained as follows :

1
2 1

2

–T T
ω= ×
ω ...[From equation (iv)]

and T3 = – (T1+ T2 ) ...[From equation (i)]

1 1
1 1

2 2

– 1 – 1
N

T T
N

   ω= =   ω   
2. When input shaft (or driving shaft) and output shaft (or driven shaft) rotate in the same direction,

then the input and output torques will be in opposite directions. Similarly, when the input and output shafts
rotate in opposite directions, then the input and output torques will be in the same direction.

Example 13.19. Fig. 13.26 shows an epicyclic gear train. Pinion
A has 15 teeth and is rigidly fixed to the motor shaft. The wheel B has 20
teeth and gears with A and also with the annular fixed wheel E. Pinion
C has 15 teeth and is integral with B (B, C being a compound gear
wheel). Gear C meshes with annular wheel D, which is keyed to the
machine shaft. The arm rotates about the same shaft on which A is fixed
and carries the compound wheel B, C. If the motor runs at 1000 r.p.m.,
find the speed of the machine shaft. Find the torque exerted on the
machine shaft, if the motor develops a torque of 100 N-m.

Solution. Given : TA = 15 ; TB = 20 ; TC = 15 ; NA = 1000 r.p.m.; Torque developed by motor (or
pinion A) = 100 N-m

First of all, let us find the number of teeth on wheels D and E. Let TD and TE be the number of
teeth on wheels D and E respectively. Let dA, dB, dC, dD and dE be the pitch circle diameters of wheels
A , B, C, D and E respectively. From the geometry of the figure,

dE = dA + 2 dB and dD = dE – (dB – dC)

Since the number of teeth are proportional to their pitch circle diameters, therefore,

TE = TA + 2 TB = 15 + 2 × 20 = 55

and TD = TE – (TB – TC) = 55 – (20 – 15) = 50

Speed of the machine shaft

The table of motions is given below :

Fig. 13.26
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Table 13.21. Table of motions.

Revolutions of elements

Step Conditions of motion Arm Pinion Compound Wheel D Wheel E
No. A wheel B-C

1. 0 + 1
A

B
–

T

T
A C

B D
–

T T

T T
× A B A

B E E

T T T

T T T
− × = −

2. 0 + x
A

B
–

T
x

T
× A C

B D
–

T T
x

T T
× × A

E

T
x

T
− ×

3. + y + y + y + y + y

4. + y x + y
A

B
–

T
y x

T
× A C

B D
–

T T
y x

T T
× × A

E

T
y x

T
− ×

We know that the speed of the motor or the speed of the pinion A  is 1000 r.p.m.
Therefore

x + y = 1000 ...(i)

Also, the annular wheel E is fixed, therefore

A

E

– 0
T

y x
T

× = or A

E

15
0.273

55

T
y x x x

T
= × = × = ...(ii)

From equations (i) and (ii),

x = 786 and y = 214

∴   Speed of machine shaft = Speed of wheel D,

CA
D

B D

15 15
– 214 – 786 37.15 r.p.m.

20 50

TT
N y x

T T
= × × = × × = +

= 37.15 r.p.m. (anticlockwise) Ans.

Torque exerted on the machine shaft

We know that

Torque developed by motor × Angular speed of motor

= Torque exerted on machine shaft
       × Angular speed of machine shaft

or                      100 × ωA = Torque exerted on machine shaft × ωD

∴   Torque exerted on machine shaft

A A

D D

1000
100 100 100 2692 N-m

37.15

N

N

ω= × = × = × =
ω

Ans.

Arm fixed-pinion A
rotated through + 1
revolution
(anticlockwise)

Arm fixed-pinion A
rotated through + x
revolutions

Add + y revolutions to
all elements

Total motion
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Fig. 13.27

Example 13.20. An epicyclic gear train consists of a sun wheel
S, a stationary internal gear E and three identical planet wheels P
carried on a star- shaped planet carrier C. The size of different toothed
wheels are such that the planet carrier C rotates at 1/5th of the speed
of the sunwheel S. The minimum number of teeth on any wheel is 16.
The driving torque on the sun wheel is 100 N-m. Determine : 1. num-
ber of teeth on different wheels of the train, and 2. torque necessary to
keep the internal gear stationary.

Solution.  Given :     S
C 5

N
N =

1. Number of teeth on different wheels

The arrangement of the epicyclic gear train is shown in Fig. 13.27. Let TS and TE be the
number of teeth on the sun wheel S and the internal gear E respectively. The table of motions is
given below :

Table 13.22. Table of motions.

Revolutions of elements

Step Conditions of motion Planet Sun Planet Internal gear E
No. carrier C wheel S wheel P

1. 0 + 1
S

P
–

T

T
S P S

P E E
– –

T T T

T T T
× =

2. 0 + x
S

P
–

T
x

T
× S

E
–

T
x

T
×

3. + y + y + y + y

4. + y x + y
S

P
–

T
y x

T
× S

E
–

T
y x

T
×

We know that when the sunwheel S makes 5 revolutions, the planet carrier C makes 1
revolution. Therefore from the fourth row of the table,

y = 1, and x + y = 5 or x = 5 – y = 5 – 1 = 4

Since the gear E is stationary, therefore from the fourth row of the table,

S

E

– 0
T

y x
T

× = or S

E

1 – 4 0
T

T
× = or S

E

1

4

T

T
=

∴ TE = 4TS

Since the minimum number of teeth on any wheel is 16, therefore let us take the number of
teeth on sunwheel, TS = 16

∴ TE = 4 TS = 64 Ans.

Let dS, dP and dE be the pitch circle diameters of wheels S, P and E respectively. Now from the
geometry of Fig. 13.27,

dS + 2 dP = dE

Planet carrier C fixed, sunwheel S
rotates through + 1 revolution (i.e.
1 rev. anticlockwise)

Planet carrier C fixed, sunwheel S
rotates through + x revolutions

Add + y revolutions to all elements

Total  motion
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Assuming the module of all the gears to be same, the number of teeth are proportional to their
pitch circle diameters.

TS + 2 TP = TE or 16 + 2 TP = 64 or TP = 24 Ans.

2. Torque necessary to keep the internal gear stationary

We know that

Torque on S × Angular speed of S

= Torque on C × Angular speed of C

100 × ωS = Torque on C × ωC

∴ Torque on S S

C C

100 100 100 5 500 N-m
N

C
N

ω
= × = × = × =

ω

∴  Torque necessary to keep the internal gear stationary

= 500 – 100 = 400 N-m Ans.

Example 13.21. In the epicyclic gear train, as
shown in Fig. 13.28, the driving gear A rotating in clock-
wise direction has 14 teeth and the fixed annular gear C
has 100 teeth. The ratio of teeth in gears E and D is 98 :
41. If 1.85 kW is supplied to the gear A rotating at 1200
r.p.m., find : 1. the speed and direction of rotation of gear
E, and 2. the fixing torque required at C, assuming 100
per cent efficiency throughout and that all teeth have the
same pitch.

Solution. Given : TA = 14 ; TC = 100 ; TE / TD
= 98 / 41 ; PA = 1.85 kW = 1850 W ; NA = 1200 r.p.m.

Let dA, dB and dC be the pitch circle diameters of gears A , B and C respectively. From Fig.
13.28,

dA + 2 dB = dC

Fig. 13.28

Gears are extensively used in trains for power transmission.
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Arm fixed-Gear A  rotated
through – 1 revolution (i.e.
1 revolution clockwise)

Arm fixed-Gear A  rotated
through – x revolutions

Add – y revolutions to all
elements

Total motion

Since teeth of all gears have the same pitch and the number of teeth are proportional to their
pitch circle diameters, therefore

TA + 2TB = TC or C A
B

– 100 – 14
43

2 2

T T
T = = =

The table of motions is now drawn as below :

Table 13.23. Table of motions.

Revolutions of elements

Step Conditions of motion Arm Gear Compound Gear C Gear E
No. A gear B-D

1. 0 – 1
A

B

T

T
+ A B

B C

T T

T T
+ × A D

B E

T T

T T
+ ×

A

C

T

T
= +

2. 0 – x
A

B

T
x

T
+ × A

C

T
x

T
+ × A D

B E

T T
x

T T
+ × ×

3. – y – y – y – y – y

4. – y – y – x
A

B
–

T
y x

T
+ × A

C
–

T
y x

T
+ × A D

B E
–

T T
y x

T T
+ × ×

Since the annular gear C is fixed, therefore from the fourth row of the table,

A

C

– 0
T

y x
T

+ × = or 14
– 0

100
y x+ × =

∴ – y + 0.14 x = 0 ...(i)

Also, the gear A  is rotating at 1200 r.p.m., therefore

– x – y = 1200 ...(ii)

From equations (i) and (ii), x = – 1052.6, and y = – 147.4

1. Speed and direction of rotation of gear E

From the fourth row of the table, speed of gear E,

A D
E

B E

14 41
– 147.4 – 1052.6

43 98

T T
N y x

T T
= + × × = × ×

= 147.4 – 143.4 = 4 r.p.m.

= 4 r.p.m. (anticlockwise) Ans.

2. Fixing torque required at C

We know that torque on A  A

A

60 1850 60
14.7 N-m

2 2 1200

P

N

× ×= = =
π π ×

Since the efficiency is 100 per cent throughout, therefore the power available at E (PE) will
be equal to power supplied at A  (PA).
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∴  Torque on E A

E

60 1850 60
4416 N-m

2 2 4

P

N

× ×= = =
π × π ×

∴  Fixing torque required at C

= 4416 – 14.7 = 4401.3 N-m Ans.

Example 13.22. An over drive for a vehicle consists of an
epicyclic gear train, as shown in Fig. 13.29, with compound planets
B-C. B has 15 teeth and meshes with an annulus A which has 60
teeth. C has 20 teeth and meshes with the sunwheel D which is fixed.
The annulus is keyed to the propeller shaft Y which rotates at 740
rad /s. The spider which carries the pins upon which the planets
revolve, is driven directly from main gear box by shaft X, this shaft
being relatively free to rotate with respect to wheel D. Find the
speed of shaft X, when all the teeth have the same module.

When the engine develops 130 kW, what is the holding
torque on the wheel D ? Assume 100 per cent efficiency
throughout.

