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DYNAMICS OF MACHINES

BALANCING
OF
ROTATING MASSES
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Heomeiric Centerline

Rotating centerline:
The rotating centerline being defined as the axis about which the rotor would rotate if not
constrained by its bearings. (Also called the Principle Inertia Axisor PIA).

Geometric centerline:
The geometric centerline being the physical centerline of the rotor.

When the two centerlines are coincident, then the rotor will be in a state of balance.
When they are apart, the rotor will be unbalanced.

Different types of unbalance can be defined by the relationship between the two
centerlines. These include:
Static Unbalance — where the PIA is displaced parallel to the geometric centerline.

(Shown above)

Couple Unbalance — where the PIA intersects the geometric centerline at the center of
gravity. (CG)

Dynamic Unbalance — where the PIA and the geometric centerline do not coincide or
touch.

The most common of these is dynamic unbalance.

Causes of Unbalance:
In the design of rotating parts of a machine every care is taken to eliminate any out of
balance or couple, but there will be always some residual unbalance left in the finished
part because of

1. dlight variation in the density of the material or

2. inaccuraciesin the casting or

3. inaccuracies in machining of the parts.

Why balancing is so important?

1. A level of unbalance that is acceptable at alow speed is completely unacceptable at a
higher speed.

2. As machines get bigger and go faster, the effect of the unbalance is much more severe.

3. The force caused by unbalance increases by the square of the speed.

4. If the speed is doubled, the force quadruples; if the speed istripled the force increases
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by afactor of nine!

Identifying and correcting the mass distribution and thus minimizing the force and
resultant vibration is very very important

BALANCING:

Balancing is the technique of correcting or eliminating unwanted inertia forces or
moments in rotating or reciprocating masses and is achieved by changing the location of
the mass centers.

The objectives of balancing an engine are to ensure:

1. That the centre of gravity of the system remains stationery during a complete
revolution of the crank shaft and

2. That the couplesinvolved in acceleration of the different moving parts
bal ance each other.

Types of balancing:

a) Static Balancing:

1) Static balancing is a balance of forces due to action of gravity.

ii) A body is said to be in static balance when its centre of gravity isin the
axis of rotation.

b) Dynamic balancing:

i) Dynamic balance is a balance due to the action of inertiaforces.

ii) A body is said to be in dynamic balance when the resultant moments or
couples, which involved in the acceleration of different moving partsis
equal to zero.

iii) The conditions of dynamic balance are met, the conditions of static

balance are al'so met.

In rotor or reciprocating machines many a times unbalance of forces is produced due to
inertia forces associated with the moving masses. If these parts are not properly balanced,
the dynamic forces are set up and forces not only increase loads on bearings and stresses
in the various components, but also unpleasant and dangerous vibrations.

Balancing is a process of designing or modifying machinery so that the unbalance is
reduced to an acceptable level and if possible eliminated entirely.

BALANCING OF ROTATING MASSES
When a mass moves along a circular path, it experiences a centripetal acceleration and a
force is required to produce it. An equal and opposite force called centrifugal force acts

radialy outwards and is a disturbing force on the axis of rotation. The magnitude of this
remains constant but the direction changes with the rotation of the mass.

o
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In a revolving rotor, the centrifugal force remains balanced as long as the centre of the
mass of rotor lies on the axis of rotation of the shaft. When this does not happen, there is
an eccentricity and an unbalance force is produced. Thistype of unbalance is common in
steam turbine rotors, engine crankshafts, rotors of compressors, centrifugal pumps etc.

The unbalance forces exerted on machine members are time varying, impart vibratory
motion and noise, there are human discomfort, performance of the machine deteriorate
and detrimental effect on the structural integrity of the machine foundation.

Balancing involves redistributing the mass which may be carried out by addition or
removal of mass from various machine members

Balancing of rotating masses can be of

1. Balancing of a single rotating mass by a single mass rotating in the same plane.

2. Balancing of asingle rotating mass by two masses rotating in different planes.

3. Balancing of severa masses rotating in the same plane

4. Balancing of several masses rotating in different planes

STATIC BALANCING:

A system of rotating massesis said to be in static balance if the combined mass centre of
the system lies on the axis of rotation

DYNAMIC BALANCING;

When several masses rotate in different planes, the centrifugal forces, in addition to being
out of balance, also form couples. A system of rotating masses is in dynamic balance
when there does not exist any resultant centrifugal force as well as resultant couple.
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CASE 1.
BALANCING OF A SINGLE ROTATING MASS BY A SINGLE
MASSROTATING IN THE SAME PLANE

BALANCING OF A SINGLE ROTATING MASS BY A SINGLE MASS ROTATING IN THE SAME PLANE
DISTURBING MASS

AXIS OF ROTATION

BALANCING MASS

Consider a disturbing mass m; which is attached to a shaft rotating at o rad/s.
Let

r, =radius of rotationof themass m,
=distancebetween the axis of rotation of the shaft and
the centre of gravity of the massm,

The centrifugal force exerted by mass m; on the shaft is given by,

This force acts radially outwards and produces bending moment on the shaft. In order to
counteract the effect of this force F¢; , a balancing mass m, may be attached in the same
plane of rotation of the disturbing mass m; such that the centrifugal forces due to the two
masses are equal and opposite.

o
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Let,

r, =radius of rotationof themassm,
= distancebetween the axis of rotation of the shaft and
the centre of gravity of the massm,

Therefore the centrifugal force due to mass m, will be,

Equating equations (1) and (2), we get

I:c1:|:¢:2
m,w’r,=m,w’r, Oor M r=m,fH-———————————————— (3)

The product m, r, can be split up in any convenient way. As for as possible the radius

of rotation of mass m, that isr, is generally made large in order to reduce the balancing
mass M.

CASE 2:
BALANCING OF A SINGLE ROTATING MASSBY TWO MASSES ROTATING
IN DIFFERENT PLANES.

There are two possibilities while attaching two balancing masses:

1. The plane of the disturbing mass may be in between the planes of the two
balancing masses.

2. The plane of the disturbing mass may be on the left or right side of two planes
containing the balancing masses.

In order to balance a single rotating mass by two masses rotating in different planes
which are parallel to the plane of rotation of the disturbing mass i) the net dynamic force
acting on the shaft must be equal to zero, i.e. the centre of the masses of the system must
lie on the axis of rotation and this is the condition for static balancing ii) the net couple
due to the dynamic forces acting on the shaft must be equal to zero, i.e. the algebraic sum
of the moments about any point in the plane must be zero. The conditions i) and ii)
together give dynamic balancing.

o
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CASE 2(1):

THE PLANE OF THE DISTURBING MASS LIESIN BETWEEN THE PLANES

OF THE TWO BALANCING MASSES.

The plane of the disturbing mass lies inbetween the planes of the two balancing masses

m

L1

L2

e ————

Consider the disturbing mass m lying in a plane A which is to be balanced by two
rotating masses m; and m, lying in two different planes M and N which are parale to

the plane A as shown.

Letr, r, and rp be theradii of rotation of the massesin planes A, M and N respectively.
Let L, Lo and L bethe distance between A and M, A and N, and M and N respectively.

Now,
The centrifugal force exerted by the mass m in plane A will be,

Similarly,
The centrifugal force exerted by the mass m; in plane M will be,

o
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And the centrifugal force exerted by the mass m; in plane N will be,

F =m2 (1)2 r2 __________________ (3)

c2

For the condition of static balancing,

Fc:Fcl +Fc2
or mw’r=m,w’r,+m, w’r,
e, mr=m r+m,rn———————————————— (4)

Now, to determine the magnitude of baancing force in the plane ‘M’ or the dynamic
force at the bearing ‘O’ of a shaft, take moments about * P’ which is the point of
intersection of the plane N and the axis of rotation.
Therefore,

F,xL=F_xL,

or m,w’r, xL=mw?r xL,

Therefore,

m,r,L=mrL, or mlrlzmr% ———————— (5)

Similarly, in order to find the balancing force in plane ‘N’ or the dynamic force at the
bearing ‘P of a shaft, take moments about * O’ which is the point of intersection of the
plane M and the axis of rotation.
Therefore,

F,xL=F_xL,

or m,w’r, XxL=mw?r xL,

Therefore,

m,r,L=mrL, or mer:mr% ———————— (6)

For dynamic balancing equations (5) or (6) must be satisfied along with equation (4).
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CASE 2(11):

WHEN THE PLANE OF THE DISTURBING MASSLIES ON ONE END OF THE
TWO PLANES CONTAINING THE BALANCING MASSES.

When the plane of the disturbing mass lies on one end of the planes of the balancing masses

o

L1

O

T—===7T
—_— e ———

L2

For static balancing,

Fcl = Fc + Fc2

or m,W’r,=Mw’r+m,w’r,

he. mr=mr+m,rL———————————————— (1)
For dynamic balance the net dynamic force acting on the shaft and the net couple due to
dynamic forces acting on the shaft is equal to zero.

To find the balancing force in the plane ‘M’ or the dynamic force at the bearing ‘O’ of a
shaft, take moments about ‘P'. i.e.

N/
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F,xL=F_xL,
or m,w’r, xL=mw?r xL,
Therefore,

m,r,L=mrL, or mlrlzmrIL2 ________ (2)

Similarly, to find the balancing force in the plane ‘N’ , take moments about ‘O’, i.e

F,xL=F_xL,
or m,w’r, xL=mw?r xL,
Therefore,

m,r,L=mrL, or mer:mrIL1 ________ (3)

CASE 3
BALANCING OF SEVERAL MASSESROTATING IN THE SAME PLANE

Fec2
Resultant R O
mZ Fcl «
\ i

Fcd

ml

..............................

(bl Vector diogram

Fcd g_/'“"'

/ Fec

tal Space diagram
BALANCING OF SEVERAL MASSES ROTATING IN THE SAME PLANE
Consider a rigid rotor revolving with a constant angular velocity o rad/s. A number of

masses say, four are depicted by point masses at different radii in the same transverse
plane.
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If m1, my, mg and m, are the masses revolving at radii ry, rp, r3 and r, respectively in the
same plane.

The centrifugal forces exerted by each of the masses are F;, Fep, Fes and Fey respectively.
Let F be the vector sum of these forces. i.e.

F=Fc1+Fc2 +Fc3 +Fc4
=M, W’r+m,®r+m, 0’ r+m,w’r,————————— (1)

The rotor is said to be statically balanced if the vector sum F is zero. If the vector sum F
is not zero, i.e. the rotor is unbalanced, then introduce a counterweight ( balance weight)
of mass‘m’ at radius‘r’ to balance the rotor so that,

m, W’r,+m, w’r,+m, w’r,+m, ®’r,+m w’r =0—-———————— (2)
or
m,r,+m,r,+m,r,+m,r,+mr =0-————————————— —— (3)

The magnitude of either ‘m’ or ‘r’ may be selected and the other can be calculated.
In general, if > m, r, isthevector sumof m,r,, m,r,, m,r,, m,r, etc, then,

171 272 337

>mrr+mr=0--——-——-———— (4)

The above equation can be solved either analytically or graphically.
1. Analytical Method:

Procedure:
Step 1: Find out the centrifugal force or the product of mass and its radius of rotation

exerted by each of masses on the rotating shaft, since ®° is same for each mass,
therefore the magnitude of the centrifugal force for each mass is proportional to the
product of the respective mass and its radius of rotation.

Step 2: Resolve these forces into their horizontal and vertical components and find their
sums. i.e.,

Sum of the horizontal components

n
=>mjr,cos 8,=m,r,cos 6, +m,r,cos 6, +m,r,cos 0, +————————

i=1
Sumof the vertical components

n
=> mr,sin ®,=m,r,sin®, +m,r,sin 0, +m,r,sin@, +————————

i=1

o
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Step 3: Determine the magnitude of the resultant centrifugal force

2

R=\/(Zn:min cos eijz +(§,miﬁ sin eij

i=1

Step 4: If O isthe angle, which resultant force makes with the horizontal, then

Zn:miri Sin B,
tan6=-=-
myr, cos 6,

i=1

Step 5: The balancing force is then equal to the resultant force, but in opposite direction.
Step 6: Now find out the magnitude of the balancing mass, such that

R=mr
Where, m = balancing mass and r = its radius of rotation

2. Graphical Method:

Step 1:
Draw the space diagram with the positions of the severa masses, as shown.

Step 2:
Find out the centrifugal forces or product of the mass and radius of rotation exerted by
each mass.

Step 3:

Now draw the vector diagram with the obtained centrifugal forces or product of the
masses and radii of rotation. To draw vector diagram take a suitable scale.

Let ab, bc, cd, de represents the forces Fei, Feo, Fez and Fe4 0N the vector diagram.

Draw ‘ab’ paralléel to force F¢; of the space diagram, at ‘b’ draw aline paralel to force
Fco. Similarly draw lines cd, de parallel to Fez and Fc4 respectively.

Step 4:

As per polygon law of forces, the closing side ‘ag’ represents the resultant force in
magnitude and direction as shown in vector diagram.

Step 5:
The balancing forceisthen , equal and opposite to the resultant force.

Step 6:
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Determine the magnitude of the balancing mass ( m ) at a given radius of rotation ( r ),

such that,
- F.=mw?’r
or
mr=resultantofm,r,,m,r,, m,r,andm,r,
CASE 4:

BALANCING OF SEVERAL MASSESROTATING IN DIFFERENT PLANES
When several masses revolve in different planes, they may be transferred to a reference

plane and this reference plane is a plane passing through a point on the axis of rotation
and perpendicular to it.

reference plane

//

<
7 12

rar

/lF

2
(Imaginary)
Tumed through 90" in

the direction of force

e

(Original)
Couple vectors

When a revolving mass in one plane is transferred to a reference plane, its effect is to
cause a force of same magnitude to the centrifugal force of the revolving mass to act in
the reference plane along with a couple of magnitude equal to the product of the force
and the distance between the two planes.

In order to have a complete balance of the several revolving massesin different planes,

1. the forces in the reference plane must balance, i.e., the resultant force must be zero and
2. the couples about the reference plane must balancei.e., the resultant couple must be

zero.

A mass placed in the reference plane may satisfy the first condition but the couple

balance is satisfied only by two forces of equal magnitude in different planes. Thus, in
general, two planes are needed to balance a system of rotating masses.

o
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Example:
Consider four masses my, my, m3 and m, attached to the rotor at radii ry, rp, r3 and ry
respectively. The masses m;, my, mz and my rotate in planes 1, 2, 3 and 4 respectively.

Ve +VE

0 @ Pp®

|
=

= l T ..“
3

Lm

L&

bl Angular position of masses

ol position of planes of masses

a) Position of planes of masses

Choose areference plane at ‘O’ so that the distance of the planes 1, 2, 3 and 4 from ‘O’
are L;, Lo, Lz and L, respectively. The reference plane chosen is plane ‘L’. Choose
another plane ‘M’ between plane 3 and 4 as shown.

Plane ‘M’ is at a distance of L, from the reference plane ‘L’. The distances of al the
other planesto the left of ‘L’ may be taken as negative( -ve) and to the right may be taken
as positive (+ve).

The magnitude of the balancing masses m_ and my in planes L and M may be obtained
by following the steps given below.

Step 1:

Tabulate the given data as shown after drawing the sketches of position of planes of
masses and angular position of masses. The planes are tabulated in the same order in
which they occur from left to right.
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Centrifugal Distance Counlel o2
Plane Mass (m) Radius (r) forcelw? from Ref. (mpr D
1 2 3 (mr) plane‘L’ (L)
6
4 S
1 ma r My I -Lq -myry Ly
L mg . my . 0 0
2 mp P) msy o Lo my Lo
3 ms 3 ms I3 L3 msrsls
M Mm I'm Mpm I'm Lm My 'm Lm
4 My 4 My I'y L4 My Iy L4
Step 2:

Construct the couple polygon first. (The couple polygon can be drawn by taking a
convenient scale)
Add the known vectors and considering each vector parallel to the radial line of the mass
draw the couple diagram. Then the closing vector will be ‘my ry Ly’.

The vector
balanced couple Cy; is proportional to my ry Ly , therefore,

(dl Force polygon

d "o’ on the couple polygon represents the balanced couple. Since the
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C,=m,r, L,= vectord o
vectord o
or my=————
I"M I_M
From this the value of my in the plane M can be determined and the angle of inclination
¢ of this mass may be measured from figure (b).

Step 3:

Now draw the force polygon (The force polygon can be drawn by taking a convenient
scale) by adding the known vectors along with ‘my ry’. The closing vector will be ‘mg
r.". This represents the balanced force. Since the balanced force is proportional to ‘my r.’

m, r, = vector eo

_vector eo

r

or m,

From this the balancing mass m_ can be obtained in plane ‘L’ and the angle of
inclination of this mass with the horizontal may be measured from figure (b).

Problems and solutions

Problem 1.

Four masses A, B, C and D are attached to a shaft and revolve in the same plane. The
masses are 12 kg, 10 kg, 18 kg and 15 kg respectively and their radii of rotations are 40
mm, 50 mm, 60 mm and 30 mm. The angular position of the masses B, C and D are 60°
135° and 270° from mass A. Find the magnitude and position of the balancing mass at a
radius of 100 mm.

Solution:
Given:
. Centrifugal forcelw”
Mass(m Radius(r
aiz( ) ms() (mr) Angle(0)
kg-m
ma = 12 kg _ _ _ Ao
(reference masy) | "= 0.04m Mara = 0.48 kg-m 6,=0
mg = 10 kg rg =0.05m merg = 0.50 kg-m 0, =60°
mc = 18 kg rc=0.06m mcrc = 1.08 kg-m 0.=135
mo = 15 kg rp =0.03m mofp = 0.45 kg-m 6,=270"

To determine the balancing mass‘m’ at aradiusof r = 0.1 m.

The problem can be solved by either analytical or graphical method.
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Analytical Method:

Step 1.

Draw the space diagram or angular position of the masses. Since al the angular position
of the masses are given with respect to mass A, take the angular position of mass A
as, =0°.

Fel e

mL

Fell

Tabulate the given data as shown. Since the magnitude of the centrifugal forces are
proportional to the product of the mass and its radius, the product ‘mr’ can be calculated
and tabulated.

Step 2

Resolve the centrifugal forces horizontally and vertically and find their sum.

Resolving mara, mers, Mcrc and mprp horizontally and taking their sum gives,

imiri cos 6, =m,r,cos8, + m,r,cos6, +m..cosB_.+m_r,cos6,
=0.48 x cos 0°+ 0.50 x cos 60°+1.08 x cos 135°+ 0.45 x cos 270°
=0.48+0.25+(-0.764)+0=-0.034kg-m ————————— (1)

Resolving mara, mers, Mcrc and mprp vertically and taking their sum gives,
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n
> myr,sin 8,=m,r,sinB, +m,r,sinB, +m.r.sin@.+m_r,sinB,

i=1
=0.48 x sin0°+ 0.50 x sin60°+1.08 x sin135°+ 0.45 x sin270°
=0+0.433+0.764+(-0.45)=0.747kg-m ————————— (2)

Step 3
Determine the magnitude of the resultant centrifugal force

R:\/(iznl:miri cos eijz +(2miﬁ sin eijz

=/(-0.034) +(0.747) =0.748kg-m

Step 4.
The balancing force is then equal to the resultant force, but in opposite direction. Now
find out the magnitude of the balancing mass, such that

R=mr=0.748kg-m

Therefore, m=5=0'748 =7.48 kg Ans

r 0.1

Where, m = balancing mass and r = its radius of rotation

Step 5:
Determine the position of the balancing mass ‘m’.
If O istheangle, which resultant force makes with the horizontal, then

M-

myr, sin 6,
_ 0.747 _ 21.97

tanf=- =
-0.034

> mr,cos 6,
i=1

S
-

and 6=-87.4°0r92.6°

Remember ALL STUDENTS TAKE COPY i.e in first quadrant al angles
(sinB, cosb and tan®) are positive, in second quadrant only SIN® s positive, in

third quadrant only tan® is positive and in fourth quadrant only COSO s positive.

Since numerator is positive and denominator is negative, the resultant force makes with
the horizontal, an angle (measured in the counter clockwise direction)

0=926"

o
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The balancing force is then equal to the resultant force, but in opposite direction.
The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the

angle of inclination with the horizontal is, 0,,=87.4° angle measured in the

clockwise direction.

R
F[[ ; F(E
I
m( ll
! 5 mB
60 \ Bc=130
' - 0 5= 600
Ap=2700 °
rA = 40 mm FeA
] mA
i) Space Dingram 30 . 8= 874
]
1 100
m0

FcD
Oe

Graphical Method:

Step 1.

]

Tabulate the given data as shown. Since the magnitude of the centrifugal forces are
proportional to the product of the mass and its radius, the product ‘mr’ can be calculated

and tabulated.

Draw the space diagram or angular position of the masses taking the actual angles( Since
all angular position of the masses are given with respect to mass A, take the angular

position of mass A as 6, = 0°).
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Fel '* FcB
I
m( II
1* 50 me
60 b o= 1350
' . B 5= 600
Bp=2700 ° '
rA = 40 mm FeA
| mA
i) Space Diagram ol 8= 874
' a
l| 100 048 b
mD _
Q bl Vector Diagram
I
FlD
@L
Step 2

Now draw the force polygon (The force polygon can be drawn by taking a convenient
scale) by adding the known vectors as follows.

Draw aline‘ab’ parallel to force Fca (or the product mara to a proper scale) of the space
diagram. At ‘b’ draw a line ‘bc’ parallel to Fcg (or the product mgrg). Similarly draw
lines ‘cd’, ‘de’ pardlel to Fec (or the product mcrc) and Fep (or the product mprp)
respectively. The closing side ‘ae’ represents the resultant force ‘R’ in magnitude and
direction as shown on the vector diagram.

Step 3
The balancing force is then equal to the resultant force, but in opposite direction.

R=mr
Therefore, m:I:: 7.48 kg Ans
The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the

angle of inclination with the horizontal is, 0, =87.4° angle measured in the
clockwise direction.
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Problem 2:

The four masses A, B, C and D are 100 kg, 150 kg, 120 kg and 130 kg attached to a shaft
and revolve in the same plane. The corresponding radii of rotations are 22.5 cm, 17.5 cm,
25 cm and 30 cm and the angles measured from A are 45°, 120° and 255°. Find the
position and magnitude of the balancing mass, if the radius of rotation is 60 cm.

Solution:

Analytical Method:

Given:
. Centrifugal force/w”
M m Radius(r
aiz( ) ms() (mr) Angle(0)
kg-m
ma = 100 kg _ _ i _n°
(reference mass) ra=0.225m mara =225kg-m | 0,=0
mg = 150 kg re=0.175m mgrg = 26.25kg-m | B, =45°
mc = 120 kg re=0.250 m merc = 30 kg-m 0. =120°
mp = 130 kg rp =0.300m morpo = 39 kg-m 0,=255°
m=? r=0.60 0 ="
Step 1:

Draw the space diagram or angular position of the masses. Since al the angular position
of the masses are given with respect to mass A, take the angular position of mass A

as, =0°.

Tabulate the given data as shown. Since the magnitude of the centrifugal forces are
proportional to the product of the mass and its radius, the product ‘mr’ can be calculated

and tabul ated.

FeC

mC
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Step 2:
Resolve the centrifugal forces horizontally and vertically and find their sum.

Resolving mara, mers, Mcrc and mprp horizontally and taking their sum gives,

n
> mr cos®, =m,r,cosd, +m_,rcosh, +m_r.cosd_ +m_r cosh

i=1

=225 x cos 0° + 26.25 x cos 45° + 30 x cos 120° + 39 x cos 255°
=225+18.56+(-15)+(-10.1)=1597 kg-m ————————— (1)

Resolving mara, mgrs, Mcrc and mprp vertically and taking their sum gives,

>mr sin® =m,r,sin®, +m_r.sin®_,+m_.r._sind_+m_r sin,

=225 x sin 0°+ 26.25 x sin 45°+ 30 x sin 120° + 39 x sin 255°
=0+18.56+25.98+(-37.67)=6.87 kg-m - ———————— (2

Step 3:
Determine the magnitude of the resultant centrifugal force

2

Rz\/(imiri cos ei)z +(gmiri sn Gi)

i=1

=./(15.97) +(6.87) =17.39 kg—m

Step 4:
The balancing force is then equal to the resultant force, but in opposite direction. Now
find out the magnitude of the balancing mass, such that

R=mr =17.39 kg—m

R 17.39

Therefore, m= 5 =28.98 kg Ans

r
Where, m = balancing mass and r = its radius of rotation
Step 5:

Determine the position of the balancing mass ‘m’.
If O istheangle, which resultant force makes with the horizontal, then
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Zn:miri sin 6,
tan 0= _ 687 0.4302
> m,r, cos 0, 15.97

i=1

and 0= 23.28°

The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the
angle of inclination with the horizontal is, @ =203.28° angle measured in the
counter clockwise direction.

225 tm

la) Space dingram

Graphical Method:

Step 1.

Tabulate the given data as shown. Since the magnitude of the centrifugal forces are
proportional to the product of the mass and its radius, the product ‘mr’ can be calculated
and tabulated.
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Step 2

Draw the space diagram or angular position of the masses taking the actual angles (Since
all angular position of the masses are given with respect to mass A, take the angular

position of mass A asf, = 0°%).

Z25mm

in! Space dingram

m0

.'. 3l
) myl'y b

ibl Vector diagram

Draw aline‘ab’ parallel to force Fca (or the product mara to a proper scale) of the space
diagram. At ‘b’ draw aline ‘bc’ parallel to Fcg (or the product mgrg). Similarly draw
lines ‘cd’, ‘de’ paralel to Fcc (or the product merc) and Fep (or the product mprp)
respectively. The closing side ‘ae’ represents the resultant force ‘R’ in magnitude and
direction as shown on the vector diagram.

Step 4.
The balancing force is then equal to the resultant force, but in opposite direction.

R=mr

Therefore, mzli: 29kg Ans

The balancing mass ‘m’ lies opposite to the radial direction of the resultant force and the
angle of inclination with the horizontal is, © =203° angle measured in the counter

clockwise direction.
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Problem 3:

A rotor has the following properties.

Mass magnitude Radius Angle f? (;(r;alﬁc:isft?nn:;
1 9 kg 100 mm 0,=0 -
2 7kg 120mm | 6,=60° 160 mm
3 8kg 140mm | 6.=135° 320 mm
4 6 kg 120mm | 6,=270° 560 mm

If the shaft is balanced by two counter masses located at 100 mm radii and revolving in
planes midway of planes 1 and 2, and midway of 3 and 4, determine the magnitude of the
masses and their respective angular positions.

Solution:

Analytical Method:

Centrifugal

Distance

2
Mass (m) | Radius (r) forcelw? from Ref. Couple/ o Angle
Plane e (mrlL) 0
kg m (mr) plane‘M 2
1 kg-m
2 3 kg-m m 6 7
4 5
1 9.0 0.10 mir; =09 -0.08 -0.072 0°
M my =? 0.10 my v =0.1my 0 0 GM =7
2 7.0 0.12 moro =0.84 0.08 0.0672 60°
3 8.0 0.14 msrz3 =112 0.24 0.2688 135V
N my="7 0.10 my Iy =0.1my 0.36 My I'n IN = 0.036 my ON =7
4 6.0 0.12 msr, =0.72 0.48 0.3456 270°

For dynamic balancing the conditions required are,

>mr+m,r,+my,=0 ---------- (I) for force balance

>mri+ mrl,=0 -------------- (IT) for couple balance
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80 120

560 mm

{a) Position of planes of masses

Step 1.
Resolve the couplesinto their horizontal and vertical components and find their sums.

Sum of the horizontal components gives,

> mrlcos6+ myr,l,cos6, =0

On substitution we get

—~0.072 cos0°+0.0672 cos 60°+0.2688cos135°
+0.3456c0s270°+0.036 m,cosH, =0

i.e. 0.036 m,cosB,=0.2285-—-—-— (1)

Sum of the vertical components gives,

> mrlsin®+ myr,l,sing, =0

On substitution we get

—-0.072sin0°+ 0.0672 sin 60°+0.2688sin135°
+0.3456 sin270°+0.036 m, sinB,, =0

i.e. 0.036 m_sinB,=0.09733————- (2)

Squaring and adding (1) and (2), we get

o
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m, I, l,=+/(0.2285) +(0.09733)
i.e., 0.036m,=0.2484

0.2484

————=6.9kg Ans
0.036

Therefore, m,=

Dividing (2) by (1), we get

Step 2

0.09733

tand,=-3>585

and 6,=23.07°

Resolve the forces into their horizontal and vertical components and find their sums.

Sum of the horizontal components gives,

> mr cos@+ m,r, cosB, + m,r, cosB, =0

On substitution we get

0.9 cos 0°+0.84 cos 60°+1.12 cos135°+0.72 cos270°
+m,r, cosB, +0.1x6.9xc0s23.07° =0

i.e. m,r, cos@,=-1.1629 - ———— (3)

Sum of the vertical components gives,

> mrsin8+m,r, sinB, + myr, sin, =0

On substitution we get

0.9sin0°+ 0.84 sin60°+1.12 sin135°+0.72sin270°
+m,,r, sinB, +0.1x6.9xsin23.07° =0

i.e. m,r, sin6,=-1.0698 - ———- (4)

Squaring and adding (3) and (4), we get

m,r, =y(-1.1629) +(~1.0698)
i.e., 0.1m,=1.580

Therefore, m, =%=15.8 kg Ans

Dividing (4) by (3), we get

tan8,=——————— and 6, =222.61° Ans
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fbi Angular position of masses

Graphical Solution:

C
m313l;
hl
myrqly +
marzl
myrily o
a t_/qﬁ_
— - 0 w11y a
dl.-=" mxryly

(d Force polygon
ic} Couple polygon

N
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Problem 4:
The system has the following data.

m,=1.2 kg r, =1136m@ «£113.4°
m,=1.8kg r,=0.82m@ £ 48.8°
m,=2.4Kkg r,=104m@« 251.4°

The distances of planesin metresfrom plane A are:
,=0.854,1,=1.701,l,=2.396,1 = 3.097

Find the mass-radius products and their angular locations needed to dynamically balance
the system using the correction planes A and B.

