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Course Topics

Introduction to Differential Equations

Modeling with Higher Order Linear Differential Equations.
Systems of Differential Equations.

Applications of Ordinary Differential Equations.

Fourier series

Partial Differential Equations.
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Course Learning Outcomes:

By the end of successful completion of this course, the student will be able to:

1. Think logically and mathematically for solving practical problems such as
mechanical vibrations, fluid flow problems, heat transfer problems.

2. Practice modeling and be able to translate engineering and physical situations into
a mathematical model

3. To gain experience and further mastery of complete problem, solving fluency
based on Fourier Series and Partial Differential Equations.

4. Use proper assumptions to describe the complex behaviour of practical problems
and able to read and interpret problem objectives.

5. Realize modelling with partial differential equations and Fourier analysis for solving
various practical applications
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Chapter 1. Modeling with Higher Order Linear
Differential Equations.

To solve an engineering problem, we first have to formulate the problem as a
mathematical expression in terms of variables, functions, and equations. Such an
expression is known as a mathematical model of the given problem. The process of
setting up a model, solving it mathematically, and interpreting the result in physical or

other terms is called mathematical modeling

=
N (k) f-:-:-i“
| =
|
H I ly
m
-
Displacement y
Deformation of & beam Pendulum
) Vibrating mass
EL/ = fix) Le"4+ gsingd=0 on & spring
(Sec. 3.3) (Sec. 4.5) my” + ky =10
[Secs. 2.4, 2.8)

1 Separable ODEs. Modeling
Many practically useful ODEs can be reduced to the form

(1) gy = f(x)

by purely algebraic manipulations. Then we can integrate on both sides with respect to x,
obtaining

(2) Jg(ﬁ-‘} y'dx = Jﬁ;xlcir + c.

On the left we can switch to v as the variable of integration. By l:ﬂ]cﬂlus, v'dx = dy, so that

(3) Ja‘(ﬂdy = Jﬂx}dx tec.
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EXAMPLE 1 Separable ODE

The ODE ¥ = 1 + ¥? is separable because it can be written

:1‘}2 = dx. By integration, arctany = x + ¢ ar ¥y=tanix + ¢l
1+

Example Heating an Office Building (Newton’s Law of Cooling)

Suppose that in winter the daytime temperature in a certain office building is maintained at T0°F. The heating
is shut off at 10 p.M. and turned on again at 6 A.M. On a certain day the temperature inside the building at 2 M.
was found to be 65°F. The outside temperature was 50°F at 10 p.M. and had dropped to 40°F by 6 A.M. What
was the temperature inside the building when the heat was turned on at 6 AM.7

Solution. Step 1. Setting up a model. Let T(f) be the temperature inside the building and T, the outside
temperature (assumed to be constant in Newton's law). Then by Newton's law,

(&) % = KT — Ta).

Step 2. General solution. We cannot solve (6) because we do not know T, just that it varied between 50°F

and 40°F, so we follow the Golden Rule: If you cannot solve your problem, try to solve a simpler one. We

solve (6) with the unknown function T, replaced with the average of the two known values, or 45°F. For physical

reasons we may expect that this will give us a reasonable approximate value of T in the building at & A.M.
For constant Ty = 45 (or any other constant value) the ODE (6] is sepz:hble. Separation, integration, and

taking exponents gives the general solution

= ki, In|T — 45| =kt + ¢*, T(f) = 45 + ce fc=2¢£°)

Tr—45

Step 3. Particular solufion. We choose 10 .M. to be ¢ = (. Then the given initial condition is T{0) = 70 and
yields a particular solution, call it T;. By substitution,

T(0) = 45 + ce” = 70, c =170 — 45 = 25, Tlf) = 45 + 25¢.

Step 4. Determination of k. We use T(4) = 65, where { = 4 is 2 A.M. Solving algebraically for k and inserting
k into T(r) gives (Fig. 12)

T(4) = 45 + 25¢** = 65, e = 0.3, k=}In08 = —0.056, L) = 45 + 25¢~ 0056,

Step 5. Answer and interprefation. 6 A.M. is t = 8 (namely, 8 hours after 10 p.Mm.), and
T,(8) = 45 + 2570508 = g1[=F].

Hence the temperature in the building dropped 9°F, a result that looks reasonable.

___________

Particular wchit on (terpensture) in Bxarpie 6
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Leaking Tank. Outflow of Water Through a Hole (Torricelli's Law)

This is another prototype engineering problem that leads to an ODE. It concerns the outflow of water from a
eylindrical tank with a hole at the bottom (Fig. 13). You are asked to find the height of the water in the tank at
any time if the tank has diameter 2 m, the hole has diameter 1 cm, and the initial height of the water when the
hole is openad is 2.25 m. When will the tank be empty?

Physical information. Under the influence of gravity the outflowing water has velocity

(7 v(t) = 0.600° 2gh(r) (Torricelli’s law®),

where hif) is the height of the water above the hole at time f, and g = 980 c:mfsecﬂ = 3217 ft;":aoau::2 is the
acceleration of gravity at the surface of the earth.