Solution. Given : TB = 15 ; TA = 60 ; TC = 20 ; ωY = ωA = 740 rad /s ; P = 130 kW = 130 × 103 W

First of all, let us find the number of teeth on the sunwheel D (TD). Let dA , dB , dC and dD be
the pitch circle diameters of wheels A , B, C and D respectively. From Fig. 13.29,

CD B A

2 2 2 2

dd d d+ + = or dD + dC + dB = dA

Since the module is same for all teeth and the number of teeth are proportional to their pitch
circle diameters, therefore

TD + TC + TB = TA or TD = TA – (TC + TB) = 60 – (20 + 15) = 25

The table of motions is given below :

Table 13.24. Table of motions.

Revolutions of elements

Step Conditions of motion Arm (or Wheel D Compound Wheel A
No. shaft X) wheel C-B (or shaft Y)

1. 0 + 1
D

C
–

T

T
D B

C A
–

T T

T T
×

2. 0 + x
D

C
–

T
x

T
× D B

C A
–

T T
x

T T
× ×

3. + y + y + y + y

4. + y x + y
D

C
–

T
y x

T
× D B

C A
–

T T
y x

T T
× ×

Since the shaft Y  or wheel A  rotates at 740 rad/s, therefore

D B

C A

– 740
T T

y x
T T

× × = or 25 15
– 740

20 60
y x × × =

y – 0.3125 x = 740 ...(i)

Arm  fixed-wheel D rotated
through + 1 revolution
(anticlockwise)

Arm  fixed-wheel D rotated
through + x revolutions

Add + y revolutions to all ele-
ments

Total motion

Fig. 13.29
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Also the wheel D is  fixed, therefore

x + y = 0 or y = – x ...(ii)

From equations (i) and (ii),

x = – 563.8 and y = 563.8

Speed of shaft X

Since the shaft X  will make the same number of revolutions as the arm, therefore

Speed of shaft X , ωX = Speed of arm = y = 563.8 rad/s Ans.

Holding torque on wheel D

We know that torque on A  = P/ωA = 130 × 103 / 740 = 175.7 N-m

and          Torque on  X = P/ωX = 130 × 103/563.8 = 230.6 N-m

∴  Holding torque on wheel D

= 230.6 – 175.7 = 54.9 N-m Ans.

Example 13.23. Fig. 13.30 shows some details of a compound epicyclic gear drive where I
is the driving or input shaft and O is the driven or output shaft which carries two arms A and B
rigidly fixed to it. The arms carry planet wheels which mesh with annular wheels P and Q and the
sunwheels X and Y. The sun wheel X is a part of Q. Wheels Y and Z are fixed to the shaft I. Z engages
with a planet wheel carried on Q and this planet wheel engages the fixed annular wheel R. The
numbers of teeth on the wheels are :

P = 114, Q = 120, R = 120, X = 36, Y = 24 and Z = 30.

Fig. 13.30.

The driving shaft I makes 1500 r.p.m.clockwise looking from our right and the input at I is
7.5 kW.

1. Find the speed and direction of rotation of the driven shaft O and the wheel P.

2. If the mechanical efficiency of the drive is 80%, find the torque tending to rotate the fixed
wheel R.

Solution. Given : TP =144 ; TQ = 120 ; TR = 120 ; TX = 36 ; TY = 24 ; TZ = 30 ; NI = 1500
r.p.m. (clockwise) ; P = 7.5 kW = 7500 W ; η = 80% = 0.8

First of all, consider the train of wheels Z,R and Q (arm). The revolutions of various wheels
are shown in the following table.
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Arm fixed-wheel Z rotates through + 1
revolution (anticlockwise)

Arm fixed-wheel Z rotates through + x revo-
lutions

Add + y revolutions to all elements

Total motion

Table 13.25. Table of motions.

Revolutions of elements

Step No. Conditions of motion Q (Arm) Z (also I) R (Fixed)

1. 0 + 1
Z

R
–

T

T

2. 0 + x
Z

R
–

T
x

T
×

3. + y + y + y

4. + y x + y
Z

R
–

T
y x

T
×

Since the driving shaft I as well as wheel Z rotates at 1500 r.p.m. clockwise, therefore

x + y = – 1500 ...(i)

Also, the wheel R is fixed. Therefore

Z

R

– 0
T

y x
T

× = or Z

R

30
0.25

120

T
y x x x

T
= × = × = ...(ii)

From equations (i) and (ii),

x = – 1200, and y = – 300

Now consider the train of wheels Y , Q, arm A , wheels P and X . The revolutions of various
elements are shown in the following table.

Table 13.26. Table of motions.

Revolutions of elements

Step Conditions of motion Arm A, B Wheel Y Compound Wheel P
No. and Shaft O wheel Q-X

1. 0 + 1
Y

Q
–

T

T
Y X

Q P

T T

T T
+ ×

2. 0 + x1

Y
1

Q
–

T
x

T
× Y X

1
Q P

T T
x

T T
+ × ×

3. + y1 + y1 + y1 + y1

4. + y1 x1 + y1

Y
1 1

Q
–

T
y x

T
× Y X

1 1
Q P

T T
y x

T T
+ × ×

Since the speed of compound wheel Q-X is same as that of Q, therefore

Y
1 1

Q

– – 300
T

y x y
T

× = =

or 1 1
24

– – 300
120

y x × =

Arm A  f ixed-wheel  Y
rotates through + 1
revolution (anticlockwise)

Arm A  fixed-wheel Y  rotates
through + x1 revolutions

Add + y1 revolutions to all
elements

Total motion
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∴ y1 = 0.2 x1 – 300 ...(iii)

Also Speed of wheel Y  =  Speed of wheel Z or shaft I

∴ x1 + y1 = x + y = – 1500 ...(iv)

x1 + 0.2 x1 – 300 = – 1500 ...[From equation (iii)]

1.2 x1= – 1500 + 300 = – 1200

or x1 = – 1200/1.2 = – 1000

and y1 = – 1500 – x1 = – 1500 + 1000 = – 500

1.  Speed and direction of the driven shaft O and the wheel P
Speed of the driven shaft O,

NO = y1 = – 500 = 500 r.p.m. clockwise Ans.

and Speed of the wheel P, Y X
P 1 1

Q P

24 36
– 500 – 1000

120 144

T T
N y x

T T
= + × × = × ×

= – 550 = 550 r.p.m. clockwise Ans.

2.  Torque tending to rotate the fixed wheel R
We know that the torque on shaft I or input torque

1
1

60 7500 60
47.74 N-m

2 2 1500

P
T

N

× ×= = =
π × π ×

and torque on shaft O or output torque,

2
O

60 0.8 7500 60
114.58 N-m

2 2 500

P
T

N

η × × × ×= = =
π × π ×

Since the input and output shafts rotate in the same direction (i.e. clockwise), therefore input
and output torques will be in opposite direction.

∴  Torque tending to rotate the fixed wheel R
= T2 – T1 = 114.58 – 47.74 = 66.84 N-m  Ans.

Example 13.24. An epicyclic bevel gear train (known as Humpage’s reduction gear) is shown
in Fig. 13.31. It consists of a fixed wheel C, the
driving shaft X and the driven shaft Y. The compound
wheel B-D can revolve on a spindle F which can
turn freely about the axis X and Y.

Show that (i) if the ratio of tooth numbers
TB / TD is greater than TC / TE , the wheel E will ro-
tate in the same direction as wheel A, and (ii) if the
ratio TB / TD is less than TC / TE, the direction of E is
reversed.

If the numbers of teeth on wheels A, B, C, D
and E are 34, 120, 150, 38 and 50 respectively and
7.5 kW is put into the shaft X at 500 r.p.m., what is
the output torque of the shaft Y, and what are the
forces (tangential to the pitch cones) at the contact
points between wheels D and E and between wheels B and C, if the module of all wheels is 3.5 mm ?

Solution. Given : TA = 34 ; TB = 120 ; TC = 150 ; TD = 38 ; TE = 50 ; PX = 7.5 kW = 7500 W ;
NX = 500 r.p.m. ; m = 3.5 mm

Fig. 13.31
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Spindle fixed, wheel A
is rotated through + 1
revolution

Spindle fixed, wheel A
is rotated through + x
revolutions

Add + y revolutions to
all elements

Total motion

The table of motions is given below :

Table 13.27. Table of motions.

Revolutions of elements

Step Conditions of motion Spindle Wheel A Compound Wheel C Wheel E (or
No. F (or shaft X) wheel B-D shaft Y)

1. 0 + 1
A

B

T

T
+ A B

B C

T T

T T
− × A D

B E

T T

T T
− ×

A

C

–
T

T
=

2. 0 + x
A

B

T
x

T
+ × A

C
–

T
x

T
× A D

B E
–

T T
x

T T
× ×

3. + y + y + y + y + y

4. + y x + y
A

B

T
y x

T
+ × A

C
–

T
y x

T
× A D

B E
–

T T
y x

T T
× ×

Let us assume that the driving shaft X  rotates through 1 revolution anticlockwise, therefore
the wheel A will also rotate through 1 revolution anticlockwise.

∴ x + y = + 1 or y = 1 – x ...(i)
We also know that the wheel C is fixed, therefore

A

C

– 0
T

y x
T

× = or A

C

(1 – ) – 0
T

x x
T

× = ...[From equation (i)]

A

C

1 – 1 0
T

x
T

 
+ = 

 
or C A

C

1
T T

x
T

 +
= 

 

and C

C A

T
x

T T
=

+
...(ii)

From equation (i),

C A

C A C A

1 – 1 –
T T

y x
T T T T

= = =
+ +

...(iii)

We know that speed of wheel E,

CA D A A D
E

B E C A C A B E

– –
TT T T T T

N y x
T T T T T T T T

= × × = × ×
+ +

CA D

C A B E

1 –
TT T

T T T T

 
= × +  

...(iv)

and the speed of wheel A ,
NA = x + y = + 1 revolution

(i)  If CB

D E

TT

T T
>  or TB × TE > TC × TD , then the equation (iv) will be positive. Therefore the

wheel E will rotate in the same direction as wheel A .  Ans.
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(ii)  If CB

D E

TT

T T
<  or TB × TE < TC × TD , then the equation (iv) will be negative. Therefore the

wheel E will rotate in the opposite direction as wheel A.  Ans.

