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A- NEWTON'S DIVIDED-DIFFERENCE
INTERPOLATING POLYNOMIAL

As stated above, there are a variety of alternative forms for expressing
an interpolating polynomial. Newton’s divided-difference interpolating
polynomial is among the most popular and useful forms. Before
presenting the general equation, we will introduce the first- and second-
order versions because of their simple visual interpretation.

1- Linear Interpolation

The simplest form of interpolation is to connect two data points with a
straight line. This technique, called linear interpolation.



Given (xy, yo) and (z1, y1)
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fi(z): first order interpolation
A smaller interval, i.e., |z1 — x| closer to zero, leads to better approximation.

Example: Given In1 = 0, In6 = 1.791759, use linear interpolation to find In 2.
Solution:
fi2) =2 =1In1+ 2801 x (2 1) =0.3583519

True solution: In2 = (0.6931472.
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Figure 2: A smaller interval provides a better estimate

2- Quadratic Interpolation

An error maybe resulted from our approximating a curve with a straight
line. Consequently, a strategy for improving the estimate is to introduce
some curvature into the line connecting the points. If three data points



are available, this can be accomplished with a second-order polynomial
(also called a quadratic polynomial or a parabola.

Given 3 data points, (zg,vo), (1, 91), and (x2,y2), we can have a second order

polynomial
fa(z) = by + bi(x — xp) + ba(z — z0)(x — x1)
fa(wo) = bo = yo -
fa(z1) = bo + bi(z1 — 20) =91, — by =40
Wy y-u
fal@a) = by + bi(xy — ) + by(wy — m) (22 — 1) = 1o, — by = ZL=0 (%)
Proof (¥):
(y1—yo)(z2—10)
by — Y2 — by — by(z9 — ) _ Y2— Yo — 1—20
(2 — o) (22 — 71) (2 — o) (22 — 1)

_ (y2 — yo)(@1 — o) = (¥1 — Yo)(@2 — @)
(11?2 - 11?0)(332 - 11?1)(5'31 - S'Jn)
y2(z1 — o) — Yox1 + Yoo — (Y1 — Yo)T2 + Y19 — YoZo
(22 — fEn)(fEQ - $1)($1 - xo)
y2(21 — o) — y1x1 + Y120 — (Y1 — Yo)T2 + Y171 — Yoy
(w0 — an)(i?-?? - $1)(I1 - 370)
_ (2 —wy)(er — 20) — (1 — yo)(@2 — 1)
(Iz - IO)($2 - 11?1)($1 - fEn)




Comments: In the expression of fs(z),

® by + bi(z — x¢) is linear interpolating from (z, 1) and (x1, v ), and

e +by(x — xy)(x — x1) introduces second order curvature.

Example: Given In1 = 0, In4 = 1.386294, and In 6 = 1.791759, find In 2.
Solution:

(20, 90) = (1,0), (1, 1) = (4, 1.386294), (22, y2) = (6, 1.791759)
bo=1yp=20
by = st — L3I0 — ().4620981

¥2-Y1_ Y13 791750—1.38629:
b r;—:ri_n‘:—;ﬁg B LT91759-1.386294 _ ) 4690081
2 — p—

2220 o = —0.0518731
fo(z) = 0.4620981(z — 1) — 0.0518731(z — 1)(z — 4)
f2(2) = 0.565844

e = |22 5 100% = 18.4%
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Figure 3: Quadratic interpolation provides a better estimate than linear interpolation
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Figure 4: Linearization of nonlinear relationships
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The Lagrange interpolating polynomial is a reformulation of the Newton’s in-
terpolating polynomial that avoids the computation of divided differences. The

basic format is
fala Z Li(x

where L;(x) = H? 0.j#i ;;_;;i

Linear Interpolation (n = 1)
fi@) = S L) f(@) = Lo(@)yo + Li(w)ys = 22y + 220y,
(fi(x) = yo + =22 (x — x0))

Second Order Interpolation (n = 2)
fo(x) = Y0 Li(x) f(z:) = Lo(x)yo + La(x)ys + La(z)yz =

(z—x0)(z—29) (z—xp)(x—11)