Solution. Step 1. Setting up the model. To get an equation, we relate the decrease in water level h(f) to the
outflow. The volume AV of the outflow during a short time A is|

AV = Av At (A = Area of hole).
AV must equal the change AV* of the volume of the water in the tank. Now
AV¥ = —R Al (B = Cross-sectional area of tank)

where Ah (> 0) is the decrease of the height A7) of the water. The minus sign appears because the volume of
the water in the tank decreases. Equating AV and AV¥ gives

—B Ah = Av At

We now express v according to Torricelli’s law and then let At (the length of the time interval considered)
approach (—this is a sfandard way of obtaining an ODE as a model. That is, we have

1= gt = 5 0600V 2gh

and by letting At — 0 we obtain the ODE

B &

A o
= —26.56—"h
B

where 26.56 = 0.600%/2 - 980. This is our model, a first-order ODE.
Step 2. General solution. Our ODE is separable. A/B is constant. Separation and integration gives

dh A - A
— = —26.56 —dt and 2%h = ¢* — 26.56 —1.
Vi B B

Dividing by 2 and squaring gives h = (¢ — 13.284#/B)”. Inserting 13.284/F = 13.28 - 0.5%7/100%7 = 0.000332
vields the general solution

hif) = (c — 0.00033272.
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Step 3. Particular solution. The initial height (the initial condition) is M0) = 225 cm. Substitution of t = 0
and i = 225 gives from the general solution e = 225, ¢ = 15.00 and thus the particular solution (Fig. 13)

hglt) = (15.00 — 0.000332)%,
Step 4. Tank empty. hy(t) = 0if r = 15.00/0.000332 = ﬂ,lEljsecl = 12.6 [hours].

Here you see distinctly the importance of the choice of units—we Bave been working with the cgs system,
in which time is measured in seconds! We used g = 980 cm/sec?.

Step 5. Checking. Check the result. [

Water level
" at time ¢

2.25m
hit)
| Dutflowing 0 ] | | b N
0 10000 J0000 o000 &
Tank Water level Rif) in tank
Fig. 13. Example 7. Outflow from a cylindrical tank (“leaking tank”).
Torricelli's law
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2 Exact ODEs.
A first-order ODE M(x, v) + N(x, )y’ = 0, written as (use dy = y'dx as in Sec. 1.3)

(1) Mix,y)dx + N(x,y)dy =0

is called an exact differential equation if the differential form M(x, v) dx + N(x, v) dy
is exact, that is, this form is the differential

o i
(2) du = —dx + —
d}?dy

ox
of some function w(x, v). Then (1) can be written
du = 0.
By integration we immediately obtain the general solution of (1) in the form

(3) u(x,v) = c.

This is called an implicit solution

Cﬂmpﬂring (1) and (2), we see that (1) is an exact differential aqual‘icrnj if there 15 some
function wu(x, v) such that

4) @ - M b M_N
ox

The condition to be an exact differential equation is:

M _ N
dy  ax
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If (1) 1s exact, the function u(x, y) can be found by inspection or in the following
systematic way. From (4a) we have by integration with respect to x

(6) M= IMir-l— k(y),

in this integration, y is to be regarded as a constant, and k(y) plays the role of a “constant™
of integration. To determine k(y), we derive du/dy from (6), use (4b) to get dk/dy, and
integrate dk/dy to get k. (See Example 1, below.)

Formula (6) was obtained from (4a). Instead of (4a) we may equally well use (4b).
Then, instead of (6), we first have by integration with respect to y

(6%) u= Jﬁdy + I(x).

To determine /(x), we derive du/dx from (6%), use (4a) to get dl/dx, and integrate. We
illustrate all this by the following typical examples.

EXAMPFLE 1 An Exact ODE
Solve
(7 cns{x+y}dx+{3}’2+2y+ms{x+}1}}ﬂ}1={}.
Selution. Step 1. Test for exactness. Our equation is of the form (1) with

M = cos (x + ¥),
N= 3_}12+2_}1+m.5{x+}1}.

Thus
% = —sin{x + ¥),
% = —sin{x + ¥}

From this and (5) we see that (7} is exact.
Step 2. Implicit general solution. From (6) we obtain by integration
(8 u=J'de+k{}1}=[cus{x-l—y}dx-i—k{y}=m’u{x+}1}+k{y}.

