

1

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Lecture One:

 Introduction to MATLAB

 Starting MATLAB

 Getting started

 Mathematical functions

2

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Introduction

The name MATLAB stands for MATrix LABoratory. MATLAB was written originally to provide easy
access to matrix software developed by the LINPACK (linear system package) and EISPACK (Eigen system
package) projects.
MATLAB is a high-performance language for technical computing. It integrates computation, visualization,
and programming environment. Furthermore, MATLAB is a modern programming language environment: it
has sophisticated data structures, contains built-in editing and debugging tools, and supports object-oriented
programming. These factors make MATLAB an excellent tool for teaching and research.
MATLAB has many advantages compared to conventional computer languages (e.g., C, FORTRAN) for
solving technical problems. MATLAB is an interactive system whose basic data element is an array that
does not require dimensioning. The software package has been commercially available since 1984 and is
now considered as a standard tool at most universities and industries worldwide.

 Starting MATLAB

After logging into your account, you can enter MATLAB by double-clicking on the MATLAB shortcut icon
(MATLAB) on your Windows desktop. When you start MATLAB, a special window called the MATLAB
desktop appears. The desktop is a window that contains other windows. The major tools within or accessible
from the desktop are:

 The Command Window
 The Command History
 The Workspace
 The Current Directory
 The Help Browser
 The Start button

When MATLAB is started for the first time, the screen looks like the one that shown in the Figure below.
This illustration also shows the default configuration of the MATLAB desktop. You can customize the
arrangement of tools and documents to suit your needs.

3

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Getting started

- Creating MATLAB variables
MATLAB variables are created with an assignment statement. The syntax of variable assignment is :

variable name = a value (or an expression)
For example,

>> x = expression
where expression is a combination of numerical values, mathematical operators, variables, and function
calls. On other words, expression can involve:

- manual entry
- built-in functions
- user-defined functions

- Overwriting variable
Once a variable has been created, it can be reassigned. In addition, if you do not wish to see the intermediate
results, you can suppress the numerical output by putting a semicolon (;) at the end of the line. Then the
sequence of commands looks like this:

>> t = 5;
>> t = t+1
t = 6

The general interface of MATLAB

4

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

- Error messages
If we enter an expression incorrectly, MATLAB will return an error message. For example, in the following,
we left out the multiplication sign, *, in the following expression

>> x = 10;
>> 5x
??? 5x

Error: Unexpected MATLAB expression.

- Making corrections

To make corrections, we can, of course retype the expressions. But if the expression is lengthy, we make
more mistakes by typing a second time. A previously typed command can be recalled with the up-arrow key
↑. When the command is displayed at the command prompt, it can be modified if needed and executed.

- Controlling the hierarchy of operations or precedence

Let's consider the previous arithmetic operation, but now we will include parentheses. For example, 1 + 2 *
3 will become (1 + 2) * 3

>> (1+2)*3
ans = 9
and, from previous example

>> 1+2*3
ans = 7
By adding parentheses, these two expressions give different results: 9 and 7.
Therefore, to make the evaluation of expressions unambiguous, MATLAB has established a series of rules.
The order in which the arithmetic operations are evaluated is given in Table below. MATLAB arithmetic
operators obey the same precedence rules as those in most computer programs. For operators of equal
precedence, evaluation is from left to right.

Now, consider another example:

In MATLAB, it becomes

>> 1/(2+3^2)+4/5*6/7
ans = 0.7766
or, if parentheses are missing,

>> 1/2+3^2+4/5*6/7
ans = 10.1857

5

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

- Managing the workspace
The contents of the workspace persist between the executions of separate commands. Therefore, it is
possible for the results of one problem to have an effect on the next one. To avoid this possibility, it is a
good idea to issue a clear command at the start of each new independent calculation.

>> clear
The command clear or clear all removes all variables from the workspace. This frees up system memory.

In order to display a list of the variables currently in the memory, type

>> who
while, who will give more details which include size, space allocation, and class of the variables.

- Entering multiple statements per line
It is possible to enter multiple statements per line. Use commas (,) or semicolons (;) to enter more than one
statement at once. Commas (,) allow multiple statements per line without suppressing output.

>> a=7; b=cos(a), c=cosh(a)
b = 0.6570
c = 548.3170

 Mathematical functions

MATLAB offers many predefined mathematical functions for technical computing which contains a large
set of mathematical functions.
There is a long list of mathematical functions that are built into MATLAB. These functions are called built-
ins. Many standard mathematical functions, such as sin(x), cos(x), tan(x), ex, ln(x), are evaluated by the
functions sin, cos, tan, exp, and log respectively in MATLAB.
Table below lists some commonly used functions, where variables x and y can be numbers, vectors, or
matrices.

In addition to the elementary functions, MATLAB includes a number of predefined constant values. A list of
the most common values is given in Table below.