Solution: Analytical Method
P — |
‘T:w, x’?}. 5)
L5,
T | [ .
270 I.l'. \ a5
1047 rhf [
1.0, | _."' l_r.l
ki Pasition of plonss of masses 3 £ ID o
b daguias pedifian af masses
Centrifuga Distance 2
Mass (m) | Radius (r) forcelw? from Ref. Couple/ Angle
Plane C (mrlL) 0
kg m (mr) plane‘A Vi
1 kg-m
2 3 kg-m m 6 7
4 5

A Ma ra Ma ra =? 0 0 GA =7
1 1.2 1.135 1.362 0.854 1.163148 113.4°
2 1.8 0.822 1.4796 1.701 2.5168 48.8°
3 24 1.04 2.496 2.396 5.9804 251.4°
B Mg s mg g =? 3.097 3.097 mg Ig 0,="
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Step 1
Resolve the couplesinto their horizontal and vertical components and find their sums.
Sum of the horizontal components gives,

> mrlcos®+ m,r,l,cos6, =0
On substitution we get
1.163148 c0s113.4°+2.5168 cos 48.8°+5.9804 cos251.4°
+3.097 m,r, cos6, =0
0.71166

i.e. mgr, coseBzw ————— (1)

Sum of the vertical components gives,

> mrlsin@+ m,r,l,sin6, =0
On substitution we get
1.163148sin113.4°+2.5168 sin 48.8°+5.9804 sin251.4°
+3.097 m,r, sinB, =0
2.7069

i.e. mBrB S|neB=W ————— (2)

Squaring and adding (1) and (2), we get

(0.71166]2 (2.7069]2
myr, =|| ———— | +
3.097 3.097

= 0.9037kg-m

Dividing (2) by (1), we get

~ 2.7069

tanB,=———
® 0.71166

and 6, =75.27° Ans

Step 2:
Resolve the forces into their horizontal and vertical components and find their sums.

Sum of the horizontal components gives,
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> mr cos6+m,r, cos8, + m,r, cosf, =0

On substitution we get

1.362c0s113.4°+1.4796 cos 48.8°+2.496 cos251.4°
+m,r, cosB, + 0.9037 cos75.27° =0

Therefore

m,r, cosf, =0.13266————————— (3)

Sum of the vertical components gives,

> mr sin@+ m,r, sin6, + m,r, sin6, =0

On substitution we get

1.362sin113.4°+1.4796 sin 48.8°+2.496 sin 251.4°
+m,r, sinB, + 0.9037 sin75.27° =0

Therefore

m,r, sin®, =—0.87162————————— (4)

Squaring and adding (3) and (4), we get

m,r, =/(0.13266) +(-0.87162)
=0.8817 kg—-m

Dividing (4) by (3), we get

taneA:m and 6, =-81.35° Ans
0.13266

Problem 5:

A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg, 400 kg and 200
kg respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes
measured from A at 300 mm, 400 mm and 700 mm. The angles between the cranks
measured anticlockwise are A to B 45°, B to C 70° and C to D 120°. The balancing
masses are to be placed in planes X and Y. The distance between the planes A and X is
100 mm, between X and Y is 400 mm and between Y and D is 200 mm. If the balancing
masses revolve at aradius of 100 mm, find their magnitudes and angular positions.

o
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Graphical solution:

Let, my be the balancing mass placed in plane X and my be the balancing mass placed in
plane Y which are to be determined.

Step 1.

Draw the position of the planes as shown in figure (a).

'|'E |

+Tg

--g]g.

300
L0

I} position of plones of mosses

QO @) Or

v H

w0

®

&+
"O

b Angulnr postion of mmsses

Let X be the reference plane (R.P.). The distances of the planes to the right of the plane X
are taken as positive (+ve) and the distances of planes to the left of X plane are taken as
negative(-ve). The data may be tabulated as shown

Since the magnitude of the centrifugal forces are proportional to the product of the mass
and its radius, the product ‘m r’ can be calculated and tabulated. Similarly the magnitude
of the couples are proportional to the product of the mass , its radius and the axial
distance from the reference plane, the product ‘m r I’ can be calculated and tabulated as

shown.
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Centrifugal Distance 2
Mass | Radius(r) forcelw? from Ref. Couple/ o Angle
Plane s (mrL) 0
(m) kg m (mr) plane ‘X 7
1 kg-m
2 3 kg-m m 6 7
4 5
A 200 0.08 Mara =16 -0.10 -1.60 -
X my =7 0.10 my rx = 0.1 my 0 0 GX =7
B 300 0.07 mgrg =21 0.20 4.20 AtoB 45°
C 400 0.06 Mcrc =24 0.30 7.20 B to C 70°
Y my =? 0.10 my ry =0.1my 0.40 My ry ly = 0.04 my 6, ="
D 200 0.08 mprp =16 0.60 9.60 CtoD 120"
Step 2

Assuming the mass A as horizontal draw the sketch of angular position of masses as
shown in figure (b).

Step 3.

Draw the couple polygon to some suitable scale by taking the values of ‘m r I’ (column
no. 6) of the table as shown in figure (c).

IIlAl'Al A

c} Couple polygon

{d Force polygon

Draw lineo’a paralel to theradia line of mass ma.

At a draw linea b’ paralld to radia line of mass mg.
Similarly, draw linesb’c’, c'd’ parallel to radial lines of masses mc and mp respectively.
Now, joind’ to 0’ which gives the balanced couple.
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0.04 m, =vector d'0'=7.3kg-m?

We get,
or m,=182.5 kg Ans

Step 4.

To find the angular position of the mass my draw aline omy in figure (b) parallel to d' o’

of the couple polygon.

By measurement we get 8, =12° in the clockwise direction from ma.

Step 5:

Now draw the force polygon by considering the values of ‘m r’ (column no. 4) of the
table as shown in figure (d).

Follow the similar procedure of step 3. The closing side of the force polygon i.e. ‘e 0
represents the balanced force.

m, r, =vectoreo=35.5kg-m
or m,=355kg Ans

Step 6:
The angular position of my is determined by drawing a line omy parallel to theline ‘e o’
of the force polygon in figure ( b). From figure (b) we get,

0, =145°, measured clockwise from ma. Ans

Problem 6:

A, B, C and D are four masses carried by arotating shaft at radii 100 mm, 125 mm, 200
mm and 150 mm respectively. The planes in which the masses revolve are spaced 600
mm apart and the mass of B, C and D are 10 kg, 5 kg and 4 kg respectively. Find the
required mass A and relative angular settings of the four masses so that the shaft shall be
in complete balance.

Solution:

Graphical Method:

Step 1

Let, ma be the balancing mass placed in plane A which isto be determined along with the
relative angular settings of the four masses.

Let A bethereference plane (R.P.).

Assume the mass B as horizontal

Draw the sketch of angular position of mass mg (line omg ) asshownin figure (b). The
data may be tabulated as shown.

o
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Distance

H 2 2
o Mass Radius (1) Centrifugal force/m from Ref. Couple/ ® Angle
ane (mr) s (mrlL) 0
(m) kg m plane‘A 4
1 kg-m kg-m
2 3 m
4 6 7
5
(RAP) ma=? 0.1 mara =01map 0 0 GA =7
B 10 0.125 mgrg =125 0.6 0.75 6,=0
C 5 0.2 mcrc =10 1.2 12 0.=7
D 4 0.15 mprp =0.6 18 1.08 0,="
i mi
®» & ©® @
1
m 55
rk
100
e R - O
rB
< . mE
B0 B0 B0

i) Position of plones of mnsses
i Anquinr Posrtion of moses
mi

Draw aline o'b’ equal to 0.75 kg-m® paralld to the line omg. At point 0’ and b’ draw
vectors o'c’ and b'c’ equal to 1.2 kg-m® and 1.08 kg-m? respectively. These vectors
intersect at point C'.

For the construction of force polygon there arefour options.

Any one option can be used and relative to that the angular settings of mass C and D
are determined.
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ul'.'\ 17hl
=0.75

. Inpl 1 0.75 P

s

“f
Sy

\ !
W rB
s mB
Eurr -

{c) Couple polygon

(bl Angular Position of masses
mC

6,=100° and 6.=240° Ans

Step 4:
In order to find mp and its angular setting draw the force polygon as shown in figure (d).

mpgrg=1.25

N
mg ' “ d
mere=1.0
mp 1 =0.60

C

(dl Force polygon

Closing side of the force polygon od represents the product ma ra . i.e.
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m, r,=0.70kg-m

Therefore, m, _0.70 =7kg Ans

Fa

Step 5:

Now draw line oma parallel to od of the force polygon. By measurement, we get,
6,=155"° Ans

Problem 7:

A shaft carries three masses A, B and C. Planes B and C are 60 cm and 120 cm from A.
A , B and C are 50 kg, 40 kg and 60 kg respectively at a radius of 2.5 cm. The angular
position of mass B and mass C with A are 90° and 210° respectively. Find the
unbalanced force and couple. Also find the position and magnitude of balancing mass
required at 10 cm radiusin planes L and M midway between A and B, and B and C.

Solution:
Case (i):
. 2 | Distance 2
Mass Radius (1) Centrifugal force/m from Ref. Couple/ ® Angle
Plane (mr) o (mrlL) 0
(m) kg m plane‘A 4
1 kg-m kg-m
2 3 m
4 6 7
5
A _ A0
(R.P.) 50 0.025 mata =125 0 0 GA =0
B 40 0.025 mgrg =1.00 0.6 0.6 0, =90°
C 60 0.025 |mcrc =150 1.2 1.8 0.=210°

Analytical Method

Step 1

Deter mination of unbalanced couple

Resolve the couplesinto their horizontal and vertical components and find their sums.
Sum of the horizontal components gives,

> mrlcos6=0.6 cos 90°+1.8cos 210°=-1.559-———- (1)

Sum of the vertical components gives,

> mrlsin6=0.6sin90°+1.8sin210°=-0.3-———-— (2)
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Squaring and adding (1) and (2), we get

C =|/(-1.559) +(-0.3)’

=1.588 kg-m?

unbalanced

Step 2
Deter mination of unbalanced force

Resolve the forces into their horizontal and vertical components and find their sums.
Sum of the horizontal components gives,

> mrcosB6= 1.25cos0°+1.0 cos 90°+1.5 cos210°
=1.25+0+(-1.299)=-0.049————————— (3)

Sum of the vertical components gives,

> mrsin® =1.25sin0° + 1.0 sin 90° +1.5 sin 210°
=0+1.0+(-0.75)=0.25————————— (4)

Squaring and adding (3) and (4), we get

F =/(-0.049) + (0.25)’

=0.2548 kg-m

unbalanced

Graphical solution:

mA
A
e —
1] A -
i
i
&l cm
| 60 cm o \bk Angulor Position of mmsses
1 -

\al Posifion of planes of masses
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,—’/'—‘/

Unbalanced couple
Couple polygon

Case (ii):

VE +VE

+— Jp—*

© © @

30 .

60 i B0

ik Fosition of planes of masses

To determine the magnitude and directions of masses my and m..

Unbalanced force

an

b
A
150
c
1.00
1.25
o] a
Force polygon

{b¥ Anguinr Position of mosses

Let, m_ be the balancing mass placed in plane L and my be the balancing mass placed in

plane M which are to be determined.

The data may be tabulated as shown.
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Centrifugal Distance 2
Mass | Radius(r) for ce/m? from Réf. Couple/ © Angle
Plane o s (mrL) 0
(m) kg m (mr) plane‘L Vi
1 kg-m
2 3 kg-m m 6 7
4 S
A 50 0.025 mara =125 -0.3 -0.375 0, =0°
L
=" ="
RP) | ™ 0.10 0.1m, 0 0 0, ="
B 40 0.025 mgrg =100 0.3 0.3 0, =90
M my = ? 0.10 0.1 my 0.6 0.06 my, 0, =7
C 60 0.025 mcrc =150 0.9 1.35 0. =210°

Analytical Method:

Step 1
Resolve the couplesinto their horizontal and vertical components and find their sums.

Sum of the horizontal components gives,

> mrlcos®+ m,r,l,cos6,=0
On substitution we get

-0.375cos 0°+ 0.3 cos 90°+0.06 m,, cosO, +1.35 cos 210°=0
i.e. -0.375 +0+0.06 m,,cos9,+(-1.16913)=0

0.06 m, cos6,=1.54413
1.54413

m,, cos@, = 0.06 . (1)

Sum of the vertical components gives,

> mrlsin®+ m,r,l,sin6, =0
On substitution we get

-0.375sin0°+ 0.3 sin90°+0.06 m,sin6,+1.35sin210°=0
i.e. 0 +0.3+0.06 m,sin®,+(-0.675)=0
0.06 m,sin6,=0.375

m, sine, =2375 _6.25 _____ (2)
0.06

Squaring and adding (1) and (2), we get
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(m,cos6,)’ +(m,sin0,)* =(25.74)* +(6.25)* = 701.61

i.e.m; = 701.61 and m, =26.5 kg Ans

Dividing (2) by (1), we get

and 6,=13.65° Ans

Step 2:
Resolve the forces into their horizontal and vertical components and find their sums.

Sum of the horizontal components gives,

> mrcos®+m,r, cos6, + m,r, cos6, =0

On substitution we get

1.25¢c0s0°+0.1m, cosO, +1.0 cos 90° +2.649 cos13.65° + 1.5cos 210° =0
1.25+0.1m_cosO, +0+2.5741+(-1.299) =0

Therefore
0.1m_cosO, +2.5251=0
and m, cosO, = _2;)5?51=_25 251 ———————— (3)

Sum of the vertical components gives,

> mrsin@+m,r, sin@_+m,r, sin6, =0

On substitution we get

1.25sin0°+ 0.1m, sin®, +1.0 sin 90° +2.649 sin13.65° + 1.5sin 210° =0
0+0.1m, sin®, +1+0.6251+(-0.75) =0

Therefore

0.1m, sin6, +0.8751=0

and m, sin@, _-0.8751_

Squaring and adding (3) and (4), we get
(m, cos0,)? +(m, sin@,)*> = (-25.251)2 +(-8.751)* = 714.193
i.e.m? = 714,193 and m, =26.72 kg Ans

Dividing (4) by (3), we get

N/
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tan0,=——""—  and 6, =19.11° Ans

The balancing mass m, is a an angle 19.11° + 180° = 199.11° measured in counter
clockwise direction.

Graphical Method:

0.3

0.375

A
\
<

7 0.06my

COUPLE POLYGON

\ 4

1.25
FORCE POLYGON

1Elnyg

g,

ik dpgpinr Fosition of mnses
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Problem 8:

Four masses A, B, C and D are completely balanced. Masses C and D make angles of 90°
and 210° respectively with B in the same sense. The planes containing B and C are 300
mm apart. Masses A, B, C and D can be assumed to be concentrated at radii of 360 mm,
480 mm, 240 mm and 300 mm respectively. The masses B, C and D are 15 kg, 25 kg and
20 kg respectively. Determine i) mass A and its angular position ii) position of planes A
and D.
Solution: Analytical Method

Step 1.

Draw the space diagram or angular position of the masses. Since the angular position of
the masses C and D are given with respect to mass B, take the angular position of mass B

as6,=0°.

Tabulate the given data as shown.

il Pourlion of plane: of posses Wssused!

bt dnguinr paition of naves

. 2 | Distance 2
o Mass Radius (1) Centrifugal force/o from Ref. Couple/ ® Angle
ane (mr) o (mrL) 0
(m) kg m plane‘A 7
1 kg-m kg-m
2 3 4 m 6
7
S
(RAP) ma=? | 036 |mara =0.36ma 0 0 0,="
B 15 0.48 mgrg =7.2 lg="? 7218 6,=0
C 25 0.24 mcrc =6.0 lc="? 6.0lc 0.=90°
D 20 0.30 mp rp = 6.0 lp="? 6.01p 0,=210°
[ — +
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Step 2
Mass ma be the balancing mass placed in plane A which is to be determined along with
its angular position.

Refer column 4 of the table. Since my is to be determined ( which is the only unknown)
resolve the forcesinto their horizontal and vertical components and find their sums.

Sum of the horizontal components gives,

> mr cos@=m,r, cos@, + m_r, cos@, +m_r_ cos@_+m_r, cosd, =0
On substitution we get

0.36m, cos0, + 7.2 cos0’ + 6.0 cos90° + 6.0 cos210° =0

Therefore

0.36 m, cosf, =-2.004————————— (1)

Sum of the vertical components gives,

>mrsin@=m,r, sin@, + m,r, sin®, +m.r. sin@_+m,r, sin6, =0
On substitution we get

0.36 m,sin@, + 7.2 sin0° + 6.0 sin90° + 6.0 sin210° =0
Therefore

Squaring and adding (1) and (2), we get

0.36%(m,)?=(-2.004)*+(-3.0)> =13.016

m, =1/]§"30;'26 =10.02 kg Ans

Dividing (2) by (1), we get

tane,‘:_?"4 and Resutltant makes an angle = 56.26°

The balancing mass A makes an angle of 6, =236.26° Ans

o
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Step 3.
Resolve the couplesinto their horizontal and vertical components and find their sums.
Sum of the horizontal components gives,

>mrlcos@=m,r, |, cos®, +m_r | cos®, +m_r_l_cos®.+m_r_ | cos@, =0
On substitution we get
0+ 7.21, cos0’ + 6.0l cos90° + 6.0l , cos210° =0

7.21,-51962| ,=0----------- 3
Sum of the vertical components gives,

>mrlsin@=m,r,1,sn0, +m_r | sinO,+m_r.1.snd.+m_r | sn6, =0
On substitution we get
0+7.2l,sn0°+6.0l_.sin90" + 6.01,sin210° =0

0+0+6.01_—3l_ =0---=----=-- 4)

But from figurewehave, |_=1,+0.3
On substituting this inequation (4), we get
6.0(1,+0.3) -3l,=0
.e.60l,-3l,=18---------- (5)

Thuswehavetwo equations( 3) and (5),and twounknownsl, I
7.21,-51962l ,=0----------- (3)
6.01, -3l =18---------- (5)

On solving theequations, we get

|, =-—1353m and |,=—0.976m

As per the position of planes of masses assumed the distances shown are positive (+ ve)
from the reference plane A. But the calculated values of distances Ig and Ip are negative.
The corrected positions of planes of masses is shown below.

o
)‘4 GETMYUNI



WWW. get myuni . con

RP

®» © © @ o

rC
03m

21 \90

o ’ ’ ’ ’ i ’ o 236.26 B @
lb = 0976 m o B
]
rA
ld =-1353 m mA

(@) Position of planes of masses (Corrected) b} Angular position of masses [Final

References:

1. Theory of Machines by S.S.Rattan, Third Edition, Tata McGraw Hill Education
Private Limited.

2. Kinematics and Dynamics of Machinery by R. L. Norton, First Edition in Sl units, Tata
McGraw Hill Education Private Limited.

3. Primer on Dynamic Balancing “ Causes, Corrections and Consequences’ By

Jim Lyons International Sales Manager IRD Baancing Div. EntekIRD International

o
)‘4 GETMYUNI



; +~ !
wrodcion TR

Gears are usid 1o Transmit motion from one shaft to another or between 3 shaft and a shde, This i accomplshed by
successively pngaging testh,

Gears use no intermadiate link o connector and transmit the mation by direct contact, s this method, the surfaces
of two bodies make a tangential contact. The two bodies have sither a rolling o & shding motion alang the tangent &
tha point of contact. Mo motion s possibée along the common normal as that will sither break the canfact ar o by
will kznd fo penetrate fite the ather

If power transmitted bitween two shafts is small, motion between them
may be sbtained by using twe plain cylinders or dises | and 2 as shown in
Fig. 10,1, If there is no alip of one surtace relative 1o the other, & definite
matien oF | can be transmitted to 2 and vice-versa. Such wheels are termed
a5 friction wheels. However, &< the power tansmitted increases, slip occurs
between the dises and the motion no longer remaing definite

Assurming no slipping of the two surfaces, the followng kinematic
relationship exists for their lmear velocity:

I‘I_l.l — -tﬂ-| Fy = EIE'FJ
= Eﬂ'Hl.l" = :'.-?ﬁ"«r: U

bt M - %
o ? 2 ; R
where N o= angular velocity {rpm)

= gngular velocity (rad/s)
ro= radins of the disc

Subscripts | and 2 represent discs | and 2 respectively,

The relationship shows that the speeds of the two discs rolling together withowt shipping are inversely
proportional to the radii of the discs.

To transmit o definite motion of one disc 1o the other of 1 prevent slip between the surfaces, projections
aml recesses on the two dises can be made which can mesh with cach ather. This leads to the formation of
teeth on the discs and the motion between the surfaces changes from rolling to sliding. The dises with reeth
are known ns gears or pear wheels,

It is to be noted that if the disc | rotases in the clockwise direction, 2 rotates in the counter-clockwise
directzion and vice-versa.

Although large velocity rtios of the driving and the driven members have been obtained by the use of
gears, pracnically, it is limited to 6 for spur gears and 10 for helical and herringbone gears. To obtain large
reductions, two or more pairs of pears are used.




. CLASSIFICATION OF GEARS i
§penrs cam be classified according 10 the relative positions of their shaft axes as follows:
1. Parallel Shafts

Regardiess of the mannet of contact, uniform
miliry motion between two pasallel shafts i
mqunvalent to the roliing of twa cvlinders,
wwming no shipping. Depending upon the
incth of the squivalent cvlinders, ie., straight
of hielical, the following are the mamn types of
s o join parallel shafis:

Apitir s They have straight teeth parallel
bir ihe axes and thies are not subjectsd 1o axial
dlirusst duse b sooth foad [Fig. 10.2(a]].

At the time of engagement of the two gears, the contact extends across the entire width on 2 line parallel
b the axes of rdation. This results in sudden application of the load, high impact
sicsses and excessive nowse ot high speeds.

Further, if the pears have external teeth on the outer surface of the cylinders,
Ik shafts rotate in the opposite dirscton [Fig. 10.2(a)], In an internel spuar gear,
il Lseth are formed on the inner surface of an annulus fng. An intenal pear can
nesh with an external pinion (smallzr gear) only and the fwo shafts rotate in the
sime direction es shown in [Fig. 10.2BY].

Spaer Rack and Pinion  Spur mek is & special case of a spur
penr where it is made of imfinite diameter so that the pitch surface
i« n plane (Fig, 10L3) Toe spur rack and pinion: combination
vinverts rotary mobon ints Tansiatory motion, of vice-versa
It s used in a lathe in which the mek transmits motion o the
winldle

Hetical Gears or Helical Spur Gears  In hefical gears, the
eoth are curved, each being helical in ahape. Two mating gears
lve the same helix angle. but have teeth of opposite hands
flagg B4,

Al the beginmimg of engagement, contact occurs only at the
punt o leaching edge of the curved teeth. As the gears rodate,
the contact extends along o diagonal line across the teeth, Thus,
the boad application = gradual which resulis m Jow impact stresses and reduction in noise, Therefore, the
helicai gears can be used a2 higher velocities than the spur gears and huve greater load-carrving capacity.

Helical pears have the dissdvantage of having end thrust a5 there is a force component along the gear axis,
The bearmzs and the ussemblies mounting the helical genrs must be able 1o withstand thrust Joads.

Mmable-helical and Herringbone Gears A dowble-helical gear ts equivalent 1o a par of helwal gears
sccured together, one having a right-hand helix and the other a lefi-hand helis. The teeth of the two rows
e separated by & groove used for el run oul. Axial thrust which oceurs in case of single-helical gears 1=




334 Taory of Machims

eliminaied i double-halicnl gears. Ths 12 becauss the axial thrusis of
the b rows of teeth carcel sach other out, Thess can be run at high
spesds with less mokse and vibratons

It the beft ond the nght inclirations of 8 doubie-helical gear meet at
a ¢ommon apsa and there 15 no groove in between, the pear is Enown
as ferrisgbowe gear (Fig. 1005)

2. Intersecting Shafts

Kinemancally, the moion between
twp intersecting shafts is equivaleni
! i the rolling of two cones, assuming
o slipping. The gears, in general, are
ALAA N known as bevel gears,
& | 4, When teeth formed on the cones are stragzht, the gears are known 25 i
_ = Beeved amel when melined, they are known
‘ﬁ_ ,l“gl , any spread or hislival bevel
— | ] Straight Bewvel Gears The testh
are straight, radial 10 the polm of
/i infesection of the shaft azes and
vary in cross  section  throughowt
,i"bﬁ. I[Lﬁ.! their kengeh. Dssally, they e wsed to
conpect shafls at right angles which
run at low speeds (Fig, 10.6), Gears of
the zame size and connecting two shafts at right angles to cach other ars
known as miltre gears
Al the beginning of engagement, siraight bavel gears make the fing
conisct similar to spur gears, There can also be fodermad bevel gears analogous to internnl

Uir EEars. .

Spiral Bioel Gears When the teeth of a bevel gear are inclined st an angle o the o
face of the bevel, they are known as spiral bevels or helical bevels (Fig. 10.7) They l-—
are smoother n sction and quicter than straight tooth bevels as there is gradual load
upplication and low impact stresses. OF course, there exists an axial thrust calling for |-'-_ E
stronger bearings and supporting assemblies, e

Thess are used For the dnve o the differential of an automohile.

Zerol Bepel Gears  Bpirnl bevel gears with curved teeth but with a zero degres spiral
angle are known as zeérol bevel gears (Fig. 10.8), Their tooth action and the end thrust are
the g s that of straight bevel gears and, therefors, can be used in the same mountings.
However, they ane gquieter in action than the straight bevel type as the teeth sre curved,

3. Skew Shafts

In case of paraflel and intersecting shafis, s uniform rotary motion is possihle by pure rolling contact. Bug
cama of skew (non=parallel, non=intersecting) shafts, this s oot possible.

Observe o hyperboloid shown m Fig. 10.%a). 1 is a surface of revolution generated by a skew line :
revalving around an axis £.00 i another plane, kesping the angls w, betwocen them as constant. The mimimun
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ce between AB and -0 s the common perpendicular CO which is also the radaus of tlve gorre or throal
hyperboeloid.
"As the gencrating element of & hyperboloid s a straight fme, two hwperboboids can contact cach other
8 line common 1o their respective generating element, c.g., AN can be the generating element of the
hyperboloids [Fig, 10:9(h}]. Further, if the two mating hyperoaloids are of lirmited width and have the
Ing motion only, then contact length of their generators will o on diminishing and soon the two could be
ied. In other words. 17§t i desired that the two hyvperboloids towch each other on the entire tengih of A58
fhey roll, they must have some sliding motion paralle] 1o the line of contact. Thus, i the two hyperbobokls
om their respective axes, the motion between them would be o combinanon of rolling {pormal e the
of contact’ and sliding action (paraile] to the line of contact), Teeth are cut on the hyvperbolow serfaces
[1e] 1o the lme of contact (o form gears
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Angle between the two shafts will be equal 10 the sum of the angles of generation of the Two
beoleads,
=g T {1021
The minmum perpendicular dretance berween the 1w shafis is the sum of the gorge (troat) radi
In practice, due to manutacisnng difficulties, omly portions of the hyperboboids are used to TARSTIL Mobon
Iwecn the skew shafts and that 100 with approximitinns 2s given below.
|. A short segment at the gonge i approximated 0 4 cylinder and the corresponding gear 5 known
25 helical or crossed-helical or spiral gear [Fig. 10.9(c)L The contact between the two gears i
concentrated @ o point which limets the capacity
Far skew shafts with 3 907 angle between them where high-speed matios arc o be achieved. the helix
pngle of the pinion {small gear) mereases. When the anghe exceeds 663" and the number of teeth
s Tess than 3—4, the Wgh-speed pimion i known as wern and the matmg helical pear as the pear,
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L. Giears psong an end porton of the hyperbolowd are known as fypoldf gears. AN
I'hug, the maimn types of gears wsed for skew shafis ure the following: .:; "-.".J § 4
5 : - : ; =L Y \
Crossed relical Gears  The use of crossed-helical gears-or spirn] gears is limied ':‘x "“']l ey 1
io light lowids, By a suntable choice of belix angle for the mating gears, the twoshafis L — ] i'
can be sed at any angle (Fig. 14,10, =1 =7
9 . 5 5 e S | |
These gears are used o dnve feed mechanisms on machine tools, camshalts and bk ,.-"
ail pumps on small 1C engines, etc. "%_'-.L /
5 ¥ . wl s lI." | |
Worm Gears  Worm gear is a special case of a sparal gear in wiach the Rarger wheel, I T S
usually, has 0 holiow or concave shape such that & portion of the pich diameter of I" 'll--,,,_:".
a i " y ", =4
the ather gear is enveloped on it The smaller of the two whezls 15 called the worm A
which akso has a larpe spiral angle [ "HJ 1\ |
The shalts may have any angle bebween them, bot normally 30 15 S0°, At lenst, \ B,
one tooth of the worm must make & complete ey around the pitch cvlinder and thus b {' W
torms the screw thread. The sliding velocity of & worm gear 15 hkghur a5 compared Ml
o other bypes of gears, ?55 w,ﬁ
- — -\._--__d-- --\__'-.' [
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Wt gears ane made in the tollowing [orms:
L. Non-throgked (Fig. 10.11al The contact between the tecth is concentrated at a poind,

Stgle-throated (Fig, 101100 Geor teeth are curved to envelop the worm, There i line con
befween the teeth.

3. Lhowble-throgted (Fig. 10,17¢)  There is area contact between the teeth. A worm may be cut with
:'»i!lg,]l:- ara |:||J;'li.'|'.l||_' I|'|nru.|:|. cutter,




Hypoid Gears  As mentionad
suriier, bvpowd pears  are
Wﬂtlﬁﬂtlmﬂfhj’:ﬂﬂﬂl]u!d&
[h..:lug.'n they bk Tike 5.|hir|:|J
o [I'-'i,-l: 1,3 2(2)]. A bypoid 3
pinion = larger and stronger “-
o smical bevel pindon. A
il palr has & quiet and
amonth actwon, Moreover, the
shufts can pass each other 5o
thut beanngs can be used on
both pides of the gear and the
pirion [Frg 1012k

There = continuoos  pitch
lne comtact of the two mating
hypord gears while in action
ind they have larger number of teeth in contast than strughi-teoth bevel pears. These can wear well |
property lubricsted.