Output torque of shaft Y

We know that the speed of the driving shaft X  (or wheel A ) or input speed is 500 r.p.m.,
therefore from the fourth row of the table,

x + y = 500 or y = 500 – x ...(v)

Since the wheel C is fixed, therefore

 A

C

– 0
T

y x
T

× = or 34
(500 – ) – 0

150
x x × = ...[From equation (v)]

∴  500 – x – 0.227 x = 0 or x = 500/1.227 = 407.5 r.p.m.

and                                           y = 500 – x = 500 – 407.5 = 92.5 r.p.m.

Since the speed of the driven or output shaft Y  (i.e. NY) is equal to the speed of wheel E
(i.e. NE), therefore

                  
A D

Y E
B E

34 38
– 92.5 – 407.5

120 50

T T
N N y x

T T
= = × × = × ×

               = 92.5 – 87.75 = 4.75 r.p.m.

Assuming 100 per cent efficiency of the gear train, input power PX is equal to output power
(PY), i.e.

                PY = PX = 7.5 kW = 7500 W

∴   Output torque of shaft Y ,

                  Y

Y

60 7500 60
15 076 N-m 15.076 kN-m

2 2 4.75

P

N

× ×= = = =
π π ×

 Ans.

Tangential force between wheels D and E

We know that the pitch circle radius of wheel E,

                 E
E

3.5 50
87.5 mm 0.0875 m

2 2

m T
r

× ×= = = =

∴   Tangential force between wheels D and E,

                  Torque on wheel 15.076
172.3 kN

Pitch circle radius of wheel 0.0875

E

E
= = =  Ans.

...(∴ Torque on wheel E = Torque on shaft Y )

Tangential force between wheels B and C

We know that the input torque on shaft X  or on wheel A

                 
X

X

60 7500 60
143 N-m

2 2 500

P

N

× ×= = =
π π ×

∴   Fixing torque on the fixed wheel C

                  = Torque on wheel E – Torque on wheel A

              = 15 076 – 143 = 14 933 N-m = 14.933  kN-m
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Pitch circle radius of wheel C,

                  C
C

3.5 150
262.5 mm 0.2625 m

2 2

m T
r

× ×= = = =

Tangential force between wheels B and C

                 
C

Fixing torque on wheel 14.933
57 kN

0.2625

C

r
= = = Ans.

EXERCISES
1. A compound train consists of six gears. The number of teeth on the gears are as follows :

Gear : A B C D E F

No. of teeth : 60 40 50 25 30 24

The gears B and C are on one shaft while the gears D and E are on another shaft. The gear A  drives gear
B, gear C drives gear D and gear E drives gear F. If the gear A  transmits 1.5 kW at 100 r.p.m. and the gear
train has an efficiency of 80 per cent, find the torque on gear F. [Ans. 30.55 N-m]

2. Two parallel shafts are to be connected by spur gearing. The approximate distance between the shafts
is 600 mm. If one shaft runs at 120 r.p.m. and the other at 360 r.p.m., find the number of teeth on each
wheel, if the module is 8 mm. Also determine the exact distance apart of the shafts.

[Ans. 114, 38 ; 608 mm]
3. In a reverted gear train, as shown in Fig. 13.32, two shafts A  and B are

in the same straight line and are geared together through an interme-
diate parallel shaft C. The gears connecting the shafts A  and C have a
module of 2 mm and those connecting the shafts C and B have a
module of 4.5 mm. The speed of shaft A  is to be about but greater than
12 times the speed of shaft B, and the ratio at each reduction is same.
Find suitable number of teeth for gears. The number of teeth of each
gear is to be a minimum but not less than 16. Also find the exact
velocity ratio and the distance of shaft C from A  and B.
                                          [Ans. 36, 126, 16, 56 ; 12.25 ; 162 mm]

4. In an epicyclic gear train, as shown in Fig.13.33, the number of teeth
on wheels A , B and C are 48, 24 and 50 respectively. If the arm rotates at 400 r.p.m., clockwise,
find : 1. Speed of wheel C when A  is fixed, and 2. Speed of wheel A  when C is fixed.

[Ans. 16 r.p.m. (clockwise) ; 16.67 (anticlockwise)]

Fig. 13.33 Fig. 13.34

Fig. 13.32
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5. In an epicyclic gear train, as shown in Fig. 13.34, the wheel C is keyed to the shaft B and wheel F is

keyed to shaft A . The wheels D and E rotate together on a pin fixed to the arm G. The number of teeth
on wheels C, D, E and F are 35, 65, 32 and 68 respectively.
If the shaft A  rotates at 60 r.p.m. and the shaft B rotates at 28 r.p.m. in the opposite direction, find
the speed and direction of rotation of arm G. [Ans. 90 r.p.m., in the same direction as shaft A]

6. An epicyclic gear train, as shown in Fig. 13.35, is composed of a fixed annular wheel A  having 150
teeth. The wheel A  is meshing with wheel B which drives wheel D through an idle wheel C, D being
concentric with A . The wheels B and C are carried on an arm which revolves clockwise at 100 r.p.m.
about the axis of A  and D. If the wheels B and D have 25 teeth and 40 teeth respectively, find the
number of teeth on C and the speed and sense of rotation of C. [Ans. 30 ; 600 r.p.m. clockwise]

                            

Fig. 13.35 Fig. 13.36

7. Fig. 13.36, shows an epicyclic gear train with the following details :

A  has 40 teeth external (fixed gear) ; B has 80 teeth internal ; C - D is a compound wheel having 20 and
50 teeth (external) respectively, E-F is a compound wheel having 20 and 40 teeth (external) respec-
tively, and G has 90 teeth (external).

The arm runs at 100 r.p.m. in clockwise direction. Determine the speeds for gears C, E, and B.
[Ans. 300 r.p.m. clockwise ; 400 r.p.m. anticlockwise ; 150 r.p.m. clockwise]

8. An epicyclic gear train, as shown in Fig. 13.37, has a sun wheel S of 30 teeth and two planet wheels
P-P of 50 teeth. The planet wheels mesh with the internal teeth of a fixed annulus A . The driving shaft
carrying the sunwheel, transmits 4 kW at 300 r.p.m. The driven shaft is connected to an arm which
carries the planet wheels. Determine the speed of the driven shaft and the torque transmitted, if the
overall efficiency is 95%. [Ans. 56.3 r.p.m. ; 644.5 N-m]

Fig. 13.37 Fig. 13.38

9. An epicyclic reduction gear, as shown in Fig. 13.38, has a shaft A  fixed to arm B. The arm B has a pin
fixed to its outer end and two gears C and E which are rigidly fixed, revolve on this pin. Gear C
meshes with annular wheel D and gear E with pinion F. G is the driver pulley and D is kept stationary.

The number of teeth are : D = 80 ; C = 10 ; E = 24 and F = 18.

If the pulley G runs at 200 r.p.m. ; find the speed of shaft A .

[Ans. 17.14 r.p.m. in the same direction as that of G]
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10. A reverted epicyclic gear train for a hoist block is shown in
Fig. 13.39. The arm E is keyed to the same shaft as the load
drum and the wheel A  is keyed to a second shaft which car-
ries a chain wheel, the chain being operated by hand. The
two shafts have common axis but can rotate independently.
The wheels B and C are compound and rotate together on a
pin carried at the end of arm E. The wheel D has internal
teeth and is fixed to the outer casing of the block so that it
does not rotate.

The wheels A  and B have 16 and 36 teeth respectively with a
module of 3 mm. The wheels C and D have a module of 4
mm. Find : 1. the number of teeth on wheels C and D when
the speed of A  is ten times the speed of arm E, both rotating
in the same sense, and 2. the speed of wheel D when the
wheel A  is fixed and the arm E rotates at 450 r.p.m.
anticlockwise.
[Ans. TC = 13 ; TD = 52 ; 500 r.p.m. anticlockwise]

11. A compound epicyclic gear is shown diagrammatically in Fig. 13.40. The gears A , D and E are free to
rotate on the axis P. The compound gear B and C rotate together on the axis Q at the end of arm F. All
the gears have equal pitch. The number of external teeth on the gears A , B and C are 18, 45 and 21
respectively. The gears D and E are annular gears. The gear A  rotates at 100 r.p.m. in the anticlockwise
direction and the gear D rotates at 450 r.p.m. clockwise. Find the speed and direction of the arm and
the gear E. [Ans. 400 r.p.m. clockwise ; 483.3 r.p.m. clockwise]

12. In an epicyclic gear train of the ‘sun and planet type’ as shown in Fig. 13.41, the pitch circle diameter
of the internally toothed ring D is to be 216 mm and the module 4 mm. When the ring D is stationary,
the spider A , which carries three planet wheels C of equal size, is to make one revolution in the same
sense as the sun wheel B for every five revolutions of the driving spindle carrying the sunwheel B.
Determine suitable number of teeth for all the wheels and the exact diameter of pitch circle of the ring.

[Ans. TB = 14 , TC = 21 , TD = 56 ; 224 mm]

Fig. 13.40 Fig. 13.41

13. An epicyclic train is shown in Fig. 13.42. Internal gear A  is keyed to the driving shaft and has 30 teeth.
Compound wheel C and D of 20 and 22 teeth respectively are free to rotate on the pin fixed to the arm
P which is rigidly connected to the driven shaft. Internal gear B which has 32 teeth is fixed. If the
driving shaft runs at 60 r.p.m. clockwise, determine the speed of the driven shaft. What is the direction
of rotation of driven shaft with reference to driving shaft? [Ans. 1980 r.p.m. clockwise]

Fig. 13.39
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Fig. 13.42 Fig. 13.43
14. A shaft Y  is driven by a co-axial shaft X  by means of an epicyclic gear train, as shown in Fig. 13.43.

The wheel A  is keyed to X  and E to Y . The wheels B and D are compound and carried on an arm F
which can turn freely on the common axes of X  and Y . The wheel C is fixed. If the numbers of teeth
on A , B, C, D and E are respectively 20, 64, 80, 30 and 50 and the shaft X  makes 600 r.p.m.,
determine the speed in r.p.m. and sense of rotation of the shaft Y .

[Ans. 30 r.p.m. in the same sense as shaft X]

15. An epicyclic bevel gear train, as shown in Fig. 13.44, has fixed gear B meshing with pinion C. The
gear E on the driven shaft meshes with the pinion D. The pinions C and D are keyed to a shaft,
which revolves in bearings on the arm A . The arm A  is keyed to the driving shaft. The number of
teeth are : TB = 75, TC = 20, TD = 18, and TE = 70. Find the speed of the driven shaft, if 1. the driving
shaft makes 1000 r.p.m., and 2. the gear B turns in the same sense as the driving shaft at 400
r.p.m., the driving shaft still making 1000 r.p.m.