(x1—mz0)(21—29) Y (wo—zp)(x2—21) Y2

Solution:
(2o, y0) = (1,0), (z1, 1) = (4, 1.386294), (2, y2) = (6, 1.791759)

filx) = yo + L0 (z — zg) = L3 x 0+ 221 % 1.386294 = 0.4620981

r1—rp 1-4
(;a (z—x2) (x—xq)(z—29) (r—xg)(z—121) _ (x—4)(x—6)
fQ(.’E) (zo— ﬂi e f2 Yo + (z1— 1::) (z1— fz)y T (z9— J"g )(z2— Ill)yQ — (1-4)(1-6) x 0+

B X 1.386204 + {E=3E= x 1791760 = 0.565844

Example: Find f(2.6) by interpolating the following table of values.

LT i
1127183
22| 7.3891
313 120.0855

(1) Use Lagrange interpolation

fQ(x):Z?=1L-:i($) f(zi), Li(z) = H 137&;”,«1
3) _

_ (z—x9)(z—x3) _ (2.6—2)(2.6—: .
Ll(x) o (;Erl—rggg:rl—:rg) (2(6 I%Eé 3)3) 0.12
_ (z—xp)(z—m3) 6—
La(x) = (?2—1?1%%:;:2—:}:3} o (2{6 1%%3 3}2) = 0.64
r—zy)(z—zx 6—
Ly(z) = (J?g—r;)(:r;;—:ig) T TB)B-2) 0.48



f2(2.6) = —0.12 x 2.7183 + 0.64 x 7.3891 + 0.48 x 20.08853 = 14.0439

(2) use Newton’s interpolation
folz) = by + bi(x — 1) + baz — 1) (7 — )

bo =1l = 2.7183

_ Y-y __ T.3891-2.7183 __
by = 220 = S50 = 46708
¥2—U1 _Y1—W0 5—T
b2 _ o=z =z _ 21].1]853.3_ “3891—4.6708

= : = 4.0128
r9—I() 3-1
£2(2.6) = 2.7183 + 4.6708 x (2.6 — 1) + 4.0128 x (2.6 — 1)(2.6 — 2) = 14.0439

(3) Use the straightforward method

folx) = ap + a1 + axz?

ag+ ay +asz X 12 = 2.7183
apg+ ay +as X 22 = 7.3891
ap + a; + a x 3* = 20.0855

or
1117 [ag 2.7183
124 la | =|7.381
139 | a 20.0855

lag a1 ag] = [6.0732; —7.3678 4.0129]



F(2.6) = 6.0732 — 7.3678 x 2.6 + 4.01219 x 2.62 = 14.044.

Example:
x| 1 2 3 4

vi13.6 52 6.8 8.8

my=Ina+blmz+cx. LetY =Iny,a) =1Ina,a; =b,z; =Inzx, ay = ¢, and
Ty = x, then we have Y = qy + a2 + asxs.

zi;| 0 0.6931 1.0986 1.3863
T 1 2 3 4
Y: |1.2809 1.6487 19169 2.1748

Sy = 34781, Yome; = 10, Yot = 3.6092, Yo a3, = 30, Y zyx0; =
10.2273, 37 Y; = 7.0213, 3" x1,;Y; = 6.2636, >_ z9,;Y; = 19.0280. n = 4.

1 DT YT ag Y

Sxy Y, 211?2.1‘551.5] [&1} = | > xY;

S xoi Y T2 Y, T3, a > xY;
4 3.1781 10 ap 7.0213
3.1781 3.6092 10.2273 a; | = | 6.2636
10 10.2273 30 a9 19.0280

lag a1 ag] = [7.0213 6.2636 19.0280]
a=e"=1.2332,b=a; = —1.4259, ¢ = a, = 1.0505, and

y = G:Ebe(:;r —1.2332 - $—1.4259 . 61.0505;12-
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Figure 4: Linearization of nonlinear relationships



Numrical Differentiation

We have already introduced the notion of numerical differentiation. Recall that we
employed Taylor series expansions to derive finite-divided-difference
approximations of derivatives. In Chap. 4, we developed forward, backward, and
centered difference approximations of first and higher derivatives. Recall that, at
best, these estimates had errors that were O(h?)—that is, their errors were
proportional to the square of the step size. This level of accuracy is due to the
number of terms of the Taylor series that were retained during the derivation of
these formulas. We will now illustrate how to develop more accurate formulas by

retaining more terms.