To find k(y), we differentiate this formula with respect to ¥ and use formula (4b), obtaining

fill] dk ]
—=cmix+vi+t—=N=3"+ 2y + cosix + v
ay ¥ dy i ¥ ¥

Hence dk/dy = 3y* + 2y. By integration, k = y® + y® + ¢*. Inserting this result into (8) and observing (3),
we obtain the answer

u{x,y}=sin{x+y}+}'3+y2=c.
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Step 3. Checking an implicit solution. We can check by differentiating the implicit solution wix, ¥v) = ¢
implicitly and see whether this leads to the given ODE (T):

_

() du = —

@
dx+a—"d;u:cn5{x+y}dx+{cus{x+y}+3y3+2}-}@:(}.
¥

3 Linear ODEs.
A first-order ODE is said to be linear if it can be brought into the form

(1) ¥+ px)y = rx),

Homogeneous Linear ODE. We want to solve (1) in some interval a << x <I b, call
it J, and we begin with the simpler special case that n(x) is zero for all x in J. (This is
sometimes written Hx) = 0.) Then the ODE (1) becomes

(2) ¥ + plx)y =0

and is called homogeneous. By separating variables and integrating we then obtain

d
2 —p(x)dx, thus Inyl = — Ip(x]dx + c*.
y

Taking exponents on both sides, we obtain the general solution of the homogeneous

ODE (2),

(3) wx) = ce JPEAT (c =+ when y=0);

Nonhomogeneous Linear ODE. We now solve (1) in the case that #(x) in (1) is not
everywhere zero in the interval J considered. Then the ODE (1) is called nonhomogeneous.

The desired solution formula

(4) wWx) = e_h(fehrﬁ + c), h= Jp(x) dx.
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Example 1:
Solve the initial valoe problem

¥' + ytanx = sin 2x, Wiy =1L
Solution. Here p = tanx, r = sin Zxr = 2 sinx cos x, and

h = J'p dx = [tanxdx = In |sec x|.
From this we see that in (4),
e = sec X, e~ = cos X, ey = (sec x)(2 sinx cosx) = 2sinx,

and the general solution of cur equation is
¥ix) = cosx (2 J'sin xdx + -:') = ccos x — 2 cosx.

From this and the initial condition, 1 = ¢+ 1 — 2 - 1% thus ¢ = 3 and the solution of our initial value problem
isy=3cosx—2 cos? x. Here 3 cos x is the response to the initial data, and —2 cos>x is the response to the
input sin 2x. n

Example 2:

Electric Circuit

Maodel the RL-circuit in Fig. 19 and solve the resulting ODE for the current f{#) A (amperes), where ¢ is
time. Assume that the circuit contains as an EMF E(#) (electromotive force) a battery of E = 48 ¥ (volts), which
is constant, a resister of R = 11 £} (ohms), and an inducfor of L = 0.1 H (henrys), and that the current is initially
ZET0,

Physical Laws. A current [ in the circuit causes a voltage drop RI across the resistor (Ohm’s law) and
a voltage drop LI' = L dl/dt across the conductor, and the sum of these two voltage drops equals the EMF
(KirchhofT's Voltage Law, K'VL).

Solution. According to these laws the model of the RL-circuit is LI" + RI = Elr), in standard form
R __ E®

(3] I'+=I=—

(6) I T

We can solve this linear ODE by (4) withx = ¢,y = I,p = R/L, h = (R/L)t, obtaining the general solution
[ = _,—m;Lx( J'fcm:r@d, N .:)
L .

By integration,

E 'RLY E
. e o (ELLE L ) E
(7 & L RL C R e

10
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In our case, R/L = 11/0.1 = 110 and E{(f) = 48/0.1 = 480 = const; thus,

I=% 4|10

Inmodeling, one often gets better insight into the nature of a solution (and smaller roundoff errors) by inserting
given numeric data only near the end. Here, the general solution (7} shows that the current approaches the limit
Ef/R = 48/11 faster the larger B/L is, in our case, R/L = 11/0.1 = 110, and the approach is very fast, from
below if I(0) < 48/11 or from above if K0) > 48/11. If F{i0) = 48/11. the solution is constant (48/11 A). See
Fig. 19.

The initial value f{0) = 0 gives /{00 = E/R + ¢ =0, ¢ = —E/R and the particular solution

_E —(R/L) _ 48 ~110
(8) I=p(l—e %,  thus I=f71—e . B
I
B —
R=1110
% 6 \
e ——
4 —
E=48V
2
D | | | | |
L=0.1H 0.01 0.02 0.03 0.04 0.05 t
Circuit Current I(#)

11
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4 Homogeneous linear equations with constant coefficients;
For a linear differential equation, an nth-order initial-value problem is

u n-1
Solve: a (x) + a,-(x) £ _)1‘ + -+ ay(x) < + ag(x)y = g(x)
a* “* (1)
Subjectto: ¥(x0) = Yos ¥ (%) = Ypoo-rs Y UxQ = Vo1

with g(x) not identically zero, is said to be nonhomogeneous and it will be homogeneous,
when g(x)=0

n—ly
!