6

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Examples:

1

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Lecture Two:

 Matrix generation

- Entering a vector

- Entering a matrix

- Matrix indexing

- Colon operator

- Linear spacing

- Colon operator in a matrix

- Creating a sub-matrix

- Matrix generators

2

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Introduction
Matrices are the basic elements of the MATLAB environment. A matrix is a two-dimensional array
consisting of m rows and n columns. Special cases are column vectors (n = 1) and row vectors (m = 1).
In this section we will illustrate how to apply different operations on matrices. MATLAB supports two types
of operations, known as matrix operations and array operations.

 Matrix generation
Matrices are fundamental to MATLAB. Therefore, we need to become familiar with matrix generation and
manipulation. Matrices can be generated in several ways.

- Entering a vector

A vector is a special case of a matrix. The purpose of this section is to show how to create vectors and
matrices in MATLAB. As discussed earlier, an array of dimension 1 x n is called a row vector, whereas an
array of dimension m x 1 is called a column vector. The elements of vectors in MATLAB are enclosed by
square brackets and are separated by spaces or by commas. For example, to enter a row vector, v, type

>> v = [1 4 7 10 13]
v = 1 4 7 10 13

Column vectors are created in a similar way, however, semicolon (;) must separate the components of a
column vector,

>> w = [1;4;7;10;13]
w =
1
4
7
10
13

On the other hand, a row vector is converted to a column vector using the transpose operator. The transpose
operation is denoted by an apostrophe or a single quote (').

>> w = v'
w =
1
4
7
10
13

Thus, v(1) is the first element of vector v, v(2) its second element, and so forth. Furthermore, to access
blocks of elements, we use MATLAB's colon notation (:). For example, to access the first three elements of
v, we write,

>> v(1:3)
ans = 1 4 7

3

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Or, all elements from the third through the last elements,
>> v(3,end)
ans = 7 10 13

where end signifies the last element in the vector. If v is a vector, writing
>> v(:)

produces a column vector, whereas writing
>> v(1:end)

produces a row vector.

- Entering a matrix
A matrix is an array of numbers. To type a matrix into MATLAB you must

 begin with a square bracket, [
 separate elements in a row with spaces or commas (,)
 use a semicolon (;) to separate rows
 end the matrix with another square bracket,].

Here is a typical example. To enter a matrix A, such as,

type,
>> A = [1 2 3; 4 5 6; 7 8 9]
MATLAB then displays the 3 x 3 matrix as follows,

A =
1 2 3
4 5 6
7 8 9

Note that the use of semicolons (;) here is different from their use mentioned earlier to suppress output or to
write multiple commands in a single line.
Once we have entered the matrix, it is automatically stored and remembered in the Workspace. We can refer
to it simply as matrix A. We can then view a particular element in a matrix by specifying its location. We
write,

>> A(2,1)
ans = 4

- Matrix indexing
We select elements in a matrix just as we did for vectors, but now we need two indices. The element of row i
and column j of the matrix A is denoted by A(i,j). Thus, A(i,j) in MATLAB refers to the element Aij of
matrix A. The first index is the row number and the second index is the column number. For example,
A(1,3) is an element of first row and third column. Here, A(1,3)=3.
Correcting any entry is easy through indexing. Here we can substitute A(3,3) = 9 by A(3,3) = 0.

4

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

- Colon operator
The colon operator will prove very useful and understanding how it works is the key to efficient and
convenient usage of MATLAB. It occurs in several different forms. Often we must deal with matrices or
vectors that are too large to enter one element at a time. For example, suppose we want to enter a vector x
consisting of points
(0; 0:1; 0:2; 0:3; . . . ; 5). We can use the command

>> x = 0:0.1:5;
The row vector has 51 elements.

- Linear spacing

On the other hand, there is a command to generate linearly spaced vectors: linspace. It is similar to the colon
operator (:), but gives direct control over the number of points. For example,

y = linspace(a,b)
generates a row vector y of 100 points linearly spaced between and including a and b.

y = linspace(a,b,n)
generates a row vector y of n points linearly spaced between and including a to b with steps, where :

>>linspace(1,5,9)
ans=
1 1.5 2 2.5 3 3.5 4 4.5 5

divides the interval [1; 9] into 10 equal subintervals (0.5), then creating a vector of 10 elements.

>> theta = linspace(0,2*pi,101)

divides the interval [0; 2π] into 100 equal subintervals(0.0628), then creating a vector of 101 elements.

This is useful when we want to divide an interval into a number of subintervals of the same length.

- Colon operator in a matrix
The colon operator can also be used to pick out a certain row or column. For example, the statement A(m:n ,
k:l) specifies rows m to n and column k to l. Subscript expressions refer to portions of a matrix. For
example,

>> A(2,:)
ans =

4 5 6
is the second row elements of A.

The colon operator can also be used to extract a sub-matrix from a matrix A.

5

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

A row or a column of a matrix can be deleted by setting it to a null vector, [].

- Creating a sub-matrix
To extract a submatrix B consisting of rows 2 and 3 and columns 1 and 2 of the matrix A, do the following

>> B = A([2 3],[1 2])
B =

4 5
7 8

To interchange rows 1 and 2 of A, use the vector of row indices together with the colon operator.