Pisah |
- epfirkiers |
;Y |
f o
[
—I ] |
| = Pigh ling
=4l
Pitch
Fich .~ point |
dearmmber -_w . el B
:-'15:"'}‘\-\. | Y l.r"'- i Y
| +15 *I.,- -::_:__.I 1
%, . _."I Y ' 3
LY 'h.__.' -__.- L
b - 1 P
¥ Pagh.
cinzias
Eig. 10.18
i, Hefer Figs 10,13 and 1014,
r |
(a) Pitch Cylinders  Pitch cylinders of a pair of gesrs in mesh are the imaginary friction cylinders, |

which by pure rolling 1ogether, transmit the sume motion as the pair of geors.

(b Pitch Circle 1k the eircle corresponding 10 & section of the equivalent piteh cylinder by o plane
normal te the wheel axis.
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fc] Pilch Drameter 11ois the diwmeter of the pich eylinder.

fd) Piich Surfmce  1Es the surlace of the pich evlmdes,

{e] Pitchh Foint The point of contact of twi prich circles = known as the piich point

(F1 LimeofCentres  Alinethroughthe centres of rotation of o pam of mating gears is the line of centron

: Fraswrm
{g) Pedon  Ivis the smaller and usually the doving gear ofe. pe 0 00 angie
pixir of mated gears. i

3 (a)y Rack Itis w part of o pear wheel of infimite diometer < = ohuile § b o
—_

| -
= -
’ ".-"j‘_E =

(Fig, 10.15), — .o T
(W Paich Live I ts @ part of the pitch cirele of a ack and 15 Rack
& serzight line (Fig. 101 5} Fig. 10.15
v, FPiteh It s defioed as follows

(wh Creewder Pitch (pd 1w the distapce messured along the circumfterence of the piich circie from

paini an one toath 0 the corresponding pomit on the adacent 1ooth {Fig. 10,137
ma
whero = crcular pitch

d = putch diameter

T = purmber of 1eeth

s the expressaon for poinwalves @oan indeterminate number, o, cannot be expressed precisely,
The angle subtended by the cirewlar pitch at the ceéntre of the pitch eircle 15 known as the pirel
..lr:';;f:' (¥}

ihy Draerefrad Fobch (F) 1t 15 the member of teeth peer ansl fength o the pitch circle diameter
inchiss

The Lirmetaisons Gf ihe dhiarmaetral prch 1S hat (§ S ol in lerms of onits af I-_-nglh. but m terms nf
teerth per wmil bength
A s, 10 can b seen Ul

-
II.IL'F - ..T_J_- — g
i &

The term aicmeirad proch s maol osed mo S0 s

(o) Module (m) 1t the matn of he pitch diameter tn mim (o the number of feeth. The term is used
in 51 pnits an place of diametsal pick,

ol

ug = —

. Tl
j = e = TN
N 'I' JLIT

Filch of Pwo musling Qears mush be SEme,
i

4 {a) Cerr Bieke (4G 11 s the radie of the aumber of 1zeth on the gear to that on the painion.
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=

where I'= mumber of teeth on the gear

= mumber of teeth on the pinion
b} Velooily Rabio (VR}  The velocity ratio is defined as the ratio of the angular velosity of the fisllower
b the angulor velocity of the dniving gear.
Let d = piich dimmester

T = muwnder ol teeth

i = angukar velocity (md/s)

Y - angular velog by {Tpm)
::'i:II‘I".i:.'IFII |  =gdrrwver

. [l [ wnees

angular vebocery of follower

W - T3 -

angular vebocity of drives

L1

3. Referio Fig. 1013
i1 (m) Addendum Circle It is acircle passing through the tips of eeth
(b} Addemauem 1115 the radial height of 2 tooth above the pateh cirele. Bs standard value o
irnes ke,
{ch  Oedendurr or Rood Clrele 11 is o civele passing theough the sools of the eeth
idl Dwdemdeon  [Eisthe radial depthofa wooth below the pitch circle, s standasd valueis | 15Tm
{ey Cloararee Radial difference beoween the addendum and the dedendurm of 5 tooth. Thas,
Addendum ciecle diameter = o + L
Dedendum circle diameater =o - 2= 1157 o
Clearanes = |, 157 m— m
= (L 15Tk
{iij do}  Full Depth of Teelly It is the tofal padial depth of the tooth space,
Full depith = Addendusm + Dedemdum
(&) |".'|lrr.1.'.':; !1"||'r|'.' of Tewth  The maximmuom denth 1o which o tooth péeneiraices nio the iooth
Spiade o the mading gedar 2 Lhe workimg depdh of 1eeth

Working depth = Suim of addandums of the 1o gears

1] "'-_|'eh'|' Wil IEas the wilth of the wosoth spase along the mich cmela
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{d} Teoth Thickness It s the thickness
of the tooth measured along the pitch
circle

jey Backlashh It & the  difference

between the space width and the

oth thickness slong the pitch
circle. Backlash = Space widih
-Tpath thckness

{f}y Foce Width The ].."nl._rlh ol thee tooth
parallel o the ghur axis is the face
widdih.

(iai} (a) Top Land 1t A5 the surface of the
top of the tooth

(&) Battem Land The smofice of the
bodtom of the tooth between the
adjacent fillats.

() Fare Tooth surface between the
pitch circle and the top lnmd

id) Flamk Tooth swrface befaepn the
pitch circle and the botiom land
imcluding fillet

(e) Fillet [t is the curved portion of the tooth Aank at the root circle
6. Refer Fig. 10006

(id (a)  Line of Action or Pressure Line  The force, which the deiving tooth exerts on the drives
tooth, is slong 8 line from the pich point to the point of contact of the two teeth. This lineg
i also the common nommal of the point of contact of the mating gears and is known ax the
lime of acton or the pressure line,

{b}  Pressure Angie or Angle of Obiiguity (@f  The angle betwsen the pressure line and the commuon

tangent io the patch circles 1 known as the pressure angle or the angle of obliguity,
For mare power transmisston and lesser pressure on the bearings, the pressure angle must
be kept small, Standard pressure angles are 207 and 25°, Gears with 14.5% pressun: angles
have become almaost obsolete

{ii) (a} Pathof Comtact or Comtact Length  The locus of the point of contact of twi tmating teeth
from the beginning of engagement o the end of engagement is known as the path of contact
or the coniact length, 11 is-C0 in the fgure. The pitch point P is always one poiat on the patk
of contnct, 1¢ can be subdivided as follows

Puth of Approach  Portion of the path of contact from the bepmming of engagement 1o the
piich poimt, 1.2, the length OF

Path of Recess  Portion of the path of contact from the piich pomit 1o the end of engagement,
L, length PO,
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(b1 Arcof Confact  The locus of a paint on the pitch circle from the bepmmng in the end of
engagement of two matng genss i known as the arc of contact. In Fig. 10,16, 4P8 or EFF
i# the arc of contact.

It has also been divided inio sub-portions.
Arc of Appreach 1t is the portion of the arc of contact from the beginning of engrpement
to the pitch point, Le., length AP or EF
Arcof Recess  The portion of the are of contact from the piteh point to the end of engegement
iz the arc of recess, L.e, length P8 or PF

¢y Angle of Action (5 1t is the angle wmed by o gear from the beginning of engagement
to the end of engngement of a pair of tecth, Le., the angle turned by arcs of contact o
respective gear wheels
Similarly, the angle of approach (o) and angle of recess () can be defined.

d=a+f

The angie will have different vatues for the driving and the driven pears
%, Contart Ratwe It 18 the angle of action divided by the pitch mnole, e,
Comitact patio = 3 = a+p
T ¥

As the anghe of action is the angle subtended by arc of contact and the piich angie is the angle sibtended
elrcular pitch at the centre of the pitch circle, contact mtio is also the ratio of the arc of contact w the

Arc of comact

Conitact ratio = ——;
Circalar pitch

Two spur gears  hawe g T wiT.
velecity ratio of 13 The = I N x—— 01 2AN; x—=
driven pear hay 72 teeth of 534 g% T
& mm wochele and motates = 22 % 900 K ——— or 28 x I x
.y Th e 42 BGT rnm'mirn e _
el the driver. What wil] be the pitch ey .
#i"'!:t e = Q047 B mm's or 90478 m's

Ty=T2; VR = 1/3: Ny = 306 rpm; Example 102 The mamber af feeth of a spur

paar s 30 awd i rotctes at 200
a T | M) | rpm. What will be i circalar
) FR= - I,'— e e R T piteh and the pitchfine velocity
= : ' e it has a module of 2 mm?
or A, = S0 rpimi -
» Solution 1= 30; mr= 2 mm; N~ JK} rpm
Alsp —I'—=—I ar T, =24 po=gm=rel=n28mnm
72 3 ’
oy 3 . i ]
R — 3 Wi T N
{1} Pitch line velocity, v, = @y r; OF iy v = =IKN x 3 IV x 7
Fi - = 73 20l 2w 30
= I N, X =———0f 3N, m—= g ey o I
1] = 7 = 7699 frifm ¢ Tk = hIE 3 mm's

- o
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10.3 LAW OF GEARING ’i

The Liver ol gearing siates the condition which
sl be Tulfilled by the gear wooth profiles
0 mRuniin o cunsiant angular velocity malio
belweeh bwi goirs Faguee 101 "o Twi

baolics | wwll 2 repedsening a portion of the y
fids s in mesh

A parind £ on tee foodh profile of te gear | : T
i ar conact with 4 point 2on the woth profils | i

al the pear 2. Fhe bwo curves 10 comdacts af o

rninls Lo Cinast Bave a camimisi normal i
g pering L T T FIE.- 10,17
Lat oy imslEantansoues anguinr velisiity -
o the L) [T AT R
iy = Instantaneaus ..'II'IELI'II..' velociby of the gear 2 | counter cliockwiae)
V e yebogity of C
e = b vialoeity of A

Then v. = £ AL on direction ['-{'I_l_\-r'l'u‘lﬁ".lhl.r o AL o b ooy ezl fE A om - A

i, A m n drecteon n-r.rrcend:.'llln.r i BIY ar af an angie II:| by ar -

Mo, if the curved surtaces of the festh of two EiITs Arg b0 remsin i contact, one surkice miy shicle relalrva
io the other slong the common tamgent ¢ - 1. The relottve motion between the surfaces along the common)
rarmill 7 — r must be zero de avoid the sepamton, or the penetration of the fwo teeth mio each other

Compomnent of v_along 8 —r =¥ cosi
Component of vy ulong o = n = v cosd
Kelutive mobon aloogm = n= ¥, cosd = vy cosf
Uraw perpemahiculars AE and 8F an v — o from poonds A and B |'|."k.|'\l!!|:II'.:'|'|- [hen JC4E = aand SDEF
A For proper contact

VGO = 1, ok = (]

or arnAC cos o — ok BD cos B=10
. AE . BF

o (AL Tl dap, R 1F
ir i A 1) B =1

i ’BF
o — = —-

|.I: i

AF | AAEFand BEF are ~|:|1|.||u.|‘|

Theis, i 15 seen thar the centre line A8 5 diveded at P iy Lhi cormman el in the inverse o of the
prvpular velocites of the wo gears, 10615 desived that the angular velecines of men pears resmiin constan,
L o nermiel il Ehe paoisl ol comtaci w the s teeth should always pitss through a fixed paint & which

divides the ling of centres in Uy inverse rauo of aneuler velocities of two peas,
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As seen earlier, ™ is also the point of contact of two pitch ciroles which divides the line of centres o the
Aitverse ratio of the angular velocitics of the twe circles and s the pitch point

Thus, for constant angular velocity rotio of the two pears, the common normal & the point of contact of
The 1w mating teeth must pass throwgh the pitch point
Izo, a8 the As AEF and #FF are similar,

B8P LT
1# i
& ::'I_‘_= E: ar @ EP = i, FP (10.4)

4 WELOCITY OF SLIDING

IT ihe carved surfaces of the two tedth of the pears 1 and 2 ure o remain in contact, one can have a sliding
mwson relative 10 the other along the common tangend f— 7o © or DH{Fig, 10LTT)
Component of v aleng r— r= v sing
Comgonent of v, along f— 1= v, sint
Velocity of sliding = v_ sing— v, 5
B — il L) ﬂ
- Tl

= i} A

= [y EC - ahfT)
- rJllrj.'F' + BT u,.l_-:’.'-'J" Il A1
- wlf_'.'l” i ML — ru_..n' | il |rJ:J'I!'
(L amd L0 are the comncidimg poants
ol 1 FIRRE Y I S T Y Rl T
= {a ru:.l‘."'l! | e = e:J:.'".". I'|:| -;III-I||
= sum of angular wveloertias ¥ distance between the p'.l::h i il
the poind of contact

FORMS OF TEETH

Two curves of any shape that fulfill the law of gearing can be used as the profiles of teeth. In other words,
un artatrary shape of one of the mating tevth can be tmken and spplying the law of peasing the shape of the
pihet can be determined. Such gear wre said to bave confupate tecth. However, it will be very difficult tio
manufpciure such gears and the cost will be high. Moreower, on wearing, it will be very difficult o replace
ithem with the available gears, Thus, thene anses the necd o siandardize gear teath,
Common forms of teeth that also satisfy the law of geanng ang

| i:':-';,:llul,:llll r111ﬁ|¢ lzeth

2. Inwesuge |-||-|;|.-|-'|:|_- teelh

.6 CYCLOIDAL PROFILE TEETH

In this type, the faces of the testh are epievelods and the flanks ane the hypoeyvelouds
A cyclodd 15 the locus of o point on the cireamberence of a oirele that mills sathout stippeng on 8 hxed
atrmight line




5-“ ey of Mocioees
L

A eplevelotd is the loous of @ peint on the cireumiferense ] Piich
of & circle that rolls without slipping on the circumference of - A4 7/

'l r I H L
another circle. 3 1
A fvpocyelodd 15 the logus of o point on the circumference \ J

5 S _":n.ﬂ':_\_ll_

of & circle that rolls withowt shpping miside the circumference i
of another circle,

The fermation of & cveloidal tomh has been shown in Fig. _[

[0, A cirele H rolls mside anather circle APE (pitch cirele]).
A the start, the point of contact of the two circles is at 4. Az
the circle H rolls mside the prtch crrele, the lus of the point
A om the circle A races the path ALP which i3 a bypecycloid, .
A small portion of this curve near the pitch circle is used for B. IlI.
the flank of the tooth.

A property of the hypocyelaid is that of any nstant, i:\"*
the line joining the gencrating point (4} with the pomt of *'-.,
contact of the two clrcles s normal to the hypocyckoud,

e, when the circle H touches the pitch circle al £, the
point A & at C and €I is normal to the hypocyclond ALM

Also, Are 40= Are COD jon circle M) & W

In the same way, if the circle £ rolls outside the pitch 2 Neaj
cirche, starming from P, an epicycloid PFE is oblained iy
Simalar to the property of 8 hypocyeloid, the lne jornimg TR A T IJF

the generating point with the poiog of contact of the two Flank curvs of 1 —+——
circles 15 & normal to the epicyeloid, g, when the circle
£ touches the pitch circle at K, the point & &5 0t & and R A
R s noemal o the epeyclold PER, -
Ape PK = Are BEJG (on circle £) =
or  Arc 8K =Arc KiG {on circle £) Fig. 1018
A small portion of the curve near the pitch circle is
ed for the face of the tooth, TFe
Meshing of Teeth B "
Duiring meshing of weth, the face of a tooth on one gear by -
i o mesh with the fank of anether oth on the other JE
@ear, Thus, for groper meshimg, it §5 necessary that the \\
diameter of the circle penerating face of 2 teoth (vn one.
wear) is ihe same as the dinmeter of the circle generating | I; - P
flank of the meshing tooth (on another gear); the pitch
circle being the same m the two cases (Fig, 10,19 Lo ]
Of course, the face and the Bank of & tooth of a pear ___:H\I e
can be generated by two cirches of differént diameters. _f;:ni.,__ [
However, for intervhangeability, the faces and fanks of A
both the tzeth m the mesh are generated by the circles of Py
the snme diameter, -
Consider 51 generatmp curele & rolling outside the h m,_g
pitch circle of the gear 2 (Fig. 10.20). It will generate ;



o

epicycloid, o portion of whach s the face of tooth oo the gear. Now this face 15 to mesh with the flank of
ipath on the pear 1. This fiank will e 0 portion of the bypocyeloid which can be generated by rolling the same
pemerating circle (7 inside the pitch cirele of the gear 1

@, 16 the generating point for the two curves o b (epicycload) and o) (hypocyclodd). aby is generated
 when the cirele & moves 1o the clockwise direction on the pitch circle of the gear I ond at the starl a,
poincides with b, &¢ 15 genernied-when the circle 7 moves clockwise inside the prich circle of the gear 2,
Il'h'-' in the |.1|-_'|.|;i.1|||.i:|._|.|: i coircides with o,

The twia p‘ill.'h circles touch zach other a1 P (pitch poant), 'When the generting circle 4 tonches the pich
ghrele 2 at P, the generuting pomi of the spicyeloid is at o) and & P is normal 1o the face of tooth on the gear
2. Similorly, when & touches the piich cirgles 1 at P, the |_.a|.~11¢_-.|-.|li:||_|.'_ il of the hypocycleid is agsin 5t @, and
@, P s also normal o the Aank of woth on the gear 1. Thus, if at an nstand, a, /5 the common nofmal 16 the
Pwao plu-ﬁ!:—a of the m¢5h|;|'|.|_1_ temth, the t=eth must touch esch other [E.-:'I.g':l'lill:lﬂ:-'

According to the law of gearing, the common normal st the point of contact of two mating profiles of the
leeth rmest pass through a fined point which is also the pitch point. The above discussion shows that the law
of geaning 15 fulfilied m case of cycloidal toeth.

After & little while, ket the point of contact of the rwo maung gears be ot @, Thes poand 15 on the genemimg
glrcle (7 and if b, is considered the stort of the epicyclond azh,, and ¢y 18 considered the st of the hypocyciod
#y then o, will be normal 10 the Twi Curves dyb, and d.c;

Bur as the two curves a, &, and @,h; are generated by the same circle rolling outside the same pitch aircle,
the oo curves miest be similar Thuas, a-b. can be o portson of the curve b, Similardy, a.c. can be a porion
the curve q;c;
Thus. m cese of cycloadal teeth, the poinis of contact such &5 aj @, iy....., P he on the generating circle G
Afier passing through the point P, the point of contact will shift on the other generating circle, Now, the
of the tooth of the pear | will towch the face of the woth of the gear 2. Thus, path of coniact of cyclmcal
lies om the generating circles

Path of approsch = Arc o3, @, F

Arc of approach = Arc b by by P = Arc oye ey P

Bt are gyag g P=Ade bbby P = Atooeogo, oy P
Therefore, the path of approach is equal to the aro of approach. In the same way, 1t cun be shown that the
of contact will be equal 1o the arc of contisct,
If the direction of rotation of the driver is reversed, the path of approach will be ay ay, ay oGP
Observe thut i case of cyclondal leeth, the pressure angle vanes from the maxomuim @ the beginmning
engagement i zem when the pomt of contact comeides with pitch point 7 and then agam mereases 1o
imum in the revarse direction.

A the common noemal to the two meshing curves passes theoogh the pitch poant 7, umsform motary mohion
[l be transmined only as long as the pitch circles are tngent 10 cach other, If the centre distance between
two pitch circles varies, the point F is shifted and the speed of the doiven gear would vary.

§ince the cycloidal teeth are made up of rwo curves, it is very difficult to produce sccurte profiles, This
rendered this svsiem ohsolete

F } Ll
INVOLUTE PROFILE TEETH 4 <. 100

et 15 defined as the locus of & pomt on o strght ling which rolls withow slipping on the
imference of o cirele, Also, it is the path traced wut by the end of & prece of taut cord being unwound from

[



h Miaieipay dfinolvines

the corcumisrence of o owrcle, The circle on which the stroight
rie rolls o from which the cord = unwound is known as the
feewer el

Frgure [ 0,21 shows an involute generated by a fine rolling
cner the circumfesence of o base circle with centre at £ Ad
the afart, the tracing point is at 4. As the line rolls on the
crrcumiersnce of the circle, the path AR maced out by the
pesimt A i8 the involure

Mote thist as O can be reganded as the instantaneows centre
ol rafation of &, the motion of & is perpendicelar wo S0, Since
) 15 anzeni o the base circle, the tormal wthe myvoluce s
o lEmpesd! W the ge crelea,

A short leneth &5 O the myvoiute drvwn froen A ¢an be
uhiized 1o make the profile of an imeelute tooth, The other
side A 0 the 1o0dh has begn mken from the myvolute drvwn
fremm € o the revense direchion. The profile of an mvoloe
ish 15 e uwp of single curve, and 1eeth, waally, are
lermesd &5 sineie curve leelth

Crwing to the ense b standardization aned mariastare, and
lovw' cost of produchion, the wse of mvalute testh has become
universal by entirely superieding the cyveloidal shape, Only
one cwiler or ol 15 necessary o mumfnciure a complale sel
of interchangeable geors, The cutter 1540 the form of a rack as
oll gears will gear with their eormesponding mck. Moresover,
the cutiers of this form can be made foa higher degres of
RCEIMCY &4 the teemlh of sm o invelute mck nre -.:r.1.|__'|1|

Meshing of Teeth

In Fig. 1322, two pear wheels | and 2 with centres of rotation
4 pnd 8 respectively wre incontact ot O CE and OF ares the
ungents b the two'base circles | and 2 respectively. & 18 the

Cefter af o by anecdernes [} cuks mui Pl feeth.

C
B
~ k
Fenh £
Fie
cirche e e

'E_.,‘ .H o e
e L) L
i . L 5
n Base ™.,
mrche

Gar

Cradr chiter oF i i ||'|.'|.'l_: AT E

COMIMOn Engent io the two involuley
and GEOH ol the two ||H:~\.:!||:|;.' {eeth,
imvodute TN s raced by rolling ling
o the base circle of the gear 2 while @
inyvelute GOH is obmined by rolling |
EF on the base gircle of the gear |
From the property of the mvoluse,
tangent CF to the base cirele of the
T = normnl g0 the myvolaie O or
¢ Simalarky, the tangent C8
the hase cirele of the pear 1 15 normal
the mvolute Ol or the tamgent £ -1 LT+
and & both ars normol §o the com
tanjzent 11 al e pant CE and CF |

tangent §




@ strzight line, ECF is thus o strmght lme

As the wheel 1 rotates in the cliockwise direction, the podnt
"contact © on the involute GOH pushes the involute DO
ong the ling CF, Therefore, the path of contact of the two
wpdute tecth 5 along the comimdn ingent Lo he hawe circles,
This common tangent is alse the common poremal 1o te twa
Hvolites st the point of contact for all posations:

Also. the commen normal to the teo nvolutss divides the
Ine of centres of the two gears at P, the pitch point, Thus, the
awimmon normal slways passes throogh the pitch paint which
the peint of comtact of two patch circkes

The line of acton in case of imvoliste eath is along the
envmion rormal 8t the point of contsct, which is fised and is the common tangent to tee two base carckes
Thils shows that the pressure angle in this cess remaing constant throughout ihe engagement of the bwo leeth
The usunl values of the pressure angles are 14.5°%, 20° and 23°.

Az EF is tingent 1o the bage circle 1, 4E' i perpendicular o £F

{EF is n ripht-angled tnanghe

Alss & EAF =

Fig. 1022

AE = AP cos@

Similarly, 8F = BF cosg
i, [Brse circle diameter = Pitch circle dismeter = cosg]

i BH BF
velooity mbw of gearns = 1P = ~F constant
Thus, for a pair of mvolute gears, the vilocity ratio is invessely proportional to the pitch circle diametess
well as base circle dmmeters [T [ -}
Any shifi in the centres of twi gears changes the contre distance, |.L "--;"‘ i : :
the involutes are still in conlact, the commeon noemzl tw the dvo o .__.-"":_\i__‘l i
yolutes at the point of contact will be the new common tangent -_._.-"'-_...-"'F'::._ : ™
the base circles and its infersection with the line of centres as Ao e 1M
mew pitch point (Fig. 10.23), It can be judged that the shifting & T8~ | o
P does nod alter the ratio AP/EP which mepns the velocity ratio L Fi =
fween the two gears romains constant. OF course, in this way LA
fo i= change m the pressore anple. Altening the cenire ditlance ; x;,ff ; e ..,_‘I
il

Hhowi desirdying the correet tooth action & an mportant property | = [
likic involoe HEars. - . “F'E' 1023
Remember the follow I Hh CASE of involute Brars "
I, Points of contact lie on the ling of action which 15 the cormmaon tangent 10 the Two base circles
3. The contact is made when the tip of a tooth of the driven wheel touches the fiank of & tooth of the
doving wheel and the contact is broken when the tip of the dnving wheel touches the fiank of the
driven whesl,
1, 11 the direction of angular movement of the wheels 15 reversed, the points of contact will lie on the
uther commmon langenl o 1he hase circles
4, Initial contact occurs where the addendum circle of the doven wheel imtersects-the line of action
Final contict o¢iurs at & pomi where the addendum circle of the driver intersects the Line of action.



108 INTERCHANGEABLE GEARS
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= Thvorg of fliafiieary
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The geirs are inferchangeable (F they wre standard ones, 1t is alwass @ matter of convenizcnce o have g
of standdord dimenssons which can be replaced easily when they are wom out. The gears are interchangeshig
if they howva
® he same module,
= ihe same pressure angle,
# the same addendhems and dedendums, -and
» the same thickness
A tooth system which relites the vanous parameters of gears such us pressure angle, addendurn, dedendy
tooth thickness, working depth, eic., 10 ottain interchangeability of the gears of all tooth numbers, bt of §
same pressure angle and pitch s =aid to be & standard systenn. Usoally, the stendard cutters are availsble
their manofaciure
In Table 10.1, tooth proportions for completely imerchangeable gears are given. They can be nsed
operation on standard centre distances. The |4,5" pressure angle system has become ohsalete now s the i
of the gears used io be larger s compared to the gears with higher angles.

. ieﬁ

Tooth sysiem Fressure angle addendiim dedendum
Full depih A | m LiSmor |35 m
Lt | m L'Em'né]&im-'
23 1 m LISmor .35 m’
Bnuh 5 a0 I'r_!'! m I'me
Preferred modubes: 1, 1.25, 15,2, 253, 4, 5, 6,8, 10, 12, 16, 20, 25, 30, 40, 50
| 109 NON-STANDARD GEARS ik

I'he term non-standard gears apply 10 such gears as are modified by changing some standard parameters |
prezsure ungle, pddendum, woth depth orcentre distance. These changes are made to mprove the perform;
of the geur operation or from the economical point of view.

I'he recent trend these days is o make the desimms of machines as compect a5 posaible to reduce their
anl weight which also results in redhsetion in the costs. Consider & gedir sel 1o have a velocity ratso of 4:],
a pinion of 80 mm pitch dismeter is selected for the purpose, the pitch diameter of the gear is 320 mm, Th
pace requirement of the gear i 400 mm. Now, if somehow the pitch diameter of the pinion is redsced
14 mam, the pitch diameter of the gear s reduced by 40 mm. and the averall reduction in space is 50
Alsa, the sizes of other components associated with the gear set such as shufts, casings and bearings
also reduced. The only way o have a smaller size of gears is to reduce the number of teeth. Howeves, fap
tvpical type of teeth, it is observed that if the aumber of teeth is reduced from a certain mumber, the probi
of interference, undercutting and contact ratio hamper the smooth nimning of the gears, Therefore, the
reason 1o emphoy non-standard gears is fo prevent interference and undercutting and o maintain o reasons
COMMBCE THEND

It should be remembered that as an involute is generated, s madius of curvature gows on becoming |
and larges, being zero at the base circle. As far a8 possible, the curve near the base should be avoided bec
high stresses are developed in the region of sharp curvature,



(azars ﬂ

tre-distance Modifications The number of teeth on & pinion can be reduced from the minimuam
wble number by increasing the centre distunce marginaily and by changing the tooth proporisons and the
re angle of the oears. A reduction i the mierference and improvement in the contact ratic is brought
wiy, The tecth can be peneraied with rack cutters of andand pressure angles by displacing the pitch Tine
ruck from the pitch citcle of the gear, This action produces ioeth which ane thicker than before. As the
nre cut with o displaced or offset cutter, they will engage &t a now pressure angle and at a new cenire

rance Modifications  If the clearance between mating tecth is increassd to 0.3 groor (54 5 instensd
the usual value of 0.25 s o hove a larges Glket &t the root of the tooth, the fatigue sirength of the tooth s
pscd. This way some exima depth is available 1o smoothen the tooth profile. Interchangeability ts not lost
Wiy

ndum Modifications In cases where it is not possible w change the centre distancss, modifications
be made to the nddendum, In such cases, there has to be no change in the piteh cancles and the pressune
ox. However, the contact region &5 shifted sway from the pinion centre towards the pear centre, decreasing
B approach acton and INCTeasmE e recess el

pple 103 The  following ill!ﬂ relme 5 ray (T4 s
fe fwe  meshimg  gears md C= —e i
1 r ¢
Felocity  #atio =—, Module 4T +3T )
3 or 200 = ——l——lo =§T
= o wiaw, Presmure angle = 20, 2
; = T By or T, =25 and 1,=225%3=13
m e wpmbar ﬂrmﬁ and the bease Warmber of teeth on oar wheel = 75
radins of the gear wheel ) dH=mT=4 xT5=300mm
plis VR =173, ¢ =20°, m=4mm Base circle mdius, dy, = ‘J:— 0% @
A T 300 oo M =41 mim
h ”"-,T'—I=;_ or T.=3T 2 ' '

.-"'F ¥
EF -~ LY
Y
N [
b 5 a
o 5
— ?__.-" 5'-.1. gt
y - '
. o % ,
i ___..'L v & |:I"._—'E_ "___r_
B e - —— - - iy — =4
--"--____——1'“ Tb‘""
e _*.‘IJ'IE k & g
TN — Pl
T ey
X -




Mo ad) flns Tivsis

The T | s twe dviver w13 robatng cockiwise. [he whisel I s diven m e Coumer-chnekw) s

direetmy, L8 s e @ommon Gangend fd the hase circles

35l
okt o e fwer becil i mucde where the addenduam circle of the whesl mests the line of action £F, 8y
l £ und b besken whens ihe wdendum circle of the pision meets the line of action, Le., ot D« 114 then i

palh ol conioer.
Lat ¢ o= pitch cingle radoes of pansan
# - pitch circle mchos of whesd
v, = addendum circle radins af pinica
#, = addendum circle radius of wheel
Path of contact = path of approach + path of recess

= CP+PD
il

= (CF - PF) +

'
= I ,.II_R'; —F 5 |:l..'l‘5-"- i.l-' = IJ.IJ +| l"ll'_.:_lE —F L-,‘_"'\:'-. o 50 P

fDE = L)

R cos? g + 'u"'-..-: —rloost @ — (R4 ryjEin g

=y R;

Observe that the path of approach can be found if the dimensaons of the driven whesl are knowm. Sl iR
the path of recess 15 known from the dimensions of the dnving wheel (pinion).