[Ans. 421.4 r.p.m. in the same direction as driving shaft]

16. The epicyclic gear train is shown in Fig. 13.45. The wheel D is held stationary by the shaft A  and the
arm B is rotated at 200 r.p.m. The wheels E (20 teeth) and F (40 teeth) are fixed together and rotate
freely on the pin carried by the arm. The wheel G (30 teeth) is rigidly attached to the shaft C. Find the
speed of shaft C stating the direction of rotation to that of B.

If the gearing transmits 7.5 kW, what will be the torque required to hold the shaft A  stationary, neglect-
ing all friction losses?

[Ans. 466.7 r.p.m. in opposite direction of B; 511.5 N-m in opposite direction of B]

Fig. 13.44 Fig. 13.45

17. An epicyclic gear train, as shown in Fig. 13.46, consists of two sunwheels A  and D with 28 and 24
teeth respectively, engaged with a compound planet wheels B and C with 22 and 26 teeth. The sunwheel



478  �   Theory of Machines

D is keyed to the driven shaft and the sunwheel A  is a fixed wheel co-axial with the driven shaft. The
planet wheels are carried on an arm E from the driving shaft which is co-axial with the driven shaft.

Find the velocity ratio of gear train. If 0.75 kW is transmitted and input speed being 100 r.p.m.,
determine the torque required to hold the sunwheel A . [Ans. 2.64 ; 260.6 N-m]

Fig. 13.46 Fig. 13.47

18. In the epicyclic reduction gear, as shown in Fig. 13.47, the sunwheel D has 20 teeth and is keyed
to the input shaft. Two planet wheels B , each having 50 teeth, gear with wheel D and are carried
by an arm A  fixed to the output shaft. The wheels B  also mesh with an internal gear C which is
fixed. The input shaft rotates at 2100 r.p.m. Determine the speed of the output shaft and the torque
required to fix C when the gears are transmitting 30 kW.

[Ans. 300 r.p.m. in the same sense as the input shaft ; 818.8 N-m]

19. An epicyclic gear train for an electric motor is shown in Fig. 13.48. The wheel S has 15 teeth and is
fixed to the motor shaft rotating at 1450 r.p.m. The planet P has 45 teeth, gears with fixed annulus A
and rotates on a spindle carried by an arm which is fixed to the output shaft. The planet P also gears
with the sun wheel S. Find the speed of the output shaft. If the motor is transmitting 1.5 kW,  find the
torque required to fix the annulus A . [Ans. 181.3 r.p.m. ; 69.14 N-m]

Fig. 13.48 Fig. 13.49

20. An epicyclic gear consists of bevel wheels as shown in Fig. 13.49. The driving pinion A  has 20 teeth
and meshes with the wheel B which has 25 teeth. The wheels B and C are fixed together and turn freely
on the shaft F. The shaft F can rotate freely about the main axis X X. The wheel C has 50 teeth and
meshes with wheels D and E, each of which has 60 teeth. Find the speed and direction of E when A
rotates at 200 r.p.m., if

1. D is fixed, and 2. D rotates at 100 r.p.m., in the same direction as A .

In both the cases, find the ratio of the torques transmitted by the shafts of the wheels A  and E, the
friction being neglected.

[Ans. 800 r.p.m. in the opposite direction of A  ; 300 r.p.m. in the opposite
direction of A  ; 4 ; 1.5]
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DO YOU KNOW ?
1. What do you understand by ‘gear train’? Discuss the various types of gear trains.

2. Explain briefly the differences between simple, compound, and epicyclic gear trains. What are the
special advantages of epicyclic gear trains ?

3. Explain the procedure adopted for designing the spur wheels.

4. How the velocity ratio of epicyclic gear train is obtained by tabular method?

5. Explain with a neat sketch the ‘sun and planet wheel’.

6. What are the various types of the torques in an epicyclic gear train ?

OBJECTIVE TYPE QUESTIONS
1. In a simple gear train, if the number of idle gears is odd, then the motion of driven gear will

(a) be same as that of driving gear

(b) be opposite as that of driving gear

(c) depend upon the number of teeth on the driving gear

(d) none of the above

2. The train value of a gear train is

(a) equal to velocity ratio of a gear train (b) reciprocal of velocity ratio of a gear train

(c) always greater than unity (d) always less than unity

3. When the axes of first and last gear are co-axial, then gear train is known as

(a) simple gear train (b) compound gear train

(c) reverted gear train (d) epicyclic gear train

4. In a clock mechanism, the gear train used to connect minute hand to hour hand, is

(a) epicyclic gear train (b) reverted gear train

(c) compound gear train (d) simple gear train

5. In a gear train, when the axes of the shafts, over which the gears are mounted, move relative to a fixed
axis, is called

(a) simple gear train (b) compound gear train

(c) reverted gear train (d) epicyclic gear train

6. A differential gear in an automobile is a

(a) simple gear train (b) epicyclic gear train

(c) compound gear train (d) none of these

7. A differential gear in automobilies is used to

(a) reduce speed (b) assist in changing speed

(c) provide jerk-free movement of vehicle (d) help in turning

ANSWERS
1. (a) 2. (b) 3. (c) 4. (b) 5. (d)

6. (b) 7. (d)
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Power Transmission 

Devices 
of lap on the smaller pulley, the idler pulley is used. The angle of lap may be defined as 
the angle of contact between the belt and the pulley. With the increase in angle of lap, 
the belt drive can transmit more power. Along with the increase in angle of lap, the idler 
pulley also does not allow reduction in the initial tension in the belt. The use of idler 
pulley is shown in Figure 3.7. 

 

 

 

 

 

 

Figure 3.7 : Use of Idler in Belt Drive 

SAQ 2 

(a) What is the main advantage of idler pulley? 

(b) A prime mover drives a dc generator by belt drive. The speeds of prime 
mover and generator are 300 rpm and 500 rpm, respectively. The diameter 
of the driver pulley is 600 mm. The slip in the drive is 3%. Determine 
diameter of the generator pulley if belt is 6 mm thick. 

 

 
 

 

3.4.1 Law of Belting 
The law of belting states that the centre line of the belt as it approaches the pulley, must 
lie in plane perpendicular to the axis of the pulley in the mid plane of the pulley 
otherwise the belt will run off the pulley. However, the point at which the belt leaves the 
other pulley must lie in the plane of a pulley. 

The Figure 3.8 below shows the belt drive in which two pulleys are at right angle to each 
other. It can be seen that the centre line of the belt approaching larger or smaller pulley 
lies in its plane. The point at which the belt leaves is contained in the plane of the other 
pulley. 

If motion of the belt is reversed, the law of the belting will be violated. Therefore, 
motion is possible in one direction in case of non-parallel shafts as shown in Figure 3.8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 : Law of Belting 

Idler Pulley  
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3.4.2 Length of the Belt 

For any type of the belt drive it is always desirable to know the length of belt required. It 
will be required in the selection of the belt. The length can be determined by the 
geometric considerations. However, actual length is slightly shorter than the theoretically 
determined value. 

Open Belt Drive 

The open belt drive is shown in Figure 3.9. Let O1 and O2 be the pulley centers 
and AB and CD be the common tangents on the circles representing the two 
pulleys. The total length of the belt ‘L’ is given by 

  L = AB + Arc BHD + DC + Arc CGA 

Let r be the radius of the smaller pulley, 

 R be the radius of the larger pulley, 

 C be the centre distance between the pulleys, and 

  be the angle subtended by the tangents AB and CD with O1 O2. 

 

 

 

 

 

 

Figure 3.9 : Open Belt Drive 

Draw O1 N parallel to CD to meet O2 D at N. 

By geometry,  O2 O1, N =  C O1 J =  D O2 K=  

   Arc BHD = ( + 2) R, 

   Arc CGA = (  2) r 

   AB = CD = O1 N = O1 O2 cos  = C cos  

   sin
R r

C


   

or,  1 ( )
sin

R r

C
 

   

  2 21
cos 1 sin 1 sin

2
 

      
 

 

  21
( 2 ) ( 2 ) 2 1 sin

2
L R r C

 
           

 
 

For small value of ;   
( )R r

C


  , the approximate lengths 

  
2

( ) 1
( ) 2 ( ) 2 1

2

R r R r
L R r R r C

C C

   
        

   

 

      
22( ) 1

( ) 2 1
2

R r R r
R r C

C C

   
       

   

 

This provides approximate length because of the approximation taken earlier. 

D K 

C 

A 

B 

G 

C J 

β 
= 
r 

β 

O1 O2 
R 

N 
H 

β 
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Crossed-Belt Drive 

The crossed-belt drive is shown in Figure 3.10. Draw O1 N parallel to the line CD 
which meets extended O2 D at N. By geometry 

  1 2 2 1CO J DO K O O N      

  Arc ArcL AGC AB BKD CD     

  Arc ( 2 ), and Arc ( 2 )AGC r BKD R         

  1 ( )
sin or sin

R r R r

C C
 

     

For small value of  

  
R r

C


  

  
2

2 2
2

1 1 ( )
cos 1 sin 1 sin 1

2 2

R r

C

  
         

    

 

  ( 2 ) 2 cos ( 2 )L r C R           

     ( 2 ) ( ) 2 cosR r C        

 

 

 

 
 

 

 
 

Figure 3.10 : Cross Belt Drive 

For approximate length 

  
2 2

2

( ) 1 ( )
( ) 2 2 1

2

R r R r
L R r C

C C

  
      

  

 

     
2( )

( ) 2
R r

R r C
C


      

SAQ 3 

Which type of drive requires longer length for same centre distance and size of 
pulleys? 

 

 
 

 

3.4.3 Cone Pulleys 

Sometimes the driving shaft is driven by the motor which rotates at constant speed but 
the driven shaft is designed to be driven at different speeds. This can be easily done by 
using stepped or cone pulleys as shown in Figure 3.11. The cone pulley has different sets 
of radii and they are selected such that the same belt can be used at different sets of the 
cone pulleys. 

A 

G 

C J 

β 
r 

D K 

β 

O1 O2 
R 

N 

C 

β 
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Figure 3.11 : Cone Pulleys 

Let Nd be the speed of the driving shaft which is constant. 

 Nn be the speed of the driven shaft when the belt is on nth step. 

 rn be the radius of the nth step of driving pulley. 