,(x) —"l +:@4(D) — + - + al(x)% + afx)y =0

[] Auxiliary Equation We begin by considering the special case of a second-order equation
ay’ + by' + cy=0. (2)

If we try a solution of the form y = ¢™, then after substituting y' = me™ and y' = m*e™ equa-
tion (2) becomes

am*e™ + bme™ +ce™ =0 or €"(am*+bm+c)=

Since €™ is never zero for real values of x, it is apparent that the only way that this exponential
function can satisfy the differential equation (2) is to choose m as a root of the quadratic
equation

am* + bm +¢ = 0. {3)

This last equation is called the auxiliary equation of the differential equation (2). Since the two
roots of (3) are m, = (—=b + Vb — 4ad)2a and m, = (—b —Vb* — 4acy2a, there will be
three forms of the general solution of (1) carresponding to the three cases:

* m, and m, are real and distinct (b* — 4ac > 0),

* m, and m, are real and equal (b* — 4ac = 0), and

* m, and m, are conjugate complex numbers (b*> — dac < 0).

12
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Casel:

Casell:

Distinct Real Roots Under the assumption that the auxiliary equation (3)
has two unequal real roots m; and m,, we find two solutions, y, = e™* and
¥, = e™*, respectively. We see that these functions are linearly independent
on (—ogq, oc) and hence form a fundamental set. It follows that the general
solution of (2) on this interval is

Y= @™ ¥ gie™, (4)

Repeated Real Roots 'Whenm, = m, we necessarily obtain only one expo-
nential solution,y, = ¢™*, From thequadratic formula we find thatm, = —b/l2a
since the only way to have m; = m, is to have & — 4ac = 0. It follows from
the discussion in Section 3.2 that a second solution of the equation is

e 2m|x

V2 = e""J’ 2z X = e”'l‘de = xe™", (5)

e
In (5) we have used the fact that —b/a = 2m,. The general solutionis then

y = ¢1e™ + cxe™”. (6)

Case Il :

Conjugate Complex Roots 1If m, and m, are complex, then we can write
m, = a + iBand m, = @ — i, where @ and 8 > 0 are real and * = —1.
Formally, there is no difference between this case and Case I, hence

y = C,e 8% + C,ela=ib>

However, in practice we prefer to work withreal functions instead of complex
exponentials. To this end we use Euler’s formula:

€' = cos@ + isiné,
where 6 is any real number.* It follows from this formula that
eP*=cosBx + isinBx and € ® = cos Bx—isinpPx (7)
where we have used cos(—fx) = cos Bx and sin(— Bx) = —sin Bx. Note

that by first adding and then subtracting the two equations in(7), we obtain,
respectively,

13
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eF + e P =2cosBx and € — ¢ =2isinpBx

Since y = C,e'* % + C,™ ¥ is a solution of (2) for any choice of the
constants C, and C,,the choices C;, = C, = land C, = 1, C; = —1 give,in
turmn, two solutions:

= p@tiB)x o a8 ang Yo = elariBx _ la—if)x

But ¥ = (e + ¢7'F%) = 2™ cos Bx
and ¥y = (P — ¢7#%) = 2i¢™ sin Bx.

Hence from Corollary (a) of Theorem 3.1.2 the last two results show that e cos Bx and
€™ sin PBx are real solutions of (2). Moreover, these solutions form a fundamental set on
(—o0, 00). Consequently, the general solution is

y = €™ cos Bx + c,¢™ sin Bx = ¢™ (¢, cos Bx + ¢, sin fx). (8)

PETTTE] Second-Order DEs

Solve the following differential equations.
(@ 2y"=5"-3y 0 () yY-10'+25% 0 () y+4H'+7y 0

SOLUTION We give the auxiliary equations, the roots, and the correspondinggeneral solutions.
(@225 -3 @ +1X —3), ; -3 2 3.Fom(@@),

y e + e,
M *—10 +25 ( —5% , , 5.From(6),
y cle"+ czxes'.

(© *+4 +7 0, ; -2+ V3i, , —-2-V3iFom@)witha -2,
B V3, we have

y € ¥(c,cos V3x + c;sin'V3x).

14
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Solve the initial valoe problem

Y+ y +025y =0, ¥0)=30, y(0) =-35

Solution. The characteristic equation is A2 + A + 025 = (A + 0.5)2 = 0. It has the double root A = —0.5.

This gives the general solution

¥ = (a1 + can)e 5

We need its derivative

¥ = e~ 05" — 05(c) + cax)e” 05T

From this and the initial conditions we obtain
Wil =¢ =30, ¥ =g — 05c = 3.5 hence cg = —2,

The particular solution of the initial value problem is v = (3 — 2x)e~*5%. See Fig. 31.

= k3 e

_/,'f

-1+

15
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Solve the initial value problem

VA0 +00dy =0, W0)=0, y(0)=3.

Solution. Step 1. General solution. The characteristic equation is A% + 0.4A + 9.04 = 0. It has the roots
—0.2 * 3i. Hence @ = 3, and a general solution (9] is

y = e " (A cos 3x + B sin 3x).

Step 2. Particular solution. The first initial condition gives ¥(0) = A = 0. The remaining expression is
y = Be 2% 5in 3x. We need the derivative (chain rule!)

v = B(—0.2e7"2% gin 3x + 3¢7%2% cos 3x).

From this and the second initial condition we obtain v'(0) = 3B = 3. Hence B = 1. Our solution is

= 02 g 3x,

¥
Figure 32 shows y and the curves of ¢ *2F and —e~"2% (dashed), between which the curve of y oscillates.