It is important to note that the colon operator (:) stands for all columns or all rows. To create a vector version
of matrix A, do the following

>> A(:)
ans =

1
2
3
4
5
6
7
8
0

The submatrix comprising the intersection of rows p to q and columns r to s is denoted by A(p:q,r:s).
As a special case, a colon (:) as the row or column speci¯er covers all entries in that row or column; thus

 A(:,j) is the jth column of A, while
 A(i,:) is the ith row, and
 A(end,:) picks out the last row of A.

The keyword end, used in A(end,:), denotes the last index in the specified dimension. Here are some
examples.

6

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

- Deleting row or column
To delete a row or column of a matrix, use the empty vector operator, [].

>> A(3,:) = []
A =

1 2 3
4 5 6

Third row of matrix A is now deleted. To restore the third row, we use a technique for creating a matrix
>> A = [A(1,:);A(2,:);[7 8 0]]
A =

1 2 3
4 5 6
7 8 0

Matrix A is now restored to its original form.

- Dimension
To determine the dimensions of a matrix or vector, use the command size. For example,

>> size(A)
ans =

3 3
means 3 rows and 3 columns, or more explicitly with,

>> [m,n]=size(A)

- Transposing a matrix
The transpose operation is denoted by an apostrophe or a single quote ('). It flips a matrix about its main
diagonal and it turns a row vector into a column vector. Thus,

>> A'
ans =

1 4 7
2 5 8
3 6 0

By using linear algebra notation, the transpose of m x n real matrix A is the n x m matrix that results from
interchanging the rows and columns of A. The transpose matrix is denoted AT .

7

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

- Matrix generators
MATLAB provides functions that generates elementary matrices. The matrix of zeros, the matrix of ones,
and the identity matrix are returned by the functions zeros, ones, and eye, respectively.

>> b=ones(3,1)
b =

1
1
1

Equivalently, we can define b as >> b = [1;1;1]

 >> eye(3)

ans =
1 0 0
0 1 0
0 0 1

>> c = zeros(2,3)

c =
0 0 0
0 0 0

In addition, matrices can be constructed in a block form. With C defined by C = [1 2; 3 4], we may create a
matrix D as follows

>> D = [C zeros(2); ones(2) eye(2)]
D =

1 2 0 0
3 4 0 0
1 1 1 0
1 1 0 1

Examples

8

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

1

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Lecture Three

 Array operations

- Matrix arithmetic operations

- Array arithmetic operations

2

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Array operations

MATLAB has two different types of arithmetic operations: matrix arithmetic operations and array arithmetic
operations.
- Matrix arithmetic operations

As we mentioned earlier, MATLAB allows arithmetic operations: +, -, *, and ^ to be carried out on matrices.
Thus,

A+B or B+A is valid if A and B are of the same size

A*B is valid if A's number of column equals B's number of rows

A^2 is valid if A is square and equals A*A

α*A or A*α multiplies each element of A by α

- Array arithmetic operations

On the other hand, array arithmetic operations or array operations for short, are done element-by-element.
The period character, . , distinguishes the array operations from the matrix operations. However, since the
matrix and array operations are the same for addition (+) and subtraction (-), the character pairs (.+) and (.-)
are not used. The list of array operators is shown below in Table.

If A and B are two matrices of the same size with elements A = [aij] and B = [bij], then the command

>> C = A.*B
produces another matrix C of the same size with elements cij = aijbij . For example, using the same 3 x 3
matrices,

we have,

>> C = A.*B
C =

10 40 90
160 250 360
490 640 810

To raise a scalar to a power, we use for example the command 10^2. If we want the operation to be applied
to each element of a matrix, we use .^2. For example, if we want to produce a new matrix whose elements
are the square of the elements of the matrix A, we enter

3

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

>> A.^2
ans =

1 4 9
16 25 36
49 64 81

The relations below summarize the above operations. To simplify, let's consider two vectors U and V with

4

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Examples:

X=[1,2,3;4,5,6]
Y=[12,11,10;9,8,7]

>>X+Y
ans =

13 13 13
13 13 13

>>X-Y
ans =

-11 -9 -7
-5 -3 -1

>>X+3
ans =

4 5 6
7 8 9

>>X*3
ans =

3 6 9
12 15 18

>>X.*Y
ans =

12 22 30
36 40 42

>>X*Y’
ans =

64 46
163 118

>>X’*Y
ans =

48 43 38
69 62 55
90 81 72

1

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Lecture Four

Solving Linear Equations in MATLAB

2

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Solving linear equations

One of the problems encountered most frequently in scientific computation is the solution of systems of

simultaneous linear equations. With matrix notation, a system of simultaneous linear equations is written

Ax = b

where there are as many equations as unknown. A is a given square matrix of order n, b is a given column

vector of n components, and x is an unknown column vector of n components.

In linear algebra we learn that the solution to Ax = b can be written as x = A-1b, where A-1 is the inverse of A.