 Rn be the radius of the nth step of the driven pulley. 

where n is an integer, 1, 2, . . . 

The speed ratio is inversely proportional to the pulley radii 

  1 1

1d

N r

N R
                . . . (3.1) 

For this first step radii r1 and R1 can be chosen conveniently. 

For second pair 2 2

2d

N r

N R
 , and similarly n n

d n

N r

N R
 . 

In order to use same belt on all the steps, the length of the belt should be same 

i.e.  1 2 . . . nL L L                 . . . (3.2) 

Thus, two equations are available – one provided by the speed ratio and other provided 
by the length relation and for selected speed ratio, the two radii can be calculated. Also it 
has to be kept in mind that the two pulleys are same. It is desirable that the speed ratios 
should be in geometric progression. 

Let k be the ratio of progression of speed. 

  32

1 2 1

. . . n

n

N NN
k

N N N 

    

  2
2 1 3 1andN k N N k N   

  1 1 1
1

1

  n n
n d

r
N k N k N

R
 

  232 1 1

2 1 3 1

and 
rr r r

k k
R R R R

 

Since, both the pulleys are made similar. 
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1 1 1

or nn

n

r R r R
k

R r R r
   

or,  11

1

nR
k

r
               . . . (3.3) 

If radii R1 and r1 have been chosen, the above equations provides value of k or vice-
versa. 

SAQ 4 

How the speed ratios are selected for cone pulleys? 

 

 

 

 

3.4.4 Ratio of Tensions 

The belt drive is used to transmit power from one shaft to the another. Due to the friction 
between the pulley and the belt one side of the belt becomes tight side and other 
becomes slack side. We have to first determine ratio of tensions. 

Flat Belt 

Let tension on the tight side be ‘T1’ and the tension on the slack side be ‘T2’. Let 

‘’ be the angle of lap and let ‘’ be the coefficient of friction between the belt 

and the pulley. Consider an infinitesimal length of the belt PQ which subtend an 
angle  at the centre of the pulley. Let ‘R’ be the reaction between the element 

and the pulley. Let ‘T’ be tension on the slack side of the element, i.e. at point P 
and let ‘(T + T)’ be the tension on the tight side of the element. 

The tensions T and (T + T) shall be acting tangential to the pulley and thereby 
normal to the radii OP and OQ. The friction force shall be equal to ‘R’ and its 

action will be to prevent slipping of the belt. The friction force will act 
tangentially to the pulley at the point S. 

 

 

 

 

 

 

 

 

 

Figure 3.12 : Ratio of Tensions in Flat Belt 

Considering equilibrium of the element at S and equating it to zero. 

Resolving all the forces in the tangential direction 

  cos ( ) cos 0
2 2

R T T T
 

       

or,  cos
2

R T


                . . . (3.4) 
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R 
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Resolving all the forces in the radial direction at S and equating it to zero. 

  sin ( ) sin 0
2 2

R T T T
 

      

or,  (2 ) sin
2

R T T


    

Since  is very small, taking limits 

  cos 1 and sin
2 2 2

  
  

  (2 )
2 2

R T T T T
 

        

Neglecting the product of the two infinitesimal quantities 
2

T
 

 
 

 which is 

negligible in comparison to other quantities : 

  R T   

Substituting the value of R and cos 1
2


 in Eq. (3.4), we get 

  T T     

or,  
T

T


   

Taking limits on both sides as    0 

  
dT

d
T

    

Integrating between limits, it becomes 

  
1

2 0

T

T

dT
d

T



     

or,  1

2

ln
T

T
   

or,  1

2

T
e

T
               . . . (3.5) 

V-belt or Rope 

The V-belt or rope makes contact on the two sides of the groove as shown in 
Figure 3.13. 

 

 

 

 

 

 
 
 

                  (a)                         (b) 

Figure 3.13 : Ratio of Tension in V-Belt 
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Power Transmission 

Devices 
Let the reaction be ‘Rn’ on each of the two sides of the groove. The resultant 

reaction will be 2Rn sin  at point S. 

Resolving all the forces tangentially in the Figure 3.13(b), we get 

  2 cos ( ) cos 0
2 2nR T T T
 

       

or,  2 cos
2nR T


               . . . (3.6) 

Resolving all the forces radially, we get 

  2 sin sin ( ) sin
2 2nR T T T
 

      

          (2 ) sin
2

T T


    

Since  is very small 

  sin
2 2

 
 

  2 sin (2 )
2 2nR T T T T
 

          

Neglecting the product of the two infinitesimal quantities 

  2 sinnR T   

or,  
2sinn
T

R



 

Substituting the value of Rn and using the approximation cos 1
2


, in Eq. (3.6), 

we get 

  
sin

T
T


  


 

or,  
sin

T

T

 
 


 

Taking the limits and integrating between limits, we get 

  
1

2 0
sin

T

T

dT
d

T




 
   

or,  1

2

ln
sin

T

T


 


 

or,  sin1

2





T

e
T

             . . . (3.7) 

SAQ 5 

(a) If a rope makes two full turn and one quarter turn how much will be angle 
of lap? 

(b) If smaller pulley has coefficient of friction 0.3 and larger pulley has 
coefficient of friction 0.2. The angle of lap on smaller and larger pulleys are 
160o and 200o which value of () should be used for ratio of tensions? 
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3.4.5 Power Transmitted by Belt Drive 

The power transmitted by the belt depends on the tension on the two sides and the belt 
speed. 

Let T1 be the tension on the tight side in ‘N’ 

 T2 be the tension on the slack side in ‘N’, and 

 V be the speed of the belt in m/sec. 

Then power transmitted by the belt is given by 

  Power 1 2( ) WattP T T V   

        1 2( )
kW

1000

T T V
             . . . (3.8) 

or,  

2
1

1

1

kW
1000

T
T V

T
P

 
 

 
  

If belt is on the point of slipping. 

  1

2

T
e

T
  

  1 (1 )
kW

1000

T e V
P


              . . . (3.9) 

The maximum tension T1 depends on the capacity of the belt to withstand force. If 
allowable stress in the belt is ‘t’ in ‘Pa’, i.e. N/m

2, then 

  1 ( ) NtT t b               . . . (3.10) 

where t is thickness of the belt in ‘m’ and b is width of the belt also in m. 

The above equations can also be used to determine ‘b’ for given power and speed. 

3.4.6 Tension due to Centrifugal Forces 

The belt has mass and as it rotates along with the pulley it is subjected to centrifugal 
forces. If we assume that no power is being transmitted and pulleys are rotating, the 
centrifugal force will tend to pull the belt as shown in Figure 3.14(b) and, thereby, a 
tension in the belt called centrifugal tension will be introduced. 

 

 

 

 

 

 

         (a)             (b) 

Figure 3.14 : Tension due to Centrifugal Foces 

Let ‘TC’ be the centrifugal tension due to centrifugal force. 

Let us consider a small element which subtends an angle  at the centre of the pulley. 

Let ‘m’ be the mass of the belt per unit length of the belt in ‘kg/m’. 
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The centrifugal force ‘Fc’ on the element will be given by 

  
2

( )C
V

F r m
r

    

where V is speed of the belt in m/sec. and r is the radius of pulley in ‘m’. 

Resolving the forces on the element normal to the tangent 

  2 sin 0
2C CF T


   

Since  is very small. 

  sin
2 2

 
 

or,  2 0
2C CF T


   

or,  C CF T   

Substituting for FC 

  
2

C
m V

r T
r

    

or,  2
CT m V              . . . (3.11) 

Therefore, considering the effect of the centrifugal tension, the belt tension on the tight 
side when power is transmitted is given by 

Tension of tight side 1t CT T T   and tension on the slack side 2s CT T T  . 

The centrifugal tension has an effect on the power transmitted because maximum tension 
can be only Tt which is 

  t tT t b     

  2
1 tT t b m V      

SAQ 6 

What will be the centrifugal tension if mass of belt is zero? 

 

 

 
 

 

3.4.7 Initial Tension 

When a belt is mounted on the pulley some amount of initial tension say ‘T0’ is provided 

in the belt, otherwise power transmission is not possible because a loose belt cannot 
sustain difference in the tension and no power can be transmitted. 

When the drive is stationary the total tension on both sides will be ‘2 T0’. 

When belt drive is transmitting power the total tension on both sides will be (T1 + T2), 
where T1 is tension on tight side, and T2 is tension on the slack side. 

If effect of centrifugal tension is neglected. 

  0 1 22T T T   
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 or,  1 2

0 2

T T
T


  

If effect of centrifugal tension is considered, then 

  0 1 2 2t s CT T T T T T      

or,  1 2
0 2 C

T T
T T


              . . . (3.12) 

3.4.8 Maximum Power Transmitted 

The power transmitted depends on the tension ‘T1’, angle of lap , coefficient of friction 
‘’ and belt speed ‘V’. For a given belt drive, the maximum tension (Tt), angle of lap and 
coefficient of friction shall remain constant provided that 

(a) the tension on tight side, i.e. maximum tension should be equal to the 
maximum permissible value for the belt, and 

(b) the belt should be on the point of slipping. 

Therefore,  Power 1 (1 )P T e   V 

Since,   1 t cT T T   

or,   ( ) (1 )t cP T T e V    

or,   2( ) (1 )tP T m V e V    

For maximum power transmitted 

   2( 3 ) (1 )t
dP

T m V e
dV

    

or,   23 0tT m V   

or,   3 0 t cT T  

or,   
3
t

c
T

T   

or,   2

3
 tT

m V  

Also,   
3

tT
V

m
             . . . (3.13) 

At the belt speed given by the Eq. (3.13) the power transmitted by the belt drive shall be 
maximum. 

SAQ 7 

What is the value of centrifugal tension corresponding to the maximum power 
transmitted? 
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Power Transmission 

Devices 3.5 KINEMATICS OF CHAIN DRIVE 

The chain is wrapped round the sprocket as shown in Figure 3.4(d). The chain in motion 
is shown in Figure 3.15. It may be observed that the position of axial line changes 
between the two position as shown by the dotted line and full line. The dotted line meets 
at point B when extended with the line of centers. The firm line meets the line of centers 
at point A when extended. The speed of the driving sprocket say ‘1’ shall be constant 

but the velocity of chain will vary between 1  O1 C and 1  O1 D. Therefore, 

   2 1

1 2

O A

O B





 

 

 

 

 

Figure 3.15 : Kinematics of Chain Drive 

The variation in the chain speed causes the variation in the angular speed of the driven 
sprocket. The angular speed of the driven sprocket will vary between 

   1 1
1 1

2 2

and
O B O A

O B O A
   

This variation can be reduced by increasing number of teeth on the sprocket. 