Such “damped vibrations” {with x = ¢ being time) have important mechanical and electrical applications, as we
shall soon see (in Sec. 2.4).

5 Modeling of Free Oscillations of a Mass—Spring System

We take an ordinary coil spring that resists extension as well as compression. We suspend it
vertically from a fixed support and attach a body at its lower end, for instance, aniron ball, as

shown in Fig. 33. We let y=0 denote the position of the ball when the system is at rest (Fig. 33b).
Furthermore, we choose the downward direction as positive, thus regarding downward forces as

positive and upward forces as negative.

- =T Pl
—— - =
B N = <
Unstretched - )
spring 0 r =
————— ~(y=0)-——-
O "
System at —_—
rest
System in
motion
(a) (b) (c)

16
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We now let the ball move, as follows. We pull it down by an amount y = 0 (Fig. 33c).
This causes a spring force

(1) Fi1 = —ky (Hooke’s law®)

The motion of our mass—spring system is determined by Newton’s second law

(2) Mass X Acceleration = my” = Force

where y" = dzyﬁﬂg and “Force™ is the resultant of all the forces acting on the ball.

ODE of the Undamped System

Every system has damping. Otherwise it would keep moving forever. But if the damping
is small and the motion of the system is considered over a relatively short time, we
may disregard damping. Then Newton's law with F = —F; gives the model
my" = —F; = —ky, thus

3) my" + ky = 0.

This is a homogeneous linear ODE with constant coefficients. A general solution is
obtained as in Sec. 2.2, namely (see Example 6 in Sec. 2.2)

[k
(4 y(r) = A cos wgt + B sin wgt g = \'I e

This motion is called a harmonic oscillation (Fig. 34). Its frequency is f = wo/2 Hertz*
(= cycles/sec) because cos and sin in (4) have the period 277 /wy. The frequency fis called
the natural frequency of the system. (We write wy to reserve w for Sec. 2.8.)

¥

(D Positive
(2) zero Initial velocity
(3) Negative
Fig. 34. Typical harmonic oscillations (4) and (4*) with the same y(0) = A and
different initial velocities y'(0) = wqB, positive (1), zero @. negative@

17
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An alternative representation of (4), which shows the physical characteristics of amplitude
and phase shift of (4), is

(4%)

y(f) = C cos (wpt — &)

with C = \/A® + B® and phase angle 8, where tan & = B/A. This follows from the
addition formula (6) in App. 3.1.

Example

Harmonic Oscillation of an Undamped Mass—Spring System

If a mass—spring system with an iron ball of weight W = 98 nt (about 22 |b) can be regarded as undamped, and
the spring is such that the ball stretches it 1.09 m {about 43 in.), how many cycles per minute will the system
execute? What will its motion be if we pull the ball down from rest by 16 cm {about 6 in.) and let it start with

zero initial velocity?

Solution. Hooke's law (1) with W as the force and 1.09 meter as the stretch gives W = 1.09k; thus
k= W/1.00 = 98/1.09 = 90 [kg/sec] = 90 [nt/meter]. The mass is m = W/g = 98/9.8 = 10 [kg]. This
gives the frequency wg/(27) = ‘»""H_mf{i'rr} = 3/(2w) = 048 [Hz] = 29 [cycles/min].

From (4) and the initial conditions, ¥(0) = A = 0.16 [meter] and y'}0) = wyB = 0. Hence the motion is

Fig. 36.
Damped system

¥if) = 0.16 cos 3 [meter] or 0.52 cos 3¢ [fit] {Fig. 35).

ODE of the Damped System

To our model my” = —ky we now add a damping force
Fy = _Cyr!
obtaining my" = —ky — ¢y'; thus the ODE of the damped mass—spring system is

(5) my" +cy +hky=0. (Fig. 36)

Physically this can be done by connecting the hall to a dashpot; see Fig. 36. We assume
this damping force to be proportional to the velocity y' = dy/dr. This is generally a good
approximation for small velocities.

18
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The constant ¢ is called the damping constant. Let us show that ¢ is positive. Indeed,
the damping force Fs = —cv' acts against the motion; hence for a downward motion we
have y' = 0 which for positive ¢ makes F negative (an upward force), as it should be.
Similarly, for an upward motion we have y' < 0 which, for ¢ = 0 makes Fy positive (a
downward force).

The ODE (5) is homogeneous linear and has constant coefficients. Hence we can solve
it by the method in Sec. 2.2. The characteristic equation is (divide (5) by m)

2, ¢, k_
B+ A+ =0

By the usual formula for the roots of a quadratic equation we obtain, as in Sec. 2.2,

(6) Ay = —a+ B, A= —a— B, where a=2i and B=ﬁ\a’cg—4mk.