For example, consider the following system of linear equations

x + 2y + 3z = 1

4x + 5y + 6z = 1

7x + 8y = 1

The coefficient matrix A is

𝐴 = [
1 2 3
4 5 6
7 8 0

]

and the vector b is

𝑏 = [
1
1
1

]

There are typically two ways to solve for x in MATLAB:

1. The first one is to use the matrix inverse, inv.
>> A = [1 2 3; 4 5 6; 7 8 0];

>> b = [1; 1; 1];

>> x = inv(A)*b

x =
-1.0000
1.0000
-0.0000

3

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

2. The second one is to use the backslash (\) operator. The numerical algorithm behind this operator is

computationally efficient. This is a numerically reliable way of solving system of linear equations by

using a well-known process of Gaussian elimination.

>> A = [1 2 3; 4 5 6; 7 8 0];

>> b = [1; 1; 1];

>> x = A\b

x =
-1.0000
1.0000
-0.0000

Ex. Solving a set of linear equations
-6x = 2y - 2z + 15
4y - 3z = 3x + 13
2x + 4y - 7z = -9

First, rearrange the equations

-6x - 2y + 2z = 15
 -3x + 4y - 3z = 13
2x + 4y - 7z = -9

Second, write the equations in a matrix form Ax = b

The coefficient matrix is

𝐴 = [
−6 −2 2
−3 4 −3
2 4 −7

]

The constant column vector is

𝑏 = [
15
13
−9

]

Third, solve the simultaneous equations in Matlab

>> x = A\b

The Matlab answer is:

x = -2.7273

 2.7727

 2.0909

1

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Lecture Five

Programming in MATLAB

2

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Introduction
So far in these lab sessions, all the commands were executed in the Command Window. The problem is that
the commands entered in the Command Window cannot be saved and executed again for several times.
Therefore, a different way of executing repeatedly commands with MATLAB is:

1. to create a file with a list of commands,
2. save the file, and
3. run the file.

If needed, corrections or changes can be made to the commands in the file. The files that are used for this
purpose are called script files or scripts for short.
This section covers the following topics:

- M-File Scripts
- M-File Functions

 M-File Scripts
A script file is an external file that contains a sequence of MATLAB statements. Script files have a filename
extension .m and are often called M-files. M-files can be scripts that simply execute a series of MATLAB
statements, or they can be functions that can accept arguments and can produce one or more outputs.

Example 1
Consider the system of equations:

x + 2y + 3z = 1
3x + 3y + 4z = 1
2x + 3y + 3z = 2

Find the solution x to the system of equations.
Solution:

1. Use the MATLAB editor to create a file: File → New → M-file.
2. Enter the following statements in the file:

A = [1 2 3; 3 3 4; 2 3 3];
b = [1; 1; 2];
x = A\b

3. Save the file, for example, example1.m.
4. Run the file, in the command line, by typing:

>> example1
x =
-0.5000
1.5000
-0.5000

When execution completes, the variables (A, b, and x) remain in the workspace. To see a listing of them,
enter whos at the command prompt.
Note: The MATLAB editor is both a text editor specialized for creating M-files and a graphical MATLAB
debugger. The MATLAB editor has numerous menus for tasks such as saving, viewing, and debugging.

3

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Because it performs some simple checks and also uses color to differentiate between various elements of
codes, this text editor is recommended as the tool of choice for writing and editing M-files.

There is another way to open the editor:

>> edit
or

>> edit filename.m
to open filename.m.

 M-File functions
As mentioned earlier, functions are programs (or routines) that accept input arguments and return output
arguments. Each M-file function (or function or M-file for short) has its own area of workspace, separated
from the MATLAB base workspace.

- Anatomy of a M-File function
This simple function shows the basic parts of an M-file.

1) function f = factorial(n)
2) % FACTORIAL(N) returns the factorial of N.
3) % Compute a factorial value.
4) f = prod(1:n);

The first line of a function M-file starts with the keyword function. It gives the function name and order of
arguments. In the case of function factorial, there are up to one output argument and one input argument.

As an example, for n = 5, the result is,

>> f = factorial (5)
f =
120

4

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Both functions and scripts can have all of these parts, except for the function definition line which applies to
function only. In addition, it is important to note that function name must begin with a letter, and must be no
longer than the maximum of 63 characters. Furthermore, the name of the text file that you save will consist
of the function name with the extension .m. Thus, the above example file would be factorial.m.

Table below summarizes the differences between scripts and functions.

- Input and output arguments
As mentioned above, the input arguments are listed inside parentheses following the function name. The
output arguments are listed inside the brackets on the left side. They are used to transfer the output from the
function file. The general form looks like this

function [outputs] = function_name(inputs)

Function file can have none, one, or several output arguments. Table below illustrates some possible
combinations of input and output arguments.

5

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

- Input to a script file
When a script file is executed, the variables that are used in the calculations within the file must have
assigned values. The assignment of a value to a variable can be done in three ways.

1. The variable is defined in the script file.
2. The variable is defined in the command prompt.
3. The variable is entered when the script is executed.

We have already seen the two first cases. Here, we will focus our attention on the third one. In this case, the
variable is defined in the script file. When the file is executed, the user is prompted to assign a value to the
variable in the command prompt. This is done by using the input command.

