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Introductory Concepts of Fluid Mechanics Chapter: One

Chapter One
Introductory Concepts of Fluid M echanics

1.1. The Concept of a Fluid and Fluid Mechanics

Mechanics is the oldest physica science that deals with both stationary and
moving bodies under the influence of forces. The branch of mechanics that deals
with bodies at rest is called statics, while the branch that deals with bodies in
motion is called dynamics. The subcategory fluid mechanics is defined as the
science that deals with the behavior of fluids at rest (fluid statics) or in motion
(fluid dynamics), and the interaction of fluids with solids or other fluids at the
boundaries. Fluid mechanics is aso referred to as fluid dynamics by considering
fluids at rest as a special case of motion with zero velocity.

Fluid is a substance that deforms continuously when subjected to shear stress, no
matter how small that shear stress may be. Fluids may be either liquids or gases.
Solids, as compared to fluids, cannot be deformed permanently (plastic
deformation) unless a certain value of shear stress (called the yied stress) is
exerted on it.

Figure 1.1 illustrates a solid block resting on arigid plane and stressed by its own
weight. The solid sags into a static deflection, shown as a highly exaggerated
dashed line, resisting shear without flow. A free-body diagram of element A on the
side of the block shows that there is shear in the block along a plane cut at an angle
0 through A. Since the block sides are unsupported, element A has zero stress on
the left and right sides and compression stress ¢ = - p on the top and bottom.

Mohr’s circle does not reduce to a point, and there is nonzero shear stress in the

block.
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Figure1.1: A solid at rest can resist shear. (&) Static deflection of the solid; (6) equilibrium and
Mohr’s circle for solid element A. A fluid cannot resist shear. (¢) Containing walls are needed; (a)
equilibrium and Mohr’s circle for fluid element A.

By contrast, the liquid and gas at rest in Fig. 1.1 require the supporting walls in
order to eliminate shear stress. The walls exert a compression stress of - p and
reduce Mohr’s circle to a point with zero shear everywhere, i.e., the hydrostatic
condition. The liquid retains its volume and forms a free surface in the container. If
the walls are removed, shear develops in the liquid and a big splash results. If the
container is tilted, shear again develops, waves form, and the free surface seeks a
horizontal configuration, pouring out over the lip if necessary. Meanwhile, the gas
Is unrestrained and expands out of the container, filling al available space.
Element A in the gas is also hydrostatic and exerts a compression stress - p on the

walls.
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According to the variation of density of the fluids with pressure, fluids are
classified into "incompressible" and "compressible" fluids.

1.1.1. Incompressible Fluids

They are the fluids with constant density, or the change of density with pressure is
so smal that can be neglected and considers the density as constant. The
incompressible fluids are basically the "LIQUIDS". Gases at low velocities are
usually considered as incompressible fluids also.

There are no exact incompressible fluids in practice. For example, the density of
water at atmospheric pressure (0.1 MPa) is (1000 kg/m®). When the pressure is
increased to (20 MPa), the density becomes (1010 kg/m®). Thus, increasing the
pressure by afactor of (200) increases the density by only (1%)!! For this reason, it
Is reasonable to consider the liquids as incompressible fluids with constant density.
1.1.2. Compressible Fluids:

They are the fluids with variable density, or the change of density with pressure is
large and cannot be neglected. These include basicaly the "GASES'. In some
ligquids problems, such as "water hammer", the compressibility of liquids must be

considered.

1.2. Application Areasof Fluid Mechanics

Fluid mechanics is widdly used both in everyday activities and in the design of
modern engineering systems from vacuum cleaners to supersonic aircraft.
Therefore, it is important to develop a good understanding of the basic principles
of fluid mechanics.

1- Irrigation.

2- Navigation.

3- Power Generation (Hydraulic, Gas and Steam Power Plant).
4- Ships, Boats and Submarines.

5- Airplanes and Hovercrafts:
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I.  Wing Surfaces to Produce Lift.

Ii.  Jet Enginesto Produce Thrust.

iii.  Fuselage Design for Minimum Drag.

Iv. Various Systemsin the Air Craft (A/c, Fuel, Qil, Pneumatic).

V. Control of the Airplane (Tail, Flaps, Ailerons, ...).
6- Cars and Motorcycles.

I.  Pneumatic tires.

li.  Hydraulic Shock Absorbers.

lii.  Fuel System (Gasoline + Aiir).

Iv. Air Resistance Grates Drag on Car.

v. Lubrication System.

vi. Cooling System.
vii.  Aerodynamic Design of Car Profile for Minimum Drag.
7- Design of Pipe Networks.
8- Transport of Fluids.
9- Air — Conditioning and Refrigeration Systems.
10- Lubrication Systems.
11- Design of Fluid Machinery (Fans, Blowers, Pumps, Compressors, Turbines,
Windmills, ....).
12- Bioengineering (Flow of Blood through Veins and Arteries).
13- Fluid Control Systems.
14- All Living Creatures Need Water (Fluid) for Life (We Made from Water Every
Living Thing).

1.3. Dimensions and Units

A dimension is the measure by which a physica variable is expressed
guantitatively. A unit is a particular way of attaching a number to the quantitative
dimension.

In fluid mechanics there are only four primary dimensions from which al other
dimensions can be derived: mass, length, time, and temperature. These dimensions
and their units in both systems are given in Table 1.1. Note that the kelvin unit uses
no degree symbol. The braces around a symbol like [M] mean “the dimension” of
mass. All other variables in fluid mechanics can be expressed in terms of [M], [L],

[T], and [@®]. For example, acceleration has the dimensions [LT].

5
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Table 1.1: Primary Dimensionsin Sl and BG Systems.

Primory dimension 1wl BF it Conversion faclor
Mass [M) Kilogram (kg) Slug | slug = 14.5939 ke
Length {L] Mewer {m) Fool (1) | it = L3045 m
T [T} second (5) Secomd (5) | a= 14
Tempersature | E)) Kelvin (K Fankine ("R | K= 18R

A list of some important secondary variables in fluid mechanics, with dimensions

derived as combinations of the four primary dimensions, isgivenin Table 1.2.

Table 1.2: Secondary Dimensionsin Fluid Mechanics.

mecondary ditmension =] it Bl umii {onviersinn Tacior
Arca {1*) m- fi* | m* = 10,764 it
Valume {L'] e fi? | m® = 35.315 R
Velocity (LT ') m's ftf= | fifs = 03048 m/s
Acceleration LT 2| s ftfs” | ftfs® = 03048 mls®
Pressure or stress
(ML™IT 3 Pa = Nim? 1 [ | Ibi/ft® = 47.8% Pa
Angular velocity [T g gt | g7l =135"1
Encrgy. heat, work
|MLET ) I=N-m ft - Ibi | ft - Ibf = 13558 ]
Power IMEZT ™) W= J#s fi + hifs | fi - Ibfts = 1.3558 W
Dicasity [,‘LII,"I} k;."n'r‘ ~-.|uJ_;.~-J'1'1'a | '\-\.III_‘!:.'IIl!"l = 5154 Li;.l'm'"
Viscosity [ML™'T ') kgfim - s slugsdift - 51 | slugdi it - ) = 47.88 kalim - =)
Specific heat |27 207 moAis® - K kst - "R) | mi ="+ K = 5.980 fi%fis” - "R}
Example 1.1:

A body weighs 1000 |bf when exposed to a standard earth gravity g = 32.174 ft/s’.

(a) What isits massin kg?

(b) What will the weight of this body be in N if it is exposed to the moon’s

standard accel eration Qumeon = 1.62 m/s??

(c) How fast will the body accelerate if anet force of 400 Ibf is applied to it on the

moon or on the earth?
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Solution
Equation (1.2) holds with F = weight and a = g_,.:

F=W=mg = 1000 Ibf = (m slugs)32.174 ft/s?)

or

m= = (31.08 slugs)(14.5939 kg/slug) = 453.6 kg Ans. (a)

32174
The change from 31.08 slugs to 453.6 kg illustrates the proper use of the conversion factor
14.5939 kg/slug.

The mass of the body remains 453.6 kg regardless of its location. Equation (1.2) applies with a
new value of @ and hence a new force

F = Wioon = M2imoon = (433.6 kg)(1.62 m/s’) =735 N Ans. (b)

This problem does not involve weight or gravity or position and is simply a direct application
of Newton’s law with an unbalanced force:

F = 400 Ibf = ma = (31.08 slugs)(a ft/s™)

or
= 3.79 m/s” Ans. (c)

This acceleration would be the same on the moon or earth or anywhere.

Example 1.2:

A useful theoretical equation for computing the relation between pressure,
velocity, and altitude in a steady flow of anearly inviscid is the Bernoulli relation.

P,=P+0.5pV? + pgZ

where Po= stagnation pressure, P = pressure in moving fluid, V = velocity, p =
density, Z = dtitude, g = gravitational acceleration.

(@) Show that the Bernoulli relation satisfies the principle of dimensional
homogeneity, which states that all additive termsin a physical equation must have
the same dimensions. (b) Show that consistent units result without additional
conversion factorsin Sl units. (c) Repeat (b) for BG units.

7
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Solution:

Part (a)

Part (h)

We can express Eq. (1) dimensionally, using braces by entering the dimensions of each term
from Table 1.2:

(ML™'T 2} = {(ML™'T2} + (ML 3}L*T%} + {ML*}{LT 2}{L}
= {ML_’T"J} for all terms Ans. (a)
Enter the SI units for each quantity from Table 1.2:
{me:'} = {N;’mz} + {kghn‘l}{nﬂsl} + {kgi:113}{n1f51}{:111
= {N/m’} + {kg/(m - sH)}
The right-hand side looks bad until we remember from Eq. (1.3) that 1 kg = 1 N - s%/m.

_{N- sgfm}

b = [N/m?} Ans. (b)

{kg/(m - %)}

Thius all terms in Bernoulli’s equation will have units of pascals, or newtons per square meter,
when SI units are used. No conversion factors are needed, which is true of all theoretical equa-
tions in fluid mechanics.

Part (¢) Introducing BG units for each term, we have
{Ibf/ft*} = {Ibf/f?} + [slugs/ft®} {f7/s?} + [slugs/f’ ) {fu/s?}{ft)
= {Ibf/ft"} + {slugs/(ft - s%))
But, from Eq. (1.3), 1 slug = 1 Ibf - s*/ft, so that
{slugs/(ft - s¥)} = % = {Ibf/ft*} Ans. (c)
Example 1.3:

The empirical Robert’s formula for the average velocity V in uniform flow due to

1.49

gravity down an open channel (BG units)is: [V =—— x R?/3 x §1/2]

where R = hydraulic radius of channel, S = channel slope (tangent of angle that

bottom makes with horizontal) and n is a constant for a given surface condition for

the walls and bottom of the channel. Determine:

(a) Is Robert’s formula dimensionally consistent?

(b) Robert’s formula is commonly taken to be valid in BG units with n taken as

dimensionless. Rewriteitin SI form.
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Solution:

Part (a) Introduce dimensions for each term. The slope S, being a tangent or ratio, is dimensionless, de-
noted by {unity} or {1}. Equation (1) in dimensional form is

L) _[149],,25
M { ! }{L 11

This formula cannot be consistent unless {1.49/n} = {L'7/T}. If n is dimensionless (and it is
never listed with units in textbooks), then the numerical value 1.49 must have units. This can be
tragic to an engineer working in a different unit system unless the discrepancy is properly doc-
umented. In fact, Manning’s formula. though popular, is inconsistent both dimensionally and
physically and does not properly account for channel-roughness effects except in a narrow range
of parameters, for water only.

Part (b)  From part (a), the number 1.49 must have dimensions {L”jﬂ"} and thus in BG units equals
1.49 fit'"/s. By using the SI conversion factor for length we have

(1.49 ft"/s)(0.3048 m/ft)'* = 1.00 m'5/s

Therefore Manning’s formula in SI becomes

V= Eﬁms“z Ans. (b) (2)
n

1.4. Convenient Prefixesin Powersof 10
Table 1.3 lists Convenient Prefixes

Multiplicative
for Engineering Units: factor Prefix Symbaol
ik tera i
|0 T s
|0 mega M
10? kilo k
107 hecto h
[ (] deka da
! dect d
102 centl e
10— milli m
1) ° micro I
1o (TR I
o= pico p
1H—H temto f

1) '# atto a
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1.5. Thermodynamic Properties of a Fluid

While the velocity field V is the most important fluid property, it interacts closely
with the thermodynamic properties of the fluid. We have already introduced into
the discussion the three most common such properties

1. Pressure P:

Pressure is the (compression) stress at a point in a static fluid. Next to velocity, the

pressure is the most dynamic variable in fluid mechanics.

2. TemperatureT:

Temperature is a measure of the internal energy level of a fluid. It may vary
considerably during high-speed flow of a gas. Although engineers often use
Celsius or Fahrenheit scales for convenience, many applicationsin this text require
absolute (Kelvin or Rankine) temperature scales:

°R = °F + 459.69

K =°C+273.16

3. Density p:

The density of afluid, denoted by p (lowercase Greek “rho”), is its mass per unit
volume. Dengity is highly variable in gases and increases nearly proportionaly to
the pressure level. Density in liquidsis nearly constant; the density of water (about
1000 kg/m’) increases only (1 %) if the pressure is increased by a factor of 200.
Thus most liquid flows are treated analytically as nearly “incompressible”.

In general, liquids are about three orders of magnitude more dense than gases at
atmospheric pressure. The heaviest common liquid is mercury, and the lightest gas
Is hydrogen. Compare their densities at 20°C and 1 atm:

Mercury: p = 13,580 kg/m®, Hydrogen: p = 0.0838 kg/m®

10
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They differ by afactor of (13,580/ 0.0838 = 162,000) Thus the physical parameters

in various liquid and gas flows might vary considerably.

4. Specific Weight y:

The specific weight of a fluid, denoted by y (lowercase Greek “gamma”), is its
weight per unit volume. Just as a mass has a weight W = mg, density and specific
weight are simply related by gravity:

Y = pg (1.1)
The units of y are weight per unit volume, in N/m®>. In standard earth gravity, g =
9.807 m/s’. Thus, e.g., the specific weights of air and water at 20°C and 1 atm are
approximately

v &r = (1.205 kg/m*)(9.807 m/s?) = 11.8 N/m®

Y water = (998 kg/m*)(9.807 m/s?) = 9790 N/m®

5. Specific Gravity SG:
Specific gravity, denoted by SG, istheratio of afluid density to standard reference

fluid, water (for liquids), and air (for gases):

Pgas Pgas
SG,qs = = 1.2
gas Pair 1.205 (kg /m3) ( )
Pliquid Pgas
SGiouia = -
liquid Pwater 998 (kg/m3)

For example, the specific gravity of mercury (Hg) is SGny = 13,580/998 ~ 13.6.
Engineers find these dimensionless ratios easier to remember than the actua

numerical values of density of avariety of fluids.

6. State Relationsfor Gases:
Thermodynamic properties are found both theoretically and experimentally to be
related to each other by state relations which differ for each substance. As

11
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mentioned, we shall confine ourselves here to single-phase pure substances, e.g.,
water in itsliquid phase.

All gases at high temperatures and low pressures (relative to their critical point) are
in good agreement with the perfect-gas law

P = pRT

R = C, — C, = gas constant

Since the above eguation is dimensionaly consistent, R has the same dimensions
as specific heat, [m¥s".°C or mi/SK, L T? @Y, or velocity squared per
temperature unit (kelvin or degree Rankine). Each gas has its own constant R,

equal to auniversa constant A divided by the molecular weight

A
R =
gas Myas

where A = 8314 (m%<*.K). Most applications in this subject are for air, with M =
28.97:

Rair = 287 (M%$°.K)

Standard atmospheric pressure is 101314.445 Pa, and standard temperature is
15.556 °C. Thus standard air density is

101314.445

_101314.445 3
Pair = 557515556 1.22kg/m

7. Viscosity

It is the property of afluid by virtue of which it offers resistance to shear. When a
fluid is sheared, it begins to move a a strain rate inversely proportional to a
property called its coefficient of viscosity n. Consider a fluid element sheared in
one plane by a single shear stress z, asin Fig. 1.2.

The shear strain angle 66 will continuously grow with time aslong asthe stress z is

maintained, the upper surface moving at speed Ju larger than the lower. Such

12
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common fluids as water, oil, and air show a linear relation between applied shear

and resulting strain rate

56

T =—
ot

[ | — = O
()

It appears that there is a property that _ I-f ."f
represents the internal resistance of a 08 o

fluid to motion or the “Awidity,” and & i i
that property is the viscosity. !
II-II la:l'l .rn'

=1

Figure 1.2: Shear stress causes continuous shear deformation in afluid: afluid element straining at a
rate 66 /6t.

From the geometry of Fig. 1.2 we see that

Su bt
8y

In the limit of infinitesimal changes, this becomes a relation between shear strain

tan 60 =

rate and velocity gradient

80 _ ou

st 8y

The applied shear is also proportional to the velocity gradient for the common
linear fluids. The constant of proportionality is the viscosity coefficient u.

_ e
T=Ha=H dy
The above equation is dimensionally consistent; therefore p has dimensions of

stress-time: [M/(LT)] and the Sl unit is (kg/m.s). The linear fluids which follow the
above equation (t =u2—f=y2—;) are caled Newtonian fluids, after Sir Isaac

Newton, who first postulated this resistance law in 1687. Most common fluids such

13
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as water, air, gasoline, and oils are Newtonian fluids. Blood and liquid plastics are
examples of non-Newtonian fluids. In one-dimensiona shear flow of Newtonian

fluids, shear stress can be expressed by the linear relationship as shown in this

figure.

] ) ) L I."l Wisoosity = Slope
There are two types of viscosity; “Dynamic (or f :
Absolute) viscosity (x)”, and the “Kinematic - | ,-” " aiey b

o -2
Viscosity (v)”. Their definitions are; g f & ki
d = i
u=t/7 g
i
u/p / L

Units of Viscosity: Rete of deformation, Guldy
w: kg/m.s, N.s/m?, Pa.s, Poise (P)= g/lcm.s= dyne.s/'cm?, (1 (N.s/m?) = 10 (Poise))

v: m?/s, Stoke = cm?/s.

Example 1.4

The viscosity of afluid is to be measured by a viscometer constructed of two 40-
cm-long concentric cylinders (see Figure below). The outer diameter of the inner
cylinder is 12 cm, and the gap between the two cylinders is 0.15 cm. The inner
cylinder is rotated at 300 rpm, and the torque is measured to be 1.8 N.m.
Determine the viscosity of the fluid.

Solution: Stationary
A cyfinder

Torque is T = FR (force times the moment arm,
which is the radius R of the inner cylinder in this
case), the tangential velocity is V = wR (angular
velocity times the radius), and taking the wetted
surface area of the inner cylinder to be A = 2aRL by
disregarding the shear stress acting on the two ends
of the inner cylinder, torque can be expressed as

2Rl 4RIl : : ’
T=FR=g r.d =p : vl AR

14
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where L is the length of the cylinder and 7 is the number of revolutions per unit
time, which is usually expressed in rpm (revolutions per minute). Note that the
angular distance traveled during one rotation is 2n rad, and thus the relation
between the angular velocity in rad/min and the rpmis o = 2nn.

Ti (1.8 N - m}(0.0015 m)

- — - : - 0.158 N - sim*
A RiL  4+%(0.06 m)*(300/60 1/5)(0.4 m)

=

Example 1.5:
A 50-cm x 30-cm x 20-cm block weighing 150 N is to be moved at a constant
velocity of 0.8 m/s on an inclined surface with a friction coefficient of 0.27 as
shown in the Figure below. (a) Determine the force F that needs to be applied in
the horizontal direction. (b) If a 0.4-mm-thick oil film with a dynamic viscosity of
0.012 Pa. s is applied between the block and inclined surface, determine the
percent reduction in the required force.
Solution:

(@)

I=0.8m's

= 150N
D F,=0: F—F;cos20°—Fy;sin20°=0 (1)
D F,=0: Fycos20°—F,sin20°-W=0 (2)
Friction force: Fr = fFy (3)
Substituting Eqg. (3) into Eq. (2) and solving for Fy; gives

w B 150N mon
T 00s20°— fsin20° cos20°—027sin20°

Finy

Then from Eq. (1):
Fy = Fj c0s20°+ Fy; sin 20° = (0.27x177 N) cos 20°+ (177 N) sin 20° =105.5 N

15
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(b) In this case, the friction force is I=0.8 m's
replaced by the shear force applied on

50 cm 0.4 mm
the bottom surface of the block due to /a \ ”ﬁ
the oil. Because of the no-dip -**E\'
condition, the oil film sticks to the rA

inclined surface at the bottom and the
lower surface of the block at the top.
Then the shear forceis expressed as W=150N

Iy -
= shaar ¢ '--":It

I
= A —
i

1] i Y ':}.-3!;- s
=012 N-sm” J(05=0.2m" j}———
4107 m
=24N
Replacing the friction force by the shear forcein part (a),
B F, =0 Fy—Fyep cos20°—Fyy sin2(°=0 (4
I__.T. .II'_ = [k .l:'__:__'! oS :I‘:] e F_'kn'.'." "::iJ.I. :|_-_I'} =g ﬂ' = I:;' (5]
iy
Eq. (5) gives Fyy =(F . sin20°+ W)/ cos 20° = [(2.4 N)sin 20F + (L 50N1])/ cos 20° = 160.5N
substitting into Eq. (4). the requirad horizonral force is detenmined to be
Fy = F e 005 207+ Fpn sin 20° = (24 N)cos 207 + (1 60.5 N sin 20° =572 N

Then. our final result 15 expressed as
5 105.5-57.2

Percentage raduction in required foree = ——= < 100% = T{_ 1009 = 45.8%
L
1

8. Surface Tension and Capillary Effect

8.1. Surface Tension (o):

Cohesion: Cohesion means intermolecular attraction between molecules of the
same liquid. It enables a liquid to resist small amount of tensile stresses. Cohesion
is a tendency of the liquid to remain as one assemblage of particles. “Surface

Tension” is due to cohesion between particles at the free surface.