10,11 ARC OF CONTACT
[he arc of contact is the distance ravelled by a point W .
ither pitch circle of the two wheels dunng the o My i
L .\'n:l I|| |I
L 'h., i |
A e |
|_;|"II"'-Ir-I. 1.- I b “a
|
B
1

i 2
perid of comtact of a pair of testh,
In Fig. 10.2%, ot the beginning of engagement, th

driving involute &5 shown as GH; when the point of
contact s at P, it is shown s JKE and when at the end
¥ S E

of engagement, it is DL, The ar of coslact 65 J
and it consists of the arc of approach &F and e anc ?
-..:I;"' -
ol i, -
AN -
Y ey,
P A
F

Fig 1025

of recess PP
Let the time to iroverss the anc of approach o
(i, = time af appry

Tangeniaal welocity of

i, Then
Arc -of approach = FP

* & Teirwe of appesach

=L F T

i, [ cos @) L
cos

[AF =

{Tang. vel of H jr,
[s{y LR

A MK
o8




Cears 3500

Arc FK - Arc FH

05
FP-FC _ L7
co cosg

i 1 equal w the path FP as the point P i on the generator FP that rolls on the base circle FHE w

mi the involute PE. Similarly, are FH = Paih 0

Are of recess = PP = Tang, vel. of P = Time of recess

= @), r {F, = time of recess)
|

= i, cos ) ——1,
0%

= (Tang vel. of Ky

Lk I
Arc KL  Arc FL- A FE
[uy L5

Fo-Fp  PD

s @ 0. @

|rllrl-'\-'

i P P+ PO 00
Are of comtact = —— & = ol X
COREN 0O @ G0 g oo

. Path of conimct
Arc of contagl = ——— -
COG ¢ L1shnj

OF PAIRS OF TEETH IN CONTACT ({CONTACT RATIO)

Wrc of contact 18 the length of the pich circle traversed by & point on it during the mating of o pair of

s, ll the teeth lying in between the are of contact will be meshing with the teeth oo the other wheel

x 2 s : B
relpre, the number of teeth in contact. n = Mﬂ - —l; -Ir- ! i 1Eh.7)

Circulur pitch  cosg 5
the ratic of the arc of contast to the circular pitch 15 also the comtary ratie, the number of festh is also
witd 10 lerms of contact ratio

W enntingous ransmsson of motion, 2 least ong tooth of one wheel must be in contact with onother
sl e second wheel, Therefors, n must be greater than iy,

-'r W lics botween | and 2, the number of teeth in contaci nf oy timmve wiill mot be Jess than one and neves
¥ ihun two. I n ks between 2 and 3, it is never less than twe pairs-of teeth and not mere than three pairs.

Mo e i L6, one pair of teeth are always in contact whereas two pairs of teeth are in contsct for 609
time




BE2 Thaeary of Mavhines

Example 104 Each of two gears n o mesh
has 48 jeeth and o module
af & . The teede . one of
207 iwvelute profile. The arc

of contact s 225 times. the

crrwdor pitch, Determine the addendim.

Sofution = N7 = T=48; m =8 mm;
o im “':E= !'!'}i;w' (92 masn; R, =#,

Arc of contact = 2,25 % Chrewlar pitch = 2,25xm
=125 = = 56,55 mm
Path of contact = 56,55 = cos 200 = 33,14 mm

or w'R_f—REqu:l—Rainqﬂ]

-rn:,.IIrj —.l': {:u,_-i:ip—riinﬁ] =431 14

. P, R T R R R T
or  2{JR; =192 cos” 20" - 1925 207 )
=5114 or R,=2026mm

o= 2026 - 192 = 106 mm

Addendum = R,
Example 10.5  Pwo invelufe gears fn mesl
franve 20 pressure angle. The
pear ratio i 3 and the mumber
af teeth o the pisioen ie 24, The
reicth hrve o modide of &
The piich fine velocsy - o L5 ael and: e
addendum equad e ame mocdule. Derermine the
angle of action of the pinion (the argle nrned by
e pinion nﬂm:ﬂuﬁ#rq‘fﬂﬁhhﬁ:m@}
and the maimum vedacity of stiding.
Solution  @=20" r=24; m=&mm,
T=34x1="T

A
r:ﬂ E:?jmnh

1] 2
R=T2x3=216 mmr,=Td+ 6 =78 im ,
R, =216+6=211 mm

Path of contact = (4 & — & cos® @— Rsing)

| 1-,‘II|"|:I - .l"'2 Cl.'lf'iz'l.ﬂ = PRI}

- [y2227 2157 coa? 20" = 2165m 20)
T =727 cos® 207 - T2sin 20°)

= 1604 = 14,18 =30.22 mm

Path of contact ~_H. FiF|
AR OO cl:lﬁ.av " cos20°
= 32,16 mm
) Arc of contact 32,14
Angle of action - =

=467 md= 0467 = | Hyg= 25500
Webocity ﬂfEiI.diJ‘kg=fm|, + b} = Puth o appronch

= [ : + %| = Path of approach

i b1
o (1300 LY00 1 604 = 445 6 mmve
T2 216

i 'mﬂf e
the pimion has 23
the addéncls on pinion and gear wheels
axgmal for empe module, find the
£ enmtact ratio (the number of pates of teeth
coviaesl 1

fifl nﬁﬂﬁeqp'.utﬂﬂr: ufﬂlepinhnnd he

i nﬂ:q’:&! Mmmﬁmmd

@Fﬁ.ﬂnﬁu
aﬁﬁmm e ;

:;.:Iuturn g=M" T=53T t=213: m =& mm;
addendum = m = 8 mm

k= Tr . E’:ﬂ = 228 mm

R =R+ m=218 +8=230mm

mf Bx1d
Fo= =i - Oty

3 F
Fo=rem=92 48 = [ mm




_ Arcof cortact | Path of contact |

W Circular pitch | o8 @ i
I _ Path of approach + Path of recess
X COs @ X T

B R :
o K = BT oos® o — Raing

p——
+yf P = P CORT P — sk

O 0

N(236Y = (226% eoa® M — 228 sin 207

#J(100)° = (92} cos™ 20" —925m 20" |

cosdil x =8

2097 +18.79 |
— e — :-'I:_J-‘:"R' —].hf‘-
cog 0" = o B RXE T

ool . A of contacs  42.3]
() Angle of acton, &, = A
g r o2

= .44 rad or 046 x [Rve = 261"
Arcof contact 4231

&=

1 - Sag ™ (1856 d

or (L1836 x 18 = 161"

Sliding velocity
i} Rodling webnerty
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cartact it at the tip.of the tootk of gear 2 Take

addendum equal to one modiile
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Gear Trains

13.1. Introduction

Sometimes, two or more gearsare madeto mesh with
each other to transmit power from one shaft to another. Such
acombinationiscalled gear train or train of toothed wheels.
The nature of the train used depends upon the velocity ratio
required and the relative position of the axes of shafts. A
gear train may consist of spur, bevel or spiral gears.

13.2. Types of Gear Trains

Following are the different types of gear trains, de-
pending upon the arrangement of wheels:

1. Simple gear train, 2. Compound gear train, 3. Re-
verted gear train, and 4. Epicyclic gear train.

In thefirst three types of gear trains, the axes of the
shafts over which the gears are mounted are fixed relative to
each other. But in case of epicyclic gear trains, the axes of
the shafts on which the gears are mounted may moverelative
to afixed axis.

13.3. Simple Gear Train

When thereis only one gear on each shaft, as shown
inFig. 13.1, itisknown as simple gear train. The gears are
represented by their pitch circles.

When the distance between the two shafts is small,
the two gears 1 and 2 are made to mesh with each other to

428
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transmit motion from one shaft to the other, asshownin Fig. 13.1 (a). Sincethe gear 1 drivesthe gear
2, therefore gear 1 iscalled the driver and the gear 2 is called the driven or follower. It may be noted
that the motion of the driven gear is opposite to the motion of driving gear.

i i Driven or
Driver Driven or ) ]
follower Driver Driven or Driver follower

follower
| 2
I |

i i o s

Mnnn:nnnnmm@m MIIIIIIIIIIIIIMHM@IMHI@HIHIHH i

. P TR
@ ®

Fig. 13.1. Simple gear train.
Let N, = Speed of gear 1(or driver) inr.p.m.,
N, = Speed of gear 2 (or driven or follower) inr.p.m.,
T,=Number of teeth on gear 1, and
T, = Number of teeth on gear 2.

Since the speed ratio (or velocity ratio) of gear train istheratio of the speed of the driver to
the speed of the driven or follower and ratio of speeds of any pair of gears in mesh isthe inverse of
their number of teeth, therefore

A Nl T2
eed ratio = — ==
33 N2 Tl

It may be noted that ratio of the speed of the driven or follower to the speed of the driver is
known astrain value of the gear train. Mathematically,

Mg &
Nl T2
From above, we see that the train value is the reciprocal of speed ratio.

Sometimes, the distance between the two gearsislarge. The motion from one gear to another,
in such acase, may be transmitted by either of the following two methods :

1. By providing the large sized gear, or 2. By providing one or more intermediate gears.

A little consideration will show that the former method (i.e. providing large sized gears) is
very inconvenient and uneconomical method ; whereas the latter method (i.e. providing one or more
intermediate gear) isvery convenient and economical.

It may be noted that when the number of intermediate gears are odd, the motion of both the
gears (i.e. driver and driven or follower) islike as shownin Fig. 13.1 (b).

But if the number of intermediate gears are even, the motion of the driven or follower will be
in the opposite direction of the driver as shown in Fig. 13.1 (c).

Now consider asimpletrain of gearswith one intermediate gear as shown in Fig. 13.1 (b).
Let N, = Speed of driverinr.p.m.,
N, = Speed of intermediate gear inr.p.m.,

Trainvalue =
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N, = Speed of driven or follower inr.p.m.,
T, = Number of teeth on driver,
T, = Number of teeth on intermediate gear, and
T,=Number of teeth on driven or follower.
Since the driving gear 1 is in mesh with the intermediate gear 2, therefore speed ratio for
these two gearsis

N _ T (i)
N 2 Tl
Similarly, astheintermediate gear 2 isin mesh with the driven gear 3, therefore speed ratio
for thesetwo gearsis

N _Ts (i)
NS T2
The speed ratio of the gear train as shown in Fig. 13.1 (b) is obtained by multiplying the
equations (i) and (ii).

0 m X & = T_2 X T_3 or ﬁ = T_3

N2 N3 Tl T2 N3 Tl
ie Speed ratio = Speed of dr_lver _ No. of teeth on drl_ven
Speed of driven  No. of teeth on driver
and Trainvaue = Speed of driven _ No. of teeth on driver

Speed of driver  No. of teeth on driven

Similarly, it can be proved that the "
above eguation holds good even if there are
any number of intermediate gears. From
above, we see that the speed ratio and the
train value, in asimple train of gears, isin-
dependent of the size and number of inter-
mediate gears. Theseintermediate gears are
called idle gears, as they do not effect the
speed ratio or train value of the system. The [y
idlegearsare used for the following two pur-
poses :

1. To connect gears where a large
centre distance is required, and

2. To obtain the desired direction of
motion of the driven gear (i.e. clockwise or §
anticlockwise).

13.4. Compound Gear Train Gear trains inside a mechanical watch

When there are more than one gear on a shaft, asshown in Fig. 13.2, it is called acompound
train of gear.

Wehaveseenin Art. 13.3 that theidle gears, in asimpletrain of gears do not effect the speed
ratio of the system. But these gears are useful in bridging over the space between the driver and the
driven.
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But whenever the distance between the driver and the driven or follower has to be bridged
over by intermediate gears and at the sametime agreat ( or much less) speed ratio isrequired, then
the advantage of intermediate gearsisintensified by providing compound gears on intermediate shafts.
In this case, each intermediate shaft has two gearsrigidly fixed to it so that they may have the same
speed. One of these two gears meshes with the driver and the other with the driven or follower
attached to the next shaft as shown in Fig.13.2.

Driver Compound

Driven

o[ TN

!
1
5||| ||| |
|

Fig. 13.2. Compound gear train.

Inacompound train of gears, asshownin Fig. 13.2, thegear 1 isthe driving gear mounted on
shaft A, gears 2 and 3 are compound gears which are mounted on shaft B. The gears4 and 5 are also
compound gears which are mounted on shaft C and the gear 6 isthe driven gear mounted on shaft D.

Let N, = Speed of driving gear 1,

T, = Number of teeth on driving gear 1,
N,,N;..., Ny = Speed of respective gearsinr.p.m., and
T,,T5..., Tg=Number of teeth on respective gears.
Since gear 1 isin mesh with gear 2, therefore its speed ratio is

4
| Mo
NI o

>

N_T (i)
N2 Tl
Similarly, for gears 3 and 4, speed ratio is
Ny T (i)
N, T
and for gears 5 and 6, speed ratio is
Ns _Te (i)
NG T5

The speed ratio of compound gear train is obtained by multiplying the equations (i), (ii) and (iii),
NN N T T T N TxTexT
N, N, Ng T T3 Ty Ng T, xTsxTs

O

*  Sincegears 2 and 3 are mounted on one shaft B, thereforeN, = N,. Similarly gears 4 and 5 are mounted on
shaft C, therefore N, = N...
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Speed of thefirst driver

i.e Speed ratio = :
Speed of the last driven or follower
_ Product of the number of teeth on the drivens
Product of the number of teeth on the drivers
and Trainvalue = Speed of the last driven or follower

Speed of the first driver
_ Product of the number of teeth on the drivers
Product of the number of teeth on the drivens

The advantage of a compound train over a simple gear train is that a much larger speed
reduction from thefirst shaft to the last shaft can be obtained with small gears. If asimple gear train
isused to givealarge speed reduction, thelast gear hasto be very large. Usually for aspeed reduction
inexcessof 7to 1, asimpletrainisnot used and acompound train or worm gearing is employed.

Note: The gears which mesh must have the same circular pitch or module. Thus gears 1 and 2 must have the
same modul e asthey mesh together. Similarly gears 3 and 4, and gears
5 and 6 must have the same module.

A
~N
Example 13.1. The gearing of a machinetool is shown < :
inFig. 13.3. The motor shaft isconnected to gear A and rotates ’ 6‘ @‘
at 975r.p.m. Thegear wheelsB, C, D and E arefixed to parallel A 5

shaftsrotating together. Thefinal gear F isfixed on the output D F
shaft. What is the speed of gear F ? The number of teeth on

each gear are as given below : Fig. 13.3
Gear A B © D E F
No. of teeth 20 50 25 75 26 65

Solution. Given : N, = 975 r.p.m. ;
T,=20;Tg=50,;T.=25;Ty=75;T=26;
T.=65

From Fig. 13.3, we see that gears A, C
and E aredriverswhile the gears B, D and F are
driven or followers. Let the gear A rotates in
clockwisedirection. SincethegearsB and C are
mounted on the same shaft, therefore it is a
compound gear and the direction or rotation of
both these gears is same (i.e. anticlockwise). Battery Car: Even though it is run by batteries,
Similarly, the gears D and E are mounted on the the power transmission, gears, clutches,
same shaft, thereforeit is also a compound gear brakes, etc. remain mechanical in nature.
and the direction of rotation of both these gears Note : This picture is given as additional information
is&ame(i.e. clockwise). Thegear Ewill rotatein and is not a direct example of the current chapter.
anticlockwise direction.

Let N = Speed of gear F, i.e. |ast driven or follower.
We know that

Speed of thefirst driver _ Product of no. of teeth on drivens
Speed of thelast driven  Product of no. of teeth on drivers
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Np _ Tg xTp xTe _ 50 x75 x65

or = =18.75
Ng Ty xTe xTzg  20x25x26
O NF:L:E:SZr.p.m.Ans
18.75 18.75

13.5. Design of Spur Gears

Sometimes, the spur gears (i.e. driver and driven) are to be designed for the given velocity
ratio and distance between the centres of their shafts.
Let x = Distance between the centres of two shafts,
N, = Speed of the driver,
T, = Number of teeth on the driver,
d, = Pitch circle diameter of the driver,
N,, T, and d, = Corresponding values for the driven or follower, and
p, = Circular pitch.
We know that the distance between the centres of two shafts,

X:d1+d2

..(>0)
and speed ratio or velocity ratio,
N_d_T (i)
I\|2 dl Tl

From the above equations, we can conveniently find out the valuesof d, and d, (or T, and T,)
and the circular pitch (p,). The vauesof T, and T,, as obtained above, may or may not be whole
numbers. But in a gear since the number of its teeth is aways a whole number, therefore a slight
alterations must be madein the values of x, d, and d,, so that the number of teeth in the two gears may
be a complete number.

Example 13.2. Two parallel shafts, about 600 mm apart are to be connected by spur gears.
One shaft isto run at 360 r.p.m. and the other at 120 r.p.m. Design the gears, if the circular pitchis
to be 25 mm.

Solution. Given : x =600 mm; N, =360 r.p.m.; N,=120rp.m.; p,=25mm

Let d, = Pitch circle diameter of the first gear, and
d, = Pitch circle diameter of the second gear.
We know that speed ratio,
No_dp 380 _5 o d,=3d, (D)
N, d 120

and centre distance between the shafts (x),
600 = % (d, +d,) or d;+d,=1200 (i)

From equations (i) and (ii), we find that
d, =300 mm, and d, =900 mm
0 Number of teeth on the first gear,

md, _ 1 x300
o 25

T = =377
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and number of teeth on the second gear,

_ 1d, _ 11 %900
= o =

Since the number of teeth on both the gears are to be in complete numbers, therefore let us

make the number of teeth on thefirst gear as 38. Thereforefor aspeed ratio of 3, the number of teeth
on the second gear should be 38 x 3 = 114.

Now the exact pitch circle diameter of thefirst gear,

df =X Pe - 38X2 _ 55 96 mm
I I
and the exact pitch circle diameter of the second gear,
r_Thryxp, _114x25
=t s
O Exact distance between the two shafts,

T, =113.1

d, =907.1mm

o = d +d, 30236 +907.1
2 2
Hence the number of teeth on the first and second gear must be 38 and 114 and their pitch
circle diameters must be 302.36 mm and 907.1 mm
respectively. The exact distance between the two shafts
must be 604.73 mm. Ans.

=604.73 mm

Compound

13.6. Reverted Gear Train

When the axes of the first gear (i.e. first driver)
andthelast gear (i.e. last driven or follower) are co-axial,
then the gear train is known as reverted gear train as
showninFig. 13.4.

We see that gear 1 (i.e. first driver) drives the
gear 2 (i.e. first driven or follower) in the opposite direc-
tion. Since the gears 2 and 3 are mounted on the same 1[”]]‘
shaft, therefore they form a compound gear and the gear
3 will rotate in the same direction as that of gear 2. The
gear 3 (which isnow the second driver) drivesthe gear 4
(i.e. thelast driven or follower) in the same direction as i
that of gear 1. Thus we see that in areverted gear train,
the motion of thefirst gear and the last gear islike.

Let T, = Number of teeth on gear 1,

r, = Pitch circle radius of gear 1, and
N, = Speed of gear Linr.p.m.

Co-axial
shafts T

Fig. 13.4. Reverted gear train.

Similarly,
T,, T5, T, = Number of teeth on respective gears,
r, Iy, I, = Pitch circleradii of respective gears, and
N,, N, N, = Speed of respective gearsinr.p.m.
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Since the distance between the centres of the shafts of gears 1 and 2 aswell asgears 3 and 4
is same, therefore
r+r,=r+r, ()
Also, the circular pitch or module of all the gearsisassumed to be same, therefore number of
teeth on each gear is directly proportional to its circumference or radius.

s T HT,=ToT, (i)
and Speed ratio = Product of number of teeth on drllvens
Product of number of teeth on drivers
or N _ToxTy ... (iii)
N, TyxT;

From equations (i), (ii) and (iii), we can determine the number of teeth on each gear for the
given centre distance, speed ratio and module only when
the number of teeth on one gear is chosen arbitrarily. —

B

Thereverted gear trainsare used in automotive trans- 1c
missions, lathe back gears, industrial speed reducers, andin R —— —F—-
clocks (wherethe minute and hour hand shafts are co-axial). || T

Example 13.3. The speed ratio of the reverted gear — 200 mm
train, asshowninFig. 13.5, isto be 12. The module pitch of
gearsAand Bis3.125 mmand of gearsC and D is2.5 mm. ] oY
Calcqlate the suitable numbers of teeth for the gears. No . 7 Driven
gear isto have less than 24 teeth. A

Solution. Given : Speed ratio, N,/Ny = 12 ; DL
m, =mg=3.125mm ; m.=my = 2.5 mm .

Let N, = Speed of gear A, Fig. 135

T, = Number of teeth on gear A,
r, = Pitch circleradius of gear A,
Ng. N, N = Speed of respective gears,
Tg, T, T = Number of teeth on respective gears, and
Ig: e, Ip = Pitch circle radii of respective gears.
* Weknow that circular pitch,
Pe :2?m:nm or r:mTT , Where m is the module.
T T, T, T,

Now from equation (i),
2 2 2 2
T, +T,=T;+T,
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Since the speed ratio between the gears A and B and between the gears C and D are to be
same, therefore

Na - Ne - 12 =3464
NB ND
Also the speed ratio of any pair of gears in mesh is the inverse of their number of teeth,
therefore

Te o 346 (D)
TA TC

We know that the distance between the shafts
X=Tr,+rg=ro+ rD:ZOOmm

or my Ty + mg . Tg — me.Te + my . Tp =200 ..ﬁ.-r:m—;ﬁ
2 2 2 2

3.125(T, +Tg) =25(T,+Tp) =400 (" m, =mg, and m. =mp)

O T,+Tg=400/3.125=128 (i)

and T +T,=400/25=160 (i)

From equation (i), T, =3.464 T, . Substituting this value of T in equation (ii),
T,+3464T,=128 or T,=128/4.464=28.67say 28 Ans.
and T,=128-28=100Ans.
Again from equation (i), T, = 3.464 T.. Substituting this value of T in equation (iii),
T,+3464T. =160 or T.=160/4.464=35.84say 36 Ans.
and T,=160-36 =124 Ans.
Note: The speed ratio of the reverted gear train with the calculated values of number of teeth on each gear is

Na _ToxTp _100x124 _ o
Ny TuxT. 28x36 '

13.7. Epicyclic Gear Train

We have already discussed that in an epicyclic gear train, the axes of the shafts, over which
the gears are mounted, may move relative to afixed axis. A simple epicyclic gear trainis shown in
Fig. 13.6, where agear A and the arm C have acommon axis at O, about which they can rotate. The
gear B mesheswith gear A and hasitsaxisonthearm at O,, about which the gear B can rotate. If the

*  Weknow that speed ratio _ Speedof firstdriver _ N, _,,

Also ...(Ng = N, being on the same shaft)

N N
For . and ,\Ts to be same, each speed ratio should be 12 so that

&:&X& :@ X\/E =12
ND NB ND
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armisfixed, thegear trainissimple and gear A candrivegear B Arm C
or vice- versa, but if gear A isfixed and the armisrotated about
the axis of gear A (i.e. O,), then the gear B is forced to rotate
upon and around gear A. Such amotioniscalled epicyclic and
the gear trains arranged in such a manner that one or more of
their members move upon and around another member are
known as epicyclic gear trains (epi. means upon and cyclic
meansaround). The epicyclic gear trainsmay be simple or com-
pound.

The epicyclic gear trains are useful for transmitting
high velocity ratioswith gears of moderate sizein acompara-
tively lesser space. The epicyclic gear trains are used in the Fig. 13.6. Epicyclic gear train.
back gear of lathe, differential gears of the automobiles, hoists,
pulley blocks, wrist watches etc.

13.8. Velocity Ratioz of Epicyclic Gear Train

The following two methods may be used for finding out the velocity ratio of an epicyclic
gear train.

1. Tabular method, and 2. Algebraic method.
These methods are discussed, in detail, asfollows:
1. Tabular method. Consider an epicyclic gear train as shown in Fig. 13.6.
Let T, = Number of teethon gear A, and
Ty = Number of teeth on gear B.

First of all, let us suppose that
the arm is fixed. Therefore the axes of
both the gears are also fixed relative to
each other. When the gear A makesone
revolution anticlockwise, thegear B will
make *T, / T revolutions, clockwise.
Assuming the anticlockwiserotation as
positive and clockwise as negative, we §
may say that when gear A makes + 1
revolution, then the gear B will make
(=T, / Tg) revolutions. This statement
of relative motion isentered in thefirst
row of the table (see Table 13.1).

Secondly, if the gear A makes
+ X revolutions, then the gear B will

make —x x T,/ Ty revolutions. This Inside view of a car engine.
statement isentered inthe second row  Note : This picture is given as additional information and is not
of the table. In other words, multiply a direct example of the current chapter.

the each motion (entered in the first row) by x.

Thirdly, each element of an epicyclic train is given + y revolutions and entered in the third
row. Finally, the motion of each element of the gear train is added up and entered in the fourth row.

* Weknow that N, /N, =T,/ T.. Since N, = 1revolution, thereforeN, =T,/ T,.
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Table 13.1. Table of motions

Revolutions of elements

Step No. Conditions of motion ArmC Gear A Gear B
. Ta
1. Arm fixed-gear A rotates through + 1 0 +1 1.
revolutioni.e. 1 rev. anticlockwise B

T
2. Arm fixed-gear A rotates through + x 0 +X — XX T_A
revolutions .

3. Add +y revolutionsto all elements ty ty ty

. A
— XX =

4. Total motion +y X+y y T

B

A little consideration will show that when two conditions about the motion of rotation of any
two elements are known, then the unknown speed of the third element may be obtained by substitut-
ing the given datain the third column of the fourth row.

2. Algebraic method. In this method, the motion of each element of the epicyclic train relative
to thearmis set down in the form of equations. The number of equations depends upon the number of
elementsin the gear train. But the two conditions are, usually, supplied in any epicyclic train viz. some
element isfixed and the other has specified motion. These two conditions are sufficient to solve all the
equations ; and hence to determine the motion of any element in the epicyclic gear train.

Let thearm C befixed inan epicyclic gear train asshown in Fig. 13.6. Therefore speed of the
gear A relativetothearm C

=Ny—Ng
and speed of the gear B relative to thearm C,
=Nz —N¢
SincethegearsA and B aremeshing directly, thereforethey will revolvein oppositedirections.
0 Ng=Ne _ _Ta
NA - NC TB
Since the arm C isfixed, thereforeits speed, N = 0.
0 N _ _Ta
NA TB
If the gear A isfixed, thenN, = 0.
Ne=Ne __Ta Ns _q4Ta
0 - N¢ T Nc Ts

Note: The tabular method is easier and hence mostly used in solving problems on epicyclic gear train.

Example 13.4. In an epicyclic gear train, an arm carries
two gears A and B having 36 and 45 teeth respectively. If thearm B
rotatesat 150 r.p.m. in the anticlockwise direction about the centre
of the gear Awhichisfixed, determinethe speed of gear B. If the
gear Ainstead of being fixed, makes 300 r.p.m. in the clockwise
direction, what will be the speed of gear B ?

Solution. Given : T, =36 ; Ty =45; N.= 150 r.p.m.
(anticlockwise)

The gear trainisshown in Fig. 13.7. Fig. 13.7
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We shall solve this example, first by tabular method and then by algebraic method.
1. Tabular method

First of al prepare the table of motions as given below :
Table 13.2. Table of motions.

Revolutions of elements
Step No. Conditions of motion ArmC Gear A Gear B
. Ta
1. Arm fixed-gear A rotates through + 1 0 +1 T
revolution (i.e. 1 rev. anticlockwise) B
T

2. Arm fixed-gear A rotates through + x 0 a5 —-xx T—A
revolutions B

3. Add +y revolutionsto all elements +y +y +y
4. Total motion +y X+y y—xxﬁ

Speed of gear B when gear A isfixed
Since the speed of arm is 150 r.p.m. anticlockwise, therefore from the fourth row of the table,
y =+150r.p.m.
Alsothe gear A isfixed, therefore
x+y=0 or x=-y=-150r.p.m.

0 Speedof gear B, Ng = y—x><$—A =150 +150 Xj—: =+270 r.p.m.
B

=270 r.p.m. (anticlockwise) Ans.
Speed of gear B when gear A makes 300 r.p.m. clockwise
Since the gear A makes 300 r.p.m.clockwise, therefore from the fourth row of the table,
X+y=-300 or x=-300—y=-300-150=-450r.p.m.
O Speed of gear B,

Ng = y_xxL"\ =150 + 450 ><§ = +510 r.p.m.
Ts 45

=510 r.p.m. (anticlockwise) Ans
2. Algebraic method

Let N, = Speed of gear A.
Ng = Speed of gear B, and
N = Speed of aam C.
Assuming the arm C to be fixed, speed of gear A relativetoarm C
=N, N,
and speed of gear B relativetoarm C =Ng—N
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Since the gears A and B revolvein opposite directions, therefore

L Enbl RN ()
Na—=Ne  Ts
Speed of gear B when gear A isfixed
When gear A isfixed, thearm rotates at 150 r.p.m. in the anticlockwise direction, i.e.
N,=0, and No=+150r.p.m.
0 Ng —150 — _% =-08 ...[From equation (i)]
0-150 45
or Ng =—150 x - 0.8 + 150 = 120 + 150 = 270 r.p.m. Ans.