Example.

% This script file calculates the average of points
% scored in three games.
% The point from each game are assigned to a variable
% by using the `input' command.

game1 = input('Enter the points scored in the first game ');
game2 = input('Enter the points scored in the second game ');
game3 = input('Enter the points scored in the third game ');
average = (game1+game2+game3)/3

The following shows the command prompt when this script file (saved as example) is executed.
>> example
>> Enter the points scored in the first game 15
>> Enter the points scored in the second game 23
>> Enter the points scored in the third game 10
average =

16

- Output commands
As discussed before, MATLAB automatically generates a display when commands are executed. In addition
to this automatic display, MATLAB has several commands that can be used to generate displays or outputs.
Two commands that are frequently used to generate output are: disp and fprintf.
The main differences between these two commands can be summarized as follows:

6

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

The display disp function allows the programmer to display the contents of a string or a matrix in the
command window. Although the disp function is adequate for many display tasks, the fprintf function gives
the programmer considerably more control over the way results are displayed. Table below illustrates the
various formats supported by fprintf

Example 2:
Write a function file that converts temperature in degrees Fahrenheit (FO) to degrees Centigrade (CO). Use
input and fprintf commands to display a mix of text and numbers. Recall the conversion formulation,
C = 5/9 * (F - 32).

Answer

function [C] = FtoC(F)

F = input('Enter the temperature in degrees Fahrenheit ');

C = 5/9 * (F - 32)

fprintf(' The temperature in degrees Centigrade=%d\n', C);

end

This M-file produces the following interaction in the command window:

Enter the temperature in degrees Fahrenheit 5
 The temperature in degrees Centigrade = -15

7

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Example 3:
Consider the behavior of a freely falling object under the influence of gravity, where the position of the

object is described by:

𝑑 =
1

2
 𝑔 𝑡2

Where,
d - distance the object travels
g - acceleration due to gravity
t - elapsed time.

Describe the Input and Output as:
Input
Value of g the acceleration due to gravity, provided by the user (one value)
Time t provided by the user, (starting time, ending time, increments)
Output
Distances calculated for each value of time.

Find the distance traveled by a freely falling object with generate a table of output results (distances
calculated with time. Use disp and fprintf to create a table.

Answer

g = input('What is the value of acceleration due to gravity?');
start = input('What starting time would you like?');
finish = input('What ending time would you like?');
incr = input('What time increments would you like calculated?');
time = start:incr:finish;
%Calculate the distance
distance = 1/2*g*time.^2;
%Create a matrix of the output data
result = [time;distance]';
disp(' time,s distance,m')
disp(result)
%fprintf('%5d %10d\n',result)

This M-file produces the following interaction in the command window:
What is the value of acceleration due to gravity?5
What starting time would you like?0
What ending time would you like?6
What time increments would you like calculated?2
 time,s distance,m
 0 0
 2 10
 4 40
 6 90

1

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Lecture Six

Control Flow and Operators

2

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Introduction
MATLAB is also a programming language. Like other computer programming languages, MATLAB has
some decision making structures for control of command execution. These decision making or control flow
structures include for loops, while loops, and if-else-end constructions. Control flow structures are often used
in script M-files and function M-files.
By creating a file with the extension .m, we can easily write and run programs. We do not need to compile the
program since MATLAB is an interpretative (not compiled) language.

 Control Flow
MATLAB has four control flow structures:

- The If statement,
- The For Loop,
- The While Loop,
- The Switch statement.

- The ``if...end'' structure

MATLAB supports the variants of "if" construct.

 if ... end
 if ... else ... end

 if ... elseif ... else ... end

The simplest form of the if statement is

if expression
statements
end

Here are some examples based on the familiar quadratic formula.

1. discr = b*b - 4*a*c;
if discr < 0
disp('Warning: discriminant is negative, roots are imaginary');
end

2. discr = b*b - 4*a*c;
if discr < 0
disp('Warning: discriminant is negative, roots are imaginary');
else
disp('Roots are real, but may be repeated')
end

https://www.google.com/url?sa=i&url=http://andymath.com/quadratic-formula-and-the-discriminant/&psig=AOvVaw24J8qkazHoebMUtz4RFvBi&ust=1586250659339000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCLD_w6u60-gCFQAAAAAdAAAAABAD

3

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

3. discr = b*b - 4*a*c;

if discr < 0
disp('Warning: discriminant is negative, roots are imaginary');
elseif discr == 0
disp('Discriminant is zero, roots are repeated')
else
disp('Roots are real')
end

It should be noted that:

- elseif has no space between else and if (one word)
- no semicolon (;) is needed at the end of lines containing if, else, end
- indentation of if block is not required, but facilitate the reading.
- the end statement is required

Relational and logical operators
A relational operator compares two numbers by determining whether a comparison is true or false.
Relational operators are shown in Table below.

Relational and logical operators

Note that the "equal to" relational operator consists of two equal signs (==) (with no space between them),
since = is reserved for the assignment operator.