Hi

It is now interesting that depending on the amount of damping present—whether a lot of
damping, a medium amount of damping or little damping—three types of motions occur,
respectively:

Case L. ¢ > 4mk. Distinct real roots Ay, As. {Overdamping)
Case II. ¢ = dmk. A real double root. (Critical damping)
Case III. 2 < 4mk. Complex conjugate roots. (Underdamping)

Case |. Overdamping

If the damping constant ¢ 1s so large that ¢ = 4mk, then Aj and A5 are distinct real roots.
In this case the corresponding general solution of (5) is

(7) Wt) = cre @At 4 gyt B,

We see that in this case, damping takes out energy so quickly that the body does not
oscillate. For + = 0 both exponents in (7) are negative because ¢ = 0,8 = 0, and
,82 =a® — kim < o”. Hence both terms in (7) approach zero as  — . Practically
speaking, after a sufficiently long time the mass will be at rest at the static equilibrium
position (y = 0). Figure 37 shows (7) for some typical initial conditions.

19
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Case Il. Critical Damping

Critical damping is the border case between nonoscillatory motions (Case I) and oscillations
(Case III). It occurs if the characteristic equation has a double root, that is, if 2= dmik,
so that 8 = 0, Ay = A3 = —a. Then the corresponding general solution of (5) is

(8) wWi) = (e + Cgf}-&_ﬂt.

Case Ill. Underdamping

This is the most interesting case. It occurs if the damping constant ¢ is so small that
¢ < 4mk. Then B in (6) is no longer real but pure imaginary, say,

2
(9) B=iv* where % =——\amk_ 2= “i——f‘f‘ (>0)
2m \l'l m  4m )

(We now write @* to reserve w for driving and electromotive forces in Secs. 2.8 and 2.9.)
The roots of the characteristic equation are now complex conjugates,

Ay = —a + iw*, Az = —a — iw*
with @ = ¢/(2m), as given in (6). Hence the corresponding general solution is

(10) Wit) = e (A cos w*t + B sin 0*f) = Ce™* cos (w*t — &)

where C2 = A% + B?and tan & = B/A, as in (4%).

This represents damped oscillations. Their curve lies between the dashed curves
v = Ce *“andy = —Ce " in Fig. 39, touching them when w*t — & is an integer multiple
of 77 because these are the points at which cos (w*t — 8) equals 1 or —1.

20



Engineering Analysis

The frequency is @*/(277) Hz (hertz, cyclesfsec). From (9) we see that the smaller

¢ (=0) is, the larger is @* and the more rapid the oscillations become. If ¢ approaches 0,
then w* approaches wg = \/ k/m, giving the harmonic oscillation (4), whose frequency
wo,(27) is the natural frequency of the system.

I“"l.

\‘“‘hhh&_ﬂi

AN

| \ [
Tt

Fig. 29. Damped oscillation in Case Il [see (10]]

Example

How does the motion in Example 1 change if we change the damping constant ¢ from one to another of the
following three values, with W0) = 0.16 and ¥'(0) = 0 as before?

iIic = 100 kg/sec, i) ¢ = 60 kg/sec, () ¢ = 10 kg/sec.
Solution. Tt is interesting to see how the behavior of the system changes due to the effect of the damping,

which takes energy from the system, so that the oscillations decrease in amplitude (Case III) or even disappear
{Cases IT and I).

(1) With m = 10 and k& = 90, as in Example 1, the model Fs the initial value problem
10" + 100y" + 90y = 0, w0y = 0.16 [meter], ¥y =0

The characteristic equation is 1042 + 1004 + 90 = 10{A + 9)A + 1) = 0. It has the roots —9 and —1. This
gives the general solution

¥ = r.:'lf_“ + cpe 7t We also need ¥ = —‘Sh:'lf_gE — et

The initial conditions give c; + cg = (.16, —9¢) — cg = 0. The solution is ¢p = —0L.02, ez = 0.18. Hence in
the overdamped case the solution is

y=—002"" + 0.187"

It approaches O as { — =, The approach is rapid; after a few seconds the solution is practically O, that is, the
iron ball is at rest.

(IT) The model is as before, with ¢ = 60 instead of 100. The characteristic equation now has the form
104% + 604 + 90 = 1A + 3}2 = 0. It has the double root —3. Hence the comresponding general solution is

y= 1l + cofle . We also need v =iz — 31 — catle ™,

The initial conditions give ¥0) = ¢ = 016, ¥'(0) = cg — 3c; = 0, cg = 0.48. Hence in the critical case the
solution is

y = (016 + 0.480e 3,
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It is always positive and decreases to 0 in a monotone fashion.
(11} The model now is 10" + 10y" + 9(2; = 0. Since ¢ = 10 is smaller than the critical ¢, we shall get

oscillations. The characteristic equation is 104% + 104 + 90 = 10{(A + $)% + 9 — ] = 0. It has the complex
roots [see (4) in Sec. 22 witha = 1 and b = 9]
A=-05* V057 - 0= —05 = 296i
This gives the general solution
y = e~ Y%A cos 296 + B sin 2.96¢).
Thus ) = A = 0.16. We also need the derivative
y' = e~05(—0.54 cos 2.96t — 0.5F sin 2.96t — 2.064 sin 2.961 + 2968 cos 2.96¢).
Hence y'{0) = —0.54 + 2968 = 0, B = 0.54/2.96 = 0.027. This gives the solution
v = e "540.16 cos 2.06¢ + 0.027 sin 2.961) = 0.162e=%5 cos (2061 — 0.17).