Speed of gear B when gear A makes 300 r.p.m. clockwise
Since the gear A makes 300 r.p.m. clockwise, therefore

N, =-300r.p.m.
O _Ng —150 = _36 =-0.8
—300 — 150 45
or Ng=—450 x —0.8 + 150 = 360 + 150 = 510 r.p.m. Ans.

Example 13.5. In a reverted epicyclic gear
train, the arm A carries two gears B and C and a
compound gear D - E. The gear B meshes with gear E
and thegear C mesheswith gear D. The number of teeth
on gears B, C and D are 75, 30 and 90 respectively.
Find the speed and direction of gear C when gear B is
fixed and the arm A makes 100 r.p.m. clockwise.

Solution. Given: Tg=75;T=30; T, =90;
N, =100r.p.m. (clockwise)

The reverted epicyclic gear train is
shown in Fig. 13.8. First of all, let usfind the
number of teethongear E(Ty). Letdg, d., dy
and d_bethe pitch circle diameters of gears B,
C, D and E respectively. From the geometry of
thefigure,

dy +de=d. + dg

Sincethe number of teeth on each gear,
for the same module, are proportional to their
pitch circle diameters, therefore

TB+TE:TC+TD
a Te=T+T,-Tg=30+90-75=45

The table of motions is drawn as
follows: A gear-cutting machine is used to cut gears.
Note : This picture is given as additional information

and is not a direct example of the current chapter.
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Table 13.3. Table of motions.

Revolutions of elements

Step Conditions of motion ArmA | Compound Gear B Gear C
No. gear D-E
Te To
1. Arm fixed-compound gear D-E 0 +1 T 1.
rotated through + 1 revolution (i.e. £ €
1 rev. anticlockwise)
- Te To
2 Arm fixed-compound gear D-E 0 +X —XXT— —XX_T
rotated through + x revolutions B c
3. | Add+y revolutionsto all elements +ty +ty ty +ty
. E D
4. Total motion +y X+y y_xxg y—XXﬁ
Since the gear B isfixed, therefore from the fourth row of the table,
T
y-xx-£=0 or y—xxf:O
Ty 75
O y—-06=0 (i)
Also thearm A makes 100 r.p.m. clockwise, therefore
y =-100 (1)

Hollow Through Bore for -
Drawbar Integration

Substituting y =— 100 in equation (i), we get
-100-06x=0 or x=-100/0.6=-166.67

Hydraulic or Pneumatic Speed Ratio Detection Switches
Change Actuator

Round Housing With O-ring %
Seated Cooling Jacket ',;::_ \

Motor Flange

OUTPUT- External Spline to
Spindle

Housing OD Designed to meet
'NP_UT RAM Bore Dia, and Share Motor
Spline to Accept Coolant Supply

Motor Shaft

Model of sun and planet gears.
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From the fourth row of the table, speed of gear C,

Ne =y-— x><T—D =-100 +166.67 x% = +400 r.p.m.
T 30

=400 r.p.m. (anticlockwise) Ans.

13.9. Compound Epicyclic Gear Train—Sun and Planet Gear

A compound epicyclic
gear train is shown in Fig. 13.9.
It consists of two co-axia shafts
S,and S,, anannulusgear A which
is fixed, the compound gear (or
planet gear) B-C, the sun gear D
and the arm H. The annulus gear
has internal teeth and the com-
pound gear is carried by the arm
andrevolvesfreely onapin of the
arm H. The sun gear is co-axial
with theannulus gear and thearm
but independent of them.

The annulus gear A
meshes with the gear B and the
sun gear D meshes with the gear
C. It may be noted that when the
annulusgear isfixed, the sun gear
provides the drive and when the
sun gear isfixed, theannulusgear

Speed Change Oil
Shift Axis Collector
Bearing Housing Planet
Output Belt Pulley Gears
Input Sun

Gear

Slide Dog
Clutch

Output Sun
Gear

Sun and Planet gears.

provides the drive. In both cases, the arm acts as afollower.

Note: The gear at the centre is called the sun gear and the gears whose axes move are called planet gears.

Annulus

gear,

Compound f?r (A)

Sun gear (D)

Fig. 13.9. Compound epicyclic gear train.
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LetT,,Tg, T, and T betheteethandN,, N, N and N, bethe speedsfor thegearsA, B,
C and D respectively. A little consideration will show that whenthearmisfixed andthesungear D is
turned anticlockwise, then the compound gear B-C and the annulus gear A will rotatein the clockwise
direction.

The motion of rotations of the various elements are shown in the table bel ow.

Table 13.4. Table of motions.

Revolutions of elements

Step Conditions of motion Arm Gear D Compound gear Gear A
No. B-C
. To o, Ts
1. Arm fixed-gear D rotates 0 +1 e 1. X T.
through + 1 revolution c c A
. T,
2 | Arm fixed-gear D rotates 0 B —xx L2 _xx 1D x 1B
through + x revolutions e Te Ta
3. | Add + y revolutions to all +y +y +y +y
elements
: y—XX _D y —XX T7D X Tj
4. | Tota motion +y X+y Te Te Ta

Note : If the annulus gear A is rotated through one revolution anticlockwise with the arm fixed, then the
compound gear rotates through T, / Ty revolutions in the same sense and the sun gear D rotates through
T,/ Tgx T,/ Tyrevolutionsin clockwise direction.

Example 13.6. An epicyclic gear consists of three gears A, B and C as shown in Fig. 13.10.
The gear A has 72 internal teeth and gear C has 32 external teeth. The gear B meshes with both A
and C and is carried on an arm EF which rotates about the centre of A at 18 r.p.m.. If the gear Ais
fixed, determine the speed of gears B and C.

Solution. Given: T, =72; T.=32; Speed of arm EF = 18 r.p.m.
Considering the relative motion of rotation as shown in Table 13.5.

Table 13.5. Table of motions.

Revolutions of elements
Step No. Conditions of motion Arm EF | Gear C Gear B Gear A
1 Arm fixed-gear C rotates through 0 +1 _Ie le,bo_Tc
+ 1 revolution (i.e. 1 rev. Ts T8 Ta Ta
anticlockwise)
Arm fixed-gear C rotates through —X X Tc — XX Tc
- : 0 X T T
+ X revolutions B A
3. Add + y revolutions to all Y Y +ty +ty
elements
4 Total motion + X + y—x><-LC y_XxL:
: y y Ts T,
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Speed of gear C
We know that the speed of the arm is 18 r.p.m. therefore,
y =18r.p.m.

and the gear A isfixed, therefore

-
y—xx-C =0 or 18_xx 32~
Ta 72
O x=18x72/32=40.5
O Speed of gear C =x+y=405+18
=+58.5r.p.m.
=58.5r.p.m. in the direction
of aim. Ans.
Speed of gear B Fig. 13.10

Letd,, d; and d. be the pitch circle diameters of gears
A, B and C respectively. Therefore, from the geometry of Fig. 13.10,

dg +d7c=d7A or 2dg+d.=d,
Since the number of teeth are proportional to their pitch circle diameters, therefore
2Ty +Te=T, or 2Ty +32=72 or T, =20
0 Speed of gear B :y—xxI—C:18—40.5x% =—46.8r.p.m.

B
=46.8 r.p.m. in the opposite direction of arm. Ans.
Example 13.7. An epicyclic train of gearsisarranged asshown in ~ Arm
Fig.13.11. How many revol utions does the arm, to which the pinions B and Yo
C are attached, make : y
1. when A makes one revolution clockwise and D makes half a
revolution anticlockwise, and

2. when A makes one revolution clockwise and D is stationary ? O {
The number of teeth on the gears A and D are 40 and 90 _
respectively. Fig. 13.11

Solution. Given: T, =40; T,=90

First of al, let us find the number of teeth ongearsB and C (i.e. Tgand T.). Let d,, dg, d.
and d, bethe pitch circlediametersof gears A, B, C and D respectively. Therefore from the geometry
of thefigure,

d,+dg+d.=d, or d,+2dy=d, (e dg=dg)
Since the number of teeth are proportional to their pitch circle diameters, therefore,
T,+2Tg=T, or 40+2T;=90
O Tg=25 and T.=25 e Tg=To)
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Table 13.6. Table of motions.
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Revolutions of elements
Step No. Conditions of motion Arm Gear A | Compound Gear D
gear B-C
T T T, T
1. Arm fixed, gear A rotates 0 -1 +T—A +T*A><T*B =+T*A
through — 1 revolution (i.e. 1 B ERD D
rev. clockwise)
2 Arm fixed, gear A rotates 0 x +x XTA +X XTA
' through — x revolutions Ts To
3. Add -y revolutions to all| —y -y -y -y
elements
H X X T7A —_ X X T7A —_
4. Total motion -y —-X-y To y T y

1. Speed of arm when A makes 1 revolution clockwise and D makes half revolution anticlockwise
Since the gear A makes 1 revolution clockwise, therefore from the fourth row of the table,
-X-y=-1 or x+y=1 (D)

Also, the gear D makes half revolution anticlockwise, therefore

xxT—A—y:E or xxio_y—l
To 2 9 2
O 40x—-90y=45 or X—225y=1.125 (i)

From equations (i) and (i), x=1.04 and =-0.04
O Speed of aam =—y =—(—0.04) = + 0.04
= 0.04 revolution anticlockwise Ans.

2. Speed of arm when A makes 1 revolution clockwise and D is stationary
Since the gear A makes 1 revolution clockwise, therefore from the fourth row of the

table,

—-X-y=-1 or Xx+y=1 ..(iii)

Also the gear D is stationary, therefore
XXT—A—y:O or Xxio_yzo

D 90
O 40x-90y =0 or Xx—225y=0 (V)
From equations (iii) and (iv),

x =0.692 and y =0.308

0  Speed of arm = —y =—0.308 = 0.308 revolution clockwise Ans.
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Example 13.8. In an epicyclic gear train, theinternal wheels A and B and compound wheels
C and D rotate independently about axis O. The wheels E and F rotate on pinsfixed to thearm G. E
gearswith A and C and F gearswith B and D. All the wheels have
the same module and the number of teeth are: T_= 28; T, = 26;
Te=T.=18

1. Sketch the arrangement ; 2. Find the number of teeth on
AandB; 3. If thearm G makes 100 r.p.m. clockwise and A isfixed,
find the speed of B ; and 4. If the arm G makes 100 r.p.m. clockwise
and wheel A makes 10 r.p.m. counter clockwise ; find the speed of
wheel B.

Solution. Given: T=28;T;=26;T,=T.=18
1. Sketch the arrangement

The arrangement is shown in Fig. 13.12.
2. Number of teeth on wheels A and B

Let T, = Number of teeth on wheel A, and

Tg = Number of teeth on wheel B.

If dy, dg, d-, dy, dz and d. are the pitch circle diameters of wheelsA, B, C, D, Eand F
respectively, then from the geometry of Fig. 13.12,

dy=d-.+2d,
and dg =dy+2d:
Since the number of teeth are proportional to their pitch circle diameters, for the same
module, therefore

Fig. 13.12

T,=T+2T=28+2x18=64 Ans
and Tg=Tp+2T,=26+2x18=62 Ans
3. Speed of wheel B when arm G makes 100 r.p.m. clockwise and wheel A isfixed
First of all, the table of motionsis drawn as given below :
Table 13.7. Table of motions.

Revolutions of elements
Step| Conditions of Arm | Wheel Wheel | Compound Whed F Wheel B
No. motion G A E wheel C-D
il Ty T, Ty T Ty Tp T

1. |Armfixed-wheel A| o | +1 +T—A —T—AxT—E +T—A><T—D +T—A><T—D><T—F
rotates through + 1 E E 'C c F c 'F B
rev_olutlon_(l e 1rev. _ T . Ta X-LD
anticlockwise) T T T,

2 Arm fixed-wheel A 0 . +x><T_A _xxTA +x><L"\xT7D +x><-|;"‘\x-|;D
rotates through + x Te Tc Tc Te Tc Ts
revolutions

3. | Add +yrevolutions| +y +y +y +y +y +y
to al elements

Ta Ta Ta, To Ta . Tp
. +xx2 —_Xxx2 + XX x = + XX x=
4. | Total motion +y | x+y | Y T y To y Te Te y To T
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Since the arm G makes 100 r.p.m. clockwise, therefore from the fourth row of the table,
y =—100 (i)
Also, thewheel A isfixed, therefore from the fourth row of thetable,
x+y=0 or X =-y =100

Chapter 13 : Gear Trains

..(ii)

=-100 +100 ><6—4 ><E =—100 +95.8 r.p.m.
28 62

O Speed of wheel B = y+x><T—A xIo
c Ts
=—4.2rpm. =42r.p.m. clockwise Ans.
4. Speed of wheel B when arm G makes 100 r.p.m. clockwise and wheel A makes 10 r.p.m. counter
clockwise

Since the arm G makes 100 r.p.m. clockwise, therefore from the fourth row of the
table
y =—100 .(iii)
Also the wheel A makes 10 r.p.m. counter clockwise, therefore from the fourth row of the
table,
x+y=10 or

x =10—y =10 + 100 = 110 (iv)
26

O Speedofwhed B=y + x><T—A xT—D =-100 +110 ><6—4 x— =100 405.4 r.p.m.
c Tg 28 62
=+ 5.4 rp.m.=5.4rp.m. counter clockwise Ans.

Example13.9. Inan epicyclic gear of the ‘sun and planet’ type shown
in Fig. 13.13, the pitch circle diameter of the internally toothed ring is to be
224 mm and the module 4 mm. When the ring D is stationary, the spider A,
which carriesthree planet wheels C of equal size, isto make onerevolutionin
the same sense as the sunwheel B for every five revolutions of the driving
spindle carrying the sunwheel B. Deter mine suitable numbers of teeth for all
thewheels.

Solution. Given: dy=224mm; m=4mm; N,=Ng/5
Let Ty, T and T be the number of teeth on the sun wheel B,
planet wheels C and the internally toothed ring D. The table of motionsis given below :

Fig. 13.13

Table 13.8. Table of motions.

Revolutions of elements
Step No. | Conditions of motion Spider A | Sun wheel B | Planet wheel C Internal gear D
" ; T, Tg T, T,
1. |Spider A fixed, sun wheel 0 +1 SEE] _BxC-_B
B rotates through + 1 Tc Tc o To
revolution (i.e. 1 rev.
anticlockwise) s e
2. | spider A fixed, sun wheel 0 +X RME R
B rotates through + x
revolutions
3. |Add + y revolutions to all +ty ty +ty ty
elements
4 Total motion + X+ y-xx-B y—X><T—B
' Y Y Te To
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We know that when the sun
wheel B makes+ 5 revol utions, the spi- Main rotor
der A makes + 1 revolution. Therefore
from the fourth row of the table,

Tail rotor
F

Drive shaft =
y=+1; and x+y=+5
O X:5_y:5_1:4 Cockpit
. . . Tail
Sincetheinternally toothedring "\\ ail boom
D isstationary, thereforefrom thefourth T _ _
row of the table, Landing skids Engine, transmis-
sion fuel, etc.
y — XX T—B =0  Power transmission in a helicopter is essentially through
D gear trains.
Note : This picture is given as additional information and is not a
or 1—4x Tis — direct example of the current chapter.
D
Tg _1 .
O B =7 or T.=4T A
T, 4 b B ®
We know that To=d,/ m=224/4=56 Ans.
O Tg=Tp/4=56/4=14 Ans. ...[From equation (i)]

Let d,, d.and d, bethe pitch circle diameters of sunwheel B, planet wheels C and internally
toothed ring D respectively. Assuming the pitch of all the gearsto be same, therefore from the geom-
etry of Fig. 13.13,

dg+2d.=d,

Since the number of teeth are proportional to their pitch circle diameters, therefore
Tg+2T =T, or 14+2T.=56

0 T.=21Ans

Example 13.10. Two shafts A and B are co-axial. A gear C (50 teeth) is rigidly mounted
on shaft A. A compound gear D-E gearswith C and an internal gear G. D has 20 teeth and gears
with C and E has 35 teeth and gears with an internal gear G. The gear G isfixed and is concen-
tric with the shaft axis. The compound gear D-E is mounted on a pin which projectsfroman arm
keyed to the shaft B. Sketch the arrangement and find the number of teeth on internal gear G
assuming that all gears have the same module. If the shaft A rotatesat 110 r.p.m., find the speed
of shaft B.

Solution. Given: T.=50; T;=20; T.=35; N, =110r.p.m.
The arrangement is shown in Fig. 13.14.
Number of teeth on internal gear G

Letd.,d,, d-and dg bethepitch circle diametersof gearsC, D, E and G respectively. From
the geometry of thefigure,

or
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Let T, Ty, Tgand T be the number of teeth on gears C, D, E and G respectively. Since all
the gears have the same module, therefore number of teeth are proportional to their pitch circle

diameters.
0
Compound
gear
D
A @ “
m———p w //
K ﬁ—
B —
N
/i_
C
Speed of shaft B

Internal gear

To=To+ T+ Tg=50+20+35=105Ans

Fig. 13.14

The table of motionsis given below :

Table 13.9. Table of motions.

Revolutions of elements
Step Conditions of motion Arm | Gear C (or Compound Gear G
No. shaft A) gear D-E
Tc Te U Te
1. | Armfixed - gear Crotatesthrough+1| O +1 I T. x 1.
. D p le
revolution
. c Tc . Te
2. | Armfixed - gear Crotatesthrough+x| 0 +X —Xx? —XXT*XT*
; D D e
revolutions
3. | Add+yrevolutionstoal elements | Y ty ty ty
Tc c e
4. | Total motion ty e y XXTD e D ><TG

Since the gear G isfixed, therefore from the fourth row of the table,

y_xxTixTi:O or

H To

5
O -—x=0
Y 6

y—X

50 35 _,

X — X —

20 105
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Sincethegear Cisrigidly mounted on shaft A, therefore speed of gear C and shaft A issame.
We know that speed of shaft A is110 r.p.m., therefore from the fourth row of the table,

X +y=100 (i)
From equations (i) and (i), x =60, and y =750
O Speed of shaft B = Speed of arm = +y = 50 r.p.m. anticlockwise Ans.
Example13.11. Fig. 13.15 showsdiagrammatically a compound £
epicyclic gear train. Wheels A, D and E are free to rotate independently
on spindle O, while B and C are compound and rotate together on spindle D
P, on the end of arm OP. All the teeth on different wheels have the same
module. A has 12 teeth, B has 30 teeth and C has 14 teeth cut externally. A—>
Find the number of teeth on wheels D and E which are cut internally. 0
If the wheel A is driven clockwise at 1 r.p.s. while D is driven Bc
counter clockwise at 5 r.p.s., determine the magnitude and direction of
the angular velocities of arm OP and wheel E. Fig. 13.15

Solution. Given: T,=12; T,=30;T.=14; N,=1rp.s ;Ny=5rps.
Number of teeth on wheels D and E

Let T,and T bethenumber of teeth onwheelsD and E respectively. Letd, , dg, d., dyand d.
bethe pitch circle diameters of wheels A, B, C, D and E respectively. From the geometry of the figure,

de=d, +2d; and  dy=d.—(dg—d)

Since the number of teeth are proportional to their pitch circle diametersfor the same module,
therefore

Te=T,+2T;=12+2x30=72 Ans.
and To=T—(Tg—T) =72—-(30-14) =56 Ans.
Magnitude and direction of angular velocities of arm OP and whedl E
The table of motionsis drawn asfollows:
Table 13.10. Table of motions.

Revolutions of elements
Step Conditions of motion Arm| Wheel A | Compound Wheel D Wheel E
No. wheel B-C
Ta Ta T Ta T8
1. | Armfixed A rotated through | O —d . M LT
S B B b B 'E
— 1 revolution (i.e. 1 revolu-
tion clockwise) T,
— 4+ A
TE
. Ta Ta . Tc Ta
2. | Arm fixed-wheel A rotated | o —X +xx_|_7 +xxT7xT— +xx2
through — x revolutions B B D E
3. | Add-yrevolutionstoall ele- | —y -y -y -y -y
ments T, Ty T T,
. A A lc A
Xx 2 — XX 2 x = — XX -2
4. | Total motion -y | —x-y T y T T y T y
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Sincethewheel A makes 1r.p.s. clockwise, therefore from the fourth row of the table,
-X-y=-1 o x+y=1 ..(1)
Also, thewheel D makes 5 r.p.s. counter clockwise, therefore

Ta  Tc 12 14
XXX —yY =5 o yx-Sx—— _y=
s Tp 30 56 7 B
O 01x-y=5 (1)

From equations (i) and (ii),
x =5.45 and y =—4.45
O Angular velocity of arm OP
=—y=—-4.45)=445rp.s
=4.45 x 2 1= 27.964 rad/s (counter clockwise) Ans.

and angular velocity of wheel E = x x ::-_—A —y =545 X% — (—4.45) =536 r.ps.

=5.36 >E< 2 1= 33.68 rad/s (counter clockwise) Ans.

Example 13.12. Aninternal wheel B with 80 teeth is keyed to a shaft F. A fixed internal
wheel C with 82 teeth is concentric
with B. A compound wheel D-E
gears with the two internal wheels;
D has 28 teeth and gears with C
while E gearswith B. The compound
wheelsrevolve freely on a pin which
projects from a disc keyed to a shaft
A co-axial with F. If the wheel s have
the same pitch and the shaft A makes
800 r.p.m., what is the speed of the

shaft F ? Sketch the arrangement. ~Helicopter . .
Note : This picture is given as additional information and is not a
Solution. Given: T;=80; T direct example of the current chapter.

=82;T,=28;N,=500rp.m.
The arrangement is shown in Fig. 13.16.

777, ANN
B 2 C
E_?t:ﬁ:;%/Arm
Frz \ N A
“—— i —-—%—
1A/, NN
7,
NN c

Fig. 13.16

First of all, let usfind out the number of teeth on wheel E (Tp). Let dg, d.., dy and d. be the
pitch circle diameter of wheels B, C, D and E respectively. From the geometry of the figure,

dg=dc—(dp—de)
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or de=dg+dy—d.
Since the number of teeth are proportional to their pitch circle diameters for the same pitch,
therefore
Te=Tg+T,—-T.=80+28-82=26
The table of motionsis given below :
Table 13.11. Table of motions.
Revolutions of elements
Step Conditions of motion Arm (or | Wheel B (or | Compound Wheel C
No. shaft A) | shaft F) gear D-E
Ts T8 . To
1. | Arm fixed - wheel B rotated 0 +1 +T_ +? 1.
through + 1 revolution (i.e. 1 E E
revol ution anticlockwise)
B T8 . To
2. | Arm fixed - wheel B rotated 0 +X +Xx? +x><_|_—><_|_—
. E e Ic
through + x revolutions
3. |Add + y revolutions to all Y Y Y Y
dements- 4 55l sl o D
4. | Total motion +y X+y y+X ﬁ y+X ﬁ e

Since the wheel C isfixed, therefore from the fourth row of the table,

y+xx-LB xTD =0
T Tc
O y+1.05x=0

Also, the shaft A (or the arm) makes 800 r.p.m., therefore from the fourth row of the table,

or

y =800

From equations (i) and (ii),

X =—762
O Speed of shaft F = Speed of wheel B =x +y =—762 + 800 = + 38 r.p.m.

=38 r.p.m. (anticlockwise) Ans.

y + X

Example 13.13. Fig. 13.17 shows an epicyclic gear
train known as Ferguson’s paradox. Gear A is fixed to the
frame and is, therefore, stationary. The arm B and gears C
and D arefreeto rotate on the shaft S Gears A, C and D have
100, 101 and 99 teeth respectively. The planet gear has 20
teeth. The pitch circle diametersof all arethe same so that the
planet gear P meshes with all of them. Determine the
revolutions of gears C and D for one revolution of the arm B.

Solution. Given : T, = 100 ; To=101;T,=99;

T,=20

X@x28zo

82

CH

- _%_

Fig. 13.17
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The table of motionsis given below :

Table 13.12. Table of motions.

e 453

Revolutions of elements
Step No. Conditions of motion Arm B Gear A Gear C Gear D
Ta Ta,Tc _ . Ta
1. Arm B fixed, gear A rotated 0 +1 +T_ +?x?—+?
i o (i © c b D
through + 1 revolution (i.e. 1
revol ution anticlockwise)
2. Arm B fixed, gear A rotated 0 o +xxA Fxx A
through + x revolutions Tc To
3. Add + y revolutions to all +y +y +y +y
elements
Total motion y+><><TfA )/+X><TfA
4. +y X+y Te T

The arm B makes one revolution, therefore
y=1

Sincethe gear A isfixed, therefore from the fourth row of the table,

x+y=0 or =-y=-1
Let Ncand N = Revolutions of gears C and D respectively.
From the fourth row of the table, the revolutions of gear C,
T, 100 1
Ne=y+xx2 =1-1x>— =+_—— Ans
cTY TR 101 1007
and the revolutions of gear D,
T, 100 1
NN =V + X X A T =
o =Y 99 g9 S

From above we see that for one revolution of the arm B, the gear C rotates through 1/101
revolutions in the same direction and the gear D rotates through 1/99 revolutions in the opposite

direction.

Example 13.14. In the gear drive as shown in Fig.
13.18, thedriving shaft Arotatesat 300 r.p.m. in the clock-
wise direction, when seen fromleft hand. The shaft Bisthe
driven shaft. The casing C is held stationary. The wheels E
and H are keyed to the central vertical spindle and wheel F
can rotate freely on this spindle. The wheelsK and L are
rigidly fixed to each other and rotate together freely on a
pin fitted on the underside of F. The wheel L meshes with
internal teeth on the casing C. The numbers of teeth on the
different wheelsareindicated within bracketsin Fig. 13.18.

Find the number of teeth on wheel C and the speed
and direction of rotation of shaft B.

Solution. Given : N, = 300 r.p.m. (clockwise) ;

T,=40;T,=30;T.=50;T,=80;T,=40;T,=20;T, =

F(50)

L]

- G(80)

[

C

_ K(20)

H(40)

_J_‘[%\ L(30)

Teethon C

Fig. 13.18

30

In the arrangement shown in Fig. 13.18, the wheels D and G are auxillary gears and do not

form apart of the epicyclic gear train.
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Speed of wheel E, Ng = N % 11:—D =300 x g—g =400 r.p.m. (clockwise)

Number of teeth on wheel C :

Let T = Number of teeth on wheel C.

Assuming the same modulefor all teeth and since the pitch circle diameter is proportiona to
the number of teeth ; therefore from the geometry of Fig.13.18,

Te=Ty+T +T =40+20+30=90Ans.

Speed and direction of rotation of shaft B

The table of motionsis given below. The wheel F actsasan arm.

Table 13.13. Table of motions.

Revolutions of elements
Step | Conditions of motion Armor | Whed E| Whed H Compound Wheel C
No. whed F wheel K-L
Ty Ty _TL
1. |Arm fixed-wheel E| 0 N e afr‘]d o e
rotated through — 1 H are on the K S
revolution (i.e. 1 same shaft)
revolution clockwise)
. TH Ty T
2 |Arm fixed-wheel E 0 _x —x +x><T7 +xxT7xT7
rotated through — x K K Ic
revolutions
3. | Add —y revolutions to -y -y -y -y -y
all elements
: T, Ty _T,
Total motion XX—H— XxiniL_
4 — Y Y T« g Tk Tc g

Sincethe speed of wheel Eis400r.p.m. (clockwise), therefore from thefourth row of thetable,

—X—-y=-400 or x+y=400 (i)
Also thewheel Cisfixed, therefore
xxTH xT'- -y=0
k e
40 30 _
or XX — X— —y=
20 90
2X ,
0 22 _y=0 ...(ii
3 Y (i)

From equations (i) and (ii),
x=240 and y=160
0 Speed of wheel F, N.=-y=-160r.p.m.
Since the wheel F isin mesh with wheel G, therefore speed of wheel G or speed of shaft B

0 500
= — Ng X —/— =—+160 x—r7 =100 r.p.m.
F H 8oH] P
...(- Wheel G will rotate in opposite direction to that of wheel F.)

=100 r.p.m. anticlockwisei.e. in opposite direction of
shaft A. Ans.
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Example 13.15. Fig. 13.19 shows a compound epicyclic gear in which the casing C contains
an epicyclic train and this casing is inside the larger casing D.

Determine the vel ocity ratio of the output shaft B to the input shaft A when the casing D is
held stationary. The number of teeth on various wheels are as follows :

Wheel on A= 80 ; Annular wheel on B = 160 ; Annular wheel on C = 100 ; Annular wheel
on D = 120 ; Small pinionon F = 20 ; Large pinion on F = 66.

Casmg\(C) // Annular wheel
2772
4 L F
Casing (D) 51 84
J ) EE——— i_ % 2
3 =Nz
Annular <
wheel—» / =
iZ) = L7
2L = /—;
I3 % _:‘_._ _FJ -
A 1F| 2 1 B
ClezZ= Bzl
7= zZ2)
_E_
1717 L
—=- '§ §
¢ =

Fig. 13.19

Solution. Given: T, =80; Tg=160; T,=100; T,=120; T,=20; T,=66

First of all, let usconsider thetrain of wheel 1 (onA), wheel 2 (on E), annular wheel 3 (on D)
andthearmi.e. casing C. Sincethe pitch circle diameters of wheelsare proportional to the number of
teeth, therefore from the geometry of Fig. 13.19,

T,+2T,=T, or 80+2T,=120
O T,=20
The table of motionsfor the train considered is given below :
Table 13.14. Table of motions.

Revolutions of elements

Step No. Conditons of motion Arm Wheel 1 Wheel 2 Wheel 3
) T h To__ T
1 Arm fixed - wheel 1 rotated 0 +1 1 LT
; 2 2 I3 3
through + 1 revolution
(anticlockwise) . T, . T
2. | Arm fixed - wheel 1 rotated 0 +X R T,
through + x revolutions
& Add + y revolutions to all *y *y *y +y
elements T
y—xx-2 y—xx-2t
4. | Total motion y X+y X T,
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Let usassume that wheel 1 makes 1 r.p.s. anticlockwise.
0 X+y=1 (i)
Also thewheel 3is stationary, therefore from the fourth row of the table,

Theory of Machines

y—xxL:O or
T, 120

2 y
O - Zx=0 (1)
Y 3

From equations (i) and (ii), x=0.6, and
0 Speedof aamor casing C=y =04 r.p.s.

y=04

= y_xx__:_;l =04 -06 x% :—2r.p.s.