4

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Comparisons are either true or false, and most computer programs (including MATLAB) use the number 1
for true and 0 for false. (MATLAB actually takes any number that is not 0 to be true.) If we define two scalars

x = 5;
y = 1;

and use a relational operator such as <, the result of the comparison
x<y

is either true or false. In this case, x is not less than y, so MATLAB responds
ans =
 0

indicating that the comparison is false. MATLAB uses this answer in selection statements and in repetition
structures to make decisions.
Of course, variables in MATLAB ® usually represent entire matrices. If we redefine x and y, we can see how
MATLAB handles comparisons between matrices. For example,

x = [1, 2, 3, 4, 5];
y = [-2, 0, 2, 4, 6];
x<y

ans =

 1×5 logical array

 0 0 0 0 1

MATLAB also allows us to combine comparisons with the logical operators and , not , and or.
The code

x = [1, 2, 3, 4, 5];
y = [-2, 0, 2, 4, 6];
z = [8, 8, 8, 8, 8];
z>x & z>y

ans =

 1×5 logical array

 1 1 1 1 1

5

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Example:
Create a function to determine test grades based on the score and assuming a single input into the function.
The grades should be based on the following criteria:

Answer

function results = grade(x)
%This function requires a scalar input
x = input('Enter the Score ');
if(x>=0 & x<=100)
if(x>=90)
results = 'A';
elseif(x>=80)
results = 'B';
elseif(x>=70)
results = 'C';
elseif(x>=60)
results = 'D';
else
results = 'E';
end
else
results = 'Illegal Input';
end

6

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

- The ``for...end'' loop
In the for ... end loop, the execution of a command is repeated at a fixed and predetermined number of times.
The syntax is

for variable = expression
statements

end

Usually, expression is a vector of the form i:s:j (start : inc : final)

A simple example of for loop is

for k = 1:3
a = 5^k
end

a =

5
a =

25
a =

125

A common way to use a for loop is in defining a new matrix. Consider, for example, the code

For k = 1:5
a(k) = k^2
end

This loop defines a new matrix, a , one element at a time. Since the program repeats its set of instructions five
times, a new element is added to the a matrix each time through the loop, with the following output in the
command window:

a =
1
a =
1 4
a =
1 4 9
a =
1 4 9 16
a =
1 4 9 16 25

7

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Another common use for a for loop is to combine it with an if statement and determine how many times
something is true. For example, in the list of test scores shown in the first line, how many are above 90?

scores = [76,45,98,97];
count = 0;
for k=1:length(scores)

if scores(k)>90
count = count + 1;

end
end
disp(count)

It is a good idea to indent the loops for readability, especially when they are nested. Note that MATLAB editor
does it automatically.
Multiple for loops can be nested, in which case indentation helps to improve the readability. The following
statements form the 5-by-5 symmetric matrix A with (i; j) element i/j for j> i:

n = 5; A = eye(n);
for j=2:n

 for i=1:j-1
A(i,j)=i/j;
A(j,i)=i/j;

end
end

8

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Example:
Use MATLAB capability to create a degrees-to-radians table from 1 to 360 degree with step 10, you can
demonstrate the use of for loops.

for k=1:36
deg(k) = k*10;
rad(k)=deg(k)*pi/180;

end
t = [deg;rad]
disp('Degrees to Radians')
disp('Degrees Radians')
fprintf('%8.0f %8.2f \n',t)

Degrees to Radians
Degrees Radians
 10 0.17
 20 0.35
 30 0.52
 40 0.70
 50 0.87
 60 1.05
 70 1.22
 80 1.40
 90 1.57
 100 1.75
 110 1.92
 120 2.09
 130 2.27
 140 2.44
 150 2.62
 160 2.79
 170 2.97
 180 3.14
 190 3.32
 200 3.49
 210 3.67
 220 3.84
 230 4.01
 240 4.19
 250 4.36
 260 4.54
 270 4.71
 280 4.89
 290 5.06
 300 5.24
 310 5.41
 320 5.59
 330 5.76
 340 5.93
 350 6.11
 360 6.28
 360 6.28

9

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Example:

What will be the results of the following program?

R=12:-3:2.7;
A=100;
for m=1:2:4

A=A-R(m);
if A<=(14*R(m+1))

disp(A);
else

disp(R(m));
end

end
disp(m);

Answer:

R = 12 9 6 3
m= 1 3

1s loop
A= 100-12=88
88 <= (14*9) True
disp(A) = 88

2nd loop
A= 88-6 = 82
82 <= (14*3) False
disp(R(m)) = 6

disp(m) = 3

1

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Lecture Seven

Control Flow and Operators

 ``while...end'' loop

 Switch and Case

2

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 The ``while...end'' loop

This loop is used when the number of passes is not specified. While loops are similar to for loops. The big
difference is the way MATLAB decides how many times to repeat the loop. While loops continue until some
criterion is met. The while loop has the form:

while expression (criterion)
 statements
end

The statements are executed as long as expression is true.

x = 1
while x <= 10
 x = 3*x
end

It is important to note that if the condition inside the looping is not well defined, the looping will continue
indefinitely. If this happens, we can stop the execution by pressing Ctrl-C.