We see that these damped oscillations have a smaller frequency than the harmonic oscillations in Example 1 by

about 1% (since 2.96 is smaller than 3.00 by about 1% ). Their amplitude goes to zero. See Fig. 40. |

¥
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Fig. 40. The three solutions in Example 2

6 Modeling: Forced Oscillations. Resonance

my" + ey + ky = 0.

k - Spring

We now extend our model by including an additional force, that is, the external force
r(t), on the right. Then we have

Mass ir(t)

(2#) my" + oy’ + ky = Ar. Dashpot

Fig.53. Mass on a spring
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Mechanically this means that at each instant ¢ the resultant of the internal forces is in
equilibrium with #{f). The resulting motion is called a forced motion with forcing function
H(t), which is also known as input or driving force, and the solution wt) to be obtained
is called the output or the response of the system to the driving force.

Of special interest are periodic external forces, and we shall consider a driving force
of the form

Hit) = Fy cos wt (Fo =0, = 0).
Then we have the nonhomogeneous ODE
(2) my" + ¢y’ + ky = Fy cos wt.

Solving the Nonhomogeneous ODE (2)

From Sec. 2.7 we know that a general solution of (2) is the sum of a general solution vy
of the homogeneous ODE (1) plus any solution y;, of kZ}. To find yp, we use the method
of undetermined coefficients (Sec. 2.7), starting from

(3) yp(f) = acos et + bsin wt.
By differentiating this function (chain rule!) we obtain

= —an sin @t + @b cos wr,

3

= —w’a cos wt — wb sin wt.

o=

¥
Substituting yp, ;-,:!{,, and }?; into (2) and collecting the cosine and the sine terms, we get
[(k — mw®)a + wch] cos wt + [—wea + (k — mw*)b] sin @t = Fy cos wt.

The cosine terms on both sides must be equal, and the coefficient of the sine term
on the left must be zero since there is no sine term on the right. This gives the two
equations

" (k—mowda+ wcb =F,
—wca + (k—modb =0
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for determining the unknown coefficients a and b. This is a linear system. We can solve
it by elimination. To eliminate b, multiply the first equation by k — mw” and the second
by —wc and add the results, obtaining

(k — mw>Pa + w’cla = Folk — ma?).
Similarly, to eliminate a, multiply (the first equation by wec and the second by k — miw>

and add to get
w?c%b + (k — mo®°b = Fywc.

If the factor (k — mmz}z + w22 is not zero, we can divide by this factor and solve for a

and b,

k — muw” we

] b - F .
k- mw2}2 + w2 0 (k— mm2}2 + wc?

a = Fﬂ
(
If we set Vk/m = wp (> 0) as in Sec. 2.4, then k = mw% and we obtain

m(wg — o) b—F we
] - (1] .
mz{wﬁ = mz}z + w’c? mz{mﬁ = m2}2 + wlc?

(5) a=F,

We thus obtain the general solution of the nonhomogeneous ODE (2) in the form
(6) y(t) = yult) + yplt)

Case 1. Undamped Forced Oscillations. Resonance

If the damping of the physical system is so small that its effect can be neglected over the
time interval considered, we can set ¢ = 0. Then (5) reduces to a = Fp/ [m{mﬁ - mz}]
and b = 0. Hence (3) becomes (use mﬂz = kfm)

™ ) =—° r To
Vplf) = ——F———F5 cos wt =
T mlep — o) K1 — (/wo)’]
Here we must assume that @ # muz; physically, the frequency @/(27) [cycles/sec] of
the driving force is different from the natural frequency wg/(277) of the system, which is
the frequency of the free undamped motion [see (4) in Sec. 2.4]. From (7) and from (4#)
in Sec. 2.4 we have the general solution of the “undamped system™

COSs @,

4]
(8) wit) = C cos (wgt — 6) + mcﬂs o,
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Resonance. We discuss (7). We see that the maximum amplitude of yp is (put cos wt = 1)
(9) ag =—p where P

ap depends on w and wy. If @ — wy, then p and ap tend to infinity. This excitation of large

oscillations by matching input and natural frequencies (@ = wyp) is called resonance. p is

called the resonance factor (Fig. 54), and from (9) we see that p/k = ag/Fg is the ratio

of the amplitudes of the particular solution yj, and of the input Fy cos wt. We shall see

later in this section that resonance is of basic importance in the study of vibrating systems.
In the case of resonance the nonhomogeneous ODE (2) becomes

F,
(10) v -I-c::ﬁ;-,r:%ms Wt

Then (7) is no longer valid, and, from the Modification Rule in Sec. 2.7, we conclude that
a particular solution of (10) is of the form

¥pl(t) = tla cos wgt + b sin wgt).

p |

y

1—

|
|
|
|
|
|
|
|
(i}

h — @

|

I / Resonance factor plw)
|

|

|

By substituting this into (10) we find @ = 0 and b = Fg/(2Zmwo). Hence (Fig. 55)

Fo .
(11) yplt) = e t sin wyf.