3.6 CLASSIFICATION OF GEARS 

There are different types of arrangement of shafts which are used in practice. According 
to the relative positions of shaft axes, different types of gears are used. 

3.6.1 Parallel Shafts 

In this arrangement, the shaft axes lie in parallel planes and remain parallel to one 
another. The following type of gears are used on these shafts : 

Spur Gears 

These gears have straight teeth with their alignment parallel to the axes. These 
gears are shown in mesh in Figures 3.16(a) and (b). The contact between the two 
meshing teeth is along a line whose length is equal to entire length of teeth. It may 
be observed that in external meshing, the two shafts rotate opposite to each other 
whereas in internal meshing the shafts rotate in the same sense. 

 

 

 

 

 

(a) External Meshing    (b) Internal Meshing 

Figure 3.16 : Spur Gears 

If the gears mesh externally and diameter of one gear becomes infinite, the 
arrangement becomes ‘Spur Rack and Pinion’. This is shown in Figure 3.17. It 
converts rotary motion into translatory motion, or vice-versa. 
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UNIT 5 GOVERNORS 

Structure 

5.1 Introduction 

Objectives 

5.2 Classification of Governors 

5.3 Gravity Controlled Centrifugal Governors 

5.3.1 Watt Governor 

5.3.2 Porter Governor 

5.4 Spring Controlled Centrifugal Governors 

5.5 Governor Effort and Power 

5.6 Characteristics of Governors 

5.7 Controlling Force and Stability of Spring Controlled Governors 

5.8 Insensitiveness in the Governors 

5.9 Summary 

5.10 Key Words 

5.11 Answers to SAQs 
 
 
 
 

5.1 INTRODUCTION 

In the last unit, you studied flywheel which minimises fluctuations of speed within the 
cycle but it cannot minimise fluctuations due to load variation. This means flywheel does 
not exercise any control over mean speed of the engine. To minimise fluctuations in the 
mean speed which may occur due to load variation, governor is used. The governor has 
no influence over cyclic speed fluctuations but it controls the mean speed over a long 
period during which load on the engine may vary. 

When there is change in load, variation in speed also takes place then governor operates 
a regulatory control and adjusts the fuel supply to maintain the mean speed nearly 
constant. Therefore, the governor automatically regulates through linkages, the energy 
supply to the engine as demanded by variation of load so that the engine speed is 
maintained nearly constant. 

Figure 5.1 shows an illustrative sketch of a governor along with linkages which regulates 
the supply to the engine. The governor shaft is rotated by the engine. If load on the 
engine increases the engine speed tends to reduce, as a result of which governor balls 
move inwards. This causes sleeve to move downwards and this movement is transmitted 
to the valve through linkages to increase the opening and, thereby, to increase the supply. 

On the other hand, reduction in the load increases engine speed. As a result of which the 
governor balls try to fly outwards. This causes an upward movement of the sleeve and it 
reduces the supply. Thus, the energy input (fuel supply in IC engines, steam in steam 
turbines, water in hydraulic turbines) is adjusted to the new load on the engine. Thus the 
governor senses the change in speed and then regulates the supply. Due to this type of 
action it is simple example of a mechanical feedback control system which senses the 
output and regulates input accordingly. 
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Figure 5.1 : Governor and Linkages 

Objectives 

After studying this unit, you should be able to 

 classify governors, 

 analyse different type of governors, 

 know characteristics of governors, 

 know stability of spring controlled governors, and 

 compare different type of governors. 

5.2 CLASSIFICATION OF GOVERNORS 

The broad classification of governor can be made depending on their operation. 

(a) Centrifugal governors 

(b) Inertia and flywheel governors 

(c) Pickering governors. 

Centrifugal Governors 

In these governors, the change in centrifugal forces of the rotating masses due to 
change in the speed of the engine is utilised for movement of the governor sleeve. 
One of this type of governors is shown in Figure 5.1. These governors are 
commonly used because of simplicity in operation. 

Inertia and Flywheel Governors 

In these governors, the inertia forces caused by the angular acceleration of the 
engine shaft or flywheel by change in speed are utilised for the movement of the 
balls. The movement of the balls is due to the rate of change of speed in stead of 
change in speed itself as in case of centrifugal governors. Thus, these governors 
are more sensitive than centrifugal governors. 

Pickering Governors 

This type of governor is used for driving a gramophone. As compared to the 
centrifugal governors, the sleeve movement is very small. It controls the speed by 
dissipating the excess kinetic energy. It is very simple in construction and can be 
used for a small machine. 
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Governors 5.2.1 Types of Centrifugal Governors 

Depending on the construction these governors are of two types : 

(a) Gravity controlled centrifugal governors, and 

(b) Spring controlled centrifugal governors. 

Gravity Controlled Centrifugal Governors 

In this type of governors there is gravity force due to weight on the sleeve or 
weight of sleeve itself which controls movement of the sleeve. These governors 
are comparatively larger in size. 

Spring Controlled Centrifugal Governors 

In these governors, a helical spring or several springs are utilised to control the 
movement of sleeve or balls. These governors are comparatively smaller in size. 

SAQ 1 
(a) Compare flywheel with governor. 

(b) Which type of control the governor system is? 

(c) Compare centrifugal governors with inertia governors. 

 

5.3 GRAVITY CONTROLLED CENTRIFUGAL 
GOVERNORS 

There are three commonly used gravity controlled centrifugal governors : 

(a) Watt governor 

(b) Porter governor 

(c) Proell governor 

Watt governor does not carry dead weight at the sleeve. Porter governor and proell 
governor have heavy dead weight at the sleeve. In porter governor balls are placed at the 
junction of upper and lower arms. In case of proell governor the balls are placed at the 
extension of lower arms. The sensitiveness of watt governor is poor at high speed and 
this limits its field of application. Porter governor is more sensitive than watt governor. 
The proell governor is most sensitive out of these three. 

5.3.1 Watt Governor 
This governor was used by James Watt in his steam engine. The spindle is driven by the 
output shaft of the prime mover. The balls are mounted at the junction of the two arms. 
The upper arms are connected to the spindle and lower arms are connected to the sleeve 
as shown in Figure 5.2(a). 

 

 

 

 

 

 

 

 

 

           (a)     (b) 

Figure 5.2 : Watt Governor 
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We ignore mass of the sleeve, upper and lower arms for simplicity of analysis. We can 
ignore the friction also. The ball is subjected to the three forces which are centrifugal 
force (Fc), weight (mg) and tension by upper arm (T). Taking moment about point O 
(intersection of arm and spindle axis), we get 

   0CF h mg r   

Since,   2
CF mr   

   2 0mr h mg r    

or   2 g

h
                . . . (5.1) 

   
2

60

N
   

   
2 2 2

3600 894.56

4

g
h

N N


 


            . . . (5.2) 

where ‘N’ is in rpm. 

Figure 5.3 shows a graph between height ‘h’ and speed ‘N’ in rpm. At high speed the 

change in height h is very small which indicates that the sensitiveness of the governor is 
very poor at high speeds because of flatness of the curve at higher speeds. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 : Graph between Height and Speed 

SAQ 2 

Why watt governor is very rarely used? Give reasons. 

 

 

 
 

5.3.2 Porter Governor 

A schematic diagram of the porter governor is shown in Figure 5.4(a). There are two sets 
of arms. The top arms OA and OB connect balls to the hinge O. The hinge may be on the 
spindle or slightly away. The lower arms support dead weight and connect balls also. All 
of them rotate with the spindle. We can consider one-half of governor for equilibrium. 
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Governors Let w be the weight of the ball, 

 T1 and T2 be tension in upper and lower arms, respectively, 

Fc be the centrifugal force, 

r be the radius of rotation of the ball from axis, and 

I is the instantaneous centre of the lower arm. 

Taking moment of all forces acting on the ball about I and neglecting friction at the 
sleeve, we get 

   0
2C

W
F AD w ID IC      

or   
2C

wID W ID DC
F

AD AD

 
   

 
 

or   tan (tan tan )
2C

W
F w       

   2
C

w
F r

g
   

   2 tan
tan 1 1

2 tan

   
      

   

w W
r w

g w
 

or   2 tan 1 (1 )
2

g W
K

r w
 

     
 

          . . . (5.3) 

where   
tan

tan
K





 

   tan
r

h
   

   2 1 (1 )
2

g W
K

h w
 

    
 

           . . . (5.4) 

 

 

 

 

 

 

 

 

 

 

     (a)           (b) 

Figure 5.4 : Porter Governor 

If friction at the sleeve is f, the force at the sleeve should be replaced by W + f for rising 
and by (W – f) for falling speed as friction apposes the motion of sleeve. Therefore, if the 
friction at the sleeve is to be considered, W should be replaced by (W  f). The 
expression in Eq. (5.4) becomes 
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    2 ( )

1 (1 )
2

g W f
K

h w

 
    

 
          . . . (5.5) 

SAQ 3 

In which respect Porter governor is better than Watt governor? 

 

 

 
 

5.4 SPRING CONTROLLED CENTRIFUGAL 
GOVERNORS 

In these governors springs are used to counteract the centrifugal force. They can be 
designed to operate at high speeds. They are comparatively smaller in size. Their speed 
range can be changed by changing the initial setting of the spring. They can work with 
inclined axis of rotation also. These governors may be very suitable for IC engines, etc. 

The most commonly used spring controlled centrifugal governors are : 

(a) Hartnell governor 

(b) Wilson-Hartnell governor 

(c) Hartung governor 

5.4.1 Hartnell Governor 

The Hartnell governor is shown in Figure 5.5. The two bell crank levers have been 
provided which can have rotating motion about fulcrums O and O. One end of each bell 
crank lever carries a ball and a roller at the end of other arm. The rollers make contact 
with the sleeve. The frame is connected to the spindle. A helical spring is mounted 
around the spindle between frame and sleeve. With the rotation of the spindle, all these 
parts rotate. 