One common use for a while loop is error checking of user input. Consider a program where we prompt the
user to input a positive number, and then we calculate the log base 10 of that value. We can use a while loop
to confirm that the number is positive, and if it is not, to prompt the user to enter an allowed value.
The program keeps on prompting for a positive value until the user finally enters a valid number.

x = input('Enter a positive value of x')
while (x<=0)

disp('log(x) is not defined for negative numbers')
x = input('Enter a positive value of x')

end
y = log10(x);
fprintf('The log base 10 of %4.2f is %5.2f \n',x,y)

If, when the code is executed, a positive value of x is entered, the while loop does not execute (since x is not
less than 0). If, instead, a zero or negative value is entered, the while loop is executed, an error message is sent
to the command window, and the user is prompted to reenter the value of x. The while loop continues to
execute until a positive value of x is finally entered.

3

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Example:

Create a new function called fact2 that uses a while loop to find N!. Include an if statement to check for
negative numbers and to confirm that the input is a scalar.

Answer

function output = fact2(x)

%This function uses a while loop to find x!

%The input must be a positive integer

if(length(x)>1 | x<0)

disp('The input must be a positive integer')

else

%Initialize the running product

a = 1;

%Initialize the counter

k = 1;

while k<x

%Increment the counter

k = k + 1;

%Calculate the running product

a = a*k;

end

output = a;

end

Test the function in the command window:

fact2(5)
ans =
120
fact2(-10)
ans =
The input must be a positive integer
fact2([1:10])
ans =
The input must be a positive integer

4

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Example:

Write out the values of 𝑥2 for all positive integer values 𝑥 such that 𝑥3<1000 using while.

 Answer

x=1;
while x^3<1000

disp (x^2)
x=x+1;

end

Example:

Write a program that computes the sum:

𝑃 = 4 ∑
𝑘

2𝑘 + 1

∞

𝑘=0

Stop the summation operation when the value of 𝑃≥100, and display the value of the last 𝑘.

k=0;

sum=0;

p=1;

while p < 100

 sum = sum + (k/(2*k+1))

 p=4*sum

 k=k+1;

end

 disp(k)

5

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Switch and Case

The switch/case structure is often used when a series of programming path options exists for a given variable,
depending on its value. The switch/case is similar to the if/else/elseif. As a matter of fact, anything you can

do with switch/case could be done with if/else/elseif. However, the code is a bit easier to read with
switch/case, a structure that allows you to choose between multiple outcomes, based on some criterion. This
is an important distinction between switch/case and elseif . The criterion can be either a scalar (a number) or
a string. In practice, it is used more with strings than with numbers. The structure of switch/case is

switch variable
case option1

code to be executed if variable is equal to option 1
case option2

code to be executed if variable is equal to option 2
.
.
.

case option_n
code to be executed if variable is equal to option n

otherwise
code to be executed if variable is not equal to any of the options

end

Here’s an example: Suppose you want to create a function that tells the user what the airfare is to one of three
different cities:

city = input('Enter the name of a city in single quotes: ')
switch city
case 'Basra'

disp('$120')
case 'Irbil'

disp('$150')
case 'Mousel'

disp('$110')
otherwise

disp('Not on file')
end

Enter the name of a city in single quotes: 'Basra'
city =
 'Basra'
$120

6

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Example:

Create a program to prompt the user to enter the number of candy bars he or she would like to buy. The
input will be a number. Use the switch/case structure to determine the bill, where

1 bar _ $0.75
2 bars _ $1.25
3 bars _ $1.65

 more than 3 bars= $1.65 +$0.30 (number ordered - 3)

Answer

num = input('How many candy bars would you like? ');
switch num
case 1

bill = 0.75;
case 2

bill = 1.25;
case 3

bill = 1.65;
otherwise

bill = 1.65 + (num-3)*0.30;
end
fprintf('Your bill is %5.2f \n',bill)

1

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Lecture Eight

Plotting in MATLAB

2

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Introduction

MATLAB has an excellent set of graphic tools. Plotting a given data set or the results of computation is
possible with very few commands. You are highly encouraged to plot mathematical functions and results of
analysis as often as possible. Trying to understand mathematical equations with graphics is an enjoyable and
very efficient way of learning mathematics. Being able to plot mathematical functions and data freely is the
most important step, and this section is written to assist you to do just that. Engineers use graphing techniques
to make the information easier to understand. With a graph, it is easy to identify trends, pick out highs and
lows, and isolate data points that may be measurement or calculation errors. Graphs can also be used as a
quick check to determine whether a computer solution is yielding expected results.

 Basic Plotting

The basic MATLAB graphing procedure is to take a vector of x-coordinates, x = (x1; : : : ; xN), and a vector
of y-coordinates, y = (y1; : : : ; yN), locate the points (xi; yi), with i = 1; 2; : : : ; n and then join them by
straight lines. You need to prepare x and y in an identical array form; namely, x and y are both row arrays or
column arrays of the same length.
The MATLAB command to plot a graph is plot(x,y). The vectors x = (1; 2; 3; 4; 5; 6) and y = (3;¡1; 2; 4; 5;
1) produce the picture shown in below.