16
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Adhesion: adhesion means attraction between the molecules of a liquid and the
molecules of a solid boundary surface in contact with the liquid. The property
enables aliquid to stick to another body.

“Capillary action” is due to both cohesion and adhesion.

Surface Tension (o): is caused by the force of cohesion at the free surface. A
liguid molecule in the interior of the liquid mass is surrounded by other molecules
all around and is in equilibrium. At the free surface of the liquid, there are no
liquid molecul es above the surface to balance the force of the molecules below it.
8.2. Some Applications of Surface Tension:

The action of surface tension is to increase the pressure within droplet, bubble and
liquid jet. To calculate the pressure sustained in these cases, a force balance is

made, and as follows;

v’ Droplet: Fp = mREAP
For a section of half of spherical droplet as shown in f = orp
sT = 4RO
Figure below, I I ] I
Fp = Fsr '![ S _l- l”
TR?AP = 2nRo | e —-l = .I_ A=
20 .."-. .-"::
M=% g &
v Bubble:
_ Fsr = 2[2nRo]
Soap bubbles have two surfaces on which . —t°
Surface tension ¢ acts. From the free diagram 1 :
We have, ;' ' s [ F = rR2AP
Fp = 2Fg; — = 2[2nRo] = nR?AP * 4 <
40 80 . o= ; * = &
AP==3

17
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Since the soap solution has a high value of surface tension o, even with small
pressure of blowing a soap bubble will tend to grow larger in diameter (hence

formation of large soap bubbles).

Fp = 2RLAP

v Liquid Jet

Let us consider acylindrical liquid jet of diameter d (2R),
And length L as shown in Figure, a semi-jet;

Fp = 2Fsr
2RLAP = 2[2La]

AP—ZG
"R

8.3. Capillarity

Capillarity is a phenomenon by which a liquid (depending upon its specific
gravity) rises into a thin glass tube above or below its genera level. This
phenomenon is due to the combined effect of "cohesion" and “adhesion” of liquid

particles. Figure 1.3 shows the phenomenon of rising water in the tube of smaller

diameters. i - 2T
Let, d = Diameter of the capillarity tube - :,.{,I,,.r_ tx'ﬁ,;l-.\ ’

6 = Angle of contact of the water surface. : S

W= weight (pg) ; | |~ Copillary tube
The capillarity rise (h) is usually calculated o 7

by applying equilibrium equation to the =TI e
capillary tube shown in Figure 1.3, and as i :

follows, Adhesion > Cohesion

[ Mhimscus concavel

Figure 1.3: The effect of capillary.
Upward surface tension force (lifting force) = Weight of the water column in the

tube (gravity force)

18
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[T S -
2] Lilass b
ndocosd =Zd*hW — h = 22508 "
4 wd
For water and glass: 6 = 0 v
. . . A = Capillary CiCury
Hence the capillary rise of water in the glass tube, ¥ _depression L
Ao Ja ) a2
= — 1 /
h wd . A
In case of mercury thereis a capillary depression as i ki .
S .. o Mercury '
shown in Figure 1.4 and the angle of depression is 0 C dlideion > Allisgion

| Mindscus oomvex |

= 140°. Figure 1.4: The effect of capillary.
The phenomenon of capillary effect can be explained microscopicaly by
considering cohesive forces (the forces between like molecules, such as water and
water) and adhesive forces (the forces between unlike molecules, such as water and
glass). The liquid molecules at the solid-liquid interface are subjected to both
cohesive forces by other liguid molecules and adhesive forces by the molecules of
the solid. The relative magnitudes of these forces determine whether a liquid wets
a solid surface or not. Obviously, the water molecules are more strongly attracted
to the glass molecules than they are to other water molecules, and thus water tends
to rise along the glass surface. The opposite occurs for mercury, which causes the
liguid surface near the glass wall to be suppressed (Figure 1.5).

Meniscus—-l
|
I
HI__T_
L Menlscus--.ll
1 | l ] | /-hju—
|I <
Water Mercury x

Figure 1.5: The capillary rise of water and the capillary fall of mercury in a small-diameter
glass tube.
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Example 1.5:

A 0.03-in-diameter glass tube is inserted into kerosene at 68°F. The contact angle
of kerosene with a glass surface is 26°. Determine the capillary rise of kerosene in
the tube. — ~—0.03in
Solution: T

h

The surface tension of kerosene-glass at 68°F (20 0.028 X -
Kerosene

0.068) = 0.00192 Ibf/ft. The density of kerosene at 68° Fis

o = 51.2 Ibm/ft*. The contact angle of kerosene with the

glass surfaceis given to be 26.

20 cosg 2(0.00192 Ibf/ft)(cos26°) (32.2 Ibm- fi/s® |
pER (51.2 Tonvft™ )(32.2 fi/s)(0.015 /12 ft)| 1bf )

=(0.0539 £t =0.630 in

h=

|
",

Example 1.6:

In order to form a stream of bubbles, air is introduced through a nozzle into a tank
of water at 20 °C. If the process requires 3 mm diameter bubbles to be formed, by
how much the air pressure at the nozzle must exceed that of the surrounding water?
What would be the absolute pressure inside the bubble if the surrounding water is
at 100.3 kN/m?? Take surface tension of water at 20 °C= 0.0735 N/m.

Solution:
The excess pressure intensity of air over that of surrounding water,

40 _ 4X0.0735
AP = — =

R 1.5x1073

Absolute pressure inside the bubble,
Pups = AP + Py = 196 X 1073 + 100.3 = 100.496 kN /m?

N

20 The end of Chapter One



JR University of Anbar
3 'J \ J,u College of Engineering

:
L .

COLLEGE OF ENGINEERDNG Mechanical Engineering Dept.

Fluid Mechanics-1I
(ME 2301)

Handout Lecturesfor Year Two
Chapter Two/ Pressure Distribution in a
Fluid

Course Tutor

Prof. Dr. Waleed M. Abed

Ramadi, 2021-2022



Pressure Distribution in a Fluid Chapter: Two

Chapter Two
Pressure Distribution in a Fluid

2.1. Introduction

In static fluids, no relative motion between the fluids particles exists, therefore no
velocity gradients in the fluid exist, and hence no "shear stresses' exist. Only
"normal stresses (pressure)” exist. In this chapter, the pressure distribution in a
static fluid and its effects on surfaces and bodies submerged or floating in it will be
Investigated.

Pressure is defined as a normal force exerted by a fluid per unit area. Since
pressure is defined as force per unit area, it has the unit of newtons per square
meter (N/m?), which is called apascal (Pa) [N/m?= Pa, Ibf/ft*= Psf, Ibf/in® = Psi].

1 bar = 10° Pa= 0.1 MPa = 100 kPa

1 atm = 101,325 Pa = 101.325 kPa = 1.01325 bars

2.2. Absolute, gage, and vacuum pressures

The actual pressure at a given position is called the absolute pressure, and it is
measured relative to absolute vacuum (i.e., absolute zero pressure). Most pressure-
measuring devices, however, are calibrated to read zero in the atmosphere (Figure
2.1), and so they indicate the difference between the absol ute pressure and the local
atmospheric pressure. This difference is called the gage pressure. Pressures below
atmospheric pressure are called vacuum pressures and are measured by vacuum
gages that indicate the difference between the atmospheric pressure and the
absolute pressure. Absolute, gage, and vacuum pressures are al positive quantities
and are related to each other by
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Pgage = Paps — Patm 2.1
Pyac = Patm — Paps 2.2
I
P
_________________ = P e s
s
T I-I.'IJ'.
w
[
I“.l:lr FI:"IT
rl.:".'\-
Absoluly - i Absolute
VatuUm LR MaELUMm

Figure 2.1: Absolute, gage, and vacuum pressures.

Example 2.1

A vacuum gage connected to a chamber reads 5.8 ps a a location where the
atmospheric pressureis 14.5 psi. Determine the absolute pressure in the chamber.
Solution:

Pass = Pam - Puac = 14.5- 5.8 =8.7 psi

Note that the local value of the atmospheric pressure is used when determining the absolute
pressure.
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2.3. Pressureat aPoint

Pressure is the compressive force per unit area, and it gives the impression of
being a vector. However, pressure at any point in a fluid is the same in all
directions. That is, it has magnitude but not a specific direction, and thus it is a
scalar quantity. This can be demonstrated by considering a small wedge-shaped
fluid element of unit length (into the page) in equilibrium, as shown in Figure 2.2.
The mean pressures at the three surfaces are Py, P,, and P,,, and the force acting on
a surface is the product of mean pressure and the surface areca. From Newton’s

second law, aforce balance in the x- and z-directions gives

x ':LI|'-|

.".l
f
Py L
A [ &
e T _'ll V -'I :
R ',-" Element weight:
Ar B 4 W :j.ll',:|+.'ln'_"|l. Az)
Iy — e T T
+___.- '\-\._\__\_r-\--
L H |' T
] B
Width & into paper

P
Figure 2.2: Equilibrium of asmall wedge of fluid at rest.

Y2FE, =ma,=0: P/Az—P,Assinf =0 2.3

YE =ma,=0: P,Ax— P,Ascosf —%pgAxAz =0 24

where p is the density and W = mg = p g Ax Az/ 2 is the weight of the fluid
element. Noting that the wedge is a right triangle, we have Ax = As cos 0 and Az
=As sin §. Substituting these geometric relations and dividing Eq. 2.3 by Az and
Eq. 2.4 by Ax gives
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P-P,=0 2.5
P,-P,-%pgAz=0 2.6

The last term in Eq. 2.6 (Y2 p g Az) drops out as Az = 0 and the wedge becomes
infinitesimal, and thus the fluid element shrinks to a point. Then combining the
results of these two relations gives

Pi=P,=P,=P 2.7

regardless of the angle 6. We can repeat the analysis for an element in the xz-plane
and obtain asimilar result. Thus we conclude that the pressure at a point in a fluid
has the same magnitude in all directions. It can be shown in the absence of shear

forces that this result is applicable to fluids in motion as well asfluids at rest.

2.4. Variation of Pressurewith Depth

Pressure in a fluid increases with depth because

more fluid rests on deeper layers, and the effect of

Lo

=
.rf"‘!-;i

this “extra weight” on a deeper layer is balanced

by an increase in pressure (see Figure 2.3). \

ek

Figure 2.3: The pressure of afluid at rest increases
with depth (as aresult of added weight).

| I | ¥ ¥ q b [ i L] I-‘F#_,r"
|

To obtain arelation for the variation of pressure with depth, consider a rectangular
fluid element of height Az, length Ax, and unit depth (into the page) in equilibrium,
as shown in Figure 2.4. Assuming the density of the fluid p to be constant, a force
balance in the vertical z-direction gives

YE =ma,=0: P,Ax —P,Ax — pgAxAz =0 2.8

where W = mg = pg AX Az is the weight of the fluid element. Dividing by Ax and

rearranging gives
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AP=P,-P; =pgAz=y5Az 2.9

where ys = pg is the specific weight of the fluid. Thus, P

we conclude that the pressure difference between two : (EEa]
points in a constant density fluid is proportional to the T

vertical distance Az between the points and the density p Iw __!1
of the fluid.

Figure 2.4: Free-body diagram of arectangular
fluid element in equilibrium.

dlin

If wetake point (1) to be at the free surface of aliquid open @

to the atmosphere (Figure 2.5), where the pressure is the

atmospheric pressure P4, then the pressure at a depth h

from the free surface becomes

AR , "
2] 'y = Eygm + PG

Figure 2.5: Pressurein aliquid at rest increases
linearly with distance from the free surface.

The pressure difference between points (1) and (2) can be determined by integration
to be

AP = P,— P =—[’pgdz 211

For constant density and constant gravitational acceleration, this relation reducesto
Equation 2.9, as expected. A consequence of the pressure in a fluid remaining
constant in the horizontal direction is that the pressure applied to a confined fluid

increases the pressure throughout by the same amount. Thisis called Pascal’s law,
after Blaise Pascal (1623-1662).
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We state the following conclusions about a hydrostatic condition:

Pressure in a continuously distributed uniform static fluid varies only with
vertical distance and is independent of the shape of the container. The pressure
Is the same at all points on a given horizontal plane in the fluid. The pressure

increases with depth in the fluid as shown in Figure 2.6.

Alnospheric pressure:

Free surface e : : i -
Water
— / : '.
d \ i / .-"ll g ) i
Depth 1 . | . .-"lr P .
h s £ I|I
\ J / !
4 / \ _~ Mercury
\ / | 1.
\ / / I'
A \ B / o ) D
Depth 2 ® e/ . ! _—-

Figure 2.6: Hydrostatic-pressure distribution. Points a, b, ¢, and d are at equal depths in water
and therefore have identical pressures. Points A, B, and C are also at equal depths in water and
have identical pressures higher than a, b, ¢, and d. Point D has a different pressure from A, B,
and C because it is not connected to them by awater path.

2.5. Pressure Measurements

2.5.1. The Manometer

Manometer is commonly used to measure small and moderate pressure
differences. A manometer mainly consists of a glass or plastic U-tube containing
one or more fluids such as mercury, water, acohol, or oil. To keep the size of the
manometer to a manageable level, heavy fluids such as mercury are used if large
pressure differences are anticipated.

Consider the manometer shown in Figure 2.7 that is used to measure the pressure

in the tank. Since the gravitational effects of gases are negligible, the pressure
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anywhere in the tank and at position 1 has the same value. Furthermore, since

pressure in a fluid does not vary in the horizontal direction within a fluid, the
pressure at point 2 isthe same as the pressure at point 1, P, = P;.
The differential fluid column of height h isin static

equilibrium, and it is open to the atmosphere. Then

the pressure at point 2 is determined directly from Gas
Equation 2.10 to be
7

Figure 2.7: The basic manometer.

where p is the density of the fluid in the tube. Note that the cross-sectional area of
the tube has no effect on the differential height h, and thus the pressure exerted by
the fluid.

Example 2.2

Y im = 26 kka

A manometer is used to measure the pressure in a

tank. The fluid used has a specific gravity of 0.85,

and the manometer column height is 55 cm, as h = &5 cm
Ve

shown in Figure 2.8. If the local atmospheric B

pressure is 96 kPa, determine the absolute pressure

within the tank. S0 = 0.85 \& f/}

Solution: Figure 2.8: Schematic for Example 2.2.
The density of the fluid is obtained by multiplying its specific gravity by the
density of water, which is taken to be 1000 kg/m®:

p = SG (pr20) = (0.85)(1000 kg/m®) = 850 kg/m®

P = Pam + pgh

1IN 3 1 kPa
= G6 kPa + (850 ka/m?)(9.81 m/s){0.55 rril( ( }
i et 1 kg - mvs’ :I 000 Nam®

= 100.6 kFa
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Many engineering problems and some manometers involve multiple immiscible
fluids of different densities stacked on top of each other. Such systems can be
anayzed easily by remembering that

(1) The pressure change across a fluid column of height hisAP = pgh.

(2) Pressure increases downward in a given fluid and decreases upward (i.€., Ppottom
> Piop)-

(3) Two points at the same elevation in a continuous fluid at rest are at the same

pressure, Patm
Fluid 1

For example, the pressure at the bottom of the tank in
Figure 2.9 can be determined by starting at the free
surface where the pressure is P4y, moving downward Fluid 2
until we reach point 1 at the bottom, and setting the

result equal to P;. It gives
™ w1t Fiuid 3

i ]
Pam + paghy + poghy + paghs = Py 2.13 Figure 2.9: In stacked-up fluid
layers, the pressure change across
afluid layer of density p and

Example 2.3 height Ais pgh.
Consider the system shown in Figure 2.10. If achange of 0.7 kPa in the pressure of
air causes the brine-mercury interface in the right column to drop by 5 mm in the
brine level in the right column while the pressure in the brine pipe remains
constant, determine the ratio of A)/A;.

Solution:

Starting with the air pressure (point A) and moving along the tube by adding (as
we go down) or subtracting (as we go up) the pgh terms until we reach the brine
pipe (point B), and setting the result equal to Pg before and after the pressure
change of air give
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_:IE;I'-I'{"}': E.I:I? E B IJI_}“F_E'“.‘I, T Ii.-'l]_]E glr.l]_:g _1 e -l'l'}hrg“hrf =.I.F-.:[‘|

Subtracting,

P - Pa'. s g g
Py — Py + P Ay — P iy =0 — ——==8G, Ak, —SG AR =0
i ) o8 )
where Ahyg and Ah, are the changes in the o
differential mercury and brine column heights, Py
respectively, dueto thedrop in air pressure. ek ——-xscf"ﬁjj
Noting also that the volume of mercury is s s, o
constant, we have A; A hyg e = Az A hiygrigne and 3 -
3G=1355 :
Figure 2.10: Schematic for Example 2.3.

Py — Py =—0.7kPa=-700N/m" = -700 kg/m -5’
Al =0.005m
._"urng = JFng_nE,_m - j"ll"I-F_gl-:fl = Ay, + AR, AL A = AR (1+4,/A )
Substimring.
700 kg/m-s 5
(1000 kg/m* )(9.81 m/'s”)

= [13.56 % 0.005(1+ 4,/4; ) -.1.1x 0.005]m

[t zives

.'i_*'.‘h = ﬂ.1 34

Example 2.4

The water in a tank is pressurized by air, and the pressure is measured by a
multifluid manometer as shown in Figure 2.11. The tank is located on a mountain
at an atitude of 1400 m where the atmospheric pressure is 85.6 kPa. Determine the
air pressure in the tank if hy = 0.1 m, h, = 0.2 m, and hz = 0.35 m. Take the

10
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densities of water, oil, and mercury to be 1000 kg/m® 850 kg/m°®, and 13,600

kg/m®, respectively. ol

Solution: e !
i

Starting with the pressure at point 1 at the air—
water interface, moving along the tube by adding

| PSS, |
I L

or subtracting the rgh terms until we reach point 2,

|

and setting the result equal to Patm since the tube

r-.-'5=rr|_|r'_.; -

i he atmosph \%
S open to the atmosphere gives Figure 2.11: Schematic for Example 2.4.

P + puaer@hi + poighz — F}mercuryghE = Pam
Solving for P, and substituting,
P; = Pam — Puwawer@y — poi@h, + pme:curyghﬂ

= Pam + g[F"mercurth — PwaterM — poirlz)
= 85.6 kPa + (9.81 m/s%)[(13,600 kg/m?)(0.35 m) — (1000 kg/m?)(0.1 m)

. 3 1N )( 1 kPa )
(850 kg/m”)(0.2 m)](1 kg - m/s?/\ 1000 N/m?

= 130 kPa

2.5.2. Atmospheric Pressure Measur ement o

Atmospheric pressure is measured by a device
cadled a barometer; thus, the atmospheric
pressure is often referred to as the barometric h [ h

pressure. Barometer consists of a glass or W= pgnA

|
bath of mercury, see Figure 2.12. "\ ! LB "r
Figure 2.12: The basic barometer. \ Mercury / |
11

Perspex tube with one open and immersed in a
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The Italian Evangelista Torricelli (1608-1647) was the first to conclusively utilize
the basic barometer to measure the atmospheric pressure by writing aforce balance
in the vertical direction gives

Pam = pgh 2.14

A frequently used pressure unit is the standard atmosphere, which is defined as the
pressure produced by a column of mercury 760 mm in height at 0°C (png = 13,595
kg/m®) under standard gravitational acceleration (g = 9.807 m/s?). The standard
atmospheric pressure, for example, is 760 mmHg at 0°C. The unit mmHg is also
called the torr in honor of Torricelli. Therefore, 1 atm = 760 torr and 1 torr = 133.3
Pa.

Example 2.5

Determine the atmospheric pressure at a location where the barometric reading is
740 mm Hg and the gravitational acceleration is g = 9.81 m/s’. Assume the
temperature of mercury to be 10°C, at which its density is 13,570 kg/m°.

Solution:

Pam = J ’gh

1N 1 kPa
[1 3,5?'0 kgﬁm }(981 m/s ]([}?4 m}(-l kg ; mmz) (1{]{][} me'?)

= 98.5 kPa

2.5.3. Inclined Manometer

The inclined manometer is frequently used for measuring small difference in gage
pressure. It is adjusted to read zero, by moving the inclined scale. Since the
inclined tube requires a greater displacement of the meniscus for given pressure

difference than avertical tube, it offers greater accuracy in reading the scale.

12
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Example 2.6

For the Figure 2.13, determine the pressure GL(\
difference between pipes A and B. Take
Z,= 045 m, Z,= 0.225 m, Z;= 0.675 m,
Z,= 03 m. Neglect pressure due to

pressure of air column in the inclined tube.
Solution:

Z
Starting from point A, the governing | 3 Z,
Manometric equationis. B T = ;-
Pa + YwZ1- ¥ (Za+ Z4Sind5°) = Py ¥
Pa- Ps = - ywZ1+ ym(Z3+ Z4Sin45°) Figure 2.13: Schematic for Example 2.6.

= - (1000 x 9.81) x 0.45 + (13600 x 9.81) x (0.675 + 0.3 x sin45°) divided by 1000
=-0.81x 0.45 + 13.6 x 9.81 x (0.675 + 0.3 x sin45°)
= - 4.414 + 118.357= 113.943 kN/m?