1- HIGH-ACCURACY DIFFERENTIATION FORMULA
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As noted above, high-accuracy divided-difference formulas can be generated by includ-
ing additional terms from the Taylor series expansion. For example, the forward Taylor
series expansion can be written as [Eq. (4.21)]

f(xiv1) = f(x;) + f'Ox)h +j(2') e (23.1)

which can be solved for

Txig1) — J() _f”(xi)
h 2

fl(x) = h + O(h?) (23.2)

In Chap. 4, we truncated this result by excluding the second- and higher-derivative
terms and were thus left with a final result of

S(Xiv1) — f(x)

Z + O(h) (23.3)

j(l)_

In contrast to this approach, we now retain the second-derivative term by substitut-
ing the following approximation of the second derivative [recall Eq. (4.24)]

_ J(xiv2) = 2f(xiy1) + f(x3)
e

into Eq. (23.2) to yield
S — ) (i) = 2f(xis) + f(x)

_ 2
fix) = p o h+ O(h?)

or, by collecting terms,
Flx) = —f(Xi12) + 4f(xipy) — 3f(x) o) (235)

2h

Notice that inclusion of the second-derivative term has improved the accuracy to
O(h%). Similar improved versions can be developed for the backward and centered for-
mulas as well as for the approximations of the higher derivatives. The formulas are
summarized in Figs. 23.1 through 23.3 along with all the results from Chap. 4. The
following example illustrates the utility of these formulas for estimating derivatives.
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FIGURE 23.1

Forward finite-divided-difference formulas: two versions are presented for each derivative. The
latter version incorporates more terms of the Taylor series expansion and is, consequently, more

accurate.
First Derivative

ﬂxul:' - ﬂxi]
h
—fxi40) + Af(xi1) — 3f(x)
2h

Flxi) =

Flx) =

Second Derivative

fixip2) = 2fx1) + flx)
h?
—fxis3) + A(xi9) — Sfxe) + 2f(x)
[P

F'(x) =

f"'[xi} =
Third Derivative
HXHS] - 3ﬂxi+2] + 3'{[X4+1:' - f[x;-]
h3
—3fxi1a) + 14Hxi13) — 24f(x45) + 18f(xi41) — 5f(x)
2K

i) =

) =

Fourth Derivative

ﬂxi+4} - 4{(&43) + 6&"&2] - 4f[xr'+|} + ﬂXf]
hd
—2Mxis) + 11 f{xia) — 24fx143) + 26f(x149) — 14fx41) + 3f(x)

Fm{ xi} —

i[mr { X"} —

h4
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FIGURE 23.2

Backward finite-divided-
difference formulas: two
versions are presented for each
derivative. The latter version
incorporates more ferms of the
Taylor series expansion and s,
consequenly, more accurale.

First Derivative
Hxﬁ) - flxl—ll
h
3f) = A1) + flxg)
2h

Flx) =

i) =

Second Derivalive
fx) = 2fxia] + fixio)
h?
2fx) — 5fxi1) + 4xi_o) — flxia)
h?

flx) =

Flx) =

Third Derivative
fixg) = 3fxi-1) + 3fixia) = Fx-a)
hﬂ
Sfixi) — 18fx-1) + 24fx-5) — 14fx-3) + 3f(xi4)
2h

P -

o =

Fourth Derivative
fix) = 4flxi1) + Offxio) = 4fx3) + Fxa)
hd
3fx) = V14fxi1) + 26fxi0) = 24f(x-a) + 11fxi-a) = 2fix-5)

’rm( Xl’ —

Pm( Xi: —

hd
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FIGURE 23.3 First Derivative Error
Cenlered finite-divided- fxonr) — fixes) )
difference formulas: two flx) = % o)
versions are presented for each
derivative. The latter version Plx) = fixisa) + Bfixie) — Bffxi1) + fix-a)
incorporates more terms of the 12h
Taylor series expansion and s, Second Derivative
consequently, more accurale. )= -

Plx) = fixian) ?2:11 + fixia) a)

Plx) = —fxi42) + 16f(x41) — 30fx) + 16f(x-1) — flx—s)