2

and speed of wheel 2 or arm E

= 2r.p.s. (clockwise)

Let us now consider the train of annular wheel 4 (on C), wheel 5 (on E), wheel 6 (on F) and
arm E. We know that

Teg+2T5=T, or
O T;=40
The table of motionsis given below :
Table 13.15. Table of motions.

20+ 2T, =100

Revolutions of elements
Step Conditions of motion ArmE or| Whee 6 Wheel 5 Wheel 4
No. wheel 2
Arm fixed, wheel 6 rotated + Te Je, T To
1 - v 1 T T T, T
through + 1 revolution 5 5 14 4
Ts Te
2. | Arm fixed, wheel 6 rotated 0 X, =4 T =4 T,
through + x, revolutions
3. | Add + y, revolutions to all Y Y Y +Y,
elements- v x xE v x xE
4. Total motion +y, X, +y, =% T =% T
We know that speed of arm E = Speed of wheel 2 in the first train
O y,=-2 ()
Also speed of wheel 4 = Speed of arm or casing C in the first train
T, 20
0 — )(76:0_4 or 2-X%*x—=04 (Y
i —% T, 1% 100 (iv)
or ¥ =(2-04) 100 _ 12

20
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O Speed of wheel 6 (or F)
=X, +y,=-12-2=-14rps. = 14rp.s. (clockwise)
Now consider thetrain of wheels6 and 7 (both on F), annular wheel 8 (on B) andthearmi.e.
casing C. The table of motionsis given below :

Table 13.16. Table of motions.

Revolutions of elements
Step No. Conditions of motion Arm Wheel 8 Wheel 7
. Tg
1 Arm fixed, wheel 8 rotated through 0 +1 + =
+ 1 revolution 7
. Ts
2 Arm fixed, wheel 8 rotated through 0 +X, X XT—
+ X, revolutions !
3. Add + vy, revolutions to all +y, +y, +y,
elements
i + X, X E
4. Total motion Y, X+ Y, Y2+ % T,

We know that the speed of Cinthefirst trainis0.4r.p.s., therefore
y2 =04 (V)
Also the speed of wheel 7 isequal to the speed of F or wheel 6 in the second train, therefore

T, .
Yo % XT—8 ==14 o 04+x, x%) =-14 (Vi)

7
66
X, =(-14 -0.4)— =-5.94
O > = ( )160

O Speed of wheel 8 or of the shaft B

X,+Y,=—=5.94+0.4=-554rp.s =554r.p.s. (clockwise)
We have already assumed that the speed of wheel 1 or the shaft A is1r.p.s. anticlockwise
O Velocity ratio of the output shaft B to the input shaft A

=—-554 Ans.
Note: The —ve sign shows that the two shafts A and B rotate in opposite directions.

13.10. Epicyclic Gear Train with Bevel Gears

The bevel gears are used to make a more compact epicyclic system and they permit a very
high speed reduction with few gears. The useful application of the epicyclic gear train with bevel
gearsisfoundin Humpage's speed reduction gear and differential gear of an automobile as discussed
below :

1. Humpage's speed reduction gear. The Humpage's speed reduction gear was originally
designed as a substitute for back gearing of alathe, but its use is now considerably extended to all
kinds of workshop machinesand also in electrical machinery. In Humpage's speed reduction gear, as
shownin Fig. 13.20, thedriving shaft X and the driven shaft Y are co-axial. Thedriving shaft carries
abevel gear A and driven shaft carries a bevel gear E. The bevel gear B meshes with gear A (also
known aspinion) and afixed gear C. The gear E mesheswith gear D which iscompound with gear B.
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Thiscompound gear B-D ismounted on thearm or spindle F whichisrigidly connected with ahollow
sleeve G. The dleeverevolvesfreely loose on the axes of the driving and driven shafts.

N N
Fig. 13.20. Humpage's speed reduction gear.
2. Differential gear of an automobile. The differential gear used in the rear drive of an
automobileis shownin Fig. 13.21. Itsfunctionis

(@) to transmit motion from the engine shaft to the rear driving wheels, and

(b) to rotate the rear wheels at different speeds while the automobile istaking aturn.

Aslong asthe automobileisrunning on astraight path, the rear wheelsaredriven directly by
the engine and speed of both the wheelsis same. But when the automobileistaking aturn, the outer
wheel will runfaster than the* inner wheel because at that time the outer rear wheel hasto cover more
distance than theinner rear wheel. Thisisachieved by epicyclic gear train with bevel gears as shown
inFig. 13.21.

Propeller

The bevel gear A (known as pinion) is keyed to Shaf A
the propeller shaft driven from the engine shaft through
universal coupling. Thisgear A drivesthegear B (known B Arm
as crown gear) which rotates freely on the axle P. Two Rear axle <-D_Rear axle
equal gears C and D are mounted on two separate parts P
and Q of therear axlesrespectively. These gears, inturn, HE_ P 2 a¢ =l
mesh with equal pinions E and F which can rotate freely ZZ l
on the spindle provided on the arm attached to gear B. 4 % ﬂheél
When the automobile runson astraight path, the ~ Wheel / . Spindle
gearsC and D must rotatetogether. These gearsarerotated
through the spindle on the gear B. The gears E and F do Arm

not rotate on the spindle. But when theautomobileistaking  Fig. 13.21. Differential gear of an automobile.
aturn, theinner rear wheel should have lesser speed than
the outer rear wheel and dueto relative speed of the inner and outer gears D and C, thegearsE and F
start rotating about the spindle axis and at the same time revolve about the axle axis.

Dueto thisepicyclic effect, the speed of the inner rear wheel decreases by a certain amount
and the speed of the outer rear wheel increases, by the same amount. Thismay bewell understood by
drawing the table of motions asfollows:

*  Thisdifficulty does not arise with the front wheels as they are greatly used for steering purposes and are
mounted on separate axles and can run freely at different speeds.
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Table 13.17. Table of motions.
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Revolutions of elements
Step No. Conditions of motion Gear B Gear C Gear E Gear D

1 Gear B fixed-Gear C rotated 0 1 +T_C _ch-LE =_1
through + 1 revolution (i.e. Te T To
1 revolution anticlockwise)) (- Te=Tp)
Gear B fixed-Gear C rotated +x x-C

2. through + X revolutions 0 X Te —X
Add + y revolutions to al

. + + + +
3 elements y y y y
. Te
4. Total motion +y X+y y+x><E y — X

From the table, we see that when the gear B, which derives motion from the engine shaft,
rotates at y revolutions, then the speed of inner gear D (or therear axle Q) islessthany by x revolu-
tions and the speed of the outer gear C (or the rear axle P) isgreater than y by x revolutions. In other
words, the two parts of the rear axle and thus the two wheelsrotate at two different speeds. We also
see from the table that the speed of gear B is the mean of speeds of the gears C and D.

Example 13.16. Two bevel gears A and B (having 40 teeth and 30 teeth) arerigidly mounted
on two co-axial shafts X and Y. A bevel gear C (having
50 teeth) mesheswith A and B and rotates freely on one
end of an arm. At the other end of the arm is welded a
sleeve and the sleeveisriding freely |oose on the axes of
the shafts X and Y. Sketch the arrangement.

If the shaft X rotatesat 100 r.p.m. clockwise and
arm rotates at 100 r.p.m.anitclockwise, find the
speed of shaft Y.

Solution. Given: T, =40; T;=30; T.=50; N,
=N, =100r.p.m. (clockwisg) ; Speed of arm=100r.p.m.
(anticlockwise)

The arangement is shown in Fig. 13.22.

The table of motionsisdrawn as below :

Table 13.18. Table of motions.

C Arm
NN =
\ /
~ —
= —
Sleeve \
=z N
A
Fig. 13.22

Revolutions of elements
Step No. Conditions of motion Arm Gear A Gear C Gear B
. T, Tn T T,
1 Arm B fixed, gear A rotated 0 +1 +- A B o
through + 1 revolution (i.e. 1 Te Tc T Ts
revolution anticlockwise)
. —+ X X T7A — XX T7A
2. Arm B fixed, gear A rotated 0 +X =7 T
. c B
through + x revolutions
3. Add + y revolutions to all +y ty +y Y
elements_ +xxTA xxTA
4, Total motion +y X+y yx ﬁ y-— g

*  Thez signisgiventothemotion of thewheel C becauseit isin adifferent plane. So we cannot indicate the
direction of its motion specifically, i.e. either clockwise or anticlockwise.
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Since the speed of the arm is 100 r.p.m. anticlockwise, therefore from the fourth row of the

table,
y =+ 100
Also, the speed of the driving shaft X or gear A is100 r.p.m. clockwise.
O X +y=-100 or X =-y—100=-100-100 = —-200

O Speed of thedriven shafti.e. shaft Y,

T O 400
N, =Speedof gear B=y — x x -2 =100 — /200 x—
v=5P g y T, 30

B
=+ 366.7 r.p.m. = 366.7 r.p.m. (anticlockwise) Ans.

Example 13.17. In a gear train, as
shown in Fig. 13.23, gear B is connected to the
input shaft and gear F is connected to the output
shaft. Thearm A carrying the compound wheels
D and E, turns freely on the output shaft. If the
input speed is 1000 r.p.m. counter- clockwise
when seen fromtheright, deter mine the speed of —-
the output shaft under the following conditions:  oygpyt

1. When gear C is fixed, and 2. when "t
gear Cisrotated at 10 r.p.m. counter clockwise.

Solution. Given : T, =20 ; T.= 80 ;
Tp=60; Tg=30; Tg=32; Ng = 1000 r.p.m.
(counter-clockwise)

—
S

c 80T
Fig. 13.23

The table of motionsis given below :

Table 13.19. Table of motions.

Revolutions of elements

Step Conditions of motion ArmA | Gear B | Compound Gear C Gear F (or
No. (or input| wheel D-E output shaft)
shaft)
T, Tz _ T, Tg _ T,
1. | Arm fixed, gear B rotated 0 +1 +T—B —T*BXT*D —T*BXT*E
through + 1 revolution (i.e. R o ¢ b F
1 revolution anticlockwise) T
-_'B
Tc
: Ts Ts Ts . Te
2. | Arm fixed, gear B rotated 0 +X +X><T— —XXT— —XXT—XT—
through + x revolutions D c b 'F
3. | Add + y revolutions to al +y ty +y +y v
elements
g y-|.)()(7B y_)()(iB y_xijxE
4. | Total motion +y X+y T To T




1. Speed of the output shaft when gear Cisfixed

Since the gear Cisfixed, therefore from the fourth row of the table,

Tg 20
—xx—==0 or —Xx—=0
Y c y 80
0 y—025x=0
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()

We know that the input speed (or the speed of gear B) is 1000 r.p.m. counter clockwise,

therefore from the fourth row of the table,
X +y =+ 1000
From equations (i) and (ii), x =+ 800,

and y=+200

O Speed of output shaft = Speed of gear F = y_xxT_B xT_E

20 30

..(ii)

=200 -800x— x— =200 —187.5 =12.5r.p.m.
80 32

=12.5r.p.m. (counter clockwise) Ans.
2. Speed of the output shaft when gear C isrotated at 10 r.p.m. counter clockwise
Sincethegear Cisrotated a 10r.p.m. counter clockwise, therefore from thefourth row of thetable,

y—xxli‘:+10 or

c
O y—-0.25x=10
From equations (ii) and (iii),

Xx=792, and

0 Speed of output shaft

= Speed of gear F:y—xxT—

y—xxgzlo

y =208

T, Te

D F

..(iii)

20 30
X

=208 — 792 x — x—
80 32

=208 —-185.6 = 22.4 r.p.m. = 22.4 r.p.m. (counter clockwise) Ans.

Example 13.18. Fig. 13.24 shows a differential
gear used in a motor car. The pinion A on the propeller
shaft has 12 teeth and gear swith the crown gear B which
has 60 teeth. The shafts P and Q form the rear axles to
which the road wheels are attached. If the propeller
shaft rotatesat 1000 r.p.m. and the road wheel attached
to axle Q has a speed of 210 r.p.m. while taking a turn,
find the speed of road wheel attached to axle P.

Solution. Given: T, =12; T,=60; N, = 1000
rp.m.; NQ: Np=210r.p.m.

Sincethe propeller shaft or the pinion A rotates at
1000 r.p.m., therefore speed of crown gear B,

Ng = Na xT—A =1000 ><1—2
Ts 60
=200 r.p.m.

The table of motionsis given below :

Propeller
Shaf | A
7
B
~<—Arm
Rear axle <-D_Rear axle
. )
L B
=
Z
4 Z Wheel
Wheel Spindle
s
Arm
Fig. 13.24
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Table 13.20. Table of motions.

Revolutions of elements
Step No. Conditions of motion Gear B Gear C Gear E Gear D
T Tec T,

1. | Gear B fixed-Gear C rotated | 0 ‘1 s X1
through + 1 revolution (i.e. 1 E E D
revolution anticlockwise) (~Tc =Tp)

. Tc

2. Gear B fixed-Gear C rotated 0 +X +X 1 —X
through + x revolutions E

3. Add + y revolutions to all | *Y +y +y +y
elements

Tc
4. Total motion +y X+y erXXi y—X

Since the speed of gear B is 200 r.p.m., therefore from the fourth row of the table,
y =200 (i)

Also, the speed of road wheel attached to axle Q or the speed of gear D is 210 r.p.m., there-
fore from the fourth row of the table,

y—x=210 or x=y-210=200-210=-10
O Speed of road wheel attached to axle P
=Speedof gear C=x+y
=—-10+ 200 = 190 r.p.m. Ans.

13.11. Torques in Epicyclic Gear Trains

Output shaft or
driven shaft

O
Aput shaft or

driving shaft
Fig. 13.25. Torques in epicyclic gear trains.

When the rotating parts of an epicyclic gear train, as shown in Fig. 13.25, have no angular
acceleration, the gear train is kept in equilibrium by the three externally applied torques, viz.

1. Input torque on the driving member (T ),
2. Output torque or resisting or load torque on the driven member (T,),
3. Holding or braking or fixing torque on the fixed member (T ).
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The net torque applied to the gear train must be zero. In other words,
T, +T,+T,=0 (i)
O For+ R, +Fur,=0 (i)
where F,, F, and F; are the corresponding externally applied forces at radii r;, r,and r.

Further, if w,, w, and w, are the angular speeds of the driving, driven and fixed members
respectively, and the friction be neglected, then the net kinetic energy dissipated by the gear train
must be zero, i.e.

T,.0,+T,0,+T,0,=0 ..(iii)
But, for afixed member, w,=0
O T,.0,+T,0,=0 (V)
Notes: 1. From equations (i) and (iv), the holding or braking torque T, may be obtained as follows:
T,=-T,x 2 ...[From equation (iV)]
w,
and T,=—(T+T,) ...[From equation (i)]

[ 0 N, -
=Tt -10=Ta L -
o O ON. O
2. When input shaft (or driving shaft) and output shaft (or driven shaft) rotate in the same direction,
then the input and output torques will be in opposite directions. Similarly, when the input and output shafts
rotate in opposite directions, then the input and output torques will be in the same direction.

Example13.19. Fig. 13.26 showsan epicyclic gear train. Pinion
Ahas15teethandisrigidly fixed to the motor shaft. Thewheel B has20
teeth and gearswith A and also with the annular fixed wheel E. Pinion
C has 15 teeth and is integral with B (B, C being a compound gear
wheel). Gear C meshes with annular wheel D, which is keyed to the
machine shaft. The armrotatesabout the same shaft on which Aisfixed
and carries the compound wheel B, C. If the motor runsat 1000 r.p.m.,
find the speed of the machine shaft. Find the torque exerted on the
machine shaft, if the motor develops a torque of 100 N-m. Fig. 13.26

Solution. Given: T,=15;T;=20;T.=15; N, =1000r.p.m.; Torque developed by motor (or
pinion A) = 100 N-m

First of all, let usfind the number of teeth onwheelsD and E. Let T, and T be the number of
teeth on wheels D and E respectively. Let d,, dg, d., d, and d. bethe pitch circle diameters of wheels
A, B, C, D and E respectively. From the geometry of the figure,

d.=d,+2d; and dy=d.—(dz—d)
Since the number of teeth are proportional to their pitch circle diameters, therefore,
T=T,+2Tz=15+2x20=55
and Tp=Te—(T53—-Ty) =55-(20-15) =50
Speed of the machine shaft
The table of motionsis given below :
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Table 13.21. Table of motions.

Revolutions of elements
Step| Conditions of motion | Arm | Pinion | Compound Wheel D Whed E
No. A wheel B-C
_Ta Ty | T, Te__Ta
L | Arm fixed-pinion A | O +1 Ts T T T Te  Te
rotated through + 1
revolution
(anticlockwise)
. . Ta Ta , Tc Ta
2. | Arm fixed-pinion A 0 +X —XXT— —Xx?x? ‘Xx?
rotated through + x B ERD E
revolutions
3. | Add+y revolutionsto | +Y +ty +ty +y +y
all elements T T
A A 'C A
- —X X2 —XX—= X —= - XX
4. | Total motion +y X+y y Ty y T Tp y T

We know that the speed of the motor or the speed of the pinion A is 1000 r.p.m.
Therefore

X +y =1000 ()
Also, the annular wheel E isfixed, therefore
y_XxT_A =0 or y:XxTA:X xE =0.273 x (||)
Te Te 55

From equations (i) and (ii),
Xx=786 and y=214
[0 Speed of machine shaft = Speed of wheel D,

Np =y—X xT—A ><T—C =214 — 786 XE XE =+37.15r.p.m.
T To 20 50

= 37.15r.p.m. (anticlockwise) Ans.

Torque exerted on the machine shaft
We know that
Torque developed by motor x Angular speed of motor

= Torque exerted on machine shaft
x Angular speed of machine shaft

or 100 x w, = Torque exerted on machine shaft x
O Torque exerted on machine shaft

=100 x ®& =100 x NA =100 x% =2692 N-m Ans.

Wp Np
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Example 13.20. An epicyclic gear train consists of a sun wheel
S a dationary internal gear E and three identical planet wheels P n
carried on a star- shaped planet carrier C. The size of different toothed

wheels are such that the planet carrier C rotates at 1/5th of the speed / \
of the sunwheel S. The minimum number of teeth on any wheel is 16.

The driving torque on the sun wheel is 100 N-m. Determine: 1. num-

ber of teeth on different wheels of thetrain, and 2. torque necessary to e' J

keep the internal gear stationary.

: N _Ns
Solution. Given: N¢ = < Fig. 13.27

1. Number of teeth on different wheels

The arrangement of the epicyclic gear train is shown in Fig. 13.27. Let Tgand T be the
number of teeth on the sun wheel S and the internal gear E respectively. The table of motionsis
given below :

Table 13.22. Table of motions.

Revolutions of elements

Step Conditions of motion Planet Sun Planet Internal gear E
No. carrier C | whed S wheel P
s 5l
1. | Planet carrier C fixed, sunwheel S 0 +1 T T T T
rotates through + 1 revolution (i.e.
1 rev. anticlockwise) . Ts § T
2. | Planet carrier C fixed, sunwheel S 0 +X R 5
rotates through + x revolutions
3. | Add+y revolutionsto all elements +y ty +y vy
4 i + X+ y —Xxx Is y —Xx s
- | Total motion y y T T

We know that when the sunwheel S makes 5 revolutions, the planet carrier C makes 1
revolution. Therefore from the fourth row of the table,

y=1 and x+y=5 o x=5-y=5-1=4

Sincethe gear E is stationary, therefore from the fourth row of the table,

T.

y—-xx->=0 or 1—4XE:0 or Ts_1

Te Te T 4
0 Te=4T4
Since the minimum number of teeth on any wheel is 16, therefore let us take the number of

teeth on sunwhesl, T4=16

O Te=4Tg=64Ans

Let dg, d,and d. bethe pitch circle diameters of wheels S, Pand E respectively. Now from the
geometry of Fig. 13.27,

dg+2d,=d
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Assuming the module of all the gearsto be same, the number of teeth are proportional to their
pitch circle diameters.
Tg+2T,=Tg or 16+2T,=64 or T,=24Ans
2. Torque necessary to keep the internal gear stationary
We know that
Torque on S x Angular speed of S
= Torque on C x Angular speed of C
100 x wg= Torque on C x W

0 Torqueon C =100 x “5 =100 xS =100 x5 =500 N-m
We N¢

0 Torque necessary to keep theinterna gear stationary
=500 — 100 = 400 N-m Ans.

Example 13.21. In the epicyclic gear train, as
shown in Fig. 13.28, the driving gear A rotating in clock-
wise direction has 14 teeth and the fixed annular gear C
has 100 teeth. The ratio of teeth in gearsE and D is 98 :
41. If 1.85 kW is supplied to the gear A rotating at 1200
r.p.m., find : 1. the speed and direction of rotation of gear
E, and 2. the fixing torque required at C, assuming 100
per cent efficiency throughout and that all teeth have the
same pitch.

Solution. Given : T, =14 ;T =100; T/ T, _
=98/41; P, =1.85kW = 1850 W ; N, = 1200 r.p.m. Fig. 13.28

Let d,, dg and d be the pitch circle diameters of gears A, B and C respectively. From Fig.
13.28,

d,+2dg=d.

Gears are extensively used in trains for power transmission.
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Sinceteeth of all gears have the same pitch and the number of teeth are proportional to their
pitch circle diameters, therefore

To+2Tg=T¢ or Tg = > > 43
The table of motionsis now drawn as below :
Table 13.23. Table of motions.
Revolutions of elements
Step Conditions of motion Arm | Gear | Compound Gear C Gear E
No. A gear B-D
Ta Ta . T8 Ta .o
1| Arm fixed-Gear A rotated| O | -1 T M T
through — 1 revolution (i.e.
1 revolution clockwise) Ta
=+ A
Tc
2 Arm fixed-Gear A rotated 0 _x +X><T_A +X><T7A +X XTA xT7D
" | through —x revolutions Ts Tc T8 Te
3. | Add -y revolutionsto al | —y -y -y -y -y
elements T T T
—v+xx-A | _y+xx-A —y+xx-A x D
4| Total motion my | my=x| YT TR Y T
Since the annular gear Cisfixed, therefore from the fourth row of the table,
Ta 14
—y+xx-2 =0 or -y +xx— =0
Te y 0
O -y+014x=0 (D)
Also, the gear A isrotating at 1200 r.p.m., therefore
—-X—-y=1200 (i)

From equations (i) and (ii), x =—1052.6, and y=-1474
1. Speed and direction of rotation of gear E
From the fourth row of the table, speed of gear E,

Ng =—y +x xT—A xT—D =147.4 — 1052.6 XE ><4—1
Ts Te 43 98

=147.4-143.4=4r.p.m.

=4 r.p.m. (anticlockwise) Ans.
2. Fixing torque required at C
P, x 60 _ 1850 x 60
2N, 21 x1200

Since the efficiency is 100 per cent throughout, therefore the power available at E (P.) will
be equal to power supplied at A (P,).

=14.7 N-m

We know that torqueon A =
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_ Py, x60 _ 1850 % 60
2mx Ne C 2mx4
O Fixing torque required at C

= 4416 — 14.7 = 4401.3 N-m Ans.

Example 13.22. An over drive for a vehicle consists of an
epicyclic gear train, as shown in Fig. 13.29, with compound planets
B-C. B has 15 teeth and meshes with an annulus A which has 60
teeth. C has 20 teeth and mesheswith the sunwheel D whichisfixed.
The annulus is keyed to the propeller shaft Y which rotates at 740
rad /s. The spider which carries the pins upon which the planets
revolve, isdriven directly from main gear box by shaft X, this shaft
being relatively free to rotate with respect to wheel D. Find the
speed of shaft X, when all the teeth have the same module.

When the engine devel ops 130 kW, what is the holding
torque on the wheel D ? Assume 100 per cent efficiency
throughout.

Solution. Given:T,;=15;T,=60;T.=20;w, =w, = 740rad /s; P= 130 kW = 130 x 10°W

First of dl, let usfind the number of teeth on the sunwheel D (T,). Letd, , dg, d-andd, be
the pitch circle diameters of wheels A, B, C and D respectively. From Fig. 13.29,

= 4416 N-m

0 Torqueon E

Fig. 13.29

dy ,de , dg _ s
2 2 2 2
Sincethe module is samefor al teeth and the number of teeth are proportional to their pitch

circle diameters, therefore
To+T+Tg=T, or
The table of motionsis given below :
Table 13.24. Table of motions.

or dy+d.+d;=d,

To=T,—(Tc+Tg)=60-(20+15)=25

Revolutions of elements
Step Conditions of motion Arm (or | Wheel D Compound Wheel A
No. shaft X) wheel C-B (or shaft Y)
. _ 15 RS
1. Arm fixed-wheel D rotated 0 +1 T . T
; C c A
through + 1 revolution
(anticlockwise) T T T
2. Arm fixed-wheel D rotated 0 +X _XXT_ _Xx? fo
. c c 'a
through + X revolutions
3. Add +y revolutionsto all ele- +ty +ty +ty ty
4 rTne;tS i + X+ y-xx 10 y-xx12xe
. otal motion y y Te To Ta

Sincetheshaft Y or wheel A rotates at 740 rad/s, therefore

y—xxT—DxT—B:MO or
c Ta 0
y —0.3125 x = 740

()
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Also thewheel D is fixed, therefore
Xx+y=0 or y=-X (1)
From equations (i) and (ii),
x=-5638 and y=563.8

Speed of shaft X
Since the shaft X will make the same number of revolutions asthe arm, therefore
Speed of shaft X, w, = Speed of arm =y = 563.8 rad/s Ans.

Holding torque on wheel D
We know that torque on A = Plw, = 130 x 103/ 740 = 175.7 N-m
and Torqueon X = Plw, =130 x 10%/563.8 = 230.6 N-m
O Holding torque on wheel D
=230.6-175.7 =549 N-m Ans.

Example 13.23. Fig. 13.30 shows some details of a compound epicyclic gear drive where |
is the driving or input shaft and O is the driven or output shaft which carries two arms A and B
rigidly fixed to it. The arms carry planet wheels which mesh with annular wheels P and Q and the
sunwheels X and Y. The sun wheel Xisapart of Q. WheelsY and Z arefixed to the shaft |. Z engages
with a planet wheel carried on Q and this planet wheel engages the fixed annular wheel R. The
numbers of teeth on the wheels are :

P=114,Q=120,R= 120, X= 36, Y= 24 and Z = 30.

P B \ Fixed
=
i =
AR =
_4?_________-__é___é__"%__
° = =
— — Input shaft
Output shaft L A A 'z P
B
Fig. 13.30.

The driving shaft | makes 1500 r.p.m.clockwise looking from our right and theinput at | is
7.5 kW,

1. Find the speed and direction of rotation of the driven shaft O and the wheel P.

2. If the mechanical efficiency of the driveis 80%, find the torque tending to rotate the fixed
wheel R.

Solution. Given: T,=144; TQ: 120; Tg=120;T,=36;T,=24;T,=30; N,=1500
r.p.m. (clockwise) ; P=75kW =7500 W ; n =80% = 0.8

First of all, consider the train of wheelsZ,R and Q (arm). The revolutions of various wheels
are shown in thefollowing table.
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Table 13.25. Table of motions.

Revolutions of elements
Step No. Conditions of motion Q (Arm) Z (alsol) R (Fixed)
. Tz
1. Arm fixed-wheel Z rotates through + 1 0 +1 -
. : : i
revolution (anticlockwise)
T
2. Armfixed-wheel Z rotatesthrough + x revo- 0 . —xx-Z
lutions TR
3. Add +y revolutionsto all elements +y +y +y
. z
4. Total motion +y X+y y—xxﬁ

Sincethe driving shaft | aswell aswheel Z rotates at 1500 r.p.m. clockwise, therefore
X +y=-1500 ()
Also, thewheel Risfixed. Therefore

T2 oy x 3 _o25x i)
120

y—xxT—ZZO or y=XX
R R

From equations (i) and (ii),
x=-1200, and y=-300

Now consider the train of wheelsY, Q, arm A, wheels P and X. The revolutions of various
elements are shown in the following table.

Table 13.26. Table of motions.

Revolutions of elements

Step Conditions of motion ArmA, B Wheel Y Compound Whed P
No. and Shaft O wheel Q-X
. _ Uy 5 o B
1. |Arm A fixed-wheel Y 0 +1 T T T

rotates through + 1
revolution (anticlockwise)

Arm A fixechwhed Y rotates L PR 2L S
2 i 0 2] T To T

through + x, revolutions Q Q P
3. | Add + y, revolutions to all +y, +y, +y, +y,

elements

Total motion Y1—X% xJ¥ Yy +Mxkxk
4. Y, Xty . L TQ 1 TQ Tp

Since the speed of compound wheel Q-X is same asthat of Q, therefore

Yo - % x 1 =y =300
To
24

or — X% X —— =-=300
i —% 120
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O y,=0.2x,-300 .(iii)
Also Speed of wheel Y = Speed of wheel Z or shaft |
O X, +y,=x+y=-1500 (V)
X, +0.2x,—300 =—-1500 ...[From equation (iii)]
1.2 x,=—1500 + 300 = - 1200
or X, =-1200/1.2 = -1000
and y, =— 1500 —x, = - 1500 + 1000 = — 500
1. Speed and direction of the driven shaft O and the wheel P
Speed of the driven shaft O,
No =Y, =-500 = 500 r.p.m. clockwise Ans.
ad  Speedof thewhed P, N = ¥, + % x% x% =-500 1000 X2 x 2

=—550 = 550 r.p.m. clockwise Ans.

2. Torque tending to rotate the fixed whee R
We know that the torque on shaft | or input torque

=47.74 N-m

_ Px60 _ 7500 x 60
U 2mxN, 27 x1500

and torque on shaft O or output torque,

_NxPx60 _ 0.8x7500 x 60

5 = =114.58 N-m
21 X Ng 21 x500

Sincetheinput and output shaftsrotate in the same direction (i.e. clockwise), therefore input
and output torques will be in opposite direction.