13
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2.6. Hydrostatic Forceson Submerged Plane Surfaces

The plane of this surface (normal to Po=Pue P =Pytpaysing
the page) intersects the horizontal e ysihe i -.P,,f"\\
freesurfacewithanangle 9, andwe  * J_: 3 ¥ g N\
take the line of intersection to be " ﬁf: ' N,
the x-axis as shown Figure 2.14. ﬁ‘// ; xlﬁm A Jc. \
W Lt
The absolute pressure above the : g :
", N W

liquid is P, which is the local \ /\./L':,.,h'

: : . CP»” 5 Centroid
atmospheric pressure Pym If the N, Center of pressure

Plane surface =

liquid is open to the amosphere of area A —

(but P, may be different than Pen If Figure 2.14: Hydrostatic force on an inclined plane
the space above the liquid is surface completely submerged in aliquid.
evacuated or pressurized).

Then the absolute pressure at any point onthe plateis P = P, + pgh = P, + pg (ysind)
The resultant hydrostatic force Fr acting on the surface is determined by integrating

the force P dA acting on adifferential area dA over the entire surface area,
Fp=[, PdA=[ (P, +pgysin@)dA=P,A+pgsin6 [ ydA 215
But the first moment of area (f 4 Y dA) isrelated to the y-coordinate of the centroid

(or center) of thesurfaceby y, = % ) 4 Y dA , Substituting,

FrR=(Potpgy.sind) A =(P,+pgh) A=P.A=PyeA 2.16

Fatm Free surface

»

where P, = P, + pgh. is the pressure at the
centroid of the surface, which is equivalent AN
to the average pressure on the surface, and " & ‘ _3,_-!;::7}

he = y. sind is the vertica distance of the | }:ﬁ;f?f#;“ PP g

centroid from the free surface of the liquid =" Centroid
(Figure 2.15).

af surface

14 Figure 2.15: The pressure at the centroid of a surface
is equivaent to the averagepressure on the surface.
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Thus we conclude that:

The magnitude of the resultant force acting on a plane surface of a completely
submerged plate in a homogeneous (constant density) fluid is equal to the
product of the pressure P, at the centroid of the surface and the area A of the
surface (see Figure 2.16).

Y~ Line of action

-
- |

Center of *

pFSRaLES Centroid

of area

Figure 2.16: The resultant force acting on a plane surface is equal to the product of the pressure
at the centroid of the surface and the surface area, and itsline of action passes through the center
of pressure.

The point of intersection of the line of action of the resultant force and the surface
Is the center of pressure. The vertical location of the line of action is determined
by equating the moment of the resultant force to the moment of the distributed

pressure force about the x-axis. It gives

prR=fdeA=jy(P0+pgysin9)dA=P0J ydA+pgsin8]y2 dA
Y A A A
2.17

Or YpFr = PoycA+pgsind Lo 2.18

15
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where yr is the distance of the center of pressure from the x-axis (point O in Figure
2.16) and is the second moment of area (also called the area moment of inertia)
about the x-axis. The second moments of area are widely available for common
shapes in engineering handbooks, but they are usually given about the axes passing
through the centroid of the area.

The second moments of area about two parallel axes are related to each other by
the parallel axistheorem, which in this case is expressed as

Lixo = Lce + ¥2A 2.19

where |y is the second moment of area about the x-axis passing through the
centroid of the area and y. (the y-coordinate of the centroid) is the distance
between the two parallel axes. Substituting the Fg relation from Equation (2.16)
and the |, o relation from Equation (2.19) into Equation (2.18) and solving for yp

gives

Ixx,c
Yo = Ye T ipo/tog sino)la 220

For P, = 0, which is usually the case when the atmospheric pressure is ignored, it

simplifiesto
Ixx,c
Yp = Ye t oA 2.21

Knowing yp, the vertical distance of the center of pressure from the free surface is
determined from hp = yp Sin 4. The |, . values for some common areas are given in
Figure 2.17.

16
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¥ Y y
| = -l_
e
Lz ,"f W R - = =, [
' i ¥ o
b C. [ sl R | ; =5 y
| = T
E .;' ".. R _."I ! 5 s ____--'" .
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Figure 2.17: The centroid and the centroidal moments of inertiafor some common geometries.

Example 2.7

A circular plate 1.5 m diameter is T
submerged in water with its greatest
and least depths below the surface
being 2 m and 0.75 m respectively as
shown in Figure 2.8. Determine: (i)
The total pressure on one face of the

plate. (ii) The position of the centre of

pressure.
Solution:

Figure 2.18: Schematic for Example 2.7.

Free water surface

17
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A= %dz = %1.52 = 1.767 m?

Distance of centre of gravity from free surface
h=SN + GN sin¢
h=0.75+ 0.75 sind

LM _ UM-UL _ 2-0.75

sinf = — = 0.8333
MN MN

h=0.75+ 0.75 x 0.8333=1.375m

1) Total Pressure (P):

Fr=pwgAhc

= 9.81x1000x1.767%x1.375 = 23830 N
=23.830kN

i) The centre of pressure (hy)

n = Ly, cSin?0
P 4ah,

+ h,

m/64%1.54x0.83332
1.767x1.375

h, = + 1.375 = 1446 m

Example 2.8

A tank of oil has a right-triangular panel a 1
5m Oz pr = SN kgdm

near the bottom, as shown in Figure 2.19.

Neglecting Pa, find the (a) Hydrostatic “'*Em_ am

force and (b) The location of pressure - - _;l-"'"%-mm .

LT

11 m

centre on the panel. f /

s ""l_
Figure 2.19: Schematic for Example 2.8. g d T

18
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Solution:

The centroid is one-third up (4 m) and one-third over (2 m) from the lower left corner, as shown.

Theareais
HEm)(12 m) = 36 m”
The moments of inertia ane

bt} (emy12 mp
= — —r 4
K. T 73 2HE m

bib — 200% (6 m)6 m — 2(6 m)}(12 m)*
72 = T

= —72 m*

and I, =

The depth o the centroid 15 ficg = 5 + 4 =9 m: thus the hvdrostatic foree from Eq. (2.44) 18
F = policeA = (800 kg/m 9807 mfs“ )9 mi36 m")
= 2.54 % 10" (kg - m)fs” = 2.54 X 10° N = 2.54 MN At (1)

The position of pressure centre on the panel is given as,

A sinf _ (288 m')sin 307)
i R I Vi
_ _lysin@_ (=72 m’)(sin 30°) ¥
Xer = 77p A O mui¥6m} kL m A5 {1
Example 2.9 Wall
I|".|
The gatein Figure 2.20is 5 ft wide, is hinged E i .
at point B, and rests against a smooth wall at
_ Seawater;
point A. Compute (a) the force on the gate 64 [bfrfL}
due to seawater pressure, (b) the horizontal
force P exerted by thewall at point A, and (c) 15 fi
the reactions at the hinge B.
Gate
Figure 2.20: Schematic for Example 2.9. 6 il
B ¢
¥ f" T
Hinge | 8 g

19
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Solution:
By geometry the gate is 10 ft long from A to B, and its centroid is halfway
between, or at elevation 3 ft above point B. The depth heg isthus [15 - 3 = 12 ft].

The gate areais [5(10) = 50 ft?]. Neglect pa as acting on both sides of the gate. The
hydrostatic force on the gateis

F = pccA = yhecA = (64 1bf/ft?)(12 ft)(50 ft*) = 38,400 Ibf Ans. (a)
/5
First we must find the center of pressure of F. o /
A free-body diagram of the gate is shown in F // I
the Figure. The gate is arectangle, hence / /r
- g
I,=0 and I, = ﬂ -39 '”’I_'J"L""ﬂn g e ?fﬁ “I. .r -108

The distance | from the CG to the CP is given as below since Pais neglected.

5 i
o Lysing _ #17fN00) _ ,
| =—yop =+ hocA (12 (30 ﬂzj—o.ﬁu?n

The distance from point B to force F is thus [10 - | - 5 = 4.583 ft]. Summing

moments counterclockwise about B gives
PLsin # — Fi3 — 1) = P(6 ft) — (38,400 Ibf)(4.583 fi) = 0
P = 29300 Ibf Ans. (b}
With F and P known, the reactions B, and B, are found by summing forces on the

gate - .
S F.=0=B, + Fsin f— P= B, + 38 400(0.6) — 29,300

B, = 6300 b
3 F.=0=8 — Fcos ¢ = B. — 38.400(0.8)
B. = 30,700 Ibf Ans. ()
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2.7. Special Case: Submerged Rectangular Plate

Consider a completely submerged rectangular flat plate of height b and width a

tilted a an angle u from the horizontal and whose top edge is horizontal and is at a
distance s from the free surface along the plane of the plate, as shown in Figure
2.21. The resultant hydrostatic force on the upper surface is equal to the average

pressure, which is the pressure at the midpoint of the surface, times the surface
areaA. That is,

’ 0 Py =
. . r 1_' - o
G . . IJ_I
. | h
g W 3 5
L9
5 ! "III
W v U
|'1‘ 1 - [ i

Fr = (Pg + pgh)ab

e
. e
” _.-"'._ L
:.r s :
; =
-
NN
l
s

| 'hl":;' o I|I ......
..-II. _l__: | 3
_.' ..-" :||-|-1l|l|- 11|||-|-:
=[Py + pgls + b02) sin flab Fi = [P = (s + br2)3ab - a _!
(a) Tilted plate (b) Vertical plate (c) Horizontal plate

Figure 2.21: Hydrostatic force acting on the top surface of a submerged rectangular plate for tilted,
vertical, and horizontal cases.

Tilted rectangular plate: Fr=Pc A =[P, + pg (s+ b/2) sind] ab 2.22

The force acts at a vertical distance of [hp = yp Sind] from the free surface directly

beneath the centroid of the plate where,

b b3
Yp S+E+ [ ba 1/)22

S+E+pg sin 6

]ab_

bZ

b Po
-[S+E+pg sin 6] 12_

I
+

Yp 2.23

b
S+
2
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When the upper edge of the plate is at the free surface and thus s = 0, Equation
2.22 reducesto

Tilted rectangular plate (s=0): Fr =[P, + pg (b sind)/2] ab 2.24
For a completely submerged vertical plate (6 = 90°) whose top edge is horizontal,
the hydrostatic force can be obtained by setting sinf = 1 (see Figure 2.21 (b) for

more details).
Vertical rectangular plate: Fr =[P, + pg (s+ b/2)] ab 2.25
Vertical rectangular plate (s=0): Fr=[P,+ pgh/2] ab 2.26

When the effect of P, is ignored since it acts on both sides of the plate, the
hydrostatic force on a vertical rectangular surface of height b whose top edge is
horizontal and at the free surfaceis [Fr = pgab?/2] acting at a distance of 2b/3 from
the free surface directly beneath the centroid of the plate.

The pressure distribution on a submerged horizontal surface is uniform, and its
magnitude is [P = P, + pgh], where h is the distance of the surface from the free
surface. Therefore, the hydrostatic force acting on a horizontal rectangular surface
IS

Horizontal rectangular plate: Fr =[P, + pgh] ab 2.27

and it acts through the midpoint of the plate (see Figure 2.21 (c) for more details).

Example 2.10:

Free water surlace

A rectangular plate 3 m long and 1 m wide is % t

immersed vertically in water in such away that its 4, /7c
3 msideis pardlel to the water surface andis1 m l l

r
below it as shown in Figure 2.22. Find (a) Total o gp i
pressure on the plate (b) Position of centre of

- h :"III—.'I

pressure.
Figure 2.22: Schematic for Example 2.10.
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Solution:

Width of the plane surface, b =3m

Depth of the plane surface, d = 1m

Area of the plane surface, A= b x d = 3 x 1= 3m®
So,h=1+05=15m

(a) Total pressureforce
P=pgAh,=9.81x%1000 x 3 x 1.5=44140 N=44.14 kN

(b) Centreof pressure, h,

Ixx,c
hp = A_hc + hc
bxd3® 3x13
Lixe =~ =——=025m*
hy, = —=> + 1.5 = 1.556 m
3x1.5
Example 2.11;

A 3-m-high, 6-m-wide rectangular gate is hinged at the =
top edge at A and is restrained by a fixed ridge at B as

shown in Figure 2.23. Determine the hydrostatic force e
exerted on the gate by the 5-m-high water and the st

location of the pressure center.

Solution Figure 2.23: Schematic for Example 2.11.

The average pressure on a surface is the pressure at the centroid (midpoint) of the surface, and
multiplying it by the plate area gives the resultant hydrostatic force on the gate,
Fr=PA=p g hc A

| To00 kg-mis* | S1BKN

The vertical distance of the pressure center from the free surface of water is

= (1000 kg'm” (9.8 my's” 3.5 m)(3=<6m’)

1

TL

ﬁ =3.?1 m

) b .':l'-
-IF =y -4+

2 12s+H'2)

=
2+

B | g

e
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2.8. Hydrostatic forces on submerged curved surfaces

For a submerged curved surface, the determination of the resultant hydrostatic
force is more involved since it typically requires the integration of the pressure
forces that change direction along the curved surface.

The easiest way to determine the resultant hydrostatic force Fr acting on a two-
dimensional curved surface is to determine the horizontal and vertical components
Fn and Fy separately. This is done by considering the free-body diagram of the
liquid block enclosed by the curved surface and the two plane surfaces (one
horizontal and one vertical) passing through the two ends of the curved surface, as
shown in Figure 2.24.

[

Harizantal projectson [
of the curved surface \ & Liquid

. block E |

_ # | F

I % -—
. F, i w L

Wertical projection
af the curved surface

Free-hody diggram
ot the anclosed L
liguid block

o

Figure 2.24: Determination of the hydrostatic force acting on a submerged curved surface.

The weight of the enclosed liquid block of volume V is smply W = pgV, and it
acts downward through the centroid of this volume. Noting that the fluid block is

in static equilibrium, the force balances in the horizontal and vertica directions

give
Horizontal force component on curved surface: Fy =F (2.28)
Vertical force component on curved surface: Fv=FK+W (2.29)
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where the summation [F, + W] is avector addition (i.e., add magnitudes if both act

in the same direction and subtract if they act in opposite directions).

The magnitude of the resultant hydrostatic force acting on the curved surface is,

Fr = (F3 + F?), and the tangent of the angle it makes with the horizontal is
a = F,/Fy. The exact location of the line of action of the resultant force (e.g., its
distance from one of the end points of the curved surface) can be determined by

taking a moment about an appropriate point.

Example 2.12:

A long solid cylinder of radius 0.8 m hinged at point A is used as an automatic
gate, as shown in Figure 2.25. When the water level reaches 5 m, the gate opens by
turning about the hinge at point A. Determine (a) the hydrostatic force acting on
the cylinder and its line of action when the gate opens and (b) the weight of the

cylinder per mlength of the cylinder.

":-'. e

-5 =4.2m
l-__.--'
Gm
- = T,
, N
e F-"ri-!=u.ﬂrn_x \
T — ’ I"_.:r' |
06 m o [
AN / y

=

Figure 2.25: Schematic for Example 2.12 and the free-body diagram of the fluid underneath the cylinder.
Solution:
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Horizontal force on vertica surface:
Fy = F, = Py A= pghe A= pgls + R2)A

(1000 kg/m?)(3.81 ms7)(4.2 + 082 m)(DBm = 1 m](

1kN }
1000 kg + mvst

36.1 kN

Vertical force on horizontal surface (upward):
F:I' - Pe.llrgln'. — I'ql.'lf,\__ﬁl: ,Ll'ﬁhm’:mlﬁl
= (1000 kg/m*)(9.81 ms")}(5 mHO.8 m x 1 m]( 1

1000 kg - nu‘sg_)

= 392 kN

Weight of fluid block per m length (downward):
W = mg = pgV = pg(R? — wR%4)(1 m)

= (1000 kg/m*)(9.81 nv/s) (0.8 m)*(1 — /4)(1 m) (1 000 l: N mz)

= 1.3kN
Therefore, the net upward vertical forceis
Fy=F, —W=2392-13=379kN
Then the magnitude and direction of the hydrostatic force acting on the cylindrical

surface become,

Fr= VF4+Fi= V367 +37.92=523 kN
tant = FyFy = 37.9/36.1=1.05 — 0 =46.4°
Taking a moment about point A at the location of the hinge and equating it to zero
gives

FrRSin 6 — Wey R =0 — Wy = Fgsin 6 = (52.3 kN) sin 46.4° = 37.9 kN

yl
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2.9. Fluidsin rigid-body motion

Many fluids such as milk and gasoline are transported in tankers. In an accelerating
tanker, the fluid rushes to the back, and some initial splashing occurs. But then a
new free surface (usually non-horizontal) is formed, each fluid particle assumes the
same acceleration, and the entire fluid moves like a rigid body. No shear stresses
develop within the fluid body since there is no deformation and thus no change in
shape. Rigid-body motion of a fluid also occurs when the fluid is contained in a
tank that rotates about an axis.

Consider a differential rectangular fluid element of side lengths dx, dy, and dz in
the x-, y-, and z-directions, respectively, with the z-axis being upward in the
vertical direction (see Figure 2.26). Noting that the differential fluid element
behaves like a rigid body, Newton’s second law of motion for this element can be

expressed as
al? dz
Pt ]le{:!'-,r
aF 2 4

e dz

dH dz’
. — —)I:;-: {y
iz 2

Figure 2.26: The surface and body forces acting on a differential fluid element in the vertical direction.

SF =6ém.d (2.30)

where ém = p dV = pdx dy dz is the mass of the fluid element, a is the
acceleration, and SF isthe net force acting on the element.
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Taking the pressure at the center of the element to be P, the pressures at the top
and bottom surfaces of the element can be expressed as P + (0P/0z) dz/2 and P -
(0Ploz) dz/2, respectively. Noting that the pressure force acting on a surface is
egual to the average pressure multiplied by the surface area, the net surface force
acting on the element in the z-direction is the difference between the pressure

forces acting on the bottom and top faces,

8Fs , = (P —EE) dx dy — (P +€%) dxdy = —%dx dy dz

dz 2 (2.31)
Similarly, the net surface forces in the x- and y-directions are
i AP
oFs ;= —_F—xdx dy dz and 8Fs = —? dx dy dz (2.32)
b b i

Substituting into Newton’s second law of motion 6F = ém.d = pdxdydz.d
and canceling dx dy dz, the genera equation of motion for a fluid that acts as a
rigid body (no shear stresses) is determined to be

Rigid-body motion of fluids; VP + pgk = —pd (2.33)

= oP, 0P OP7
Where, VP —al+£] +£k

Resolving the vectors into their components, this relation can be expressed more
explicitly as

oP 0P

oP > i - - '
al+5] +£k+pgk = —p(ayt + ayj + a,k) (2.34)

or, in scalar form in the three orthogonal directions, as

. .. ap aP aP
Accelerating fluids: —— = —pa, 3y = Py, = —p(g + a;) (2.35)

where a,, a,, and a, are accelerationsin the x-, y-, and z-directions, respectively.

28



Pressure Distribution in a Fluid Chapter: Two

Special Case 1: Fluids at Rest

For fluids at rest or moving on a straight path at constant velocity, all components

of acceleration are zero, and the relations in Equation (2.35) reduce to
: LOP _ o 0P _ o dP _
Fluids at rest: Fl 0, oy 0, —=—pg (2.36)

which confirm that, in fluids at rest, the pressure remains constant in any horizontal
direction (P is independent of x and y) and varies only in the vertical direction as a
result of gravity [and thus P = P(2)]. These relations are applicable for both
compressible and incompressible fluids.

Special Case 2: Free Fall of a Fluid Body

A freely falling body accelerates under the influence of gravity. When the air

resistance is negligible, the acceleration of the body equals the gravitational
acceleration, and acceleration in any horizontal direction is zero. Therefore, a,=
a,=0and a, = —g. Then the equations of motion for accelerating fluids (Equation

2.35) reduce to

Free-falling fluids: Z—z = Z—i = ‘;—IZJ =0 P= Constant

Therefore, in a frame of reference moving with the fluid, it behaves like it isin an
environment with zero gravity. Also, the gage pressure in a drop of liquid in free
fall is zero throughout. (Actually, the gage pressure is slightly above zero due to
surface tension, which holds the drop intact.)

When the direction of motion is reversed and the fluid is forced to accelerate
vertically with [a, = + g] by placing the fluid container in an elevator or a space
vehicle propelled upward by a rocket engine, the pressure gradient in the z-
directionisdP/dz = —2pg. Therefore, the pressure difference across afluid layer

now doubles relative to the stationary fluid case (see Figure 2.27).
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r 3

Py Py
L] Ll
h| Liquid, g h| Liguid, p
'S "
j- Pa=Fy tPy = Py = 2pgh
i
a, =—{ A,=14

(a) Freefdl of aliquid (b) Upward acceleration of aliquid with & = +g
Figure 2.27: The effect of acceleration on the pressure of aliquid during free fall and upward
acceleration.

2.10. Acceleration on a Straight Path

Consider a container partially filled with a liquid. The container is moving on a
straight path with a constant acceleration. We take the projection of the path of
motion on the horizontal plane to be the x-axis, and the projection on the vertical

plane to be the z-axis, as shown in Figure 2.28. The x- and z-components of

acceleration are a, and a,. There is no movement in the y-direction, and thus the

acceleration in that direction is zero, a, = 0. Then the equations of motion for

|9

accelerating fluids (Equation 2.35) reduce to

Free
surface

Figure 2.28: Rigid-body motion of a _‘I,,;fmﬂﬁ
liquid in alinearly accelerating tank.