’ 121
Third Derivative
Fri) = Axiea) = 2fxi1) + 2fx-1) — Axis)
‘ 2K
Fr(x) = ~flxiva) + Bfixig) = 13fx1) + 13fx1) — 8flxig) + fx_3)
‘ 8h'
Fourth Derivative
fris) = fixiva) — Afixia) + Oftx) — 4] + fixi-s)
(x) = 1
el = —fxia) + 12f(xs0) — 39Mxs1] + 56fx) — 39fxy) + 12(xs) — fixs)

EXAMPLE 23.1

6h'

High-Accuracy Differentiation Formulas
Problem Statement. Recall that in Example 4.4 we estimated the derivative of
f(x) = —0.1x* — 0.15x" — 0.5¢* — 0.25x + 1.2

at x = 0.5 using finite divided differences and a step size of h = 0.25,

Forward Backward Centered
o(h) o(h) o(h?)
Estimate —-1.155 -0.714 -0.934
& (%) 26,5 217 24

where the errors were computed on the basis of the true value of —0.9125. Repeat this com-
putation, but employ the high-accuracy formulas from Figs. 23.1 through 23.3.

Solution.  The data needed for this example are
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X2 =0 fxip) = 1.2
X =025  f(x,) = 1.1035156

x; = 0.5 f(x;) = 0.925
X = 0.75 f(x;41) = 0.6363281
Xipg = 1 S(xipn) = 0.2

The forward difference of accuracy Oh?) is computed as (Fig. 23.1)

—02 + 4(0.6363281) — 3(0.925) _ _ ) ccqars = 5.829
2(0.25) o N

£105) =

The backward difference of accuracy O(hz) is computed as (Fig. 23.2)

3(0.925) — 4(1.1035156) + 1.2
= —0.878125 & =3.77%
2(0.25)

£(05) =

The centered difference of accuracy O(h*) is computed as (Fig. 23.3)

(05) - ~O2* BO6363281) — BLI035IS6) + 12 o o
AC 12(0.25) ' &= U9

The centered difference of accuracy O(h*) is computed as (Fig. 23.3)

_ —0.2 + 8(0.6363281) — 8(1.1035156) + 1.2
f(0.5) = = —0.9125 g =0%
12(0.25)

As expected, the errors for the forward and backward differences are considerably
more accurate than the results from Example 4.4. However, surprisingly, the centered
difference yields a perfect result. This is because the formulas based on the Taylor series
are equivalent to passing polynomials through the data points.

2- RICHARDSON EXTRAPOLATION

To this point, we have seen that there are two ways to improve derivative
estimates when employing finite divided differences: (1) decrease the step
size or (2) use a higher-order formula that employs more points. A third
approach, based on Richardson extrapolation, uses two derivative estimates

to compute a third, more accurate approximation.
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Recall from Sec. 22.2.1 that Richardson extrapolation provided a means to obtain
an improved integral estimate / by the formula [Eq. (22.4)]

I=1I(h) + [ Uhy) = 1(h)] (23.6)

(hy/hy)* =

where I(h,) and I(h,) are integral estimates using two step sizes h; and h,. Because of
its convenience when expressed as a computer algorithm, this formula is usually written
for the case where h, = h;/2, as in

4 ]
[Egl(hz) — gl(hﬂ (23.7)
In a similar fashion, Eq. (23.7) can be written for derivatives as
4 1
D= 5 D(hy) — ; D(hy) (23.8)

For centered difference approximations with O(h%), the application of this formula will
yield a new derivative estimate of oh").

EXAMPLE 23.2 Richardson Extrapolation

Problem Statement. Using the same function as in Example 23.1, estimate the first
derivative at x = 0.5 employing step sizes of h; = 0.5 and h, = 0.25. Then use Eq. (23.8)
to compute an improved estimate with Richardson extrapolation. Recall that the true value
is —0.9125.

Solution.  The first-derivative estimates can be computed with centered differences as

02-12

D(0.5) = I

—10 &= —96%

and

0.6363281 — 1.1035156
03 = —0934375 &= —24%

D(0.25) =
The improved estimate can be determined by applying Eq. (23.8) to give
4 1
D= §(70.934375) - g(fl) = —0.9125

which for the present case is a perfect result.