>> x = [1 2 3 4 5 6];
>> y = [3 -1 2 4 5 1];
>> plot (x,y)

3

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Note: The plot functions has different forms depending on the input arguments. If y is a vector plot (y)
produces a piecewise linear graph of the elements of y versus the index of the elements of y. If we specify two
vectors, as mentioned above, plot (x,y) produces a graph of y versus x.

For example, to plot the function sin (x) on the interval [0, 2π], we first create a vector of x values ranging
from 0 to 2π, then compute the sine of these values, and finally plot the result:

>> x = 0:pi/100:2*pi;
>> y = sin(x);
>> plot(x,y)

Notes:

- 0:pi/100:2*pi yields a vector that
- starts at 0,
- takes steps (or increments) of π/100,
- stops when 2π is reached.
- If you omit the increment, MATLAB automatically increments by 1.

4

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Suppose a set of time versus distance data were obtained through measurement. We can store the time values
in a vector called x (the user can define any convenient name) and the distance values in a vector called y :

x = [0:2:18];
y = [0, 0.33, 4.13, 6.29, 6.85, 11.19, 13.19, 13.96, 16.33,18.17];
plot(x,y)

5

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Adding titles, axis labels, and annotations

Good engineering practice requires that we include axis labels and a title in our plot. The following commands
add a title, x - and y -axis labels, and a background grid:

plot(x,y)
xlabel('Time, sec')
ylabel('Distance, ft')
grid on

These commands generate the plot in Figure below. As with any MATLAB commands, they could also be
combined onto one or two lines, separated by commas:

plot(x,y) , title('Laboratory Experiment 1')
xlabel('Time, sec'), ylabel('Distance, ft'), grid

6

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Specifying line styles and colors

By default, MATLAB uses line style and color to distinguish the data sets plotted in the graph. However, you
can change the appearance of these graphic components or add annotations to the graph to help explain your
data for presentation.
It is possible to specify line styles, colors, and markers (e.g., circles, plus signs, . . .) using the plot command:

 Plot (x,y,'style_color_marker')

where style_color_marker is a triplet of values from Table below:

The following commands illustrate the use of line, color, and mark styles:

x = [1:10];
y = [58.5, 63.8, 64.2, 67.3, 71.5, 88.3, 90.1, 90.6, 89.5,90.4];
plot(x,y,':ok')

7

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Example:

Plot the polynomial 𝑦 = 𝑥2 − 1 between x=0 and x=10 (using twenty points).

>>x=linspace(0,10,20); // or x=0:10/20:10;
>>y= x.^2-1;
>>plot(x,y)

1

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 Lecture Nine

Plotting in MATLAB

 SUBPLOTS

2

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

 SUBPLOTS

You can use the subplot command to obtain several smaller “subplots” in the same figure. The subplot
command allows you to subdivide the graphing window into a grid of m rows and n columns. The function

subplot(m,n,p)

splits the figure into an m _ n matrix. The variable p identifies the portion of the window where the next plot
will be drawn. For example, if the command

subplot(2,2,1)

is used, the window is divided into two rows and two columns, and the plot is drawn in the upper left-hand
window (Figure below)

p = 1 p = 2

p = 3 p = 4

The windows are numbered from left to right, top to bottom. Similarly, the following commands split the
graph window into a top plot and a bottom plot.

subplot(3,2,5)

creates an array of six panes, three rows and two columns , and directs the next plot to appear in the fifth pane
(in the bottom left corner).

p = 1 p = 2

p = 3 p = 4

p = 5 p = 6

3

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Example 1:

- Subdivide a figure window into two rows and one column.
- In the top window, plot y = sin(x) for x from 0 to 2π with increment of π/20.
- In the bottom window, plot y = sin(2x) for the same range.

x = 0:pi/20:2*pi;
subplot(2,1,1)
plot(x,sin(x))
xlabel('x'),ylabel('y')
subplot(2,1,2)
plot(x,sin(2*x))
xlabel('x'),ylabel('y')

The first graph is drawn in the top window, since p =1. Then the subplot command is used again to draw the
next graph in the bottom window.

4

University of Anbar
College of Engineering

Dept. of Electrical Engineering

Computer Programming (MATLAB)
Dr. Maath Jasem

2019 - 2020

Example 2:
Use the subplot command to plot the functions (use an increment of 0.01):

𝑦 = 𝑒−1.2𝑥 sin(10𝑥 + 1) 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 5

𝑦 = |𝑥3 − 100| 𝑓𝑜𝑟 − 6 ≤ 𝑥 ≤ 6

x = 0:0.01:5;
y = exp(-1.2*x).*sin(10*x+5);
subplot(1,2,1)
plot(x,y)
xlabel('x'),ylabel('y')
x = -6:0.01:6;
y = abs(x.^3-100);
subplot(1,2,2)
plot(x,y)
xlabel('x'),ylabel('y')