= o

X

My Liquid

b
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oP oP opP

oo = —Pay 5, =0 , and 5, = —plgtay)

Therefore, pressure is independent of y. Then the total differential of P = P(x, 2),
whichis (dP/0dx)dx + (0P /0z)dz, becomes

dP = —pa,dx — p(g + a,)dz (2.37)

For p = constant, the pressure difference between two points 1 and 2 in the fluid is
determined by integration to be

P, — Py = —pay(x; — x1) — p(g + a,)(z; — z1) (2.38)
Taking point 1 to be the origin (x = 0, z= 0) where the pressure is P, and point 2 to
be any point in the fluid (no subscript), the pressure distribution can be expressed
as,

Pressurevariation: P = P, — pa,x — p(g + a,)z (2.39)

The vertica rise (or drop) of the free surface at point 2 relative to point 1 can be
determined by choosing both 1 and 2 on the free surface (so that P, = P,), and
solving Equation (2.38) for (z, - z;) as shown Figure 2.29,

= (xy — x4) (2.40)

Vertical rise of surface: Az = z;, — 254 = ~ra
Z

a, ~
where zs is the z-coordinate of the liquid’s free I_.. f -

rrrrrr

surface. The equation for surfaces of constant =

1 - surface
L= -_u.

pressure, called isobars, is obtained from

AL = .i',_-. E

Equation 2.37 by setting dP = 0 and replacing ‘
Z by Zspa, Which is the z-coordinate (the
vertical distance) of the surface as a function

of x. It gives Constant #

Surfaces of constant pressure: e
Zisobar _ _ _%x  _ Constant Figure 2.29: Lines of constant pressure
ax g+a; (which are the projections of the surfaces
of constant pressure on the xz- plane) in a
linearly accelerating liquid, and the

vertical rise.
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Thus we conclude that the isobars (including the free surface) in an incompressible
fluid with constant acceleration in linear motion are parallel surfaces whose slope

inthe xz - planeis

Slope of isobars: Slope = 2Zisobar — _ % — _ a9 (2.41)

dx gta,

Example 2.13:
An 80-cm-high fish tank of cross section 2 m x 0.6 m that is initialy filled with
water is to be transported on the back of a truck (see Figure 2.30). The truck
accelerates from O to 90 km/h in 10 s. If it is desired that no water spills during
acceleration determine the allowable initial water height in the tank. Would you
recommend the tank to be aligned with the long or short side parallel to the
direction of motion?

Solution: e

We take the x-axis to be the direction of —"~1-E .

—_— e —— e —

motion, the z-axis to be the upward vertical -
direction, and the origin to be the lower left Water h 80 cm
corner of the tank. Noting that the truck goes i
from O to 90 km/h in 10 s, the acceleration of
thetruck is 2 - 2
AV (30— Oy kmAy 1ms ) . b
= s 105 (E_t'. km/h J\ = 2.2 M Figure 2.30: Schematic for Example 2.13.

The tangent of the angle the free surface makes with the horizontal is

a, 2.5
=————=(};255 and thus # = 14.37)
g+a, 981+0 I '
The maximum vertical rise of the free surface occurs at the back of the tank, and
the vertical mid-plane experiences no rise or drop during acceleration since it is a
plane of symmetry. Then the vertical rise at the back of the tank relative to the
mid-plane for the two possible orientations becomes

32
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Casa 1: The long side is parallel to the direction of maotion

Az, = (b/2) tan # = [{2 m)/2] X 0.255 = 0.265 m = 25.5 cm

Case 2: The short side is parallel to the direction of motion:
Az = (b2) tan # = (06 m)/2] X 0.255 = 0076 m = 7.6 cm

2.11. Rotation in a Cylindrical Container

We know from experience that when a glass filled with water is rotated about its
axis, the fluid is forced outward as a result of the so-called centrifugal force, and
the free surface of the liquid becomes concave. This is known as the forced vortex
motion.

Consider avertical cylindrical container partialy filled with aliquid. The container
IS now rotated about its axis at a constant angular velocity of w, as shown in Figure
2.31. After initial transients, the liquid will move as arigid body together with the
container. There is no deformation, and thus there can be no shear stress, and

every fluid particle in the container moves with the same angular velocity.

Axis ol
Fotation

The centripetal acceleration of a fluid particle rotating P
with a constant angular velocity of w at adistance r from “
the axis of rotation is (re?) and is directed radially toward t,“"-‘ -

the axis of rotation (negative r-direction). That is, a, = -r | o S

w®. Thereis symmetry about the z-axis, which is the axis
of rotation, and thus there is no 9 dependence. Then P =

P(r, z) and ay = 0. Also, a, = 0 since there is no motion in

the z-direction. Then the equations of motion for rotating "-]
fluids (Equation 2.35) reduce to L

TR
4] |
Figure 2.31: Rigid-body motion of aliquid
in arotating vertical cylindrical container.
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5 B e 2.42
T ot S0, ad - —pg (242
ar aH iz

Then the total differential of P = P(r, 2), whichisdP = (dP/dr)dr + (0P /0z)dz,
becomes

dP = prw?dr — pgdz (2.43)

The equation for surfaces of constant pressure is obtained by setting dP = 0 and
replacing z by zspar, Which is the z-value (the vertical distance) of the surface as a

function of r. It gives

2

dZisobar — rw (244)
dar g

Integrating, the equation for the surfaces of constant pressure is determined to be

2,,2

Tr“w

Surfaces of constant pressure: zjsopar = E7E + C; (2.45)
E ""&I ik
os i
which is the equation of a parabola. Thus we conclude ‘ :
Fes : |
that the surfaces of constant pressure, including the free | surface | 4 5
. . . . " | —I'lsn T
surface, are paraboloids of revolution as shown in Figure | . _i "l P
(2.32). o i
The value of the integration constant C; is different for ‘.L' P,
different paraboloids of constant pressure (i.e, for | — _ 1: = |5 e
: i - P
different isobars). For the free surface, setting r = 0 in = '
L _Ny~

Equation 2.45 gives zgha(0) = C; = h,, where h; is the - i
Figure 2.32: Surfaces of constant

distance of the free surface from the bottom of the oressure in a rotating liquid.

container along the axis of rotation (Figure 2.32). Then

the equation for the free surface becomes

2,.2

rTw

+ h, (2.46)

o =
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where z is the distance of the free surface from the bottom of the container at
radius r. The underlying assumption in this analysisis that there is sufficient liquid
in the container so that the entire bottom surface remains covered with liquid.
The volume of a cylindrical shell element of radius r, height z,, and thickness dr is
dV = 2nrz,dr. Then the volume of the paraboloid formed by the free surfaceis

R 2

- .
V= 2y dr = 2m ’ (—r2 - hc)r dr = rrR2<
29

r=0 ‘r=0

R
o h;) (2.47)

Since mass is conserved and density is constant, this volume must be equal to the
original volume of the fluid in the container, whichis[ V = wr?h,].

where h, isthe original height of the fluid in the container with no rotation. Setting
these two volumes equal to each other, the height of the fluid along the centerline

of the cylindrical container becomes

R2w?
49

h.=h, —
Then the equation of the free surface becomes
Freesurface: z;, = h, — ‘:—;(Rz —21?) (2.46)

The maximum vertical height occurs at the edge where r = R, and the maximum
height difference between the edge and the center of the free surface is determined

by evaluating zsat r = Rand also at r = 0, and taking their difference,
Maximum height difference: Azg . = zs(R) — z5(0) = ;’—;RZ (2.47)

When p = constant, the pressure difference between two points 1 and 2 in the fluid

is determined by integrating [dP=p r w® dr - p g dz]. Thisyields

2
P, — Py == (rf —12) — pg(z; — 71) (2.48)
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Taking point 1 to be the origin (r = 0, z= 0) where the pressure is P, and point 2 to
be any point in the fluid (no subscript), the pressure distribution can be expressed

as

Pressurevariation: P =P, + pTwzrz — pgz (2.49)

In any horizontal plane, the pressure difference between the center and edge of the
container of radius Ris [AP = pw°R?/2].

Example 2.14:

A 20-cm-diameter, 60-cm-high vertical cylindrical container, shown in Figure
2.33, is partidly filled with 50-cm-high liquid whose density is 850 kg/m>. Now
the cylinder is rotated at a constant speed. Determine the rotational speed at which

the liquid will start spilling from the edges of the container. Y
Solution: ,
Fro !
Taking the center of the bottom surface of the rotating | =uface -
vertical cylinder asthe origin (r = 0, z= 0), the equation for ';"77_{%""_' f
the free surface of theliquid is given as i :
|
2 | My
- U e Ak |
Ze =Ny 0 (R°— 2r<) i
] :
Then the vertical height of the liquid at the edge of the I !
container wherer = R becomes | .
s i
L R Figure 2.33: Schematic for
ZR) = ho + = Example 2.14.

where h, = 0.5 misthe original height of the liquid before rotation. Just before the
liquid starts spilling, the height of the liquid at the edge of the container equals the
height of the container, and thus zs (R) = 0.6 m. Solving the last equation for v and
substituting, the maximum rotational speed of the container is determined to be

dglz,(R] — hel  /4(2.81m 57)[(0.6 — 0.5) m)
A R N (0.1 my*

= 19.8 rad's

; 19.8rads./ 605
P i e ————-——---J-(—---_— = 189 rpm
2 27 radfrev 1 min/

The end of Chapter Two
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Chapter Three
Fluid Flow Concepts

3.1Definitions and Concepts

Fluid kinematics is a branch of “Fluid mechanics” which deals with the study of
velocity and acceleration of the particles of fluids in motion and their distribution
In space without considering any force or energy involved. The motion of fluid can
be described fully by an expression describing the location of a fluid particle in
space at different times thus enabling determination of the magnitude and direction

of velocity and acceleration in the flow field at any instant of time.

Velocity (V): It isthe time rate of change of displacement of fluid particles. Itisa
vector quantity, and the Cartesian vector form of avelocity field which variesin
Space:

VzV(x,y,z) N\ I
|
I7=ui+vj+wk :
|
L |
ac > (3.1) i
_ 4y 1 U, Ay
ot —
_az
W=a J

Acceleration (a): It isthe time rate of change of velocity vector.
To write Newton’s second law for an infinitesimal fluid system, we need to
calculate the acceleration vector field a of the flow. Thus we compute the total

time derivative of the velocity vector:
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a=d(x,y,z)

a_d?_d]—/»(x Z)_E)uax ovdy , ow oz
T dt dt WZ) = 5ot dy 9t = 9z ot
- ou ov ow
Th =—=u— — —
us, a p +v 2y + p
> _du _  du n vau n ou (32)
X4t ox a 9z
> av ov ov ov
y dt ox T ady T 0z
> dw ow ow ow
—=u—+v—+w—
z dt dx dy 9z

Therefore, d = a,i + ayj + azk

Streamlines (S.L.):

A streamline is a curve that is everywhere tangent to the instantaneous local
velocity vector.

It isan imaginary line or curve drawn in the fluid flow such that the tangent drawn

at any point of it indicates the direction of velocity (17) at that point. Since the
velocity vector has a zero component normal to streamline, there can be no flow
across a streamline at any point, see Figure (3.1). Streamlines indicate the direction
of motion in various sections of fluid flow.

Point(x + dx. y +dy)

X ™, i ]

Figure 3.1: For two-dimensiona flow in the xy-plane, arc length d7 = (dx, dy) aong a streamline is
everywhere tangent to the local instantaneous velocity vector V= (4 .
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3.2Types and Classification of Flow

Internal and Exter nal Flow:

Internal Flow is bounded by a wall (surface) I =
: [ o —= ~» | \J
around all the circumference of flow. Examples N: . T\’
| e |
are pipe or duct flows, flows between turbine or Vi =" |® .*'I
compressor or pump blades see Figure (3.2). Figure 3.2: Interna flow (tube flow).
Relative
_ velocities
External Flow is bounded by a wall (surface) of fluid layers
from one side and free at other sides. Examples — =~
- —*1 Zero
are flow over aflat plate, over airfoil, over acar, — 0,99V ——| velocity
> T atthe
over airplane fuselage, see Fig. (3.3). —_ 8| (= surface

Figure 3.3: Externa flow (plate flow).
3.3Steady and Unsteady Flow
Steady Flow none of the flow and fluid variables such as, velocity, acceleration,
density....., vary with time.
Unsteady Flow in this kind of flow any one of the flow variables changes with

time.

Steady Flow: % =0

Unsteady Flow: % +0

The terms steady and uniform are used frequently in engineering, and thus it is
important to have a clear understanding of their meanings. The term steady implies
no change at a point with time. The opposite of steady is unsteady. The term
uniform implies no change with location over a specified region. The terms
unsteady and transient are often used interchangeably, but these terms are not
synonyms. In fluid mechanics, unsteady is the most genera term that applies to
any flow that is not steady, but transient is typically used for devel oping flows.

4
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3.4 Uniform and Non-uniform Flow
Uniform Flow velocity vector (17) remains the same at all sections of the flow.

Non-uniform Flow velocity vector (17) changes from section to sections of the

flow.

Uniform flow: v _ 0
ds

Non-uniform flow: Z—: + 0, where sisthe space.

3.5 One-, Two-, and Three-Dimensional Flows

A flow field is best characterized by the velocity distribution, and thus a flow is
said to be one-, two-, or three-dimensional if the flow velocity varies in one, two,
or three primary dimensions, respectively. A typical fluid flow involves a three-
dimensional geometry, and the velocity may vary in al three dimensions,
rendering the flow three-dimensional [V= (X, y, 2) in rectangular or V= (r, 8, 2) in
cylindrical coordinates]. However, the variation of velocity in certain directions
can be small relative to the variation in other directions and can be ignored with
negligible error. In such cases, the flow can be modeled conveniently as being one-

or two-dimensional, which is easier to analyze.

3.6 Viscous (Real) and Non-Viscous (Ideal) Flow

Viscous (Real) Flow effects of viscosity exist and cause reduction of velocity
inside the boundary layer (B.L.)

Non-Viscous (Inviscid, Ideal) effects of viscosity are absent outside the (B.L.),
see Figure (3.4).

LI, Non-Viscous (I deal)

——i I In.]'__'l.: n'i'lu_'-|.|:||_|.|_-':. |-.|_'- =l

fiee stremm ﬂf saeqasemsprmasess i
..... PR P L ] | |:.IT'-; i
;l_'l-']i;"":"' 7' Viscous (Real) |

Figure 3.4: Schematic of boundary layer flow over aflat plate.
5
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3.7Compressible and Incompressible Flow

A flow is classified as being compressible or incompressible, depending on the
level of variation of density during flow. Incompressibility is an approximation,
and a flow is said to be incompressible if the density remains nearly constant
throughout. Therefore, the volume of every portion of fluid remains unchanged
over the course of its motion when the flow (or the fluid) isincompressible.

I ncompressible Flow the flow in which the density (p) is assumed constant (p =

constant). Examples are flow of liquids and gases with low velocities (M < 0.3).

Compressible Flow the flow in which the density (p) is not constant, but varies

with pressure and temperature. Examples are gas flow and specia types of liquid
flow (such as water hammer phenomena).

The densities of liquids are essentially constant, and thus the flow of liquids is
typicaly incompressible. Therefore, liquids are usualy referred to as
incompressible substances. A pressure of 210 atm, for example, causes the density
of liquid water at 1 atm to change by just 1%. Gases, on the other hand, are highly
compressible. A pressure change of just 0.01 atm, for example, causes a change of
1% in the density of atmospheric air.

When analyzing rockets, spacecraft, and other systems that involve high-speed gas
flows, the flow speed is often expressed in terms of the dimensionless Mach

number defined as,

Ma =

Speed of flow _ % (3.3)

Speed of sound -
where c is the speed of sound whose value is 346 m/sin air at room temperature at

sealevel. A flow is called sonic when Ma = 1, subsonic when Ma < 1, supersonic

when Ma > 1, and hypersonic when Ma >> 1.
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3.8 Rate of flow or discharge

Rate of flow (or discharge) is defined as the quantity of aliquid flowing per second
through a section of pipe or a channdl. It is generally denoted by (Q). Let us
consider aliquid flowing through a pipe.

Discharge, Q = Area x Average velocity = A x V

Where, A is the area of cross-section of the pipe, and V is the average velocity of
the liquid.

If areaisin m? and velocity isin m/s, then the discharge, m*/s.

Volume Flow Rate (Q) is the volume rate of fluid passing a section in a certain
fluid flow.

Mass Flow Rate (r) is the mass rate of fluid passing a section in a certain fluid
flow.

Mass Flow Rate, i1 = density x Areax Averagevelocity =p x AxV=p xQ
Example 3.1:

The diameters of a pipe at the sections (1)-(1) and (2)-(2) are 200 mm and 300 mm
respectively asillustrated in Figure 3.5. If the velocity of water flowing through the
pipe at section (1)-(1) is4 Vs, find: (i) Discharge through the pipe. (i) Velocity of
water at section (2)-(2).

Solution: @ )
Diameter of the pipe at section (1)-(1). - ol
D, = 200 mun = (.2 m » |0 = 200 mim -
F im
Areg, 4, = E;_’f = — % 0.2° =0.0314 m° y
A 4 (1)
Velocity, F, = 4 m's
e |} b
Diameter of the pipe at secrion 2-2. Figure 3.5: Schematic of fluid flow
0. = 300 mm through the pipe.
Area 4, = —DF = Zx 03" =0.0707 m’
' : A 4 4, F, = A,V,, we have
2 = 4,F,. we have: p— P _ 003144
O = 0.0314 - 4=0.1256 m’/s 24 007

= 1.77 mv's { Ans.)
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3.9 System and control volume

A system is defined as a quantity of matter or aregionin SURROUNDINGS
space chosen for study. The mass or region outside the

systemis called the surroundings. The real or imaginary

surface that separates the system from its surroundings

Is called the boundary (see Figure 3.6). The boundary of A

P

a system can be fixed or movable. BOUNDARY
Figure 3.6: Schematic of System,
surroundings, and boundary.

All the laws of mechanics are written for a system, which is defined as an arbitrary
quantity of mass of fixed identity. Everything external to this system is denoted by
the term surroundings, and the system is separated from its surroundings by its
boundaries. The laws of mechanics then state what happens when there is an
Interaction between the system and its surroundings.

The system is a fixed quantity of mass, denoted by m. Thus the mass of the system
is conserved and does not change. Thisis alaw of mechanics and has avery simple

mathematical form, called conservation of mass:

Mgyse = const or vl 0

Control volume (C.V.) is a fixed region in the space bounded by the control
surface (C.S.). The control volume (C.V.) can exchange both mass and energy with
the surrounding.

A fluid dynamic system can be analyzed using acontrol volume, which is an
imaginary surface enclosing a volume of interest. The control volume can be fixed
or moving, and it can be rigid or deformable. Thus, we will have to write the most
genera case of the laws of mechanics to deal with control volumes.

System approach is usualy used in solid mechanics, where the body is clearly

identified and can be followed during its motion. In fluid mechanics, a" System" of
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fluid cannot be easily followed during its motion, since its boundaries are not clear.
Instead, a “Control Volume" approach is used, where a fixed volume specified in
the fluid is considered and the changes in this C.V. due to flow of fluid system
through it is studied.

ALETIN hl |'-'!'.-'i'-,l'll'll.:| I.-I.
\‘ jian #
\‘ i ) Fimim
= %
\ %
I i
I Control volume i
= &
il #
|.-|. = . ay ﬂ.-l'
outwargd N e o i \
il -I e "
' A
Figure 3.7: Theintegra of [bpV.7dA] over the control "
surface gives the net amount of the property B flowing Mass
out of the control volume (into the control volume if it leaving

IS negative) per unit time.
Bret = Bout = Bin - | bV - dA
5

3.10 Conservation of Mass Principle

The conservation of mass principle for a control volume can be expressed as. The
net mass transfer to or from a control volume during atime interval At is equal to
the net change (increase or decrease) in the total mass within the control volume
during At. That is,

(' | otal mass r+n'rn5rmg) ( Total mass leaving' ( Met change in mass j
. the CV during At , the CV during At J within the CV during At

Or, my, —myy = Amey  (KQ) (3.4)
It can also be expressed in rate form as,
Min — Moy = dmey /dt (kg/s) (3.5)
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where m;,, and m,,; are the total rates of mass flow into and out of the control

volume, and dm. /dt is the rate of change of mass within the control volume
boundaries. Equations 3.4 and 3.5 are often referred to as the mass balance and are
applicable to any control volume undergoing any kind of process.

Consider a control volume of arbitrary shape, as shown in Figure 3.8. The mass of
a differential volume dV within the control volume is dm= pdV. The total mass

within the control volume at any instant in time t is determined by integration to be

Total masswithinthe C.V.: _amE
s 77 \
Mey = va'D av (36) 'I dV
Then the time rate of change of the : e
- i dm
amount of mass within the control |
!
volume can be expressed as l, Control g
Rate of change of masswithinthe C.V.: volume (CV) ¢
N
~ /
dmcy _ d T T
= Efcvp dv (3.7) ~ E

Control surface (CS)
Figure 3.8: Thedifferential control volume dVand
Using the definition of mass flow the differential control surface @4 used in the
derivation of the conservation of mass relation.
rate as,

dmCV
dt

S [P dV =T = Ty or =Y =T (38)

There is considerable flexibility in the selection of a control volume when solving
a problem. Severa control volume choices may be correct, but some are more
convenient to work with. A control volume should not introduce any unnecessary
complications. The proper choice of a control volume can make the solution of a
seemingly complicated problem rather easy. A simple rule in selecting a control
volume is to make the control surface normal to flow at all locations where it
crosses fluid flow, whenever possible.