The previous example yielded a perfect result because the function being analyzed
was a fourth-order polynomial. The perfect outcome was due to the fact that
Richardson extrapolation is actually equivalent to fi tting a higher-order polynomial
through these data and then evaluating the derivatives by centered divided
differences. Thus, the present case matched the derivative of the fourth-order
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polynomial precisely. For most other functions, of course, this would not occur and
our derivative estimate would be improved.

but not perfect. Consequently, as was the case for the application of
Richardson extrapolation, the approach can be applied iteratively using a

Romberg algorithm until the result falls below an acceptable error criterion

Page 8 of 8



Numrical Integration: applications

using Newton-Cotes Integration
Formulas

Dr Jalil Kwad
University of Anbar
Department of civil Engineering

The Newton-Cotes formulas are the most common numerical integration schemes.
They are based on the strategy of replacing a complicated function or tabulated
data with an approximating function that is easy to integrate.

Closed and open forms of the Newton-Cotes formulas are available. The closed
forms are those where the data points at the beginning and end of the limits of

integration are known. The open forms have integration limits that extend beyond
the range of the data.
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S0

f(x)

(a)

(b)

The difference between (a) closed and (b) open integration formulas.

Closed forum:

1- Trapezium Rule

Finding a definite integral can be thought of as determining the area under the
curve. Some integrals are difficult to evaluate exactly and so numerical methods
are needed.

Yi| ¥z

T

¥Ya

Ya

——

The simplest of these methods is the
trapezium rule which approximates the area
under the curve by n trapezia each of width
h as shown.

The formula for the area of the first of these
trapezia is

h
A= E(yo+ Y1)

when we sum all these areas, we will get
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where h=—-—
n

b
h
Jyae=Zlyo+2y+ Yzt Yoa)+ o]

Example
2 3 3 .
1(i) Consider I:J‘xzdx= x| 2 1.7 =23
1 3], 3 33 —/=
I~ —(Yo+W) h=—""

| % y =x2
Yo ‘l 12
yir |2 22
| =iE+2?) =1xs
2
=25
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(iii) Using 2 intervals: | ~ g(yo +2y;+Y,) h=
X y =X
yo |1 12
S|
2 2
y2 |2 22
2
I z%[12+2[§) +22J
= l[1+g+ 4)
4 2
19
8
=2.375
(iv) Using 4 intervals: | = g(yo +2(y1+ Yo +Y3)+Va)
X y=x2
Yo 1 12 =1
Vi 5 \2  =15625
4 4
Y, 6 6§12 =2.25
4 4
Vs 7 N2 =3.0625
: 4
Ya 2 22 =4

~ %(1+ 2(1.5625+ 2.25+3.0625)+4)

1
~2(18.75

=2.34375
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2n

3
2) Find the value of the integral J,/sin(x) dx using the trapezium rule with
0
(i) 4 intervals (ii) 8 intervals giving your answers to 3 dp

Note we must work to at least 4 dp if the answer is required to 3dp.

1)  with 4 intervals

first we need to work out h
2n_
h=-3 _I
4 6

Now we need a table of values of ,/sin(x) for x=0 to 2?7: in steps of % These

will be the values of yo, y1, y2, y3 and ya.

x values [sin(x)
0 yo sin(0) 0.0000
L3 y1 T 0.7071
6 sm(g)
2n y2  on 0.9306
6 sm(?)
3n y3 .31 1
5 sm(E)
4n _2m ya A 0.9306
6 3 sm(f)
Then using formula for trapezium rule
2n
P h
[sin0 dx =2 (vo+2(y1+ Y2+ Y3 )+ Va)
0
n s
gives = % (0+2(0.7071+0.9306+1)+0.9306) = % x 6.2060
=1.625 to 3dp
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with 8 intervals

first we need to work out h
2n_
h=-3 -
8 12

Now we need a table of values of ,/sin(x) for x=0 to %n in steps of % These

will be the values of yo, y1, y2, y3, ... Ys.

x values [sin(x)

0 yo [sin(0) 0.0000
k3 y1 on 0.5087
12 sm(E)

2n y2 o 0.7071
12 sm(g)

3n y3 T 0.8409
12 sm(z)

4n Ya T 0.9306
12 sm(E)