Fig. 55. Particular solution in the case of resonance
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We see that, because of the factor t, the amplitude of the vibration becomes larger and larger.
Practically speaking, systems with very little damping may undergo large vibrations that can
destroy the system. We shall return to this practical aspect of resonance later in this section.

Beats. Another interesting and highly important type of oscillation is obtained if @ is
close to wy. Take, for example, the particular solution [see| (8)]

F
(12) ¥(£) = 0

— 5 3 (cos @t — cos agl)

(@ # wp).

m(wp

Using (12) in App. 3.1, we may write this as

2F, Cfwgtw Cfwg— w
vty = 2 S sin f]sin ).
miwg — @) 2 2

Since @ is close to wy, the difference wy — @ 1s small. Hence the period of the last sine
function is large, and we obtain an oscillation of the type shown in Fig. 56, the dashed

curve resulting from the first sine factor. This is what musicians are listening to when
they tune their instruments.

¥
"Tﬁ-- ™ fﬁlﬁl_ﬁl |
AN AL
‘o | | | ’ lII I' ‘ | AN
\ |I T I || ?}?;‘1 ; Ii T I | _ I'x}
W ! | | ll |I / \‘U ] \ [/ !
. | | | [, %\ | | | '.IJJ
\ I. | | | . \\‘|| | | | -
AL o\

Fig. 56. Forced undamped oscillation when the difference of the input

and natural frequencies is small (“beats”)

Case 2. Damped Forced Oscillations

If the damping of the mass—spring system is not negligibly small, we have ¢ = 0 and
a damping term v’ in (1) and (2). Then the general solution y;, of the homogeneous
ODE (1) approaches zero as ¢ goes to infinity, as we know from Sec. 2.4. Practically,
it 15 zero after a sufficiently long time. Hence the “transient solution™ (6) of (2),

given by ¥ = yp + ¥p, approaches the “steady-state solution™ y,. This proves the
following.
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To_stud}r the amplitude of y, as a function of w, we write (3) in the form
(13) yp(t) = C* cos (wt — 7).

C*is called the amplitude of y; and ) the phase angle or phase lag because it measures
the lag of the output behind the input. According to (5), these quantities are

F
C*w) = Va® + b2 = 0

]
V/m z{mﬁ — m2)2 + w’c?

(14)
K a mwy — o)

Let us see whether C*(@w) has a maximum and, if so, find its location and then 1its size.

We denote the radicand in the second root in C* by R. Equating the derivative of C* to

zero, we obtain

% = Fu(—%ﬂ_afz) [2mZ%(wd — @®)—2w) + 2wc?].

The expression in the brackets [. . .] is zero if
(15) 2 =2m%wf — 0® (0= k/m).
By reshuffling terms we have

2m2w® = 2m3wg® — 2 = 2mk — 2.

The right side of this equation becomes negative if ¢ > 2mk, so that then (15) has no
real solution and C* decreases monotone as @ increases, as the lowest curve in Fig. 57
shows, If ¢ is smaller, < 2mk, then (15) has a real solution @ = @y, 4,. Where

2 *

2 —
(15%) Wmax = Wy m2

From (15%*) we see that this solution increases as ¢ decreases and approaches wy as ¢
approaches zetp. See also Fig. 57.

The size of C*(@ay) is obtained from (14), with @ = w2, given by (15%). For this

@” we obtain in the second radicand in (14) from (15%)

4 2
c c
mz(a.% — (ﬂ]zngx_}z = o and m;znurz = (m% — Emg)czl
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The sum of the right sides of these two formulas is
(c* + 4mZwic® — 2ch)/(4m?) = Adm®ef — 2)/(4m?).
Substitution into (14) gives

2mPF,

C*(®max) = :
o chf‘lmzmﬁ —

(16)

We see that C¥(wp,q,) 18 always finite when ¢ = 0. Furthermore, since the expression
cz-fl-mzwﬁ -t = c2{4mk - &)

m the denominator of ( 16) decreases monotone to zero as e (<<2mk) goes to zeh‘o, the maximum
amplitude (16) increases monotone to infinity, in agreement with our result in Case 1. Figure 57
shows the amplification C*/Fy (ratio of the amplitudes of output and input) as a function of
wform = 1,k = 1, hence wy = 1, and various values of the damping constant c.

Figure 58 shows the phase angle (the lag of the output behind the mput), which is less
than 77/2 when w << wg, and greater than /2 for @ > wp.
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Fig. 57. Amplification C*/F; as a function of Fig. 58. Phase lag i as a function of w for
w form = 1,k = 1, and various values of the m =1,k = 1, thus wy = 1, and various values
damping constant ¢ of the damping constant ¢
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