10
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3.11 MassBalancefor Steady-Flow Processes

During a steady-flow process, the total amount of mass contained within a control
volume does not change with time (mcy = constant). Then the conservation of
mass principle requires that the total amount of mass entering a control volume
equal the total amount of mass leaving it. For a garden hose nozzle in steady
operation, for example, the amount of water entering the nozzle per unit time is
equal to the amount of water leaving it per unit time. When dealing with steady-
flow processes, we are not interested in the amount of mass that flows in or out of
a device over time; instead, we are interested in the amount of mass flowing per
unit time, that is, the mass flow rate m. The conservation of mass principle for a
general steady-flow system with multiple inlets and outlets can be expressed in rate
form as (Figure 3.9)

Steady flow: Y, m =Y, m (kg/s) (3.9)
It states that the total rate of mass entering a control volume is equal to the total
rate of mass leaving it.

my = 2 kg's ma = 3 kals

il L

|
|
|
|
: CY
|
|
|
|

n my + II'-"IE- 5 kgfs
Figure 3.9: Conservation of mass principle for atwo-inlet—
one-outlet steady-flow system.

11
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Many engineering devices such as nozzles, diffusers, turbines, compressors, and
pumps involve a single stream (only one inlet and one outlet). For these cases, we
denote the inlet state by the subscript 1 and the outlet state by the subscript 2, and
drop the summation signs. Then Eq. 3.9 reduces, for single-stream steady-flow
systems, to

Steady flow (singlestream): m, =m, =  p,V;A; =p,V,A, (3.10)
Special Case: Incompressible Flow

The conservation of mass relations can be simplified even further when the fluid is
incompressible, which is usualy the case for liquids. Canceling the density from
both sides of the general steady-flow relation gives

Steady, incompressibleflow: Y,V =Y,V (M9 (3.11)
For single-stream steady-flow systems it becomes

Steady, incompressibleflow (singlestream): V, =V, = V4, = V,A4, (3.12)
It should always be kept in mind that there is no such thing as a “conservation of
volume” principle. Therefore, the volume flow rates into and out of a steady-flow
device may be different. The volume flow rate at the outlet of an air compressor is
much less than that at the inlet even though the mass flow rate of air through the
compressor is constant (Figure 3.10). Thisis due to the higher density of air at the
compressor exit. For steady flow of liquids, however, the volume flow rates, as
well as the mass flow rates, remain constant since liquids are essentialy
iIncompressible (constant-density) substances. Water flow through the nozzle of a

garden hose is an example of the latter case. mg = 2

Figure 3.10: During a steady-flow process, volume flow rates A
are not necessarily conserved athough mass flow rates are. COMpressor

1.4 mitfs

12



Fluid Flow Concepts Chapter: Three
Example 3.2: A garden hose attached with a nozzle is used to fill a 10-gal bucket.

The inner diameter of the hoseis 2 cm, and it reduces to 0.8 cm at the nozzle exit.
If it takes 50 s to fill the bucket with water, determine (a) the volume and mass
flow rates of water through the hose, and (b) the average velocity of water at the

nozzle exit.

SOLUTION A garden hose is used to fill a water bucket. The volume and
mass flow rates of water and the exit velocity are to be determined.
Assumptions 1 Water is an incompressible substance. 2 Flow through the
hose is steady. 3 There Is no waste of water by splashing.

Properties We take the density of w|ater to be 1000 kg/m3 = 1 kg/L.

Analysis (a) Noting that 10 gal of water are discharged in 50 s, the volume
and mass flow rates of water are

v _10gal (3.?854 L
At 50s 1 gal

m = pV = (1kg/L)(0.757 LJs) = 0.757 kg/s
(b) The cross-sectional area of the nozzle exit is

A, = 7r2 = 7(0.4 cm)? = 0.5027 cm? = 0.5027 X 10~ *m?

) = 0.757 L/s

The volume tlow rate through the hose and the nozzle is constant. Then the
average velocity of water at the nozzle exit becomes

L/ 0.757 Lis

Tmd’
) =151 m/s

o

" A, 0.5027 X 10~ *mE (mun [

Example 3.3: A 4-ft-high, 3-ft-diameter cylindrical water tank whose top is open
to the atmosphere is initially filled with water. Now the discharge plug near the
bottom of the tank is pulled out, and a water jet whose diameter is 0.5-in streams
out (see Figure below). The average velocity of the jet isgiven by = \/ﬂ , Where

h is the height of water in the tank measured from the center of the hole (a

13
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variable) and g is the gravitational acceleration. Determine how long it will take
AE

for the water level in the tank to drop to 2 ft from the bc
Solution:

The conservation of mass relation for a control volu
process 1s given In the rate form as

Oy,

During this process no mass enters the control volume
mass flow rate of discharged water can be expressed as

gor = (PVA)os = o/ 200 Ay, (2

where Ay = wD5,/4 is the cross-sectional area of the jet, which is constant.
Moting that the density of water is constant, the mass of water in the tank at
any time Is

My — My =

mc-,‘,r — IJLI"'= P'A!mhh (3)

where A = wDL /4 is the base area of the cylindrical tank. Substituting
Egs. 2 and 3 into the mass balance relation (Eq, 1) gives

d{ A ) plmD2l4) dh
dt dt

—pV2ghA. = — —p\V2gh(7DjM) =

Canceling the densities and other comman terms and separating the vari-
ables give

dt = _ Dian D
Djx \/2gh
Integrating from { = O at which i = h; to t = { at which fr = h; gives
J-ld[= ~ Dik F’" dh e Ve — Vh, (Dmk)?
; D&V 2g %, Vh \ g2 Dyt
Substituting, the time of discharge is determined to be
SR — AR T 120002
= AR ven (3 = '") — 757 s = 12.6 min
Vazz st v 051In

Therefore, half of the tank will be emptied in 12.6 min after the discharge
hole is unplugged.

14
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3.12 TheBernoulli equation

The Bernoulli equation is an approximate relation between pressure, velocity, and
elevation, and is valid in regions of steady, incompressible flow where net
frictional forces are negligible (Figure 3.11). Despite its simplicity, it has proven
to be a very powerful tool in fluid mechanics. In this section, we derive the

Bernoulli equation by applying the conservation of linear momentum principle,
and we demonstrate both its usefulness and its limitations.

Bernoulli equation valid

e e
e \
e
_'____———-—._____‘_"‘:'___vn—.______‘
- —

-
Bernoulli |-'-r|:|:-1‘:i|||1 renl valid

Figure 3.11: The Bernoulli equation is an approximate equation that isvalid
only in inviscid regions of flow where net viscous forces are negligibly small
compared to inertial, gravitational, or pressure forces. Such regions occur

z

Steady flow along a streamline

X
\_~

(P + dP)dA

dz

]
Figure 3.12: Theforces acting on afluid particle along a streamline.

15
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Consider the motion of a fluid particle in a flow field in steady flow described in
detail. Applying Newton’s second law (which is referred to as the conservation of
linear momentum relation in fluid mechanics) in the s-direction on a particle
moving along a streamline gives,

Y. F, = mag (3.13)

In regions of flow where net frictional forces are negligible, the significant forces
acting in the s-direction are the pressure (acting on both sides) and the component
of the weight of the particle in the s-direction (Figure 3.12). Therefore, Equation

3.13 becomes

PdA — (P + dP)dA — W sin 6 = va—;’ (3.14)

Where the acceleration of the particle in the s-direction is [ag, = v%], 0 is the

angle between the normal of the streamline and the vertical z-axis at that point, m
= pV = pdAdsisthe mass, W= mg = pgdAds is the weight of the fluid particle, and
sind = dz/ds. Substituting,

~dPdA — pgdA ds = = pdA dsv=" (3.15)
Canceling dA from each term and simplifying,

—dP — pg dz = pvdv (3.16)
Noting that vdv = 0.5 d(v*) and dividing each term by p gives

%P +-d(v?) + gdz = 0 (3.17)
Integrating
Steady flow: f%P + ']2—2 + gz = constant (along a streamline) (3.18)

since the last two terms are exact differentials. In the case of incompressible flow,

the first term also becomes an exact differential, and itsintegration gives

Steady, incompressible flow: E + "2—2 + gz = constant (3.19)

16
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This is the famous Bernoulli equation, which is commonly used in fluid
mechanics for steady, incompressible flow along a streamline in inviscid regions of
flow. The value of the constant can be evaluated a any point on the streamline
where the pressure, density, velocity, and elevation are known. The Bernoulli

equation can also be written between any two points on the same streamline as
2 2
Steady, incompressible flow: % + % + g9z, = % + V72 + 9z, (3.20)

The Bernoulli equation is obtained from the conservation of momentum for afluid
particle moving along a streamline. It can also be obtained from the first law of
thermodynamics applied to a steady-flow system.

The Bernoulli Equation According to Static, Dynamic, and Stagnation
Pressures

The Bernoulli equation states that the sum of the flow, kinetic, and potential
energies of afluid particle along a streamlineis constant. Therefore, the kinetic and
potential energies of the fluid can be converted to flow energy (and vice versa)
during flow, causing the pressure to change. This phenomenon can be made more

visible by multiplying the Bernoulli equation by the density p,

P+p V; + pgz = constant (along astreamline) (3.21)

Each term in this equation has pressure units, and thus each term represents some
kind of pressure:

v' P is the static pressure (it does not incorporate any dynamic effects); it
represents the actual thermodynamic pressure of the fluid. This is the same
as the pressure used in thermodynamics and property tables.

v’ pV?%2 isthe dynamic pressure; it represents the pressure rise when the fluid

in motion is brought to a stop isentropically.

17
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v’ pgz isthe hydrostatic pressure, which is not pressurein area sense sinceits
value depends on the reference level selected; it accounts for the elevation
effects, i.e., of fluid weight on pressure.

The sum of the static, dynamic, and hydrostatic pressures is called the total
pressure. Therefore, the Bernoulli equation states that the total pressure along a
streamline is constant.

The sum of the static and dynamic pressuresis called the stagnation pressure, and

itisexpressed as

Dynamic
| pressure
Plezometer Stagnation
o pressure, Fy,q
Static p %—i _
pressure, P | |——+ | | —Pitot
tube
£
L /l / — -
Stagnation
point
V- \/ 2(Pyag — P)
o
Figure 3.13: The static, dynamic, and stagnation pressures.
PStagnation =P + p V72 (kpa) (322)

18
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The stagnation pressure represents the pressure at a point where the fluid is brought

to a complete stop isentropically. The static, dynamic, and stagnation pressures are
shown in Figure 3.13. When static and stagnation pressures are measured at a
specified location, the fluid velocity at that location can be calculated from

2(PStagnation_ P)
P

V= (m/s) (3.23)

Example 3.4
Weater is flowing from a hose attached to a water main at 400 kPa gage (Figure
3.14). A child places his thumb to cover most of the hose outlet, causing a thin jet

of high-speed water to emerge. If the hose is held upward, what is the maximum
height that the jet could achieve? 2
Solution: ;

The water height will be maximum under the stated | wste jon
assumptions. The velocity inside the hose is reatively low . Y
(V.= 0) and we take the hose outlet as the reference leve (z,= ‘
0). At the top of the water tragjectory V,= 0, and atmospheric
pressure pertains. Then the Bernoulli equation simplifiesto

0 1 O 0 -

I;.'}1 r I""I$ A = p." I"'I% I : = I'-':lel'.u .
paT2g TY TETx T" T g
S0lving Tor 2 and substituting,
p P Pen Prpe  a00kpa (Wﬂ?ﬂﬂ!ﬁ)(_’_“*u"_’*if )
: & p9 (1000 kg/m¥)(9.81 mis?) | 1 kPa 1N
- 408 m Figure3.14
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Example 3.5:

A large tank open to the atmosphere is filled with water to a height of 5 m from the
outlet tap (Figure 3.15). A tap near the bottom of the tank is now opened, and
water flows out from the smooth and rounded outlet. Determine the water velocity
at the outlet. =

Solution: '
We take point (1) to be at the free surface of water so
that P; = Pam (Open to the atmosphere), V, = 0 (the

tank is large relative to the outlet), and zz =5mand zz
= 0 (we take the reference level at the center of the "™ Water
outlet). Also, P, = Pan (water discharges into the

atmosphere). Then the Bernoulli equation simplifiesto . | Ltﬂ, i

R
-
.\-\-\'-\._ -

b i) ve e .0 : :
P.'] \ i = F:g Ill-'r.‘-' ” V ?
5 .l_ C—"1 - i e 4+ — _|. ?_'1' —t Il — —
& EI.-]

fiLk z, Figure3.15
(2t Bt fFg 29

solving for V5 and substituting,
V, = V2qz, = \/2(9.81 m/s?)(5 m) = 9.9 ms

The relation V = +Zgz is called the Toricelli equation.

Therefore, the water leaves the tank with an initial velocity of 9.9 mi/s.
This is the same velocity that would manifest if a solid were dropped a dis-
tance of 5 m in the absence of air friction drag. (What would the velocity be
if the tap were at the bottom of the tank instead of on the side?)

Example 3.6:

During a trip to the beach (Pym = 1 atm = 101.3 kPa), a car runs out of gasoline,
and it becomes necessary to siphon gas out of the car of a Good Samaritan (Figure
3.16). The siphon is a small-diameter hose, and to start the siphon it is necessary to
insert one siphon end in the full gas tank, fill the hose with gasoline via suction,
and then place the other end in a gas can below the level of the gas tank. The

difference in pressure between point 1 (at the free surface of the gasoline in the

20
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tank) and point 2 (at the outlet of the tube) causes the liquid to flow from the

higher to the lower elevation. Point 2 is located 0.75 m below point 1 in this case,

and point 3 is located 2 m above point 1. The siphon diameter is 5 mm, and

frictional losses in the siphon are to be disregarded. Determine (a) the minimum
time to withdraw 4 L of gasoline from the tank to the can and (b) the pressure at
point 3. The density of gasolineis 750 kg/m®.

Solution: P
(a) We take point 1 to be at the free surface of Gasoline
gasoline in the tank so that P; = Patm (open siphoning
to the atmosphere), V; = 0 (the tank is large i
relative to the tube diameter), and z, = 0
(point 2 is taken as the reference levd).

Also, P, = Patm (gasoline

i L0

"--

l 2 m

P{ Wi/ P{ VT 2 g D4 L
e =—E+t4 ? - == - & - =%
0 29 M3 2g £( [ (G5 ;

| ! i | Lk, .

Solving for V. and substituting, by ) | Geraan
\Vy = V207, = V2(9.81 miSH0.75 m) = 384 mis fJ_ﬁ—'l:j—“—e

The cross-sectional area of the tube and the flow rate of gasoline are l_l: Gas can;

A= =D = w{5x 107 ' m)*4 - 196 x 10 2 m? Figure3.16

V=1A=(384m5)(1.9 x 10 ml) =753x 10 "mis = 00753 Lfs
Then the time needed to siphon 4 L of gasoline becomes
jt=E=L=53.Ts
v 00753 Lis

(&) The pressure at point 3 can be determined by writing the Berpoulll equa-
tion between points 2 and 3. Noting that V, = V., [conservation of mass], z;

- D. -El'ﬂd F.-' - Fﬁ1|-|-
. 0
P, WE P ¥ P P,
£ £ g -—}+.—'§+3_1| » 34
py A Mg MM

Solving for P, and substituting,
I::'] L PII.I'I'- — A

. 2 - N )( 1 kPa ]
= 101.3 kPa — (75 n?)(9.81 mis?)(2.75 .
F it SIS ST ING 7 "U{J kg « mfs®/ 1000 Nim?

&

- 81.1 kPFa
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Example 3.7:

A piezometer and a Pitot tube are tapped into a horizontal water pipe, as shown in
Figure 3.17, to measure static and stagnation (static + dynamic) pressures. For the
indicated water column heights, determine the velocity at the c enter of the pipe.

Solution:
We take points (1) and (2) along the centerline ]

of the pipe, with point (1) directly under the
piezometer and point (2) at the tip of the Pitot
tube. This is a steady flow with straight and

pardlel streamlines, and the gage pressures & e o F:":-f’ /' -V,
. 1} 2 13
points (1) and (2) can be expressed as a @ :
Slagnalion

.H'I
Py = pg(hy + hy) point
Figure 3.17: Schematic for Example
P, = pg(hy |+ h; + hy)

Noting that point (2) is a stagnation point and thus V, = 0 and z; = 7, the
application of the Bernoulli equation between points (1) and (2) gives

P, Vi F‘3+‘u’§fﬂ

; Vi P,—P;
P9 29

+ 7 = =
29 e

-
!

£ -

M 29
Substituting the P, and P, expressions gives
I"ﬁ - F].:" = P-| _ Egl[h'| = hg T hj] - Fg[h1 T h.a_'] _

A | hs

29 pg P

Solving for V; and substituting,

V, = V2gh, = V/2(9.81 m/s)(0.12 m) = 1.53 mi/s
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3.13 Mechanical energy and efficiency
The mechanical energy can be defined as the form of energy that can be converted
to mechanical work completely and directly by an ideal mechanical device such as
an idea turbine. Kinetic and potential energies are the familiar forms of
mechanical energy. Thermal energy is not mechanical energy, however, since it
cannot be converted to work directly and completely (the second law of
thermodynamics).
A pump transfers mechanical energy to a fluid by raising its pressure, and a
turbine extracts mechanical energy from a fluid by dropping its pressure.
Therefore, the pressure of a flowing fluid is also associated with its mechanical
energy.
The steady-flow energy equation on a unit-mass basis can be written conveniently
as amechanical energy balance as,

P, V3 P, V;

S, g1 B U B ISR e (324)
Noting that Wnat, net in= Wnatt, in = Wanatt, out = Whoump = Whursine, the mechanical energy
balance can be written more explicitly as,

P, W ) P, V3§ o o (3.25)

+ 07, + | e
b L | T Yea tuirkeine = T

O g

[ s ' ' itz £

where Wump 1S the mechanical work input (due to the presence of a pump, fan,
compressor, etc.) and Wymine 1S the mechanical work output. When the flow is
incompressible, either absolute or gage pressure can be used for P since Pxn/p
would appear on both sides and would cancel out. €yen, 10ss 1S the total mechanical
power loss, which consists of pump and turbine losses as well as the frictional
losses in the piping network. Multiplying above Equation by the mass flow rate
gives: (P, i P

! i & o iy . L Wl i *
||i'lllllI | 5 1 i:.-::! T -.lll'.'_..ul.! = .|-||.__ | t l:]..'. | Y i T [ S L
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By convention, irreversible pump and turbine losses are treated separately from
irreversible losses due to other components of the piping system. Thus the energy

eguation can be expressed in its most common form in terms of heads as,

T - 1§ 2
|r—'I '|_|I "' Fa '._l'l -
ae T Ak By e, i SRl B
= I'|.-||l|||: : o)

A u F # g |:|l..'|5-||'|'. & G
md 29 P 29

-

| (3.26)

W n 1l."l:'l , 1 'Il.'lll:'l .
pumg, 1 pLmg, u pump* ¥ pumg
where h, =t =P -

_.:|||.*||.- 1] 'L] TI']'-EI rl-_:lg

ered to the fluid by the pump. Because of irreversible losses In the pump,

is{ the useful head deliv-

2 H [ . = .
Ppump, w15 less than W./mg by the factor wgm, Similarly,
Wirbine, e Wiwtine, e Wyt
Nutine.e = ——— = ———— = ————— is the extracted head removed
9 T Murbine! MY

from the fluid by the turbine. Because of irreversible losses in the turbine,
Mirbine, ¢ 15 greater than W..../mg by the factor =, Finally,

h = Eemech loss, piping b EIT!E'I:H loss, piping

: is the irreversible head loss between
[ maq

1 and 2 dueto all components of the piping system other than the pump or turbine.

Example 3.8:

The pump of a water distribution system is powered by a 15-kW electric motor
whose efficiency is 90 percent (see Figure 3.18). The water flow rate through the
pump is 50 L/s. The diameters of the inlet and outlet pipes are the same, and the
elevation difference across the pump is negligible. If the pressures at the inlet and
outlet of the pump are measured to be 100 kPa and 300 kPa (absolute),
respectively, determine (a) the mechanica efficiency of the pump and (b) the
temperature rise of water as it flows through the pump due to the mechanical
inefficiency.

Solution:
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1. The flow is steady and incompressible. Wellek
2. The pump is driven by an external motor so that the :
heat generated by the motor is dissipated to the
atmosphere.