5t ys  bn 0.9828
T sin(—)

12 12

6n Y6 T 1

12 sm(E)

n y7 Tn 0.9828
1o sin(—)

12 12

8t 2n ys . 8n 0.9306
P sin(—)

12 3 12

Then using formula for trapezium rule

T,/sin(x) dx ~
0

gives =

N |

%(o +2(0.5087+0.7071+ 0.8409+ 0.9306+ 0.9828+ 1+ 0.9828) + 0.9306)

1Y

- %x12.8364

<YO+2(V1+YZ+Y3+Y4 +Y5+y6+Y7)+YS)

=1.680 to 3dp
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Numrical Integration: applications

using Newton-Cotes Integration
Formulas

Dr Jalil Kwad
University of Anbar
Department of civil Engineering

The Newton-Cotes formulas are the most common numerical integration schemes.
They are based on the strategy of replacing a complicated function or tabulated
data with an approximating function that is easy to integrate.

Closed and open forms of the Newton-Cotes formulas are available. The closed
forms are those where the data points at the beginning and end of the limits of

integration are known. The open forms have integration limits that extend beyond
the range of the data.
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J(x) Jx) 4

(a) (b)

The difference between (a) closed and (b) open integration formulas.

Closed forum:

1- Trapezium Rule
2- SIMPSON’S RULES

Aside from applying the trapezoidal rule with finer segmentation,
another way to obtain a more accurate estimate of an integral is to use
higher-order polynomials to connect the points. For example, if there
Is an extra point midway between f(a) and f(b), the three points can be
connected with a parabola (Fig.a). If there are two points equally
spaced between f(a) and f(b), the four points can be connected with a
third-order polynomial (Fig.b). The formulas that result from taking the

integrals under these polynomials are called Simpson’s rules.
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Jx) S

(a) (b)
(a)Graphical depiction of Simpson’s 1/3 rule: It consists of taking the area

under a parabola connecting three points. (b) Graphical depiction of

Simpson’s 3/8 rule: It consists of taking the area under a cubic equation

connecting four points.

a- Simpson’s 1/3 Rule
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Simpson’s 1/3 rule results when a second-order interpolating polynomial is substituted
into Eq. (21.1):

b b
I= J f(x)dx":‘f fr(x)dx

a a

If @ and b are designated as x; and x, and f5(x) is represented by a second-order Lagrange
polynomial [Eq. (18.23)], the integral becomes

4 =)= %) (x — X)(x — xp)
I= +
J [(xo G- - e
(x — xp)(x — xp) ]
dx
(X2 — Xo) (X — xl)f(X2)

After integration and algebraic manipulation, the following formula results:

h
[=71f(x) +4f(x) + f(x)] (21.14)

where, for this case, h = (b — a)/2. This equation is known as Simpson’s 1/3 rule. It
is the second Newton-Cotes closed integration formula. The label “1/3” stems from the
fact that h is divided by 3 in Eq. (21.14). An alternative derivation is shown in Box 21.3
where the Newton-Gregory polynomial is integrated to obtain the same formula.

As was done for the trapezoidal rule, Simpson’s 1y3 rule can be derived by

integrating the forward Newton-Gregory interpolating polynomial:
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Simpson’s Rule
4 (x1, 1)

¥=fix)

the function is fitted
by parabolas which
give a more accurate
result.

. (x4, v4)

F |

-
X

John Simpson
1710 - 1761
England

There must be an even number, », of intervals each of width /.

b
I_vdng[vo +A( +ys ety )20, vty o)+

a

where |hi=

Ex:

Single Application of Simpson’s 1/3 Rule
Problem Statement.  Use Eq. (21.15) to integrate

f(x) = 0.2 + 25x — 200x* + 6755 — 900x* + 400x°
from a = 0 to b = 0.8. Recall that the exact integral is 1.640533.
Solution.

f(0) =02  f(0.4) = 2456  f(0.8) = 0.232
Therefore, Eq. (21.15) can be used to compute

0.2 + 4(2.456) + 0.232
=038 ( 5 ) = 1.367467
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Roots: Open Methods

Years ago, you learned to use the quadratic formula

—b = Vb — dac
X = » (PT2.1)
to solve
f(x)=a’® +bx+c¢=0 (PT2.2)