0 Torque tending to rotate the fixed wheel R

=T,-T,=114.58-47.74=66.84 N-m Ans.

Example13.24. An epicyclic bevel gear train (known as Humpage'sreduction gear) isshown
in Fig. 13.31. It consists of a fixed wheel C, the
driving shaft X and the driven shaft Y. The compound
wheel B-D can revolve on a spindle F which can
turn freely about the axis X and Y.

Show that (i) if the ratio of tooth numbers
Tg/ Tyisgreater than T/ T, the wheel E will ro-
tatein the same direction aswheel A, and (ii) if the
ratioT,/ Tyislessthan T/ T, thedirectionof Eis
reversed.

If the number s of teeth on wheelsA, B, C, D
and E are 34, 120, 150, 38 and 50 respectively and
7.5 kW is put into the shaft X at 500 r.p.m., what is
the output torque of the shaft Y, and what are the Fig. 13.31
forces (tangential to the pitch cones) at the contact
points between wheels D and E and between wheels B and C, if the module of all wheelsis3.5 mm?

Solution. Given: T,=34,;T;=120; T.=150;T,=38; T.=50; P, =7.5kW =7500 W ;
N, =500r.p.m.; m=35mm
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The table of motionsis given below :
Table 13.27. Table of motions.

Revolutions of elements
Step| Conditions of motion | Spindle| Wheel A | Compound Wheel C Whesdl E (or
No. F (or shaft X) [ wheel B-D shaft Y)
T Ta T, Ta T,

1. | Spindlefixed, wheel A 0 +1 +T—A —T_AxT_B -T_AxT_D
is rotated through + 1 B B 'C B 'E
revolution T

=__A
TC
T T Ta T,

2. | Spindlefixed, wheel A 0 +X SR I ||
is rotated through + x B c B E
revolutions

3. | Add +y revolutionsto +y +y +y +y +y
all elements

4. | Total motion + X + y+xxT—A y—xxA | y_xxAxD

' Y Y Tg Tc Ts Te

Let us assume that the driving shaft X rotates through 1 revolution anticlockwise, therefore
thewheel A will also rotate through 1 revolution anticlockwise.

O X+y=+1 o y=1-X ()

We also know that the wheel C isfixed, therefore

y — XX Ta =0 or L-x) —xx Ta =0 ...[From equation (i)]
Te Tc
O Or. + T, O
1—XE1+T—AD:O o Xgpe—An=1
0 TeO 0 T O
T,
and x=—=F (i
To +T, (i)
From equation (i),
y=1-x=1- Te Ta ..(iii)

T~ + T, :T +T,
We know that speed of wheel E, ¢ A ¢ A

NE:y_xxTixTi: T _ T xTA foD
Tg Tg To+Ty To+Ty Tg Tge

Ta _Te ,Tod (V)
Tce+Ta o Tg TeQ

and the speed of wheel A,
N, =Xx+y =+ lrevolution

. T, T . . .
(i) If % > ﬁ or Ty x Tg> T x Ty, then the equation (iv) will be positive. Therefore the

wheel E will rotate in the same direction aswheel A. Ans.
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(i) If I—B < :'I:_c or Tgx To<T.x Ty, thentheequation (iv) will be negative. Therefore the
D E
wheel E will rotate in the opposite direction aswheel A. Ans.

Output torque of shaft Y

We know that the speed of the driving shaft X (or wheel A) or input speed is 500 r.p.m.,
therefore from the fourth row of the table,

x+y=500 or y=500-x (V)
Sincethewhed Cisfixed, therefore

y — XX T_A =0 or (500 — X) —x x ﬁ =0 ...[From equation (v)]

T 150
O 500-x-0.227x=0 or x =500/1.227 = 407.5 r.p.m.

and y =500 —x =500—-407.5=92.5r.p.m.

Since the speed of the driven or output shaft Y (i.e. N,) is equal to the speed of wheel E
(i.e.Np), therefore
Ny =Ng =y-— x><T—A xT—D =025 - 4075 ><ﬂ ><3—8
Tz Te 120 50
=925-87.75=4.75r.p.m.
Assuming 100 per cent efficiency of the gear train, input power P, is equal to output power
(P, i.e.
P, =P,=75kW =7500 W
00 Output torque of shaft Y,
_ R x60 _ 7500 x 60
2Ny 21 x4.75

=15 076 N-m =15.076 KN-m Ans.

Tangential force between wheels D and E
We know that the pitch circle radius of wheel E,
_mxTg _35x%x50

I 5 T 3 =87.5 mm =0.0875 m
O Tangentia force between wheels D and E,
Torque on wheel E _15.076

= : = =172.3 kN Ans.
Pitch circle radius of wheel E  0.0875

...(d Torque on wheel E = Torque on shaft )
Tangential force between wheels B and C
We know that the input torque on shaft X or on wheel A
_ B¢ x60 _ 7500 x 60
©2mNy, 27 X500
O Fixing torque on the fixed wheel C
= Torque on wheel E — Torque on wheel A
=15076 — 143 = 14 933 N-m = 14.933 kN-m

=143 N-m
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Pitch circle radius of wheel C,

o= ’;TC =35 ’;150 =262.5 mm =0.2625 m

Tangential force between wheelsB and C
_ Fixing torque on wheel C _ 14.933

= =57 KN Ans.
e 0.2625
EXERCISES
1. A compound train consists of six gears. The number of teeth on the gears are as follows :
Gear : A B C D E F
No. of teeth : 60 40 50 25 30 24

The gears B and C are on one shaft whilethe gears D and E are on another shaft. The gear A drives gear
B, gear C drivesgear D and gear E drivesgear F. If thegear A transmits 1.5 kW at 100r.p.m. and the gear
train has an efficiency of 80 per cent, find the torque on gear F. [Ans. 30.55 N-m]

2. Two parallel shafts are to be connected by spur gearing. The approximate distance between the shafts
is600 mm. If one shaft runs at 120 r.p.m. and the other at 360 r.p.m., find the number of teeth on each
wheel, if the module is 8 mm. Also determine the exact distance apart of the shafts.

[Ans. 114, 38 ; 608 mm]

3. Inareverted gear train, asshownin Fig. 13.32, two shaftsA and B are
in the same straight line and are geared together through an interme- 2 C [ 138
diate parallel shaft C. The gears connecting the shafts A and C have a -——1—-—r—
module of 2 mm and those connecting the shafts C and B have a ||
module of 4.5 mm. The speed of shaft A isto beabout but greater than
12 times the speed of shaft B, and theratio at each reduction is same. A 3_
Find suitable number of teeth for gears. The number of teeth of each  —-——
gear is to be a minimum but not less than 16. Also find the exact L |
velocity ratio and the distance of shaft C from A and B. 1 T4

[Ans. 36, 126, 16, 56 ; 12.25 ; 162 mm]

4. In an epicyclic gear train, as shown in Fig.13.33, the number of teeth
on wheels A, B and C are 48, 24 and 50 respectively. If the arm rotates at 400 r.p.m., clockwise,
find : 1. Speed of wheel C when A isfixed, and 2. Speed of wheel A when C isfixed.
[Ans. 16 r.p.m. (clockwise) ; 16.67 (anticlockwise)]

Fig. 13.32

F —
] E
_G_{:_________ .
A C
B . ||
B — A
_Q_l_ﬁ___“______:;ﬂ__ .

C F

L

Fig. 13.33 Fig. 13.34
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In an epicyclic gear train, as shown in Fig. 13.34, the wheel Cis keyed to the shaft B and wheel Fis
keyed to shaft A. Thewheels D and E rotate together on apin fixed to the arm G. The number of teeth
onwheels C, D, E and F are 35, 65, 32 and 68 respectively.

If the shaft A rotates at 60 r.p.m. and the shaft B rotates at 28 r.p.m. in the opposite direction, find
the speed and direction of rotation of aam G.  [Ans. 90 r.p.m., in the same direction as shaft A]
An epicyclic gear train, as shown in Fig. 13.35, is composed of afixed annular wheel A having 150
teeth. The wheel A is meshing with wheel B which drives wheel D through an idle wheel C, D being
concentric with A. Thewheels B and C are carried on an arm which revolves clockwise at 100 r.p.m.
about the axis of A and D. If the wheels B and D have 25 teeth and 40 teeth respectively, find the
number of teeth on C and the speed and sense of rotation of C.  [Ans. 30 ; 600 r.p.m. clockwise]

Fig. 13.35 Fig. 13.36

Fig. 13.36, shows an epicyclic gear train with the following details:

A has40 teeth external (fixed gear) ; B has80teethinterna ; C - D isacompound wheel having 20 and
50 teeth (external) respectively, E-F is a compound wheel having 20 and 40 teeth (external) respec-
tively, and G has 90 teeth (external).

The arm runs at 100 r.p.m. in clockwise direction. Determine the speeds for gears C, E, and B.
[Ans. 300 r.p.m. clockwise ; 400 r.p.m. anticlockwise ; 150 r.p.m. clockwiseg]

An epicyclic gear train, as shown in Fig. 13.37, has asun wheel S of 30 teeth and two planet wheels
P-P of 50 teeth. The planet wheels mesh with theinternal teeth of afixed annulus A. The driving shaft
carrying the sunwheel, transmits 4 kW at 300 r.p.m. The driven shaft is connected to an arm which
carries the planet wheels. Determine the speed of the driven shaft and the torque transmitted, if the

overdl efficiency is 95%. [Ans. 56.3 r.p.m. ; 644.5 N-m]
I
A
/JID\
ool
| _
g!g G
|
]
Fig. 13.37 Fig. 13.38

An epicyclic reduction gear, as shownin Fig. 13.38, hasashaft A fixed to arm B. Thearm B hasapin
fixed to its outer end and two gears C and E which are rigidly fixed, revolve on this pin. Gear C
mesheswith annular wheel D and gear E with pinion F. G isthedriver pulley and D iskept stationary.

Thenumber of teethare: D=80; C=10; E=24and F=18.
If the pulley G runsat 200 r.p.m. ; find the speed of shaft A.
[Ans. 17.14 r.p.m. in the same direction as that of G]
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10.

12.

13.

A reverted epicyclic gear train for a hoist block is shown in

Fig. 13.39. The arm E is keyed to the same shaft as the load

drum and the wheel A iskeyed to a second shaft which car-

ries a chain wheel, the chain being operated by hand. The D ™ n
two shafts have common axis but can rotate independently. ﬁ
The wheels B and C are compound and rotate together on a

pin carried at the end of arm E. The wheel D has internal

teeth and is fixed to the outer casing of the block so that it U
does not rotate.

Thewheels A and B have 16 and 36 teeth respectively with a

module of 3 mm. The wheels C and D have a module of 4

mm. Find : 1. the number of teeth on wheels C and D when

the speed of A isten timesthe speed of arm E, both rotating

in the same sense, and 2. the speed of wheel D when the Fig. 13.39
wheel A is fixed and the arm E rotates at 450 r.p.m.

anticlockwise.

[Ans. T.=13; T,=52; 500 r.p.m. anticlockwise]

A compound epicyclic gear isshown diagrammatically in Fig. 13.40. ThegearsA, D and E arefreeto
rotate on the axis P. The compound gear B and C rotate together on the axis Q at theend of arm F. All
the gears have equal pitch. The number of external teeth on the gears A, B and C are 18, 45 and 21
respectively. ThegearsD and E areannular gears. The gear A rotatesat 100 r.p.m. in the anticlockwise
direction and the gear D rotates at 450 r.p.m. clockwise. Find the speed and direction of the arm and
the gear E. [Ans. 400 r.p.m. clockwise ; 483.3 r.p.m. clockwise]

In an epicyclic gear train of the ‘sun and planet type' as shown in Fig. 13.41, the pitch circle diameter
of theinternally toothed ring D isto be 216 mm and the module 4 mm. When thering D is stationary,
the spider A, which carries three planet wheels C of equal size, isto make one revolution in the same
sense as the sun wheel B for every five revolutions of the driving spindle carrying the sunwheel B.
Determine suitable number of teeth for all the wheelsand the exact diameter of pitch circle of thering.

[Ans. T, =14, T =21, T, =56; 224 mm]

Fig. 13.40 Fig. 13.41

Anepicyclictrainisshownin Fig. 13.42. Internal gear A iskeyed to the driving shaft and has 30 teeth.
Compound wheel C and D of 20 and 22 teeth respectively are freeto rotate on the pin fixed to thearm
P which isrigidly connected to the driven shaft. Internal gear B which has 32 teeth is fixed. If the
driving shaft runsat 60 r.p.m. clockwise, determine the speed of the driven shaft. What isthe direction
of rotation of driven shaft with reference to driving shaft? [Ans. 1980 r.p.m. clockwise]
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Fig. 13.42 Fig. 1343

A shaft Y isdriven by aco-axial shaft X by means of an epicyclic gear train, asshownin Fig. 13.43.
Thewheel A iskeyedto X and Eto Y. Thewheels B and D are compound and carried on an arm F
which can turn freely on the common axes of X and Y. Thewheel Cisfixed. If the numbers of teeth
on A, B, C, D and E are respectively 20, 64, 80, 30 and 50 and the shaft X makes 600 r.p.m.,
determine the speed in r.p.m. and sense of rotation of the shaft Y.

[Ans. 30 r.p.m. in the same sense as shaft X]

An epicyclic bevel gear train, as shown in Fig. 13.44, has fixed gear B meshing with pinion C. The
gear E on the driven shaft meshes with the pinion D. The pinions C and D are keyed to a shaft,
which revolves in bearings on the arm A. The arm A is keyed to the driving shaft. The number of
teethare: T, =75, T. =20, T, =18, and T = 70. Find the speed of the driven shaft, if 1. thedriving
shaft makes 1000 r.p.m., and 2. the gear B turns in the same sense as the driving shaft at 400
r.p.m., the driving shaft still making 1000 r.p.m.

[Ans. 421.4 r.p.m. in the same direction as driving shaft]
The epicyclic gear train isshown in Fig. 13.45. Thewheel D is held stationary by the shaft A and the
arm B isrotated at 200 r.p.m. The wheels E (20 teeth) and F (40 teeth) are fixed together and rotate

freely on the pin carried by the arm. The wheel G (30 teeth) isrigidly attached to the shaft C. Find the
speed of shaft C stating the direction of rotation to that of B.

If the gearing transmits 7.5 kW, what will bethetorque required to hold the shaft A stationary, neglect-
ing al friction losses?
[Ans. 466.7 r.p.m. in opposite direction of B; 511.5 N-m in opposite direction of B]

i Driving shaft

e
|

q
|

Driving shaft —3»

Fig. 13.44 Fig. 13.45

An epicyclic gear train, as shown in Fig. 13.46, consists of two sunwheels A and D with 28 and 24
teeth respectively, engaged with acompound planet wheelsB and C with 22 and 26 teeth. The sunwheel
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18.

19.

20.

D iskeyed to the driven shaft and the sunwheel A isafixed wheel co-axia with the driven shaft. The
planet wheels are carried on an arm E from the driving shaft which is co-axial with the driven shaft.

Find the velocity ratio of gear train. If 0.75 kW is transmitted and input speed being 100 r.p.m.,
determine the torque required to hold the sunwheel A. [Ans. 2.64 ; 260.6 N-m]

B S
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§el
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Fig. 13.46 Fig. 13.47

In the epicyclic reduction gear, as shown in Fig. 13.47, the sunwheel D has 20 teeth and is keyed
to the input shaft. Two planet wheels B, each having 50 teeth, gear with wheel D and are carried
by an arm A fixed to the output shaft. The wheels B a'so mesh with an internal gear C which is
fixed. Theinput shaft rotates at 2100 r.p.m. Determine the speed of the output shaft and the torque
required to fix C when the gears are transmitting 30 kW.

[Ans. 300 r.p.m. in the same sense as the input shaft ; 818.8 N-m]

An epicyclic gear train for an electric motor is shown in Fig. 13.48. The wheel S has 15 teeth and is
fixed to the motor shaft rotating at 1450 r.p.m. The planet P has 45 teeth, gears with fixed annulus A
and rotates on a spindle carried by an arm which is fixed to the output shaft. The planet P also gears
with the sun wheel S. Find the speed of the output shaft. If the motor istransmitting 1.5 kW, find the
torque required to fix the annulus A. [Ans. 181.3 r.p.m. ; 69.14 N-m]

XY .
A

i

e —— () Xt -t X
G/ A
Fig. 1348 Fig. 1349

An epicyclic gear consists of bevel wheels as shown in Fig. 13.49. The driving pinion A has 20 teeth
and mesheswith thewheel B which has 25 teeth. Thewheels B and C arefixed together and turn freely
on the shaft F. The shaft F can rotate freely about the main axis X X. The wheel C has 50 teeth and
meshes with wheels D and E, each of which has 60 teeth. Find the speed and direction of E when A
rotates at 200 r.p.m., if
1. D isfixed, and 2. D rotates at 100 r.p.m., in the same direction as A.
In both the cases, find the ratio of the torques transmitted by the shafts of the wheels A and E, the
friction being neglected.

[Ans. 800 r.p.m. in the opposite direction of A ; 300 r.p.m. in the opposite

direction of A ; 4; 1.5]
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DO YOU KNOW ?

What do you understand by ‘ gear train’ ? Discuss the various types of gear trains.

Explain briefly the differences between simple, compound, and epicyclic gear trains. What are the
specia advantages of epicyclic gear trains ?

Explain the procedure adopted for designing the spur wheels.

How the velocity ratio of epicyclic gear train is obtained by tabular method?

Explain with aneat sketch the * sun and planet wheel’.

What are the various types of the torques in an epicyclic gear train ?

OBJECTIVE TYPE QUESTIONS

Inasimple gear train, if the number of idle gearsis odd, then the motion of driven gear will
(@) besame asthat of driving gear
(b) be opposite asthat of driving gear
(c) depend upon the number of teeth on the driving gear
(d) none of the above
Thetrain value of agear trainis

(@) equa tovelocity ratio of agear train (b) reciprocal of velocity ratio of agear train
(c) awaysgreater than unity (d) awayslessthan unity
When the axes of first and last gear are co-axial, then gear train is known as
(&) simplegeartrain (b) compound gear train
(¢) reverted gear train (d) epicyclicgeartrain
In a clock mechanism, the gear train used to connect minute hand to hour hand, is
(@) epicyclicgeartrain (b) reverted gear train
() compound gear train (d) simplegeartrain

In agear train, when the axes of the shafts, over which the gears are mounted, move relative to afixed
axis, iscalled

(&) simplegeartrain (b) compound gear train
(c) reverted gear train (d) epicyclicgeartrain
A differential gear in an automobileisa
(@) simplegeartrain (b) epicyclicgear train
(c) compound gear train (d) none of these
A differential gear in automobiliesis used to
(@) reduce speed (b) assistin changing speed
()  providejerk-free movement of vehicle (d) helpinturning
ANSWERS
(a) 2. (b 3. (9 4. (b) 5. (d)
(b) 7. (d)

Q To FIRST



of lap on the smaller pulley, theidler pulley is used. The angle of lap may be defined as Power Transmission
the angle of contact between the belt and the pulley. With the increase in angle of lap, Devices
the belt drive can transmit more power. Along with the increase in angle of lap, the idler

pulley also does not allow reduction in theinitial tension in the belt. The use of idler

pulley is shown in Figure 3.7.
k— Idler Pulley

Figure 3.7 : Useof Idler in Belt Drive
SAQ 2
(@ What isthe main advantage of idler pulley?

(b) A prime mover drives adc generator by belt drive. The speeds of prime
mover and generator are 300 rpm and 500 rpm, respectively. The diameter
of the driver pulley is 600 mm. The dlip in the drive is 3%. Determine
diameter of the generator pulley if belt is 6 mm thick.

3.4.1 Law of Belting

The law of belting states that the centre line of the belt as it approaches the pulley, must
liein plane perpendicular to the axis of the pulley in the mid plane of the pulley
otherwise the belt will run off the pulley. However, the point at which the belt leaves the
other pulley must lie in the plane of apulley.

The Figure 3.8 below shows the belt drive in which two pulleys are at right angle to each
other. It can be seen that the centre line of the belt approaching larger or smaller pulley
liesin its plane. The point at which the belt leavesis contained in the plane of the other
pulley.

If motion of the belt isreversed, the law of the belting will be violated. Therefore,
motion is possible in one direction in case of non-parallel shafts as shown in Figure 3.8.

Figure3.8: Law of Belting 85



Theory of Machines 3.4.2 Length of the Belt

For any type of the belt driveit is always desirable to know the length of belt required. It
will be required in the selection of the belt. The length can be determined by the
geometric considerations. However, actual length is slightly shorter than the theoretically
determined value.

Open Belt Drive

The open belt driveis shown in Figure 3.9. Let O; and O, be the pulley centers
and AB and CD be the common tangents on the circles representing the two
pulleys. The total length of the belt ‘L’ is given by

L =AB + Arc BHD + DC + Arc CGA
Let r betheradius of the smaller pulley,
R be the radius of the larger pulley,
C be the centre distance between the pulleys, and
B be the angle subtended by the tangents AB and CD with O, O,.

Figure 3.9 : Open Belt Drive

Draw O; N parallel to CD to meet O,D at N.

By geometry, £0,0,N=2£C0O,J=4£DO0O,K=p
ArcBHD =(n + 2B) R,
ArcCGA=(n—-2B)r
AB=CD=0;N=0; O, cosf3 =C cosf3

R-r

or, B=sn

cos[3=«f1—sin2[3 0 [1—%9#[3}
L=(n+2B) R+(n—2B) r +20(1—%sin2[3j

For small valueof B; B = (R-1)

2
L=n(R+r)+2(R-T) (Rgr)+2c{1—%(Rng }

, the approximate lengths

2
:n(R+r)+(R_r)2+2c{1_l(R‘r] }
C 2 C

86 This provides approximate length because of the approximation taken earlier.



Crossed-Belt Drive

The crossed-belt drive is shown in Figure 3.10. Draw O, N parallel to the line CD
which meets extended O, D at N. By geometry

ZC0J=242DO,K=20,0N
L = Arc AGC + AB + Arc BKD + CD
Arc AGC =1 (n+ 2B), and Arc BKD = (n+ 28) R

sinB:RH or [3=sin‘1M
C
For small value of 3
R+r
U
g C
2
cosB=«/1+sinZBE[1—%sinZBj=|: —%(R;;) }

L=r(n+2B)+2CcosP+R(n+2B)
=(n+2B) (R+r)+ 2C cosP

Figure3.10: CrossBelt Drive

For approximate length

L:T[(R+r)+2w+2c|:1_l(R+r)2:|

2 c?
2
=n(R+r)+ (R+1) +2C
SAQ3
Which type of drive requires longer length for same centre distance and size of
pulleys?

3.4.3 ConePulleys

Sometimes the driving shaft is driven by the motor which rotates at constant speed but
the driven shaft is designed to be driven at different speeds. This can be easily done by

using stepped or cone pulleys as shown in Figure 3.11. The cone pulley has different sets

of radii and they are selected such that the same belt can be used at different sets of the
cone pulleys.

Power Transmission
Devices
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Figure 3.11: Cone Pulleys
Let Ny bethe speed of the driving shaft which is constant.
N, be the speed of the driven shaft when the belt is on nth step.
r, be the radius of the nth step of driving pulley.
R, be the radius of the nth step of the driven pulley.
wherenisaninteger, 1, 2, . ..
The speed ratio isinversely proportional to the pulley radii

No_n .. (31)
Ng R
For thisfirst step radii r; and R, can be chosen conveniently.
For second pair Ny = r—z, and similarly Ny = r—”.
Ng R Ng Ry
In order to use same belt on all the steps, the length of the belt should be same

Thus, two equations are available — one provided by the speed ratio and other provided
by the length relation and for selected speed ratio, the two radii can be calculated. Also it
has to be kept in mind that the two pulleys are same. It is desirable that the speed ratios
should be in geometric progression.

Let k be the ratio of progression of speed.
Np N M

= =k
N N Np-1

NZZkNl md N3:k2N1

-1 -1 I
N, =k" "t N, =k" Ndé

r_2=kr_1 and r_3=k2r_1

R R Rs R

Since, both the pulleys are made similar.



Power Transmission
1 I
:ﬁ or k" 1_1=& Devices

rn
E n R n
R_ ket .33

f
If radii Ry and r; have been chosen, the above equations provides value of k or vice-
versa.

SAQ4
How the speed ratios are selected for cone pulleys?

or,

3.4.4 Ratioof Tensions

The belt drive is used to transmit power from one shaft to the another. Due to the friction
between the pulley and the belt one side of the belt becomes tight side and other
becomes dlack side. We haveto first determine ratio of tensions.

Flat Belt

Let tension on the tight side be ‘T;’ and the tension on the slack side be ‘T,’. Let
‘0’ be the angle of lap and let ‘i’ be the coefficient of friction between the belt
and the pulley. Consider an infinitesimal length of the belt PQ which subtend an
angle 80 at the centre of the pulley. Let ‘R’ be the reaction between the element
and the pulley. Let ‘T’ be tension on the slack side of the element, i.e. at point P
and let ‘(T + 8T)’ be the tension on the tight side of the element.

Thetensions T and (T + 8T) shall be acting tangentia to the pulley and thereby
normal to the radii OP and OQ. The friction force shall be equal to ‘uR’ and its
action will be to prevent slipping of the belt. The friction force will act
tangentially to the pulley at the point S.

uR S

ﬁ& Q 50
2 p 2

T 68

T+ST

o ©

T2 v v Tl

Figure 3.12 : Ratio of Tensionsin Flat Belt
Considering equilibrium of the element at Sand equating it to zero.
Resolving all the forcesin the tangential direction
uR+T 0035—26—(T + 0T) 0055—26=0

or, uR=38T cosa—ze ...(39

89



Theory of Machines Resolving all the forcesin theradial direction at Sand equating it to zero.
R—Tsins—ze—(T+6T)sin6—29=O

or, R:(2T+8T)sin8—2e
Since 60 isvery small, taking limits

cosﬁtland sin@:@
2 2

R:(ZI'+6T)8—26:T89+8T6—26

Neglecting the product of the two infinitesimal quantities (ST S—ZGJ whichis

negligible in comparison to other quantities :
RUOT 36

Substituting the value of Rand cos 8—26 C1inEq. (3.4), weget

pT 80 =8T
ST _
.

Taking limits on both sidesas 6 — 0

dT
= =udo
T =K

Integrating between limits, it becomes
Ty

ar ¢
D[ udo

or, noo

or, In—==u6

or, 2L g ...(35)

V-belt or Rope
The V-belt or rope makes contact on the two sides of the groove as shown in
Figure 3.13. 2 Ry sina
5 6/2 T 5 6/2

T+0T

T1

@ (b)

90 Figure 3.13: Ratio of Tension in V-Belt



Let the reaction be ‘R,’ on each of the two sides of the groove. The resultant Power Transmission
reaction will be 2R, sin o at point S Devices
Resolving all the forces tangentially in the Figure 3.13(b), we get

2uR, +T 0055—29—0' +0T) 0058—26:0

50

or, 2uR, =0T cos7 ...(36)
Resolving all the forces radially, we get
2R, sinOLszin8—26+(T+8T)sin8—2e
=(2T+6T)sin8—2e
Since 80 isvery small
sin@[ %
2

2R, Sina=(2T+6T)6—29=T69+8T><6—26
Neglecting the product of the two infinitesimal quantities
2R, snoall T 86

T30
2sn o

or, R, [

Substituting the value of R, and using the approximation cos % C1,inEq. (3.6),

we get
Tée =0T
sna

or, T89: .p
T sna

Taking the limits and integrating between limits, we get

Id_T: [t
i, T , Sna
or, Inﬂz _M 0
T, sSha
£ o
or, L gSna ... (37
T
SAQS5
(@ If arope makestwo full turn and one quarter turn how much will be angle
of lap?

(b) If smaller pulley has coefficient of friction 0.3 and larger pulley has
coefficient of friction 0.2. The angle of lap on smaller and larger pulleys are
160° and 200° which value of (u0) should be used for ratio of tensions?

91



Theory of Machines

92

3.4.5 Power Transmitted by Belt Drive

The power transmitted by the belt depends on the tension on the two sides and the belt
Speed.

Let T, bethetension on thetight side in ‘N’
T, be the tension on the slack side in ‘N’, and
V be the speed of the belt in m/sec.
Then power transmitted by the belt is given by
Power P = (T, - T,) V Watt

MW=T)V .39
1000

T1£ _szv
) W

1000

or, P=

If belt is on the point of dipping.

L:eue
T2

_@aho
P=T1(1 e )VkW

1000 ... (39

The maximum tension T, depends on the capacity of the belt to withstand force. If
allowable stress in the belt is ‘cy” in ‘Pa’, i.e. N/m?, then

T, =(o; xtxb) N ... (3.10)
wheret is thickness of the belt in ‘m’ and b is width of the belt also in m.

The above equations can also be used to determine ‘b’ for given power and speed.

3.4.6 Tension dueto Centrifugal Forces

The belt has mass and as it rotates along with the pulley it is subjected to centrifugal
forces. If we assume that no power is being transmitted and pulleys are rotating, the
centrifugal force will tend to pull the belt as shown in Figure 3.14(b) and, thereby, a
tension in the belt called centrifugal tension will be introduced.

Tc
5 6/2 Tc
Fo «—u-]
6 6/2
Tc

Tc
(@ (b)

Figure 3.14 : Tension dueto Centrifugal Foces
Let ‘T¢’ be the centrifugal tension due to centrifugal force.
Let us consider asmall element which subtends an angle 66 at the centre of the pulley.

Let ‘m’ be the mass of the belt per unit length of the belt in ‘kg/m’.



The centrifugal force ‘F.’ on the element will be given by

2
Fe = (r 56 m) VT

where V is speed of the belt in m/sec. and r is the radius of pulley in ‘m’.

Resolving the forces on the element normal to the tangent

Since 80 isvery small.

.00 _ 56

sn—[ —

2 2

2

or, Fc =Tc 00

Substituting for Fc

mvV?
r

r 80 ="Tc 50

or, Te =mV? ... (311)

Therefore, considering the effect of the centrifugal tension, the belt tension on the tight
side when power istransmitted is given by

Tension of tight side T, =T, + T and tension ontheslack side T, =T, + T .