3. The elevation difference between the inlet and
outlet of the pump isnegligible, z; = 2.

4. The inlet and outlet diameters are the same and
thus the inlet and outlet velocities and kinetic energy 10¢ %
correction factors are equal, V; = Va. L |

I kA

(&) The mass flow rate of water through the pump is Figure 3.18

m = pV = (1 kg/L)(50 L/s) = 50 ka/s
The motor draws 15 kW of power and is 90 percent efficient. Thus the mechanical

(shaft) power it deliversto the pumpis

Wpurnp. shaft — TJﬂmlurwr-.IH:‘.:rlc = fﬂgmﬁ 5 kW] = 13.5 kW

To determine the mechanical efficiency of the pump, we need to know the increase

in the mechanical energy of the fluid as it flows through the pump, whichis
AE L 3 -h(P"' v ) i (P' a0 )
mech, Auid = © mach, mat mach.in = f 5 R £ b, 2y ik P i 5 g2y

Where a is the kinetic energy correction factor.
Simplifying it for this case and substituting the given values,

. [Py~ P1) ({ann - 100) hPa)( 1kl )
AE wig = M| — = (50 kgfs =10 kW
FRAINS r”( p BOKISK 000 kg/m® /\1 kPa - m?®

Then the mechanical efficiency of the pump becomes

W ﬁE mach, flui 10 kKW
?Iwmp - W [etrrip, U = ch, Tluid o - {]141 or _}.4 1:,..

pump, shafl W;mmp. sham
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(b) Of the 13.5-kW mechanical power supplied by the pump, only 10 kW is
imparted to the fluid as mechanical energy. The remaining 3.5 kW is converted to

thermal energy due to frictional effects, and this “lost” mechanical energy

manifests itself as a heating effect in the fluid,

Ema;h.ll::sa = l"h‘.'lr.-.rnn.ﬂ'laft = ":"'Ema:rl.ﬂllm =135 -10=35kW

The temperature rise of water due to this mechanica inefficiency is determined

from the thermal energy balance, ~ Emach, loss = miup — H]]- = mcAT.
E, 3.5 kW
AT =—"= o = 0.017°C
mc (50 kgfs)(4.18 kJ/ kg - °C)
Example 3.9:

In a hydroelectric power plant, 100 m*/s of water flows from an elevation of 120 m
to a turbine, where electric power is generated (Figure 3.19). The total irreversible
head loss in the piping system from point 1 to point 2 (excluding the turbine unit)
Is determined to be 35 m. If the overall efficiency of the turbine-generator is 80
percent, estimate the el ectric power output.
Solution The mass flow rate of water through the turbine is

m = p\/ = (1000 kg/m*)(100 m¥s) = 10° kg/s

We take point 2 as the reference level, and thus z. = 0. Also, both points 1
and 2 are open to the atmosphere (P} = P = Py, and the flow velocities
are negligible at both points (V, = V, = Q). Then the energy equation for
steady, incompressible flow reduces to

. \ o s
ITH+ ¥ 4 z +h""-ﬂﬂ— p£+.fir 1I‘!"E+.z fD-'- h + fy —
T LR e el PR T A s = Mhuriane g T 'L
a2y A

hturblrlﬁ-,e St hL

Substituting, the extracted turbine head and the corresponding turbine
power are

i s =0 — . = 120 = 35 =85
1klikg

Toomiz) = FA0KN

Wmm'm‘ o rﬁghlurhﬂe,e = [1'["" I":Q-'Iﬁ-] [9‘51 T'I'lu'ISEHB.r: I'I'I](
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Therefore, a perfect turbine-generator would generate 83,400 kW of electricity

from this resource. The e ectric power generated by the actua unit is

Welemic = -"TlLrI:nine—q-: W!urhine,-: =3 {[}HGHES& M‘U’U’]‘ = 66.7 MW

3
\Hjﬂ'm I3 120 m
h|_ =35m

Generator
Murbine-gen = 80%

Figure3.19
Example 3.10:

Water is pumped from a lower reservoir to a higher reservoir by a pump that
provides 20 kW of useful mechanical power to the water (Figure 3.20). The free
surface of the upper reservoir is 45 m higher than the surface of the lower
reservoir. If the flow rate of water is measured to be 0.03 m®/s, determine the
irreversible head loss of the system and the lost mechanical power during this
process.

Solution:

The mass flow rate of water through the
systemis

i = pW = (1000 kg/m*)(0.03 m*fs) = 30 kg/s

Figure 3.20

i
Cantrol-
27 surface
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We choose points 1 and 2 at the free surfaces of the lower and upper reservoirs,
respectively, and take the surface of the lower reservoir as the reference level (z; =
0). Both points are open to the atmosphere (P, = P, = P4y) and the velocities at

both locations are negligible (V1 = V, = 0). Then the energy equation for steady
incompressible flow for a control volume between 1 and 2 reduces to

B A -
IT](:—'1 + H‘-:T] + Qi Ei) + Wame

J -0 ]
P Vi S o
= “'l(_ll;': Tl T + ‘HEE) + Wintine: + E ecn som

Wpumu = mge; + E mech, loss = Elneﬂl.!'l'.r!ri = wpu-ﬁ_:n — Mz,

Substituting, the lost mechanical power and head loss are determined to be

. ) - 5 1N 1 kW )
E mch 1oss = 20 KW — (30 kagls)(9.81 mis?)(45 m;(1 o mmﬂ)(mm N s

= 6.76 kKW
Noting that the entire mechanical losses are due to frictignal losses in piping

and thus E . e = Emech joss, ining: e irreversible head loss is determined
to be '

hL =

E ot ioss pging 6.76 kW (1 kg - mﬁf) (mn-n N - mis

_ | — 230
filg (30 kg/s)(@.8Tmis) . 1N 1 kW ) "
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Consider a container of height h filled with water, as shown in Figure 3.21, with
the reference level selected at the bottom surface. The gage pressure and the
potential energy per unit mass are, respectively, Pa= 0 and pe,= gh at point A at
the free surface, and Pg= pgh and peg= 0 at point B at the bottom of the container.
An ideal hydraulic turbine would produce the same work per unit mass Wiymine = gh
whether it receives water (or any other fluid with constant density) from the top or
from the bottom of the container. Note that we are also assuming ideal flow (no
irreversible losses) through the pipe leading from the tank to the turbine.
Therefore, the total mechanical energy of water at the bottom is equivaent to that
at the top.

H=0

hel|Ape=gh o |
-f_’ O
M
Wi = Mgh Winax = Mgh
A LA
0 B P-= pan __,/__j k‘“x._ _.r'j_-l
pe =0 m

Figure 3.21: The mechanical energy of water at the bottom of a container is equal to the
mechanical energy at any depth including the free surface of the container.

The transfer of mechanical energy is usualy accomplished by a rotating shaft, and
thus mechanica work is often referred to as shaft work. A pump or a fan receives
shaft work (usually from an electric motor) and transfers it to the fluid as
mechanica energy (less frictional losses). A turbine, on the other hand, converts
the mechanical energy of a fluid to shaft work. In the absence of any

irreversibilities such as friction, mechanical energy can be converted entirely from
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one mechanica form to another, and the mechanical efficiency of a device or

process can be defined as,
Mechanical energy outpul  Epechoe . Emechios  (3.27)

fhmech — “NMechanical ener gy inpit ~ E e in = e o
A conversion efficiency of less than 100 percent indicates that conversion is less
than perfect and some losses have occurred during conversion. A mechanical
efficiency of 97 percent indicates that 3 percent of the mechanical energy input is
converted to thermal energy as a result of frictional heating, and this will manifest
itself as adlight rise in the temperature of the fluid.
The degree of perfection of the conversion process between the mechanical work
supplied or extracted and the mechanical energy of the fluid is expressed by the
pump efficiency and turbine efficiency, defined as
Mechanical energy increase of the flud RE ok . W i

Mechanical energy input | f—— '-.‘L'i,,:: " (3.28)

where AEmechsfiuic= Emechout - Emech, in 1S the rate of increase in the mechanical energy

of the fluid, which is equivalent to the useful pumping power Wymp, u Supplied to
the fluid, and

) . V1 wshine (3.29)
Mechanical energy decreasa of the Muld AE .

L'l
fLn 4% b

Mechanical energy output W shart. ou

where AEmech fiiid = Emech, in - Emech, out 1S the rate of decrease in the mechanical
energy of the fluid, which is equivalent to the mechanical power extracted from the
fluid by the turbine W turbine, e, and we use the absolute value sign to avoid
negative values for efficiencies. A pump or turbine efficiency of 100 percent
indicates perfect conversion between the shaft work and the mechanica energy of
the fluid, and this value can be approached (but never attained) as the frictiona
effects are minimized.
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Example 3.11: Thewater in alarge lake is to be used to generate electricity by the

installation of a hydraulic turbine-generator at a location where the depth of the
water is 50 m (Figure 3.22). Water is to be supplied a a rate of 5000 kg/s. If the
electric power generated is measured to be 1862 kW and the generator efficiency is
95 percent, determine (a) the overall efficiency of the turbine- generator, (b) the
mechanical efficiency of the turbine, and (c) the shaft power supplied by the
turbine to the generator.

Solution:

% Y Leke Hanerator 0.95

(a) We take the bottom of the lake as the | 1862 KW
. - A
reference level for convenience. Then “‘T“"‘ TN T
N : . | £ a \
kinetic and potential energies of water are ; LT rbine NSRRI "
[} 'H.\__-.L-._ J'\"'\.

zero, and the change in its mechanical m = 5000 kg's

Figure 3.22: Schematic for Example 3.11.

energy per unit mass becomes

1kJikg °
—— =2 | =0.49]1 kJ/
1000 mEmf) Vi

Then the rate at which mechanical energy is supplied to the turbine by the
fluid and the overall efficiency become

"lE-rlﬂi:rl. rlu.dl = m[En-ech. in — Err{::h. -;.'I.JL.:I = {E'UDU kgfIS}{ﬁ491 H-I-'IRQJ = 2455 HW

P - :
Emech,in — Emech, ot = ; — 0= QE‘I = (9.8 m-'lﬁf}{f.‘-ﬂ mJ(

- _ Woanon _ 1862KW _
T onmrall fi'lw’bwm—g-ﬂn |£E-m?”l r:“illl 7455 [{W 5

(b) Knowing the overall and generator efficiencies, the mechanical efficiency of

the turbine is determined from
nturbiﬂe—gen - 0.76

T] generator 0.95
(c) The shaft power output is determined from the definition of mechanical

nturbme—gen = Thurbine 'ngenerator — TMturbine =

= 0.80

efficiency,
Wonat out = Tturbine AE mech, nuig] = (0.80)(2455 KW) = 1964 KW
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3.14 Thelinear momentum equation

Newton’s second law for a system of mass m subjected to a net force F is
expressed as
oV d, -
F=ma=m——=—(mV
2 ‘ T T
Where mV is the linear momentum of the system. Noting that both the density and

velocity may change from point to point within the system, Newton’s second law

can be expressed more generally as

E F = %JSYS ;_J"'I dv
where ém = p dv is the mass of a differential volume element dv, and is its
momentum. Therefore, Newton’s second law can be stated as the sum of all
external forces acting on a system is equal to the time rate of change of linear
momentum of the system. This statement is valid for a coordinate system that is at
rest or moves with a constant velocity, called an inertial coordinate system or

inertial reference frame. Accelerating systems such as aircraft during takeoff are

best analyzed using non-inertial (or accelerating) coordinate systems fixed to the
aircraft. Note that the above equation is a vector relation, and thus the quantities F

and V have direction aswell as magnitude.
The general form of the linear momentum equation that applies to fixed, moving,

or deforming control volumesis obtained to be

The sum of all’ The time rate of change f The net flow rate of
external forces | = | of the linear momentum | + | linear momentum out of the
\acting on a CV of the contents of the CV control surface by mass flow,
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In General:

Note that the momentum equation is a vector equation, and thus each term should
be treated as a vector. Also, the components of this equation can be resolved along
orthogonal coordinates (such as x, y, and z in the Cartesian coordinate system) for
convenience.

The above equation is exact for fixed control volumes, it is not always convenient
when solving practical engineering problems because of the integrals. Instead, as
we did for conservation of mass, we would like to rewrite the above equation in
terms of average velocities and mass flow rates through inlets and outlets. In other
words, our desire is to rewrite the equation in algebraic rather than integral form.
In many practical applications, fluid crosses the boundaries of the control volume
at one or more inlets and one or more outlets, and carries with it some momentum
into or out of the control volume. For simplicity, we always draw our control
surface such that it slices normal to the inflow or outflow velocity at each such
inlet or outlet (Figure 3.23). The mass flow rate 7 into or out of the control volume

across an inlet or outlet at which p is nearly constant is

R LT

“I.’.-'l"'l.;.mj 7 .'““"!«.Ii £ J-_:_.'_ r:]i'll'-'l-.'vu 3
'H__I X 3
L T, ~
:*-" Fixod i
. contrpl \
{ volume 1
Figure 3.23: In a typical engineering problem, the In A - v
control volume may contain many inlets and outlets; at > o f*"'
each inlet or outlet we define the mass flow rate 2 and Tl fo <
the average velocity Vayg. Wag1  Outjg/ ~— T\
Mhic M, Outh "
Se¥awg b

[ |'\'.|| .I':lll-“.l_.ﬂ. A
33
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Mass flow rate across an inlet or outlet:

m= | p(V-n)dA,= PVaug A

A
Then we could write the rate of inflow or outflow of momentum through the inlet
or outlet in simple agebraic form, Momentum flow rate across a uniform inlet or
outlet:

PV (V 1) dA, = pVyug AV g = MV,
A
The uniform flow approximation is reasonable at some inlets and outlets, e.g., the
well-rounded entrance to a pipe, the flow at the entrance to a wind tunnel test
section, and a slice through a water jet moving at nearly uniform speed through air
(Figure 3-24).

III-J

F
i
e | | —
v 1 = Y i .
¥ g e an Mozzls Ir' % ll"ll.l;l
[ L
' i

Figure 3.24: Examples of inlets or outlets in which the uniform flow approximation is reasonable:
(a) the well-rounded entrance to a pipe, (b) the entrance to awind tunnel test section, and (c) adlice
through afree water jet in air.

3.15 Momentum-Flux Correction Factor, g
Unfortunately, the velocity across most inlets and outlets of practical engineering
interest is not uniform. Nevertheless, it turns out that we can still convert the

control surface integral of Equation,
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d

Tl
— Wi

| p\V dV/ 4 ;.-1;'.[‘-.}- -n) dA

oV £s

into agebraic form, but a dimensionless correction factor f, caled the
momentum-flux correction factor, is required, as first shown by the French
scientist Joseph Boussinesq (1842-1929). The algebraic form of the above

equation for afixed control volume is then written as,

Y, ot in

2 F = pV dV 4 ¥ PV l BV g

where a unique value of momentum-flux correction factor is applied to each inlet
and outlet in the control surface. Note that f = 1 for the case of uniform flow over
an inlet or outlet, asin Figure 3-17.

1 V \?

Momentum-flux correction factor: f§ = | [ f :I dA
Jll:l. L 5 III'.I'

avis

It turns out that for any velocity profile you can imagine, 5 is always greater than
or equal to unity.

Example 3.12:

Consider laminar flow through a very long straight section of round pipe. The
velocity profile through a cross-sectiona area of the pipe is parabolic (Figure

3.25), with the axial velocity component given by

r2
= Z\u’élvu(‘l = @)

where R is the radius of the inner wall of the pipe and Va4 is the average velocity.
Calculate the momentum-flux correction factor through a cross section of the pipe
for the case in which the pipe flow represents an outlet of the control volume, as
sketched in Figure 3.25.
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4" S i
I Yy 1
Solution: r — __*___'_‘L
We substitute the given velocity profile for V H == =3
| v
in the above equation and integrate, noting - L }.f._f.;
that dAc= 2nrdr, —

#
&

Figure 3.25: Velocity profile over a cross section of a pipe in which
the flow is fully-developed and laminar.

j__[ zif( _i)?
A“( ) R | 1 o 2mr dr

Defining a new integration variabley = 1 - r ¥R and thus dy = -2r dr/R? (also, y =

latr =0, and y= 0 at r= R) and performing the integration, the momentum-flux
correction factor for fully developed laminar flow becomes

=]

L aminar fl 2} { “d x‘i[}r 4
aminar 1Iow. = i av =
P i, e 3 | 3

Notice: For turbulent flow £ may have an insignificant effect at inlets and outlets,
but for laminar flow £ may be important and should not be neglected. It is wise to

include g in all momentum control volume problems.
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3.16 Steady Flow
If the flow is also steady, the time derivative term in Equation:

__ [I . _. il 5. = _ | . =i
3 F = - pV dv 4 l;;r‘n_f!_l.ﬂ l BV gy

dt c W out in
vanishes and we are left with,

Steady linear momentum equation: > F = > gmV — > gmV

where we dropped the subscript “avg” from average velocity. Above Equation
states that the net force acting on the control volume during steady flow is equal to
the difference between the rates of outgoing and incoming momentum flows. This
statement is illustrated in Figure 3.26. It can also be expressed for any direction,

since above equation is avector equation.

-, Out
e S
B, n =T — By,
\S; -
u,
a2 Fixed \

control

f
IE;// volume
<
B~ ou /S "‘"\i \

/ ¥ Out _
BsMglls |'3-¢"'|4 4

YF=¥amV - ¥ amV

ot

}

Figure 3.26: Veocity profile over a cross section of a pipe in which
the flow is fully-developed and laminar.

Steady Flow with One I nlet and One Outlet: Many practical problemsinvolve just
one inlet and one outlet (Figure 3.20). The mass flow rate for such single-stream
systems remains constant, and above equation reduces to,
Oneinlet and one outlet: ; . ' ?

> F=m(B,V, = BV,
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Example 3.13:

A reducing elbow is used to deflect water flow at a rate of 14 kg/s in a horizontal

pipe upward 30° while accelerating it as shown in Figure 3.27. The ebow
discharges water into the atmosphere. The cross-sectional area of the elbow is 113
cm’ at the inlet and 7 cm? at the outlet. The eevation difference between the
centers of the outlet and the inlet is 30 cm. The weight of the elbow and the water
in it is considered to be negligible. Determine (a) the gage pressure at the center of
the inlet of the elbow and (b) the anchoring force needed to hold the elbow in
place. Take the momentum-flux correction factor to be = 1.03.

¢

Solution: i
‘ oy I
(&) We take the ebow as the control Fe X ) ,@,ﬂf’

volume and designate the inlet by (1) and L i S — -;;;: i

the outlet by (2). We aso take the x- and () ——'L 130 '

z-coordinates as shown. et =

Figure 3.27: Schematic for Example 3.13.

o
e

The continuity equation for this one-inlet, one-outlet, steady-flow system is m; =
m, = m = 14 kg/s. Noting that m= pAV, the inlet and outlet velocities of water are

T e —1.24my

"7 A, (1000 kgmh)o.013 Mg o
il 14 kgls

Ve i = : — 20,0 ms
© pA; (1000 kgim*)(7 x 107 m?) nis

Py i P Vj

=i =i

P9 20 M 2g

Py — Pum = (1000 kg/m®)(9.81 m/s9)
{20 mifs)* — (1.24 m/s)* 1 KN
® : +03—-0 ﬁ
2(9.81 m/s) 1000 kg - m/s”,
— 202.2 kN/m? — 202.2 kPa (gage)
38

[:'1 goge



Fluid Flow Concepts Chapter: Three

(b) The momentum equation for steady one-dimensional flow is

SF=3piv- 3 pmnv

out mn

We let the x- and z-components of the anchoring force of the elbow be Fg, and Fg,,
and assume them to be in the positive direction. We aso use gage pressure since
the atmospheric pressure acts on the entire control surface. Then the momentum
equations along the x- and z-axes become

Fra + Py guefh = BV, cos 6 — iV,
Fe, = MY, sin #

Solving for Fr, and Fg,, and substituting the given values,

|:1'-!:-: 28 ﬁm{ll"'E CO5H — III-I"r} = P; gﬂg,_;n"-\_:

= 1.03(14 kg/s)[ (20 cos 30° — 1.24 mr’s'(—)
(14 kg/s)( ) 1 kg - mfs®

— (202,200 N/mZ){0.0113 m?)
= 232 — 2285 = —2053 N

Frz = BV sin # = (1.03)(14 kg/s) (20 sin 30° m/s (—ﬁ) = 144 N
pz = PMV; | I gis)| ) 1kg - mis?

Example 3.14:

A reversing elbow such that the fluid makes a 180° U-turn before it is discharged,
as shown in Figure 3.28. The elevation difference between the centers of the inlet
and the exit sections is still 0.3 m. Determine the anchoring force needed to hold

the elbow in place. Take the momentum-flux correction factor to be f = 1.03.

V5o=20 m/s

Figure 3.28: Schematic for Example 3.14.

V3= 1.204 m/s
A= 0.0113 m? D=
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Solution:
The vertical component of the anchoring force at the connection of the elbow to
the pipeis zero in this case (Fr,= 0) since there is no other force or momentum flux
in the vertical direction.

Fre + Py gagefs = B2M(—Va) — gy = —Bm(V; + V)
Solving for Fg, and substituting the known values,
Feo = —BM(Vy + Vi) — Py gagey

N
= — L + 1. — | — (202, m?)(0.0113 m?
(1.03)(14 kgys)[(20 24) I[IJ'E:__(] kg J'SE,] (202,200 N/m“M0.0113 m”)

= —306 — 2285 = —2591 N

Noting that the outlet velocity is negative since it is in the negative x-direction.
Therefore, the horizontal force on the flange is 2591 N acting in the negative x-
direction (the elbow is trying to separate from the pipe).

Example 3.15:

Water is accelerated by a nozzle to an average speed of 20 m/s, and strikes a
stationary vertica plate at a rate of 10 kg/s with a norma velocity of 20 m/s
(Figure 3.29). After the strike, the water stream splatters off in all directionsin the
plane of the plate. Determine the force needed to prevent the plate from moving

horizontally due to the water stream. Take the momentum-flux correction factor to

be f=1. Fam ) |
Solution: i :
The momentum equation for steady one- : | :
dimensional flow is given as, %f Sk |
- - » ! B -
> F= E‘;;jmv— 3 v | i
o i s |

V3
40 Figure 3.29: Schematic for Example 3.15.
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Writing it for this problem along the x-direction (without forgetting the negative

sign for forces and velocities in the negative x-direction) and noting that V, x = V3
and V, , =0 gives,
—Fr=0- Hmﬁ"] Substituting the given values,

Fo = BV, = (1)(10 kgfs) (20 r‘m's]( ) = 200 N

1 kg - mfs?
Example 3.16:

A wind generator with a 30-ft-diameter blade span has a cut-in wind speed
(minimum speed for power generation) of 7 mph, at which velocity the turbine
generates 0.4 kW of electric power (Figure 3.29). Determine (a) the efficiency of
the wind turbine-generator unit and (b) the horizontal force exerted by the wind on
the supporting mast of the wind turbine. What is the effect of doubling the wind
velocity to 14 mph on power generation and the force exerted? Assume the
efficiency remains the same, and take the density of air to be 0.076 Ibm/ft>. Take

the momentum-flux correction factor to be = 1.