The values calculated with Eq. (PT2.1) are called the “roots” of Eq. (PT2.2). They represent
the values of x that make Eq. (PT2.2) equal to zero. Thus, we can defi ne the root of an
equation as the value of x that makes f (x) 5 0. For this reason, roots are sometimes
called the zeros of the equation. Although the quadratic formula is handy for solving Eq.
(PT2.2), there are many other functions for which the root cannot be determined so easily.
For these cases, the numerical methods described

Solving equations numerically

o
2 Some equations can’t be solved algebraically

A ¥/

g
e

and we have to use numerical methods.
1.Interval bisector method

Examplel: Solve 3+4x—x*=0.
Solution

If we plot f(x)=3+4x—x" we see that the curve crosses the x-axis between x=1 and
X=2.

Therefore there is a root (solution) to the equation 3+ 4x—x* =0 between x=1 and x=2.
If we want a better approximation we can narrow down the interval.

Let f(x)=3+4x-x*
then f)=3+4-1=6 >0
and f(2)=3+8-16=-5< 0

therefore there is a root in the interval x=1 to x=2

we can work out f (1.5)


http://www.bing.com/images/search?q=worried&view=detail&id=2ED82CEBF5F18D5C5E020A32102DF76840C7EF5E&first=151&FORM=IDFRIR
http://www.bing.com/images/search?q=worried&view=detail&id=F0D88C8BFFF925B12C6E31CD7F3B29D8E4E98703&first=0&FORM=IDFRIR
http://www.bing.com/images/search?q=laughing&view=detail&id=A9E65201F4D687DD5F649CFCBA518DF987F1AEE5&first=301&FORM=IDFRIR
http://www.bing.com/images/search?q=laughing&view=detail&id=6288A22AAE84569BD4A43FB42CF8695446F888A6&first=151&FORM=IDFRIR

f(1.5)=3+4x15-15=39 > 0 .~.the root lies between 1.5 and 2
f(1.75) =3+4x1.75-1.75" =0.62 > 0 ..the root lies between 1.75 and 2
if we carry on like this, we can get an accurate enough solution

f(1.8)=-0.2976 < 0 .. the root lies between 1.75and 1.8

1.75<x<1.8
- therootis1.8told.p

Example 2. Show that the equation In(l1+x)—e ™ —1=0 has a root between x=1.5 and

x=2.5.
Find this root to 1 d.p.

Solution
Let f(x)=Inl+x)—e* -1
f(1.5)=-0.306 <0
f(25)= 0171 >0 .. the root lies between 1.5 and
2.5
f(2.0)= -0.0367 < 0 .. the root lies between 2.0 and
2.5
f(2.25) = 0.0732 > 0 .. the root lies between 2.0 and
2.25
f(21)= 0.009 > 0 .. the root lies between 2.0 and
2.1
f(2.05) = <0 .. the root lies between 2.05 and
2.1
205<x<21
- therootis2.1told.p
Exercise

1. Show that x* =14has a root between 2 and 3. Find this root to 1dp.
2. Show that 2* =8x has 2 roots, the first lying between 0 and 1 and the second
between 5 and 6. Find both of the roots to 1dp.

Answers

1. Let f(x)=x>-14
f(2)=2°-14 <0
f3)=3"-14 >0 therefore root lies between 2 and 3
f(25)=25°-14> 0 therefore root lies between 2 and 2.5
f(2.25) <0 therefore root lies between 2.25 and 2.5
f(23) <0 therefore root lies between 2.3 and 2.5
f(24) <0 therefore root lies between 2.4 and 2.5
f(245) > 0 therefore root lies between 2.4 and 2.45

24<x<245



- therootis2.4toldp

2. Show that 2* =8x has 2 roots, the first lying between 0 and 1 and the second
between 5 and 6. Find both of the roots to 1dp.