With the increase of speed, the radius of rotation of the balls increases and the rollers lift 
the sleeve against the spring force. With the decrease in speed, the sleeve moves 
downwards. The movement of the sleeve are transferred to the throttle of the engine 
through linkages. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 : Hartnell Governor 
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Governors Let  r1 = Minimum radius of rotation of ball centre from spindle axis, in m, 

  r2 = Maximum radius of rotation of ball centre from spindle axis, in m, 

  S1 = Spring force exerted on sleeve at minimum radius, in N, 

  S2 = Spring force exerted on sleeve at maximum radius, in N, 

   m = Mass of each ball, in kg, 

  M = Mass of sleeve, in kg, 

  N1 = Minimum speed of governor at minimum radius, in rpm, 

  N2 = Maximum speed of governor at maximum radius, in rpm, 

1 and 2 = Corresponding minimum and maximum angular velocities, in r/s, 

       (FC)1 = Centrifugal force corresponding to minimum speed 2
1 1m r    , 

       (FC)2 = Centrifugal force corresponding to maximum speed 2
2 2m r    , 

    s = Stiffness of spring or the force required to compress the spring by one m, 

    r = Distance of fulcrum O from the governor axis or radius of rotation, 

   a = Length of ball arm of bell-crank lever, i.e. distance OA, and 

   b = Length of sleeve arm of bell-crank lever, i.e. distance OC. 

Considering the position of the ball at radius ‘r1’, as shown in Figure 5.6(a) and taking 
moments of all the forces about O 

  1
0 1 1 1 1

( )
( ) cos sin cos 0

2C
Mg S

M F a mg a b


        

or  1
1 1

( )
( ) tan

2C
Mg S b

F mg
a

  
    

 
            . . . (5.9) 

 

 

 

 

 

 

 

 

 

 

          (a)              (b) 

Figure 5.6 

Considering the position of the ball at radius ‘r2’ as shown in Figure 5.6(b) and taking 
the moments of all the forces about O 

  2
0 2 2 2 2

( )
( ) cos sin cos

2C
Mg S

M F a mg a b


        

or  2
2 2

( )
( ) tan

2C
Mg S b

F mg
a

  
   

 
         . . . (5.10) 
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If 1 and 2 are very small and mass of the ball is negligible as compared to the spring 
force, the terms 1tanmg   and 2tanmg   may be ignored. 

  1
1

( )
( )

2C
Mg S b

F
a

  
  

 
           . . . (5.11) 

and  2
2

( )
( )

2C
Mg S b

F
a

  
  

 
           . . . (5.12) 

  2 1
2 1

( )
( ) ( )

2C C
S S b

F F
a

  
   

 
 

Total lift 1 2 1 2( ) ( )x x b b      

      1 2( )b     

      1 2
2 1

( ) ( )
( )

r r r r b
b r r

a a a

  
    

 
 

  2 1 2 1Total lift ( )
b

S S s r r s
a

      

  
2

2 1
2 1

( )
( ) ( )

2C C
r rb

F F s
a

 
   

 
 

or stiffness of spring ‘s’ 

2
2 1

2 1

( ) ( )
2

( )
C CF Fa

b r r

 
  

 
         . . . (5.13) 

For ball radius ‘r’ 

  
2 2

1 2 1

1 2 1

( ) ( ) ( )
2 2

( )
C C C CF F F Fa a

s
b r r b r r

     
      

      
 

  1
1 2 1

2 1

( )
( ) {( ) ( ) }

( )C C C C
r r

F F F F
r r


  


        . . . (5.14) 

SAQ 4 

For IC engines, which type of governor you will prefer whether dead weight type 
or spring controlled type? Give reasons. 

 

 
 

 

5.5 GOVERNOR EFFORT AND POWER 

Governor effort and power can be used to compare the effectiveness of different type of 
governors. 

Governor Effort 

It is defined as the mean force exerted on the sleeve during a given change in 
speed. 

When governor speed is constant the net force at the sleeve is zero. When 
governor speed increases, there will be a net force on the sleeve to move it 
upwards and sleeve starts moving to the new equilibrium position where net force 
becomes zero. 
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Governors Governor Power 

It is defined as the work done at the sleeve for a given change in speed. Therefore, 

Power of governor = Governor effort  Displacement of sleeve 

5.5.1 Determination of Governor Effort and Power 

The effort and power of a Porter governor has been determined. The same principle can 
be used for any other type of governor also. 

 

 

 

 

 

 

 

 
   (a)              (b) 

Figure 5.7 

Figure 5.7 shows the two positions of a Porter governor. 

Let  N = Equilibrium speed corresponding to configuration shown in Figure 5.7(a), 

 W = Weight of sleeve in N, 

  h = Height of governor corresponding to speed N, and 

  c = A factor which when multiplied to equilibrium speed, gives the increase 
                  in speed. 

   Increased speed = Equilibrium speed + Increase of speed, 

     = N + c . N = (1 + c) N, and         . . . (5.15) 

          h1 = Height of governor corresponding to increased speed (1 + c ) N. 

The equilibrium position of the governor for the increased speed is shown in 
Figure 5.7(b). In order to prevent the sleeve from rising when the increase of speed takes 
place, a downward force will have to be exerted on the sleeve. 

Let W1 = New weight of sleeve so that the rising of sleeve is prevented when the speed is 
               (1 + c) N. This means that W1 is the weight of sleeve when height of governor 
               is h. 

   Downward force to be applied when the rising of sleeve is to be prevented when 
speed increases from N to (1 + c) N = W1 – W. 

When speed is N rpm and let the angles  and  are equal so that K = 1, the height h is 
given by equation 

   
2

2
60

w W g
h

w N

 
  
   

 
 

         . . . (5.16) 

If the speed increases to (1 + c) N and height remains the same by increasing the load on 
sleeve 

   1
2

2 (1 )
60

w W g
h

w c N

 
  
    

 
 

        . . . (5.17) 

 
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Equating the two values of h given by above equations, we get 

   1
2

{( )}

(1 )

w W
w W

c


 


 

   2
1( ) (1 )w W c w W     

   2
1 ( ) (1 )W w W c w     

   2
1( ) ( ) (1 ) ( )W W w W c w W       

           2( ) {(1 ) 1}w W c     

          2 ( )c w W  If c is very small       . . . (5.18) 

But W1 – W is the downward force which must be applied in order to prevent the sleeve 
from rising when the increase of speed takes place. This is also the force exerted by the 
governor on the sleeve when the speed changes from N to (1 + c) N. As the sleeve rises 
to the new equilibrium position as shown in Figure 5.7(b), this force gradually 
diminishes to zero. The mean force P exerted on the sleeve during the change of speed 
from N to (1 + c) N is therefore given by 

   1 ( )
2

W W
P c w W


           . . . (5.19) 

This is the governor effort. 

If weight on the sleeve is not increased 

   1 2
2 (1 )

60

w W g
h

w c N

 
  
    

 
 

        . . . (5.20) 

   1 2h h x   

   2

1

(1 )
h

c
h

   

   2

1

1 (1 ) 1 2
h

c c
h

     

or   1

1

2
h h

c
h


  

or   
1

2
2

x
c

h
  

or   1x c h  

   Governor power 2
1 ( )Px c h w W   .          . . . (5.21) 

5.6 CHARACTERISTICS OF GOVERNORS 

Different governors can be compared on the basis of following characteristics : 

Stability 

A governor is said to be stable when there is one radius of rotation of the balls for 
each speed which is within the speed range of the governor. 
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Governors Sensitiveness 

The sensitiveness can be defined under the two situations : 

(a) When the governor is considered as a single entity. 

(b) When the governor is fitted in the prime mover and it is treated as 
part of prime mover. 

(a) A governor is said to be sensitive when there is larger displacement of the 
sleeve due to a fractional change in speed. Smaller the change in speed of 
the governor for a given displacement of the sleeve, the governor will be 
more sensitive. 

  Sensitiveness 
1 2

N

N N



        . . . (5.22) 

(b) The smaller the change in speed from no load to the full load, the more 
sensitive the governor will be. According to this definition, the 
sensitiveness of the governor shall be determined by the ratio of speed range 
to the mean speed. The smaller the ratio more sensitive the governor will be 

  Sensitiveness 2 1 2 1

2 1

2( )

( )

N N N N

N N N

 
 


      . . . (5.23) 

where N2 – N1 = Speed range from no load to full load. 

Isochronism 

A governor is said to be isochronous if equilibrium speed is constant for all the 
radii of rotation in the working range. Therefore, for an isochronous governor the 
speed range is zero and this type of governor shall maintain constant speed. 

Hunting 

Whenever there is change in speed due to the change in load on the engine, the 
sleeve moves towards the new position but because of inertia if overshoots the 
desired position. Sleeve then moves back but again overshoots the desired position 
due to inertia. This results in setting up of oscillations in engine speed. If the 
frequency of fluctuations in engine speed coincides with the natural frequency of 
oscillations of the governor, this results in increase of amplitude of oscillations 
due to resonance. The governor, then, tends to intensity the speed variation instead 
of controlling it. This phenomenon is known as hunting of the governor. Higher 
the sensitiveness of the governor, the problem of hunting becomes more acute. 

5.7 CONTROLLING FORCE AND STABILITY OF 
SPRING CONTROLLED GOVERNORS 

The resultant external force which controls the movement of the ball and acts along the 
radial line towards the axis is called controlling force. This force acts at the centre of the 
ball. It is equal and acts opposite to the direction of centrifugal force. 

The controlling force ‘F’ = m 2 r. 

Or   
2

2

60

F N
m

r

 
  

 
 

For controlling force diagram in which ‘F’ is plotted against radius ‘r’, 
F

r
 represents 

slope of the curve. 

i.e.   2tan
F

N
r
              . . . (5.24) 

Therefore, for a stable governor slope in controlling force diagram should increase with 
the increase in speed. 
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Stability of Spring-controlled Governors 

Figure 5.8 shows the controlling force curves for stable, isochronous and unstable 
spring controlled governors. The controlling force curve is approximately straight 
line for spring controlled governors. As controlling force curve represents the 
variation of controlling force ‘F’ with radius of rotation ‘r’, hence, straight line 
equation can be, 

   ; orF ar b F ar F ar b           . . . (5.25) 

where a and b are constants. In the above equation b may be +ve, or –ve or zero. 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 : Stability of Spring Controlled Governors 

These three cases are as follows : 

(a) We know that for a stable governor, the ratio 
F

r
 must increase as r 

increases. Hence the controlling force curve DE for a stable governor 
must intersect the controlling force axis (i.e. y-axis) below the origin, 
when produced. Then the equation of the curve will be of the form 

. or
F b

F a r b a
r r

           . . . (5.26) 

As r increases 
F

r
 increase and thereby tan  increases. Therefore, 

this equation represents stable governor. 