Solution: Streamline b
’ __ Jatm
The power potentia of the wind is :
proportional to its kinetic energy, which I
I
is V%2 per unit mass, and thus the |
maximum power is mV?/2 for a given ! v
BT
mass flow rate:
@

Figure 3.29: Schematic for Example 16.
41
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1.4667 ft/s
1 mph

rD* (30 ft)?
M= pithAs = piVy ——=1{0.076 Ibm/ft¥)(10.27 fi/s) Ll

V= (7 mph}( ) = 10.27 fus

= 551.7 lbm/s

: _ _ V2
W = rike; = m?‘

= (551,7 Ibm/s)

[“ID.E?FLFEJE( 1 Ibf )( 1 kW )
3 32.2 Ibm - ftfs2/\737.56 Ibf - f/s

= 1.225 KW
Therefore, the available power to the wind turbineis 1.225 kW at the wind velocity

of 7 mph. Then the turbine-generator efficiency becomes

W, 0.4 KW
TN wind turbine — Wr::c = 1225 KW = 0.327

Noting that the mass flow rate remains constant, the exit velocity is determined to
be V3 V2

; 3
mke; = MKe(1 — Dwindurbine) — M F} =M 5 (1 — Mwind wrbine)

Vo = ViV — Buinduebine = (1027 fUS) V1 — 0.327 = 8.43 fu's

The momentum equation for steady one-dimensional flow is given as

E'F - Eﬁmw N Eﬁmu FR — mVE - mV1 — m(VE - V‘])

oLt in

Substituting the known values gives

| m 1 Ibf
Fa = mi{V; — V) = (551.7 Ibm/s)(8.43 — 10.27 fu's) (32_2 e T‘L-'SE)

= —31.51bf

Then the force exerted by the wind on the mast becomes F.g = - Fr = 31.5 Ibf.

4 The end of Chapter Three
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Chapter Four
Dimensional Analysis and M odeling

4.1. Dimensionsand Units

A dimension is ameasure of a physical quantity (without numerical values), while
a unit is a way to assign a number to that dimension. For example, length is a
dimension that is measured in units such as microns (u m), feet (ft), centimeters
(cm), meters (m), kilometers (km), etc. (Figure 4.1). There are seven primary
dimensions (also called fundamental or basic dimensions) mass, length, time,

temperature, electric current, amount of light, and amount of matter.

Lenath
- £ng -
-- 1.2 cm --|
Cm 1 2 3

Figure4.1: A dimension isameasure of aphysica quantity without numerical values, whileaunitisa
way to assign a number to the dimension. For example, length is adimension, but centimeter is a unit.

Note: All non-primary dimensions can be formed by some combination of the
seven primary dimensions.

For example, force has the same dimensions as mass times acceleration (by
Newton’s second law). Thus, in terms of primary dimensions,

Dimensions of force: {Force} = { Mass ———¢ = {mLA%} (4.1)
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where the brackets indicate “the dimensions of” and the abbreviations are taken
from Table 4.1. You should be aware that some authors prefer force instead of
mass as a primary dimension-we do not follow that practice.

Table 4.1: Primary dimensions and their associated primary Sl and English units

Primary dimensions and their associated primary S1 and English units
Dimension ~ Symbol®  Sf Unit English Unit
Mass I kg (kilogram) lbm {pound-mass)
Length | m {meter) ft (foot)

Time’ t s (second) s (second)
Temperature T K {kelvin) R (rankine)
Electric current I A [ampere) A [ampere)
Amount of hight L cd (candela) cd {candela)
Amount of matter M maol {mole) mal [mole)

4.2. Dimensional analysisand similarity

In most experiments, to save time and money, tests are performed on a
geometrically scaled model, rather than on the full-scale prototype. In such cases,
care must be taken to properly scale the results. We introduce here a powerful
technique called dimensional analysis. While typically taught in fluid mechanics,
dimensiona analysisis useful in all disciplines, especialy when it is necessary to
design and conduct experiments. Y ou are encouraged to use this powerful tool in
other subjects as well, not just in fluid mechanics.

Dimensional analysis is a means of simplifying a physica problem by appealing
to dimensional homogeneity to reduce the number of relevant variables.

It is particularly useful for:

Presenting and interpreting experimenta data;

Attacking problems not amenable to a direct theoretical solution;
Checking equations;

Establishing the relative importance of particular physical phenomena;
Physical modelling.

agrwbdpE
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Example:

The drag force F per unit length on a long smooth cylinder is a function of air
speed U, density p, diameter D and viscosity pu. However, instead of having to
draw hundreds of graphs portraying its variation with all combinations of these
parameters, dimensional analysis tells us that the problem can be reduced to a
single dimensionless relationship

Co=T(Re)

where Cp, is the drag coefficient and Re is the Reynolds number.

In this instance dimensiona analysis has reduced the number of relevant variables
from 5 to 2 and the experimental datato asingle graph of Cp against Re.

Dimensions of derived quantities
Dimensions of common derived mechanica quantities are given in the following
table.

Chantity Common Symbol{s) Dimensions
Area A L*
Creometry Vaolume 4 L
Second moment of arga | J ¥t
Velocity [ Y
Acceleration a LT~
Kinematics Angle B | I_Ii.:. dimensioniess)
' Angular velocity i J i
Quantiry of flow 7] |l
Mass flow rate i AT
Foree F MLT
Moment, forgue T MLT™
Dvnamics Fnergy. worl. heat E W MLT™
Powe P ML T
Pressure, stress P.T ML T
Dienisity p .Y § i
Visgosily j MLTT
Finematic viscosiby v LT
Fluid properties | Surface tension o MT™
Thetmal conductiviry k Zx{ILTI"'EII_'
Specific heat G LT 8"
Bulk modulus E MLTT

IN
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Example.

= P dls : ; : 3 % ;
Usze the definition 1= ul— to deternune the dimensions of Viscosity,
chy

Solution.
From the defimtion.
. T _ Jorcelarea

Toduidy velocity [length

Hernice,

MLT 12
[n] = & — MIT
LT-/L

Example.
pL/L
m
those of pl/L; 1,
0] =[pUL]= (ML YLT ' WLy=ML'T™

Smee Re = 15 known to be diunensionless, the dimensions of p mmst be the same as

Dimensional Homogeneity
The Principle of Dimensional Homogeneity:
All additive termsin a physical equation must have the same dimensions.

Examples:
=t +1at — all terms have the dimensions of length (L)
p ¥ : ; :
TR I H — all terms have the dimensions of length (L)
pg 22

Dimensional homogeneity is a useful tool for checking formulae. For this reason it
Is useful when analyzing a physical problem to retain algebraic symbols for as

long as possible, only substituting numbers right at the end.
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4.3. Themethod of repeating variables and the Buckingham Pi Theorem
Experienced practitioners can do dimensional analysis by inspection. However, the
formal tool which they are unconsciously using is Buckingham’s Pi Theorem. This
method can be applied as a step-by-step procedure or “recipe” for obtaining non-
dimensional parameters. There are six steps, listed briefly in Table 4.2. These steps
are explained in further detail as we work through a number of example problems
aswell.

Step (1): List the parameters (relevant variables) in the problem and count their
total number (n).

Step (2): List the primary (independent) dimensions of each of the (m) parameters.
Step (3): Set the reduction (m) as the number of primary dimensions. Calculate
(k), the expected number of I1’s (the number of non-dimensional parameters),

k = n —m, then the two Pi groups are formed by power products of these three plus

one additional variables, either v, or vs:

I, = ()0 ) (), = MOL"T" and [ = (1)) ()0 = MULPTY
Here we have arbitrarily chosen v; and vs, the added variables, to have unit
exponents. Equating exponents of the various dimensions is guaranteed by the

theorem to give unique values of a, b, and c for each Pi. And they are independent
because only I1; contains v, and only I1, contains vs.

Step (4): Choose m repeating parameters.
Step (5): Construct the k I1”s, and manipulate as necessary.
Step (6): Write the final functional relationship and check your algebra.

Buckingham's Pi Theoram

(1} If a problem mvolves
1 relevant vanables
w independent dimensions
then 1t can be reduced o a relattonslup between
tt — mt non-dunensional parameters IT). ... T,

i(2) To construet these non-dumensional 11 groups
(1) Choose wr dhimensionallyv-distmet scerfmg variables (aka repeanmg variables)
{1} For each of the n — m remaiming vanables construct a non-dimensicmal 11 of the form
[1 = (variabledscale, )" (s r:'.'.-'r=_."|‘L (sl ) -

where o b, o, . are chosen so as fo make each T pon=-dimnensional.
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Example:
Consider flow of an incompressible fluid of velocity V, density p and viscosity u

through a long, horizontal pipe of circular cross-section of diameter D and surface
roughness ks. Obtain an expression in non-dimensional form for the pressure
gradient (dp/dx). Show how this relates to the familiar expression for frictiona
head |oss.

Solution:
Step 1. Identifv the relevant variables,
dp/dy. p. LD, K&, |

Step 2. Wnte down dimensions.
dp  [force/arenr] _MLT =L~

=MET ™

dx lenigth

p ML

y LT

0 L

& L

p MLT

Step 3. Establish the number of independent dunensions and non-dimensional groups

Mumber of relevant vanables: =25
Number of mdependent dimensions: m=3 (M,LandT)
Number of non-dimensional groups (Ils),  n-—m=3

Step 4. Choose mi (= 3) dimensionally-independent scaling variables.
e.g. geometne (2, kinematic iime-dependent { F), dynamc/mass-dependent (p),

Step §. Create the [ls by non-dimensionalising the remaming varnables: dp/dy, &, and p.
I, =& porsy:
iy
Considenng the dimensions of both sides:
M'L'T" = (ML T WL (LT ) (ML)’
= 1,'.[ l4£ L-J-ﬂ-."—cir T—l—h"

Equate powers of primary dimensions. Since M only appears m [p] and T only
appears m [ 1] 1t 1s sensible to deal with these first.

M 0=1+r¢ = e=-1
T: 0==-2-5b = ==
D==2+n+h-3r - a=2-btic =1

\l
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Henee.
dp
Il = d—FDF""p'L = "J'f (Check: OK — 1atio of two pressiwes)
dx pF-
K, ! : : :
I, = E (bw inspection. since &; 15 a length)
I, = W2°F 'p*

TIin terms of dimensions:
MY = (M T LY (LT (MY
= L{Ihc L—'I*-l'l—!'—i!' T—E—!I
Equating exponents

M: =1+r¢ = c=-]
T; ==Lk = b=~1
L: 0=-1+a+b-3¢r = a=1-b+3c =-1
Hence,
I1, = ;—:D (Check: OK — this 15 the recipiecal of the Reynolds number)
P
Step 6. Set out the non-dimensional relationship.
I, = fiIl,.11,)
-
DE
.
pF' f D ;:ll’ﬂ v

Siep 7. RBearrangee (i required) for convenience.
We are free to replace any of the [Ts by a power of that T, o by a product with the
other TTs, provvided we retain the same munber of independent dimensionless groups.
Lis tlais case we recogpuse that [T is fhe reciprocal of the Eevnolds oomber, so it [ooks
better touse T, =(TT,)7" =Re as the third sron-dumensional group, We can also wiite

dp

L I, e
the pressure gradient in terms of head loss; a = g W With these two modificanons

the non-dinensional relarmnsl‘u]:l (*§ then becomes

b 1)
E;F —_ﬂ L
ar
L ¥ ik
h, =—w—=u f[—£_Ha)
Fh e I[D .

Since mumerical faciors can be absorbed miio the pon-specified function, s can
easily be n'lenriﬁed 1.:.1'rh the Drarcy-Weishach equation

‘D2g
where 4 18 8 funchion of relative roughness &/D and Rewnolds number Re. a funchon
given | Topie 2} by the Colebrock-White equation.
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Example:

The tip deflection 6 of a cantilever beam is a function of tip load W, beam length I,
second moment of area I and Young’s modulus E. Perform a dimensional analysis
of this problem.

Solution:

Step 1. Identify the relevant variables
6. W, LILE

Step 2. Write down dimensions,

& L ;
i MLT ™
[ L
! L*
E ML'T?
Step 3. Establish the mmnber of independent dimensions and non-dimmensional groups.
Nuwmber of relevant vauiables: n=>5

Number of independent dimensioms: m=2 (LandMT - note)
Nimnber of non-dimensional groups ([s): w—m =23

Note: Although three primary dimensions (M, L, T) may appear when the
variables are listed, they do not do so independently. This example illustrates a
case where M and T always appear in the combination (M T ?), hence giving only
one independent dimension.

step 4. Choose m (= 2} dimensionally-independent scaling variables.
e.g geomeltic (/). mass- or time-dependent (E).

Step 3. Create the T1s by non-dimensionalising the remaining variables: &. Jand W
These give (atter some algebra, not reproduced here):

&
n|:IT
I
J._.l._'.=ll___1
w
My
- .Elf-



Dimensional Analysis and Modeling Chapter: Four

Step 6. Ser ot the non-dimensional relatonship.

[, = f(I1,.11, )
at

6 . i

—= f{——3)

' R LB

This is as far as dimensional analvsis will get ws. Detailed theory shows that, for small elastic
deflectnons,

1
f=———
3 ET
ar
E i[]; l;f\'|-l
e e I|T-
f sLENF o,

10
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4.4. Non-dimensional groupsin fluid mechanics

Dynamic similarity requires that the ratio of all forces be the same. The ratio of different forces

produces many of the key non-dimensional parametersin fluid mechanics.

Farameter

elimiiion

Cunlitative ratio

ol elfects

Im LA

Revmilds numher
Mach number
Froude number
Wobor number
Caviiabion nurmber

{ Euler number)

Prandil number

Strotihal number

Roughness ratio

Grashof number

Temperature ratio

Pressure coctficient

Lift coefficient

Dirag coeflicient

Rl." = ﬂ
i
b=
br ]
LA
Fr=
' el
We = %{.E
B L L
[' : pf.-r'
.
K=—
T
X
L
G = BATeL g
u
[
Ty
N L
‘ L | T2
bl L
L
L= :
ép{.‘l-.rﬁ
]
1
Pl

Inertia
Viscosity

Flavw '-GE'.,:LI
Sound speed

Inertea
Ciravity

Inertin

Surfice tension

Pressur

Inertia
hissipation
Conduction

Cscillation
Mean speed
“r“” I."Ihli,:hlnzm.

Body length

Buoyoncy
— I

Yiscosily

Wall iemperaiure

Stream temperature

Static pressure
J}}'I'I.II'I'III." |'|!'I3:‘i:'-iLl|'l'."

Lift foace
Dynamic force

Cmmr e e

Dyvoamic force

11

Always

[-'LI|I1|'||'|"-.:-.i|'I||.: [Tk

Free-surface flow

Frec-surface flow

Canvitation

Heol convection

Clagillaming Mow

Turbulent, rough walls

Matwrnl convection

Heae transfer

Aemdyvnamics, hydrodynamics

Acrodynamics, hydrodynamics

Acrodvonmics, hydrodynmmics
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Example:

The capillary rise h of aliquid in atube varies with tube diameter d, gravity g, fluid
density p, surface tension Y, and the contact angle 6. (a) Find a dimensionless
statement of thisrelation. (b) If h =3 cm in agiven experiment, what will hbeina
similar case if the diameter and surface tension are half as much, the density is
twice as much, and the contact angle is the same?

Solution:

Step | Write down the function and count variables:

h=fid, z2. 0. Y, n = 6 variables

=]

step I List the dimensions {FLT) from Table 5.2:

I | il | g | fi | b | K]
(L} | (L] | JLT %) | | FTEL™) | [FL7| | Mo

Step 3 Find j. Several groups of three form no pi: Y, p, and g or p, g and d. Therefore j = 3, and we
expect # —§ =6 — 3 = 3 dimensionless groups. One of these is obviously #, which is already
dimensionless,

;=8 Ans. {a)
IT we had carclessly chosen 1o search for it by using steps 4 and 5, we would sill find IT: = &

=tep Select § repeating varigbles which do net form a pi group: p, g, d.

I

|

Add one additional vanable n seguence 1o form the s

Adid I, = pg"dh = (FTALYNLT “HNLFAL) = FLT®

bhad (51
Solve Ton

Therelore I, =p"%"4d "h = J—; Ans. fa)
¢

Finally add Y, again sclecting its cxponent (o be 1:

M, = g"g"d"Y = (FrPL~Y LT *WLX(FL™") = FL'TY

Solve for
a=bh=-1 ¢=-=1
. Gt X
Theretore h=p & d Y=—= Ans. [a)
pd
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slep 6 The complete dimensionless relation for this problem is thus

Nz ¥
=~ =F|——=, 8 Ans. fa) (1)
o I. pud™ } j

This is a8 for a8 dimensional analysis goes. Theory, however, éstablizhes that # i8 propostional
to Y. Since Y occurs only in the second parameter, we can slip it outside

{%} = p;::F Foldh oF LrE,ff—'r = F,(8)
atiuind

Example 1.9 showed theoretically thal F,(f) = 4 cos #.

We are given f, for cenain conditions o, Y, oy and 8. 100, = 3 em, what is b ford, = 34, Y, =
Y. p2 = 2py. and #, = 8,7 We know the functional relation, Eq. (1), must still hold at condition 2

h s 1
d- 'LT\ a3, )
But
1[_'\- ":31..-| '.I |

Therefore, functionally,

fia Y, 1y
S — B ==
dy F(Pl-'i’dT I} d|

We are given a condition 2 which is exacily similar 1o condition 1, and therefore a scaling law
holds

= h;gl = (3cm)= = 1.5 cm Ans. (b)
i d,

If the pi groups had not been exactly the same or both conditions, we would have had to know
more about the functional relation £ to calculate f,.

13
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Example:

A liquid of density p and viscosity u flows by gravity through a hole of diameter d
in the bottom of atank of diameter D (as shown in Figure 4.4). At the start of the
experiment, the liquid surface is at height h above the bottom of the tank, as
sketched. The liquid exits the tank as a jet with average velocity V straight down as
also sketched. Using dimensiona anaysis, generate a dimensionless relationship
for V as afunction of the other parameters in the problem. Identify any established
non-dimensional parameters that appear in your result. (Hint: There are three

length scales in this problem. For consistency, choose h as your length scale.)

Figure4.4

Solution:
The step-by-step method of repeating variables is employed to obtain the non-

dimensiona parameters (the 11s).
Step 1: There are seven parametersin this problem; n=7,
List of relevant parameters. V=1 (d, D, p, u, h, g), n=7

Step 2: The primary dimensions of each parameter are listed,

¥ i ] i T h 2

:Ll: :J': I[: :'II"L: :'I'-I'E-:I-': LI ::r-

Step 3: As afirst guess, mis set equal to 3, the number of primary dimensions
represented in the problem (m, L, t).  Reduction: m=3

If thisvalue of (m) is correct, the expected number of IIsis

14
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Number of expected [Is k=n—-m=7-3=4

Step 4: We need to choose three repeating parameters since m = 3. We pick length
scale h, fluid density p, and gravitational constant g.

Repeating parameters. h, p, and g

Step 5: The I1s are generated. Note that in this case we do the algebrain our heads

since these relationships are very ssimple. The dependent 11 is

I1, = aFroude number: 1, - -.EJ-
Ve

This II is a type of Froude number. Similarly, the two length-scale IIs are

obtained easily,
d D

- IIL, =— : II. =—
IL,: 11, P andH3 3T

Finaly, the IT formed with viscosity is generated,

I, = soh™ pt g™ 1,1 _-:qm'r"r N (i ) (e ]‘:

TR I

'm" | '—:IIIIJlL.": O=1+8,

I.'I' r|'|- B i :| L ;
|l.-.\_E-- ;.Lu:_:]--lLﬂ_L-'-"JLI-‘: U'——|—-!'I__-_|!i-_| c; I1- _ 3
wlich yrelds

)

I'L I, =—

1

pi e

We recognize this 11 as the inverse of a kind of Reynolds number. We aso split

the h terms to separate them into a length-scale and (when combined with g) a
velocity scale. Thefinal formis

£ o 'u..'l.f-r I

Modified 11, = aReynolds number: 7, = £%="
Step 6: We write the final functional relationship as

Relationshipbetween I1s: | #¥  (d D pinfeh

—_—

el L &k TR
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45. Physical Modeling

If a dimensional anaysis indicates that a problem is described by a functional
relationship between non-dimensional parametersIl,, I, I15, ... then full similarity
requires that these parameters be the same at both full (“prototype”) scale and
(“model”) scdle.ie, (I1,) =(Il),

= "

(I1,),, =1},

Geometric Similarity:
v A modd and prototype are geometrically similar if and only if al body
dimensionsin all three coordinates have the same linear-scaleratio.
v" All angles are preserved in geometric similarity. All flow directions are
preserved. The orientations of model and prototype with respect to the
surroundings must be identical.

.-""r P I =T, o
7
# ¥ A Homidiligous
; f;; "“““-HP“' - points
A1) #
! b1 » I¥I,-’ .
."'-. _-'"- /. KH"-\.
& Ao i h‘
F ” i,
A / = il
!"'l e F____ # i :."___" o
L ——J. —- _\_\-'-\-\___\_\_ A A -H..r"'\-.
| ¥ 'k-\"\. = Y / ¢ '1___. LI L W
— o o . S ,-"f 4 //
II o Ht i S "'._J_\"-\.\_ i
o / =
—— .._.::u_.-' I'.|II -"""_"HI.|I ‘_ﬂ"’-‘.
(&) prototype (b) one-tenth-scale model.

Figure 4.2: Geometric similarity in model testing: (a) prototype; (b) one-tenth-scale model.

16
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Kinematic Similarity:
Kinematic similarity requires that the model and prototype have the same length-

scale ratio and the same time-scale ratio. The result is that the velocity-scale ratio

will be the same for both:
v' The motions of two systems are kinematically similar if homologous
particles lie at homologous points at homol ogous times.
Length-scale equivalence simply implies geometric similarity, but time-scae
equivalence may require additional dynamic considerations such as equivalence of

the Reynolds and Mach numbers.