The centrifugal tension has an effect on the power transmitted because maximum tension
can beonly T, whichis

T =oc; xtxb
T, =o, xtxb—mV?

SAQ6

What will be the centrifugal tension if mass of belt is zero?

3.4.7 Initial Tension

When a belt is mounted on the pulley some amount of initial tension say ‘T’ is provided
in the belt, otherwise power transmission is not possible because aloose belt cannot
sustain difference in the tension and no power can be transmitted.

When the drive is stationary the total tension on both sides will be 2 Ty .

When belt drive is transmitting power the total tension on both sides will be (T + T,),
where Ty istension on tight side, and T, is tension on the slack side.

If effect of centrifugal tension is neglected.

Power Transmission
Devices
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_h+T

or, TO 5

If effect of centrifugal tension is considered, then

_h+T +

or, To 5

Te ...(312)

3.4.8 Maximum Power Transmitted

The power transmitted depends on the tension ‘T;’, angle of lap 0, coefficient of friction
‘w’ and belt speed ‘V’. For a given belt drive, the maximum tension (T), angle of lap and
coefficient of friction shall remain constant provided that

(@ thetension on tight side, i.e. maximum tension should be equal to the
maximum permissible value for the belt, and

(b)  the belt should be on the point of dlipping.

Therefore, Power P=T, 1-e ") V
Since, T =T +T.

or, P=(T,-T.)A-e"%V
or, P=(T, -mV?) (1-e*%)V

For maximum power transmitted

% = (T, -3mV?) @-e "9
or, T, -3mV?=0
or, T, -3T,=0
T
or, T ==+
c 3
or, mv2 =t
3
Also, VS ... (313)
3m

At the belt speed given by the Eqg. (3.13) the power transmitted by the belt drive shall be
maximum.

SAQ7

What is the value of centrifugal tension corresponding to the maximum power
transmitted?



3.5 KINEMATICSOF CHAIN DRIVE

The chain is wrapped round the sprocket as shown in Figure 3.4(d). The chain in motion
isshown in Figure 3.15. It may be observed that the position of axial line changes
between the two position as shown by the dotted line and full line. The dotted line meets
at point B when extended with the line of centers. The firm line meets the line of centers
at point A when extended. The speed of the driving sprocket say ‘®;’ shall be constant
but the velocity of chain will vary between o, x O; C and w; x O; D. Therefore,

Figure 3.15: Kinematics of Chain Drive

The variation in the chain speed causes the variation in the angular speed of the driven
sprocket. The angular speed of the driven sprocket will vary between

OB g o QA

O ==

an
0,B “10,A

This variation can be reduced by increasing number of teeth on the sprocket.

3.6 CLASSIFICATION OF GEARS

There are different types of arrangement of shafts which are used in practice. According
to the relative positions of shaft axes, different types of gears are used.

3.6.1 Paralle Shafts

In this arrangement, the shaft axesliein parallel planes and remain parallel to one
another. The following type of gears are used on these shafts :

Spur Gears

These gears have straight teeth with their alignment parallel to the axes. These
gears are shown in mesh in Figures 3.16(a) and (b). The contact between the two
meshing teeth is along aline whose length is equal to entire length of teeth. It may
be observed that in external meshing, the two shafts rotate opposite to each other
whereas in internal meshing the shafts rotate in the same sense.

Line
Contact

(a) External M eshing (b) Internal M eshing
Figure 3.16 : Spur Gears

If the gears mesh externally and diameter of one gear becomes infinite, the
arrangement becomes ‘Spur Rack and Pinion’. This is shown in Figure 3.17. It
converts rotary motion into translatory motion, or vice-versa.

Power Transmission
Devices
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UNIT 5 GOVERNORS

Structure
5.1 Introduction
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5.3.1 Watt Governor
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5.7 Controlling Force and Stability of Spring Controlled Governors
5.8 Insensitivenessin the Governors

59 Summary

5.10 Key Words

511 Answersto SAQs

5.1 INTRODUCTION

In the last unit, you studied flywheel which minimises fluctuations of speed within the
cycle but it cannot minimise fluctuations due to load variation. This means flywheel does
not exercise any control over mean speed of the engine. To minimise fluctuationsin the
mean speed which may occur due to load variation, governor is used. The governor has
no influence over cyclic speed fluctuations but it controls the mean speed over along
period during which load on the engine may vary.

When thereis change in load, variation in speed also takes place then governor operates
aregulatory control and adjusts the fuel supply to maintain the mean speed nearly
constant. Therefore, the governor automatically regulates through linkages, the energy
supply to the engine as demanded by variation of load so that the engine speed is
maintained nearly constant.

Figure 5.1 shows an illustrative sketch of a governor along with linkages which regulates
the supply to the engine. The governor shaft is rotated by the engine. If load on the
engine increases the engine speed tends to reduce, as aresult of which governor balls
move inwards. This causes sleeve to move downwards and this movement is transmitted
to the valve through linkages to increase the opening and, thereby, to increase the supply.

On the other hand, reduction in the load increases engine speed. As aresult of which the
governor ballstry to fly outwards. This causes an upward movement of the sleeve and it
reduces the supply. Thus, the energy input (fuel supply in IC engines, steam in steam
turbines, water in hydraulic turbines) is adjusted to the new load on the engine. Thus the
governor senses the change in speed and then regul ates the supply. Due to this type of
action it is simple example of a mechanical feedback control system which senses the
output and regulates input accordingly.
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Figure5.1: Governor and Linkages
Objectives
After studying this unit, you should be able to
. classify governors,
. analyse different type of governors,
. know characteristics of governors,
o know stability of spring controlled governors, and

. compare different type of governors.

5.2 CLASSIFICATION OF GOVERNORS

The broad classification of governor can be made depending on their operation.
(@  Centrifugal governors
(b) Inertiaand flywheel governors
(c)  Pickering governors.

Centrifugal Governors

In these governors, the change in centrifugal forces of the rotating masses due to
change in the speed of the engine is utilised for movement of the governor sleeve.
One of thistype of governorsis shown in Figure 5.1. These governors are
commonly used because of simplicity in operation.

Inertia and Flywheel Governors

In these governors, the inertiaforces caused by the angular acceleration of the
engine shaft or flywheel by change in speed are utilised for the movement of the
balls. The movement of the ballsis due to the rate of change of speed in stead of
change in speed itself asin case of centrifugal governors. Thus, these governors
are more sensitive than centrifugal governors.

Pickering Governors

Thistype of governor is used for driving a gramophone. As compared to the
centrifugal governors, the sleeve movement is very small. It controls the speed by
dissipating the excess kinetic energy. It is very simple in construction and can be
used for a small machine.



5.2.1 Typesof Centrifugal Governors Governors
Depending on the construction these governors are of two types:

(@  Gravity controlled centrifugal governors, and

(b)  Spring controlled centrifugal governors.
Gravity Controlled Centrifugal Governors

In this type of governorsthereis gravity force due to weight on the sleeve or
weight of sleeveitself which controls movement of the sleeve. These governors
are comparatively larger in size.

Spring Controlled Centrifugal Governors

In these governors, a helical spring or several springs are utilised to control the
movement of sleeve or balls. These governors are comparatively smaller in size.

SAQ1
(@  Compare flywheel with governor.
(b)  Which type of contral the governor systemis?
(c) Compare centrifugal governorswith inertia governors.

5.3 GRAVITY CONTROLLED CENTRIFUGAL
GOVERNORS

There are three commonly used gravity controlled centrifugal governors:
(@  Watt governor
(b)  Porter governor
(c) Proell governor

Waitt governor does not carry dead weight at the sleeve. Porter governor and proell
governor have heavy dead weight at the sleeve. In porter governor balls are placed at the
junction of upper and lower arms. In case of proell governor the balls are placed at the
extension of lower arms. The sensitiveness of watt governor is poor at high speed and
thislimitsitsfield of application. Porter governor is more sensitive than watt governor.
The proell governor is most sensitive out of these three.

5.3.1 Watt Governor

This governor was used by James Waitt in his steam engine. The spindle is driven by the
output shaft of the prime mover. The balls are mounted at the junction of the two arms.
The upper arms are connected to the spindle and lower arms are connected to the sleeve
as shown in Figure 5.2(a).

Ball Ball

Figure 5.2 : Watt Governor 139
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We ignore mass of the sleeve, upper and lower arms for simplicity of analysis. We can
ignore the friction also. The ball is subjected to the three forces which are centrifugal
force (F¢), weight (mg) and tension by upper arm (T). Taking moment about point O
(intersection of arm and spindle axis), we get

Fch-mgr=0
Since, Fe = nr o?

m o’h—mgr=0

or w? =% ... (5.2)
2t N
0):
60
_ gx3600 89456
h= = ... (52)

where ‘N’ is in rpm.

Figure 5.3 shows a graph between height ‘h’ and speed ‘N’ in rpm. At high speed the
changein height h is very small which indicates that the sensitiveness of the governor is
very poor at high speeds because of flatness of the curve at higher speeds.

08 —

o

06 -

04 4

0.2 —

300 400 500 600 700
N —>
Figure 5.3 : Graph between Height and Speed
SAQ 2

Why watt governor is very rarely used? Give reasons.

5.3.2 Porter Governor

A schematic diagram of the porter governor is shown in Figure 5.4(a). There are two sets
of arms. The top arms OA and OB connect balls to the hinge O. The hinge may be on the
spindle or dlightly away. The lower arms support dead weight and connect balls also. All

of them rotate with the spindle. We can consider one-half of governor for equilibrium.



Let w betheweight of the ball,

T, and T, be tension in upper and lower arms, respectively,

F. be the centrifugal force,

r be the radius of rotation of the ball from axis, and

| isthe instantaneous centre of the lower arm.
Taking moment of all forces acting on the ball about | and neglecting friction at the
deeve, we get

FCxAD—WxID—%IC:O

wiD W {ID+ DC
AD 2 AD
W
or Fczwtanoc+?(tana+tan[3)
W2
Fc =—or
‘g
—(Dzr:th(l{l-i-—(l mj}
g W tan o
or mzzgtana{uﬂ(u K)} ... (53
r 2w
where K:tanB
tan a
tanoczL
h
m2=9{1+ﬂ(1+ K)} . (54)
h 2w

Central
Load (w)

Links

Sleeve

@ (b)

Figure5.4 : Porter Governor

If friction at the deeveisf, the force at the sleeve should be replaced by W + f for rising
and by (W - f) for falling speed as friction apposes the motion of deeve. Therefore, if the
friction at the deeve isto be considered, W should be replaced by (W f). The
expression in Eq. (5.4) becomes

Governors
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@2=9{1+(W“)(1+ K)} ... (55)
h 2w

SAQ3

In which respect Porter governor is better than Watt governor?

5.4 SPRING CONTROLLED CENTRIFUGAL
GOVERNORS

In these governors springs are used to counteract the centrifugal force. They can be
designed to operate at high speeds. They are comparatively smaller in size. Their speed
range can be changed by changing theinitial setting of the spring. They can work with
inclined axis of rotation also. These governors may be very suitable for IC engines, etc.

The most commonly used spring controlled centrifugal governorsare :
(@ Hartnell governor
(b)  Wilson-Hartnell governor

(c) Hartung governor

5.4.1 Hartnell Governor

The Hartnell governor is shown in Figure 5.5. The two bell crank levers have been
provided which can have rotating motion about fulcrums O and O'. One end of each bell
crank lever carriesaball and aroller at the end of other arm. The rollers make contact
with the sleeve. The frame is connected to the spindle. A helical spring is mounted
around the spindle between frame and sleeve. With the rotation of the spindle, all these
parts rotate.

With the increase of speed, the radius of rotation of the balls increases and the rollers lift
the sleeve against the spring force. With the decrease in speed, the sleeve moves
downwards. The movement of the sleeve are transferred to the throttle of the engine
through linkages.

Frame

/

Spring

Ball
Collar

Bell crank
Lever

L
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¢
/
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N

/ Roller
7
—

s Spindle

/i
/

Fulcrum

Sleeve
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Let r;=Minimum radius of rotation of ball centre from spindle axis, inm,
r, = Maximum radius of rotation of ball centre from spindle axis, in m,
S, = Spring force exerted on sleeve at minimum radius, in N,
S = Spring force exerted on sleeve at maximum radius, in N,
m = Mass of each ball, in kg,
M = Mass of deeve, in kg,
N; = Minimum speed of governor at minimum radius, in rpm,
N, = Maximum speed of governor at maximum radius, in rpm,

; and w, = Corresponding minimum and maximum angular velocities, in r/s,
(Fo), = Centrifugal force corresponding to minimum speed = mx w? x 1,

(Fc), = Centrifugal force corresponding to maximum speed = mx w3 x I,
s = Stiffness of spring or the force required to compress the spring by onem,
r = Distance of fulcrum O from the governor axis or radius of rotation,
a = Length of ball arm of bell-crank lever, i.e. distance OA, and
b = Length of sleeve arm of bell-crank lever, i.e. distance OC.
Considering the position of the ball at radius ‘r;’, as shown in Figure 5.6(a) and taking
moments of al the forces about O

Mg = (F;); acos6; —mg asin el—wbcoselzo

or (Fc), =mg tan 61+M(gj ...(59

2

Reaction
at fulcrum

@ (b)
Figure5.6

Considering the position of the ball at radius ‘r,” as shown in Figure 5.6(b) and taking
the moments of all the forces about O’

(Mg +S))

Mg = (F:), acosO, + mgasn 6, —Tbcose2
or (Fe)2 =(Mg—;52)(§j —mg tan 6, ... (5.10)

Governors
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Theory of Machines If 6; and 6, are very small and mass of the ball is negligible as compared to the spring
force, theterms mg tan 6, and mg tan 6, may be ignored.

_(Mg+§)(b
(Fe); = 5 (aj ... (5.12)
_(Mg+S§) (b
and (Fe), = > ({J ...(612)
B _(&-9)(b
(FC)Z (FC)l - 2 [aj
Total lift = (% + %) (b6, +b6,)
=b (6, +6,)
(=) (p-r))_ b
o[ {28, D) B,y

S, - § =Totd Iifth:E(rz—rl)s

b)? (p—n)
Fo), — (Fo)y =| 2 s
(Fe)2 = (Feh (a) 2
a\’ (Fo), - (Fe)
or stiffness of spring ‘s’ = 2 (—j ~c/2 L CA ... (513
b (r; —n)

For ball radius ‘r’

. 2(3)2 Fo —(Fe) _ z(ef (Fo)2 = (Fe)y
b r-n b (- 1)

Fo = (Fo)y + L) t(Re), — (Fo)) L (5.14)
(r; — 1)

SAQ 4

For IC engines, which type of governor you will prefer whether dead weight type
or spring controlled type? Give reasons.

5.5 GOVERNOR EFFORT AND POWER

Governor effort and power can be used to compare the effectiveness of different type of
governors.

Governor Effort

It is defined as the mean force exerted on the sleeve during agiven changein
Speed.

When governor speed is constant the net force at the sleeve is zero. When
governor speed increases, there will be a net force on the sleeve to move it
upwards and sleeve starts moving to the new equilibrium position where net force
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Governor Power Governors

It is defined as the work done at the sleeve for a given change in speed. Therefore,
Power of governor = Governor effort x Displacement of sleeve

5.5.1 Determination of Governor Effort and Power

The effort and power of a Porter governor has been determined. The same principle can
be used for any other type of governor also.

(0]

@) (b)
Figureb5.7

Figure 5.7 shows the two positions of a Porter governor.
Let N =Equilibrium speed corresponding to configuration shown in Figure 5.7(a),
W=Weight of deeveinN,
h = Height of governor corresponding to speed N, and

¢ = A factor which when multiplied to equilibrium speed, gives the increase
in speed.

Increased speed = Equilibrium speed + Increase of speed,
=N+c.N=(1+c)N,and ...(5.15
h, = Height of governor corresponding to increased speed (1 + ¢) N.

The equilibrium position of the governor for the increased speed is shown in
Figure 5.7(b). In order to prevent the deeve from rising when the increase of speed takes
place, adownward force will have to be exerted on the sleeve.

Let W; = New weight of sleeve so that therising of sleeveis prevented when the speed is
(1 +¢) N. Thismeansthat W, isthe weight of sleeve when height of governor
ish.

Downward force to be applied when the rising of sleeve isto be prevented when

speed increasesfrom Nto (1 +c¢c) N=W; — W.

When speed is N rpm and let the angles oo and 3 are equal so that K = 1, the height his
given by equation

h:(WJerx - ...(5.16)
w (2nN)
60
If the speed increasesto (1 + ¢) N and height remains the same by increasing the load on
Sleeve

w 21 (1+©) N}z

60

h:("”wljx 9 ... (5.17)
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Theory of Machines Equating the two values of h given by above equations, we get

{(w+W)}

w+W = >
@+0

(W+W) (L+ )% =w+W,
W = (W+W) (1+¢)% —w
W, —W) = (W+W) @+ c)? — (w+W)
=(W+W){(L+0)* -
[ 2¢ (w+W) If cisvery small ...(5.18)

But W; — Wisthe downward force which must be applied in order to prevent the sleeve
from rising when the increase of speed takes place. Thisis also the force exerted by the
governor on the sleeve when the speed changes from N to (1 + ¢) N. Asthe sleeverises
to the new equilibrium pasition as shown in Figure 5.7(b), this force gradually
diminishes to zero. The mean force P exerted on the sleeve during the change of speed
from N to (1 + ¢) N istherefore given by

P W) .. (5.19)

Thisisthe governor effort.

If weight on the sleeve is not increased

w+W g
= ...(5.20
b ( w j{Zn(lJrc)N}z (520
60
h—h =2x
%=(1+C)2
ﬂ—1:(1+c)2—1[ 2c
hy
or u=2c
by
or %=2c
by
or X=ch
Governor power = Px = c®hy (w+W). ... (5.21)

5.6 CHARACTERISTICS OF GOVERNORS

Different governors can be compared on the basis of following characteristics:
Stability

A governor is said to be stable when there is one radius of rotation of the balls for

each speed which is within the speed range of the governor.
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Sensitiveness
The sensitiveness can be defined under the two situations :
(@ Whenthegovernor is considered as a single entity.

(b)  When the governor isfitted in the prime mover and it is treated as
part of prime mover.

(@ A governor issaid to be sensitive when thereislarger displacement of the
sleeve due to afractional change in speed. Smaller the change in speed of
the governor for a given displacement of the sleeve, the governor will be
more sensitive.

N
N; — N

Sensitiveness =

... (5.22)

(b)  The smaller the change in speed from no load to the full load, the more
sensitive the governor will be. According to this definition, the
sensitiveness of the governor shall be determined by the ratio of speed range
to the mean speed. The smaller the ratio more sensitive the governor will be

Ny - N, 2(Np, - Ny)

N (N, + Np)

where N, — N; = Speed range from no load to full load.
I sochronism

Sensitiveness =

... (5.23)

A governor is said to be isochronous if equilibrium speed is constant for all the
radii of rotation in the working range. Therefore, for an isochronous governor the
speed range is zero and this type of governor shall maintain constant speed.

Hunting

Whenever there is change in speed due to the change in load on the engine, the
sleeve moves towards the new position but because of inertiaif overshoots the
desired position. Sleeve then moves back but again overshoots the desired position
dueto inertia. Thisresultsin setting up of oscillations in engine speed. If the
frequency of fluctuations in engine speed coincides with the natural frequency of
oscillations of the governor, this resultsin increase of amplitude of oscillations
due to resonance. The governor, then, tends to intensity the speed variation instead
of controlling it. This phenomenon is known as hunting of the governor. Higher
the sensitiveness of the governor, the problem of hunting becomes more acute.

5.7 CONTROLLING FORCE AND STABILITY OF
SPRING CONTROLLED GOVERNORS

The resultant external force which controls the movement of the ball and acts along the
radial line towards the axisis called controlling force. This force acts at the centre of the
ball. It isequal and acts opposite to the direction of centrifugal force.

The controlling force ‘F’ =mo’r.

2
or E:m(anj
r 60

For controlling force diagram in which ‘F’ is plotted against radius ‘r’, — represents
r

slope of the curve.
ie E:tanqch2 ... (5.24)
r

Therefore, for a stable governor slope in controlling force diagram should increase with
the increase in speed.

Governors
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Stability of Spring-controlled Governors

Figure 5.8 shows the controlling force curves for stable, isochronous and unstable
spring controlled governors. The controlling force curve is approximately straight
line for spring controlled governors. As controlling force curve represents the
variation of controlling force ‘F’ with radius of rotation ‘r’, hence, straight line
equation can be,

F=ar+b, F=ar o F=ar-b ... (5.25)

where a and b are constants. In the above eguation b may be +ve, or —ve or zero.

Controlling Force

B
44— Unstable F=ar+b

C
&— Isochronous F = ar
E

«—Stable F=ar-b

-~ D Radius of Rotation — 3,

Figure 5.8 : Stability of Spring Controlled Governors

These three cases are as follows :

(@

(b)

(©)

. F .
We know that for a stable governor, theratio — must increase asr
r

increases. Hence the controlling force curve DE for a stable governor
must intersect the controlling force axis (i.e. y-axis) below the origin,
when produced. Then the equation of the curve will be of the form

F b

F=a.r-b oo —=a—— ... (5.26)
r r

. F . .
Asr increases — increase and thereby tan ¢ increases. Therefore,
r

this equation represents stable governor.
If b in the above equation is zero then the controlling force curve OC

will pass through the origin. Theratio L will be constant for all
r

radius of rotation and hence the governor will become isochronous.
Hence for isochronous, the equation will be

F
F=a or —=a=constant ... (5.27)
r

If b is positive, then controlling force curve AB will intersect the
controlling force axis (i.e. y-axis) above the origin. The equation of
the curve will be

F—arsb or Foas? ... (5.28)
r r

. . F .
Asr increases, speed increases, — or tan ¢ reduces. Hence this
r

equation cannot represent stable governor but unstable governor.



Governors

5.8 INSENSITIVENESSIN THE GOVERNORS

Thefriction force at the sleeve gives rise to the insensitiveness in the governor. At any
given radius there will be two different speeds one being when sleeve moves up and
other when sleeve moves down. Figure 5.9 shows the controlling force diagram for such
agovernor.

I ) I
o N

3] <Q
s g
2 5
= N 9
o o
£ (%]
S
(@]

(0]

Radius of Rotaton —
Figure5.9 : Insensitivenessin the Governors
The corresponding three values of speeds for the same radius OA are :
(@ Thespeed N when thereis no friction.

(b)  The speed N’ when speed isincreasing or sleeve is on the verge of moving
up, and

(c) Thespeed N” when speed is decreasing or sleeve on the verge of moving
down.

This means that, when radius is OA, the speed of rotation may vary between the limits
N” and N, without causing any displacement of the governor deeve. The governor is
said to be insensitive over this range of speed. Therefore,

Coefficient of insensitiveness = ( N ;I N ) ...(5.29)
Example 5.1

The arms of a Porter governor are 25 cm long and pivoted on the governor axis.
The mass of each ball is5 kg and mass on central 1oad of the sleeveis 30 kg. The
radius of rotation of ballsis 15 cm when the sleeve begins to rise and reaches a
value of 20 cm for the maximum speed. Determine speed range.

Solution
Given data: Ball weight ‘W’ =5 gN
Central load ‘W =30 g N
Arm length ‘I’ =25 cm =0.25m
Minimum radius ‘r;’=15cm=0.15m

Maximum radius ‘r,’ =20 cm= 0.2 m

: T 1 2 2 2 2
Height 'h ' = {12 - 12 = /0.25? - 0.15* = 0.2m

Fork=1.
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Figure5.10: Figurefor Example 5.1
Substituting valuesin Eq. (5.4)

o? =i{1+%’ @+ 1)}

0.2
_981 ], 309
0.2 5g

o, =185297r/s or N; =176.9 rpm

Height h, = «/0.252 ~02%2=015m

,2_981[ 30g
27015 59

®, =293%r/s or N, =204.32rpm
Speed range = N, — N; = 204.32 — 176.9 = 27.42 rpm.
Example 5.2

In aHartnell governor the radius of rotation is 7 cm when speed is 500 rpm. At
this speed, ball armis normal and sleeve is at mid position. The sleeve movement
is2 cmwith + 5% of change in speed. The mass of sleeveis 6 kg and friction is
equivalent to 25 N at the sleeve. The mass of the ball is 2 kg. If ball arm and
sleeve arms are equal, find,

(@  Springrate,
(b) Initial compression in the spring, and

(c) Governor effort and power for 1% change in the speed if thereisno
friction.

Solution
Sleeve mass ‘M’ = 6 kg
Friction force ‘f’ =25 N
Ball mass ‘m’ =2 kg
a=Db
Minimumradiusr;=7cm—-1=6¢cm
Maximum radiusr, =7cm+1=8cm

_ 2nx 500
60

Maximum speed = 10.05 » = 1.05 x 52.36 = 54.98 r/s
Minimum speed = 0.95 » = 0.95 x 52.36 = 49.74 r/s
Neglecting the effect of obliquity of arms.

) =52.361r/s
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6 cm

Figure5.11 : Figurefor Example 5.2
At Minimum Radius

Fclzm(*)lz i
2x (49.74)% x0.06x2=6g+S — 25
503.78=58.86+ S — 25
Or §=55992N
At Maximum Radius
2FCz =Mg+S,+ f
Foo =M Iy
2x(54.98)? x008x2=6g+S, + 25
Or S,=88344N
S-S

X

Stiffness ‘S’ =

88344 — 559,92
0.02

Or s=16175.81N/m

559.92
16175.81

=0.035m or 3.5cm

Initial compression = S, =

Governor Effort and Power

Mg+$S, = f
FC=—2

Increased speed = 1.01 ® = 1.01 x 52.36 = 52.88 r/s
At r=0.07;2x2x(52.36)°x0.07=6g+S
At increased speed, 2 x 2 x(52.88)>x 0.07=6g+2P+S

where P is governor effort. 151



Theory of Machines . 2P=2x2x007{(52.88) - (52.36)%}

Or P=766N
Let the spring force corresponding to speed 52.88 r/sbe S.

2x2x (52.88)> x0.07=6g + S
(S — S) =2x 2x0.07 x{(52.88)? — (52.36)%}

= 1532N
Sleevelift for 1% change = =22
- B2 _g47510%m
16175.81

Governor power = 7.66x 9.47 x10™ 4
=7.25x103Nm

Example 5.3
The controlling force diagram of a spring controlled governor is astraight line.
The weight of each governor ball is40 N. The extreme radii of rotation of balls
are 10 cm and 17.5 cm. The corresponding controlling forces at these radii are
205 N and 400 N. Determine :

(@ theextreme equilibrium speeds of the governor, and

(b)  theequilibrium speed and the coefficient of insensitivenss at aradius
of 15 cm. Thefriction of the mechanism is equivalent of 2.5 N at each

ball.
Solution
Weight of each ball ‘w” =40 N
r,=10cm and r,=175cm
FOl =205N and FCz =400 N

Let Fc=ar+b

when n=10cm=01m and Fc =205N
205=b+0.1a

when r,=17.5cm=0175m and Fc, =400 N

400=b+0.175a
195=007/5a = a=2600
b=205-0.1x 2600 = - 55
Fc =—55+2600r
(@ For Fc =205 %0 (%)2 x0.1=205N
Or N;=2141rpm
For Fc=400; r=0.175m

2
@(Z“sz x 0.175 = 400
g 60

Or N, =226.1rpm
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(b) Fc=kN
Atradiusr =15cm

Fo + f, = kN

Fo — f, =kN"?

(Fe + fp) — (Fe — f,) =k (N> = N"?)
or  2f, =k (N'=N") (N’ + N")

— 2k (N = N") N
2fy 2k (N'=N")N _2(N'—N")
Fc k N2 N
Coefficient of insensitiveness = (N'-N) _1 x 2% _ fy
N 2 ke Fc
At r=0.15m
Fc =—55+2600x 0.15=335N

Coefficient of insensitiveness = % = 7.46x10°2 Or 0.746%.

5.9 SUMMARY

The governors are control mechanisms and they work on the principle of feedback
control. Their basic function is to control the speed within limits when the load on the
prime mover changes. They have no control over the change is speed within the cycle.
The speed control within the cycle is done by the flywhed!.

The governors are classified in three main categories that is centrifugal governors,
inertial governor and pickering governor. The use of the two later governorsisvery
limited and in most of the cases centrifugal governors are used. The centrifugal
governors are classified into two main categories, gravity controlled type and spring
loaded type.

The gravity controlled type of governors are larger in size and require more space as
compared to the spring controlled governors. This type of governors are two, i.e. Porter
governor and Proell governor. The spring controlled governors are : Hartnel governor,
Wilson-Hartnell governor and Hartung governor.

For comparing different type of governors, effort and power is used. They determine
whether a particular type of governor is suitable for a given situation or not. To
categorise a governor the characteristics can be used. It can be determined whether a
governor is stable or isochronous or it is prone to hunting. The friction at the sleeve
givesriseto the insensitiveness in the governor. At any particular radius, there shall be
two speeds due to the friction. Therefore, it is most desirable that the friction should be
aslow as possible.

The stability of a spring controlled governor can be determined by drawing controlling
force diagram which should have intercept on the negative side of Y-axis.

5.10 KEY WORDS

Watt Governor . Itisatype of governor which does not have load
on the sleeve.
Porter Governor . Thisisatype of governor which has dead weight

at the sleeve and balls are mounted at the hinge.

Governors
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Hartnell Governor

Governor Effort

Governor Power

Hunting of Governor

Controlling Force

It isa spring controlled governor in which balls
are mounted on the bell crank lever and sleeve is
loaded by spring force.

It isthe mean force exerted on the sleeve during a
given change of speed.

It is defined as the work done at the sleeve for a
given change in speed.

It can occur in governor when the fluctuationsin
engine speed coincides the natural frequency of
oscillations of the governor. In that case governor
intensifies the speed variation instead of
controlling it.

It is the resultant external force which controls the
movement of the ball and acts along the radial line
towards the axis.

5.11 ANSWERSTO SAQs

Refer the preceding text for all the Answersto SAQs.
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