(b) If b in the above equation is zero then the controlling force curve OC 

will pass through the origin. The ratio 
F

r
 will be constant for all 

radius of rotation and hence the governor will become isochronous. 
Hence for isochronous, the equation will be 

or constant
F

F ar a
r

          . . . (5.27) 

(c) If b is positive, then controlling force curve AB will intersect the 
controlling force axis (i.e. y-axis) above the origin. The equation of 
the curve will be 

or
F b

F ar b a
r r

           . . . (5.28) 

As r increases, speed increases, 
F

r
 or tan  reduces. Hence this 

equation cannot represent stable governor but unstable governor. 
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F
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O  

A  
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E 

Unstable F = ar + b  

Isochronous F = ar   

Stable F = ar – b   
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Governors 5.8 INSENSITIVENESS IN THE GOVERNORS 

The friction force at the sleeve gives rise to the insensitiveness in the governor. At any 
given radius there will be two different speeds one being when sleeve moves up and 
other when sleeve moves down. Figure 5.9 shows the controlling force diagram for such 
a governor. 

 

 

 

 

 

 

 

 

 

Figure 5.9 : Insensitiveness in the Governors 

The corresponding three values of speeds for the same radius OA are : 

(a) The speed N when there is no friction. 

(b) The speed N when speed is increasing or sleeve is on the verge of moving 
up, and 

(c) The speed N when speed is decreasing or sleeve on the verge of moving 
down. 

This means that, when radius is OA, the speed of rotation may vary between the limits 
N and N, without causing any displacement of the governor sleeve. The governor is 
said to be insensitive over this range of speed. Therefore, 

 Coefficient of insensitiveness 
N N

N

  
  
 

         . . . (5.29) 

Example 5.1 

The arms of a Porter governor are 25 cm long and pivoted on the governor axis. 
The mass of each ball is 5 kg and mass on central load of the sleeve is 30 kg. The 
radius of rotation of balls is 15 cm when the sleeve begins to rise and reaches a 
value of 20 cm for the maximum speed. Determine speed range. 

Solution 

Given data : Ball weight ‘w’ = 5 g N 

  Central load ‘W’ = 30 g N 

  Arm length ‘l’ = 25 cm = 0.25 m 

  Minimum radius ‘r1’ = 15 cm = 0.15 m 

  Maximum radius ‘r2’ = 20 cm = 0.2 m 

Height 
1

2 2 2 2
1' ' 0.25 0.15 0.2 mh l r      

For k = 1. 

c 
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N” 
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Figure 5.10 : Figure for Example 5.1 

Substituting values in Eq. (5.4) 

  2
1 1 (1 1)

0.2 2

g W

w
 

    
 

 

        
9.81 30

1
0.2 5

g

g

 
  

 
 

  1 118.5297 r/s or 176.9 rpmN    

Height 2 2
2 0.25 0.2 0.15 mh     

  2
2

9.81 30
1

0.15 5

g

g

 
   

 
 

  2 229.396 r/s or 204.32 rpm  N  

Speed range = N2 – N1 = 204.32 – 176.9 = 27.42 rpm. 

Example 5.2 

In a Hartnell governor the radius of rotation is 7 cm when speed is 500 rpm. At 
this speed, ball arm is normal and sleeve is at mid position. The sleeve movement 
is 2 cm with  5% of change in speed. The mass of sleeve is 6 kg and friction is 
equivalent to 25 N at the sleeve. The mass of the ball is 2 kg. If ball arm and 
sleeve arms are equal, find, 

(a) Spring rate, 

(b) Initial compression in the spring, and 

(c) Governor effort and power for 1% change in the speed if there is no 
friction. 

Solution 

Sleeve mass ‘M’ = 6 kg 

Friction force ‘f’ = 25 N 

Ball mass ‘m’ = 2 kg 

  a b  

Minimum radius r1 = 7 cm – 1 = 6 cm 

Maximum radius r2 = 7 cm + 1 = 8 cm 

  
2 500

52.36 r/s
60

 
    

Maximum speed = 10.05  = 1.05  52.36 = 54.98 r/s 

Minimum speed = 0.95  = 0.95  52.36 = 49.74 r/s 

Neglecting the effect of obliquity of arms. 

Fc 

W 
l 

l 

r 

h 

w 
2 
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   (a)             (b) 

Figure 5.11 : Figure for Example 5.2 

At Minimum Radius 

1 1
1

12
2

  
     

 
C C

Mg S f
F a b or F Mg S f  

2
1 1 1 cF m r  

 2
12 (49.74) 0.06 2 6 25g S       

 1593.78 58.86 25S    

Or 1 559.92S N  

At Maximum Radius 

2 22 CF Mg S f    

2
2 2 2 cF m r  

 2
22 (54.98) 0.08 2 6 25g S       

Or 2 883.44S N  

 Stiffness ‘s’ 2 1S S

x


  

   
883.44 559.92

0.02


  

Or 16175.81 N/ms  

Initial compression 1
559.92

16175.81
S   

    = 0.035 m   or   3.5 cm 

Governor Effort and Power 

 2

2C
Mg S f

F
 

  

Increased speed = 1.01  = 1.01  52.36 = 52.88 r/s 

At  r = 0.07; 2  2  (52.36)2  0.07 = 6 g + S 

At increased speed, 2  2 (52.88)2  0.07 = 6 g + 2 P + S 

where P is governor effort. 



1 

mg 

 

6 cm 

FC
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O 

1 cm 

Mg + S1 
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Mg + S2 

2 



2 


2 O 

8 cm 

Fc2
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1 cm 
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 2 22 2 2 0.07 {(52.88) (52.36) }P      

Or P = 7.66 N 

Let the spring force corresponding to speed 52.88 r/s be S. 

 22 2 (52.88) 0.07 6g S      

 2 2( ) 2 2 0.07 {(52.88) (52.36) }S S        

    = 15.32 N 

Sleeve lift for 1% change 
15.32

s
  

     415.32
9.47 10 m

16175.81
    

   Governor power 47.66 9.47 10    

      37.25 10 Nm   

Example 5.3 

The controlling force diagram of a spring controlled governor is a straight line. 
The weight of each governor ball is 40 N. The extreme radii of rotation of balls 
are 10 cm and 17.5 cm. The corresponding controlling forces at these radii are 
205 N and 400 N. Determine : 

(a) the extreme equilibrium speeds of the governor, and 

(b) the equilibrium speed and the coefficient of insensitivenss at a radius 
of 15 cm. The friction of the mechanism is equivalent of 2.5 N at each 
ball. 

Solution 

Weight of each ball ‘w’ = 40 N 

r1 = 10 cm and r2 = 17.5 cm 

1 2
205 N and 400 NC CF F   

Let  CF ar b   

when  
11 10 cm 0.1 m and 205 NCr F    

             205 = b + 0.1 a 

when  
22 17.5 cm 0.175 m and 400 NCr F    

       400 = b + 0.175 a 

  195 0.075 2600a a    

  205 0.1 2600 55b       

  55 2600CF r    

(a) For 
2

1240
205; 0.1 205 N

60

 
   

 
C

N
F

g
 

Or 1 214.1 rpmN   

For FC = 400;     r = 0.175 m 

  
2

2240
0.175 400

60

N

g

 
  

 
 

Or 2 226.1 rpmN   
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Governors (b)  FC = k N2 

At radius r = 15 cm 

  2
C bF f k N    

  2
C bF f k N    

  2 2( ) ( ) ( )C b C bF f F f k N N       

Or 2 ( ) ( )bf k N N N N       

         2 ( )k N N N    

  
2

2 2 ( ) 2 ( )b

C

f k N N N N N

F Nk N

    
   

   Coefficient of insensitiveness 
2( ) 1

2
b b

C C

f fN N

N F F

 
     

At r = 0.15 m 

  55 2600 0.15 335 NCF       

   Coefficient of insensitiveness 32.5
7.46 10

335
    Or  0.746%. 

5.9 SUMMARY 

The governors are control mechanisms and they work on the principle of feedback 
control. Their basic function is to control the speed within limits when the load on the 
prime mover changes. They have no control over the change is speed within the cycle. 
The speed control within the cycle is done by the flywheel. 

The governors are classified in three main categories that is centrifugal governors, 
inertial governor and pickering governor. The use of the two later governors is very 
limited and in most of the cases centrifugal governors are used. The centrifugal 
governors are classified into two main categories, gravity controlled type and spring 
loaded type. 

The gravity controlled type of governors are larger in size and require more space as 
compared to the spring controlled governors. This type of governors are two, i.e. Porter 
governor and Proell governor. The spring controlled governors are : Hartnel governor, 
Wilson-Hartnell governor and Hartung governor. 

For comparing different type of governors, effort and power is used. They determine 
whether a particular type of governor is suitable for a given situation or not. To 
categorise a governor the characteristics can be used. It can be determined whether a 
governor is stable or isochronous or it is prone to hunting. The friction at the sleeve 
gives rise to the insensitiveness in the governor. At any particular radius, there shall be 
two speeds due to the friction. Therefore, it is most desirable that the friction should be 
as low as possible. 

The stability of a spring controlled governor can be determined by drawing controlling 
force diagram which should have intercept on the negative side of Y-axis. 

5.10 KEY WORDS 

Watt Governor : It is a type of governor which does not have load 
on the sleeve. 

Porter Governor : This is a type of governor which has dead weight 
at the sleeve and balls are mounted at the hinge. 
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Hartnell Governor : It is a spring controlled governor in which balls 
are mounted on the bell crank lever and sleeve is 
loaded by spring force. 

Governor Effort : It is the mean force exerted on the sleeve during a 
given change of speed. 

Governor Power : It is defined as the work done at the sleeve for a 
given change in speed. 

Hunting of Governor : It can occur in governor when the fluctuations in 
engine speed coincides the natural frequency of 
oscillations of the governor. In that case governor 
intensifies the speed variation instead of 
controlling it. 

Controlling Force : It is the resultant external force which controls the 
movement of the ball and acts along the radial line 
towards the axis. 

5.11 ANSWERS TO SAQs 

Refer the preceding text for all the Answers to SAQs. 
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