-~ - . n&
;_,- oo q"'m‘_\ "H"x *, v, =)
__I.""' - x\ .,__x- I.:_I"I
P, B\ —
= e ' y — _.-.-_-_'___k_\\-:ht
\ —
Ill' II " ll.-f' A .
Vi p—— o e Ve = BV m=
\ | — o oaly ]
5 \ == \ S
- - y i _,.-' - ", — ...'____ P
< & —/
% - F. Slowle] i =|'i'|,-'
My 'H..\_H__. s — d___.-/""-f ...-__.-' ”
. S =
o - __'_'__-'- 'I." ;
Protaly pe

Figure 4.3: Frictionless low-speed flows are kinematically similar: Flows with no free surface are
kinematically similar with independent length- and time-scale ratios.

Dynamic Similarity:

Dynamic similarity exists when the model and the prototype have the same length-
scale ratio, time-scale ratio, and force-scale (or mass-scale) ratio. Again
geometric similarity is a first requirement; without it, proceed no further. Then
dynamic similarity exists, simultaneous with kinematic similarity, if the model and

prototype force and pressure coefficients are identical. Thisis ensured if:

17
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1. For compressible flow, the model and prototype Reynolds number and Mach
number and specific-heat ratio are correspondingly equal.

2. For incompressible flow

a. With no free surface: model and prototype Reynolds numbers are equal.

b. With afree surface: model and prototype Reynolds number, Froude number, and

(if necessary) Weber number and cavitation number are correspondingly equal.

Example:

A prototype gate valve which will control the flow in a pipe system conveying
paraffin is to be studied in a model. List the significant variables on which the
pressure drop across the valve would depend. Perform dimensiona analysis to
obtain the relevant non-dimensional groups.

A 1/5 scale mode is built to determine the pressure drop across the valve with
water as the working fluid.

(@) For aparticular opening, when the velocity of paraffin in the prototype is 3 m/s
what should be the velocity of water in the model for dynamic similarity?

(b) What isthe ratio of the quantities of flow in prototype and model ?

(c) Find the pressure drop in the prototype if it is 60 kPain the model.

(The density and viscosity of paraffin are 800 kg/m® and 0.002 kg/m.s,
respectively. Take the kinematic viscosity of water as 1x10° m?/s).

Solution:

The pressure drop AP is expected to depend upon the gate opening h, the overal
depth d, the velocity V, density p and viscosity u.

List the relevant variables: AP, h, d, V, p, u Write down dimensions:

Ap  MLT'T
||J L

d L

i 3 i

p ML

18 u MLT™
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Number of variables: n =6

Number of independent dimensions: m=3 (M, L and T)

Number of non-dimensional groups. n—m=23

Choose m (= 3) scaling variables. geometric (d); kinematic/time-dependent (V);
dynamic/mass-dependent (p).

Form dimensionless groups by non-dimensionalising the remaining variables: Ap,

hand p.

I, = .-'!'.Ju.t.l"'f'hp"

MLT = (M T WLV LT Y (ML
_ hl:-cL I+ur+h .'-.-l -2=h

M =11 = ¢=-1
T 0=-2_— Fr = b=-2
L 0= 1—:.'*& 3¢ = a=1+3c-0b =0
~ J| Ap
I, =Ap¥ p =
(el

;]
[1, = JE (by mspection, since h1s a length)

I, =pd"Fp" (probably ebvious by now, but here goes amvway ...

}"'-'F'I_'“T*" ={M L':T'| ]{L!"f[.T_I }Pf[*-IL's .
A,

I"«'[ :.'J=!-_|'_' == c=—]
T: 0=-1-5+0 — b=-]
L O=—1l+a+b-3¢ = a=l+3c-b =-1
— n; =5.|,¢’|’"F":|:‘r'l — "I'-
Pl
Recogmtion of the Rexmolds number suggests that we replace IT; by
el
I’ _{n;_]" = Lo
1

Hence, dimensional analysis yields

I, = f(I1,.1T})
Ap h prd,
=l Py

pl? d n

19



Dimensional Analysis and Modeling Chapter: Four

{a) Dyvnanne smulanty requires that all non-dimensional groups be the same w model and
prototype; Le

; P
Biole) =l
IJII o] pr “m
( h i i i
I, = E] :i E' (automatic if similar shape: 1.e. “geometnc similarity™)
L '..I-' i & g
| pld | [ pld
m, | 24 ] =|P_}
55 O S LD

From the last, we have a velocity ratio
V. wp), d,~ 0.002/800

1
S =————x— =03
v, (wp), d, 1.0=10 5
Hence,
F 3.0
o=t = ':_ = 60ms™
0.5 0.5
{11} The ratio of the quantities of flow is
0. (velociny x ave v.{d Y A
O _ (veloctly xavea), Bt Yo l —05x5% =125
0 {velocity < area), ¥.old. ]
{¢) Finally, for the pressure drop,
i TR 1
I, = Iﬁi — ﬁ;?] - Y :P_F 2 = =2 x 0.5 =02
Pi.- ) 'I}Ir- " {wj-}lﬂ PH A i.:r.\.l i I“U‘}

Hence,
Ap,=02xAp, =02x60 =120kPa

20
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Example:

The designers need to predict how long it will take for the ethylene glycol to
completely drain. Since it would be very expensive to run tests with a full-scale
prototype using ethylene glycol, they decide to build a onequarter scale model for
experimental testing, and they plan to use water as their test liquid. The model is
geometrically similar to the prototype (Figure 4.5). (@) The temperature of the
ethylene glycol in the prototype tank is 60°C, at which v = 4.75 x 10° m%s. At
what temperature should the water in the model experiment be set in order to
ensure complete similarity between model and prototype? (b) The experiment is
run with water at the proper temperature as calculated in part (). It takes 4.53 min
to drain the model tank. Predict how long it will take to drain the ethylene glycol

from the prototype tank. Madel
Dimensionless relationship: S B
= P '“'rr-'“'*--__ m '
IIE | d B ;-‘rf?,qu':qw 4 : m
Fia == _' | ey ; 3
_H\il h | bk M : m | |
Solution: Figure4.5

Since the model and prototype are geometrically similar, (d/h)moda = (d/h)prototype 8Nd (D/N)modet =
(D/N)prototype- Thus, we are left with only one IT to match to ensure similarity. Namely, the
Reynolds number parameter must be matched between model and prototype. Since g remains the

13 2 (I3

same in either case, and using “m” for model and “p” for prototype,
i ."'-h'lj'dlglr'l .' . *J'r'l'h'll'g_'l" | -J':ul -'”T' [ |I-il' P

[ | OF =
I ) | i { id
F Y J 'a o o

Smilarity: =
LA

Werecognizethat v = u/p, and we know that hp/hm = 4.

I A 3

£ = 4755107 mYs(4)T =594x107 m’fs

Smilarity: Ve =1V,

For similarity we need to find the temperature of water where the kinematic viscosity is 5.94 X
10" m?/s. By interpolation from the property tables, the designers should run the model tests at a
water temperature of 45.8°C.
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(b) At dynamically similar conditions,
At dynamically similar conditions:

le | e | i
|

P - I PN . B~ 4,53 min+/4 - 9.06 min
T 'I‘ b | Ty II‘ I

i - |—K
g d CIRMTE 4] 1
1‘ m

- The end of Chapter Four .....
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Laminar Flow in pipes Chapter: Five

Chapter Five
Laminar Flow in pipes

5.1. Flowin pipes

Fluid flow in circular and noncircular pipes is commonly encountered in practice.
The hot and cold water that we use in our homes is pumped through pipes. Water
In a city is distributed by extensive piping networks. Oil and natura gas are
transported hundreds of miles by large pipelines. Blood is carried throughout our
bodies by arteries and veins. The cooling water in an engine is transported by hoses
to the pipes in the radiator where it is cooled as it flows. Thermal energy in a
hydronic space heating system is transferred to the circulating water in the boiler,
and then it is transported to the desired locations through pipes.

Fluid flow is classified as external and internal, depending on whether the fluid is
forced to flow over a surface or in a conduit. Internal and external flows exhibit
very different characteristics. In this chapter we consider internal flow where the
conduit is completely filled with the fluid, and flow is driven primarily by a
pressure difference. This should not be confused with open-channel flow where the
conduit is partialy filled by the fluid and thus the flow is partially bounded by

solid surfaces, asin an irrigation ditch, and flow is driven by gravity alone.

5.2. Laminar and turbulent flows

The flow regime in the first case is said to be laminar, characterized by smooth
streamlines and highly ordered motion, and turbulent in the second case, where it
Is characterized by velocity fluctuations and highly disordered motion. The
transition from laminar to turbulent flow does not occur suddenly; rather, it occurs
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over some region in which the flow fluctuates between laminar and turbulent flows
before it becomes fully turbulent. Most flows encountered in practice are turbulent.
Laminar flow is encountered when highly viscous fluids such as oils flow in small
pipes or narrow passages as shown in Figure 5.1.

We can verify the existence of these laminar, transitional, and turbulent flow
regimes by injecting some dye streaks into the flow in a glass pipe, as the British
engineer Osborne Reynolds (1842-1912) did over a century ago. We observe that
the dye streak forms a straight and smooth line at low velocities when the flow is
laminar (we may see some blurring because of molecular diffusion), has bursts of
fluctuations in the transitional regime, and zigzags rapidly and randomly when
the flow becomes fully turbulent. These zigzags and the dispersion of the dye are

indicative of the fluctuations in the main flow and the rapid mixing of fluid

particles from adjacent layers. Dye filament -
Neadle
Tank ———
Figure 5.1.a: Spinning Reynolds’ sketches — €
of pipeflow transition: (a) low-speed, L o
laminar flow; (b) high-speed, turbulent flow; '
(c) spark photograph of condition (b). L
— (b)
LR —
.I.-"' p 5 ;
() 8 -
Lo Irace I'.I\u!ltrnr_c!
X A
5 \
— \ L

Yy injection

ORS
Il'llm.n | - _ "":.-.g \ Farp
o

+ Dye injection
ik sieliert T Wi
(a) Laminar flow i) Turbulent flow

Figure 5.1.b: The behavior of colored fluid injected into the flow in laminar and turbulent
flowsin apipe.
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5.3. Reynolds Number

After exhaustive experimentsin the 1880s, Osborne Reynolds discovered that the
flow regime depends mainly on the ratio of inertial forcesto viscous forcesin the
fluid. Thisratio is caled the Reynolds number and is expressed for internal flow in
acircular pipe as,

R Inertial forces H'-rl--.--|I ) .l"'='r. .-.:r;I

Viscous forces T i
where V,,4= average flow velocity (m/s), D= characteristic length of the geometry
(diameter in this case, in m), and v= wp= kinematic viscosity of the fluid (m?/s).
Note that the Reynolds number is a dimensionless quantity. Also, kinematic
viscosity has the unit m?s, and can be viewed as viscous diffusivity or diffusivity
for momentum.
The Reynolds number at which the flow becomes turbulent is called the critical
Reynolds number, Re,. The value of the critical Reynolds number is different for
different geometries and flow conditions. For internal flow in a circular pipe, the
generally accepted value of the critical Reynolds number is Re,= 2300.
For flow through noncircular pipes, the Reynolds number is based on the hydraulic
diameter D, defined as (Figure 5.2),

Hydraulic diameter: ) _ 1A
h —
P
where A, is the cross-sectional area of the pipe and p is its wetted perimeter. The
hydraulic diameter is defined such that it reduces to ordinary diameter D for

circular pipes,

T e |

47, 4(wD?4) =l

-

=
i ines Dy = = =D = |
Circular pipes: h D D Va b A |
4a2 "x:a_[f:"'”""; Lﬂfq =

Squareduct: Dy = i
dab 2ab

Rectangular duct: Dy = 2(a+b) a+b ¢
b
4

YA

—

Figure5.2
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Under most practical conditions, the flow in a circular pipe is laminar for Re <
2300, turbulent for Re > 4000, and transitional in between. That is,

Re = 2300 laminar flow
2300 = Re = 4000 transitional flow

Re = 4000 turbulent flow

5.4. Laminar flow in pipes

We mentioned in Section 5.2. that flow in pipes is laminar for Re < 2300, and that
the flow is fully developed if the pipe is sufficiently long (relative to the entry
length) so that the entrance effects are negligible.

In fully developed laminar flow, each fluid particle moves at a constant axial
velocity along a streamline and the velocity profile u(r) remains unchanged in the
flow direction. There is no motion in the radia direction, and thus the velocity
component in the direction normal to flow is everywhere zero. There is no

acceleration since the flow is steady and fully devel oped.

Now consider a ring-shaped differential volume Tr4dr
element of radius r, thickness dr, and length dx P, n— P
oriented coaxially with the pipe, as shown in —- —
Figure 5.3. The volume element involves only T-

r

pressure and viscous effects and thus the pressure

and shear forces must balance each other. The

pressure force acting on a submerged plane

surface is the product of the pressure at the

centroid of the surface and the surface area. A

force balance on the volume element in the flow

direction gives _ _ _ _ _ _
Figure 5.3: Free-body diagram of a ring-shaped differentia fluid element of radius
r, thickness dr, and length dx oriented coaxially with a horizontal pipe in fully
developed laminar flow.
5
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(27rdrP), — 2ardrP), . g + 2ardx7), — 2ardx7),.4 =0

which indicates that in fully developed flow in

. . ) 2wR dx 7,
a horizontal pipe, the viscous and pressure —
P
forces balance each other. Dividing by 2zndrdx i :
) TRIP e | < m—
and rearranging, o 7R2(P + dP)
|
Pyrae = Py (M7)rsgr — (r7); -—
r + =0
dx dr
Taking the limit asdr, dx — O gives
dP d(rr
dx dr ] RL L
| 2 S __: :._______-.___
Substituting t = - p (du/dr) and taking p = L
I
constant gives the desired equation, ‘ dx
Ei(r d_u) _ E Force balance;
rdr\ dr dx 7RIP - 7R2(P + dP) - 27R dX 7y = 0
Simplifying:
i, ]
dx R

The quantity du/dr is negative in pipe flow, and the negative sign is included to
obtain positive values for t. (Or, du/dr = - du/dy since y= R - r.) The left side of
above Equation is a function of r, and the right side is afunction of x. The equality
must hold for any value of r and x, and an equality of the form f (r) = g(x) can be
satisfied only if both f (r) and g(x) are equal to the same constant. Thus we
conclude that dP/dx = constant. This can be verified by writing a force balance on
avolume element of radius R and thickness dx (a dlice of the pipe), which gives

dP Tw

dx R
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Here 1,, is constant since the viscosity and the velocity profile are constants in the
fully developed region. Therefore, dP/dx = constant.

by rearranging and integrating it twice to give

u(r) = ™ (ﬂp) €, Inr +E;

The velocity profile u(r) is obtained by applying the boundary conditions ou/or = 0
at r = 0 (because of symmetry about the centerline) and u=0at r = R (the no-dlip
condition at the pipe surface). We get

R (dP r
0 =43 ()

Therefore, the velocity profile in fully developed laminar flow in a pipe is
parabolic with a maximum at the centerline and minimum (zero) at the pipe wall.
Also, the axial velocity u is positive for any r, and thus the axia pressure gradient
dP/dx must be negative (i.e., pressure must decrease in the flow direction because
of viscous effects).

g [® —2 (RR2/dP r R? /dP
Vavg == E ), u(r)rdr = —RE ! 4#((1){) (1 in R—Z)I’ dr = —@(a)

Combining the last two equations, the velocity profileis rewritten as

I-2
-=2vv(1——0
s ian L

This is a convenient form for the velocity profile since V.4 can be determined

easily from the flow rate information. The maximum velocity occurs a the
centerline and is determined from the velocity profile equation (equation above) by
substituting r = 0,

Umax = 2Va\.|'g Therefore, the average velocity in fully developed laminar pipe flow
isone half of the maximum velocity.

7
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5.5. Pressuredrop and head loss

A quantity of interest in the analysis of pipe flow is the pressure drop (P sinceit is
directly related to the power requirements of the fan or pump to maintain flow. We
note that dP/dx = constant, and integrating from x= x; where the pressure is P, to
X=X, + L where the pressure is P, gives

dP P, — P,

dx L
Substituting above equation into the V44 expression, the pressure drop can be
expressed as,
Laminar flow: AP =P, — P, =

8ulVyg  32ulV,
RZ D?
In fluid flow, AP is used to designate pressure drop, and thus it is P; & P,. A

pressure drop due to viscous effects represents an irreversible pressure loss, and it
Is called pressure loss AP to emphasize that it isaloss (just like the head loss h,
which is proportional to it). Therefore, the drop of pressure from P; to P, in this
case is due entirely to viscous effects, and above equation represents the pressure
loss AP_. when a fluid of viscosity u flows through a pipe of constant diameter D
and length L at average velocity V.

In practice, it is found convenient to express the pressure loss for al types of fully
developed interna flows (laminar or turbulent flows, circular or noncircular pipes,

smooth or rough surfaces, horizontal or inclined pipes).

T L PV — — AP ——
Pressureloss. - IR |. . Q
ﬂ “Vay  |D .

2 . .
where pV* 4,¢/2 is the dynamic pressure _ |_ .-'
87w 1 2

fisthe Darcy friction factor, f = —— s
PV-ETUQ ¢ LAV Eg

Pressureloss: AP =1 =——
It isalso called the Dar cy—-Weisbach friction factor,

S T = l:ll —= L II'II':?I'F
Head koss h: = lT'I;- ?.l E-r:l
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It should not be confused with the friction coefficient C; [also called the Fanning
friction factor] which is defined as C; = 21,/(pVayg) = f /4.

Solving for f gives the friction factor for fully-developed laminar flow in acircular
pipe,
64 64

Circular pipe, laminar: f= 2DVog =5

This equation shows that in laminar flow, the friction factor is a function of the

Reynolds number only and is independent of the roughness of the pipe surface.

AP | Vi
Head loss: | e ..J
[T ] r ".I:]

Once the pressure loss (or head loss) is known, the required pumping power to

overcome the pressure loss is determined from

Wpump.L - ||I:’(ﬁ“pL - ||I'I’{»‘:"'QhL = mgh,

whereV isthe volume flow rate and m is the mass flow rate.

Example:

Water properties (p= 62.42 |bm/ft® and p=1.038x10" Ibm/ft .s) is flowing through
a 0.12 in (= 0.010 ft) diameter 30 ft long horizontal pipe steadily at an average
velocity of 3.0 ft/s (see Figure 5.4). Determine (a) the head loss, (b) the pressure

drop, and (c) the pumping power requirement to overcome this pressure drop.

Solution: .
7\
J((jlr —= 3.0 ft/s [0.12 in
0
AN
r* 30 fi
Figure5.4: Schematic for above Example.

(a) First we need to determine the flow regime. The Reynolds number is
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~ PVagD (62,42 Ibm/f%)(3 fUs)(0.01 )
[z 1.038 % 10 Ibm/ft - 5

Re = 1803

which isless than 2300. Therefore, the flow islaminar. Then the friction factor and

the head |oss become

64 64
= (3ER
Re 1803 i
Ve Wi (3 fis)?
h, = ———=0.0355 et -= 149 [t
' D 2g 001 f 2(32.2 ftis%)

(b) Noting that the pipe is horizontal and its diameter is constant, the pressure drop
in the pipe is due entirely to the frictional losses and is equivalent to the pressure

|oss,

L #Vig 30t (62.42 Ibmift?)(3 maﬁ( 1 Ibf )
Ap=p S fe N anaEs :
E= 001 f 2 32.2 Ibm - fu/s

= 929 Ibfift° = 6.45 psi
(c) The volume flow rate and the pumping power requirements are
V = Vyyoy = Vo (wD?4) = (3 1Us)[#(0.01 f)%/4] = 0.000236 1%/

1 W

< 0.737 |bf - ft/s

me = V AP = (0.000236 ft¥/s)(929 |bfift?) ( ) =030 W

pu

Example:

An oil with p = 900 kg/m® and v = 0.0002 m?/s flows upward through an inclined
pipe as shown in Figure below. The pressure and el evation are known at sections 1
and 2, 10 m agpart. Assuming steady laminar flow, (a) verify that the flow is up, (b)
compute h; between 1 and 2, and compute (c) volume flow rate, (d) Velocity, and

(e) Reynolds number. Isthe flow really laminar?

10
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Solution:
d=6cm

2\

), = 250,000 Pa

», =350.000 Pa, z; =0

For later use, calculate
W= pr = {900 ka/m WO.D002 m*fs) = 0.18 kgfim - 5)
I> = AL sin 40° = (10 my0.643) = 643 m

The Now goes in the direction of falling HGL; therefore compute the hydranlic grade-line height
ol exch section

i 350000
HGL, =z po Q00(0.807) el
o]
HGL; =7+ P2 =643 4 W0 e
i Q0D =0T
The HGL is fower at section 2; hence the flow is from | (o 2 a8 assomed, Ars fal

The head loss 15 the change in HGL:
Br=HGL; — HGL: = 3965 m — 3475 m=49m Ans. (b)
Hall the length of the pipe is quite a large head loss.

We can compute £ from [he various laminar-flow formulas, nolably Eg. (6.47)

11
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We can compute £ from the various laminar-flow formulas, notably Eq. (6.471

" . ] - \ i
0= mpgd by _ w(QO0NOSOTHO06HA9) _ oo 3 P
128l I 2R00. 18 10y

Divide {0 by the pipe area to gel the average velocity

yo Q@ _ 00076
i’ .03

= 2.7 mfs Ans. (d)

With 1V known, the Reynolds numbser is

Ve  2.7(0L08) )
S T 0.0002 e

Thisis well below the transition value Re= 2300, and so we are fairly certain the

flow islaminar.

12