Let f(x)=2"-8x

f(0)=1-0 >0

f(1)=2-8 <0 .. the root lies between 0 and 1
f(0.5) <0 .. the root lies between 0 and 0.5
f(0.25) <0 .. the root lies between 0 and0.25
f(0.1) >0 .. the root lies between 0.1 and 0.25
f(0.2) <0 .. the root lies between 0.1 and 0.2
f(0.15) <0 .. the root lies between 0 and 0.15

. therootis0.1to1dp

To find the other root, f(5)=2°-8x5=-8 < 0
f(6)=2°-8x6=16 > 0

f(5.5) =125 >0 .. the root lies between 5 and 5.5

f(5.25) <0 .. the root lies between 5.25 and 5.5

f(5.4) <O .. the root lies between 5.4 and 5.5

f(5.45) >0 .. the root lies between 5.4 and 5.45
54<x<545

. the rootis5.4toldp



2. Fixed point iteration  x = g(x)
This is also repetitive procedure which leads us closer and closer to the precise answer

Example 1
Consider the equation x? —5x+2=0

\
\ /

\ 15 “//
’/
y=x2 -/5x +2

/
K /
2 : 4 3

f(0) =02 -5(0)+2 =2 >0
f(1)=12-5(1)+2 =-2 <0
.~ f(x) must be 0 between 0 and 1 and so one solution lies between 0 and 1

Similarly

f(4)=42-54)+2 =-2 <0

f(5)=52-5(5)+2 = 2 >0

.~ f(x) must be 0 between 4 and 5 and so the other solution lies between 4 and 5

Rearranging the equation x?—5x+2=0

X% =5x—2
X =145X-2

make an iterative formula  X,,, =+/5X, —2
(we need +ve square root for 5x, —2 > 0for all n)

we can now use this to get a sequence of solutions which get closer and closer to the root.

We will start with Xo=4
then x1= V{5(4) -2} = 4.242640687
X2 = V{5(4.242640687)-2} = 4.38328683
x3= V{5(4.38328....... -2} =4.4627832029

X4 = =4.507096199
X5 = =4.531609096
X6 = =4.545112262
X7 = =4.552533505
Xg = =4.556607019
X9 = =4.55884142

S X=456t02dp


http://kolorkube.com/klick/wp-content/uploads/2011/05/istock_laughter.jpg

To find the other root, we need to re-arrange the equation x> —5x + 2 = 0 in a different way:

Let’s try

Let xo=4
then X1=3.6

X2=2.992
X3=2.1904128
Xa=1.359581647
x5 = 0.76969245
X6 = 0.518485293
x7=0.4537654
xs = 0.441180607
X9 = 0.438928065
X10 = 0.438531569

- X=0.44 (to 2dp) ie the smaller root

So how we arrange the equation and the starting value we choose can lead us to different
roots

We find x> =5x-2 x> =5x—2  gives x=4.56t02dp
5Xx = x> +2 - gives x =0.44 (to 2 dp) ie the smaller root
) 2 :
Or X“=5x-2 LXo= — gives x=4.56to 2 dp
-2 : )
Or X (x=5)=-2 SX= = gives x =0.44 (to 2dp) ie the smaller root

Some of the iteration formulae lead to the first root and some to the second root

Generally, when an equation has two or more roots, a single arrangement will not find them
all.

Each iteration formula may give only one root, so that for an equation with 3 roots, you may
need 3 iteration formulae, and so on.

IT%Q 1a: Geometric representation of the Square Map

14

05




Starting points for iteration
It saves time if you can use a starting point which is close to the root.
To do this, find an interval in which a root lies. That is find two values a and b such that
if f(a) >0 then f(b) <O
The method converges for |g'(X)| < 1
y

Stair-step including transient dynamics, a = 1.999
1

0
]
07
0
05
| A !
04 4 1
!
03 | ! y=1+1/x
{
02
01

1}

L L L L
a 0z 04 0.6 08 1

Example 2

Show that the equation Inx—x+2=0 has a root between 3 and 4.
By using the iteration formula _ and starting with xo = 3, find to 3 s.f. a root of

the equation Inx—x+2=0
Solution
Let f (X) =Inx—x+2 then
Then f(3)=In3-3+2= 0.0986 >0
f(4)=Ind-4+2=-0.6137<0



.. aroot to the equation lies between 3 and 4

Xpy =2+INX,

Xo=3

X1 = 3.098612289
X2 = 3.130954361
x3=3.141337866
X4 = 3.144648781
xs = 3.145702209
Xe = 3.146037143
x7=3.146433611
Xg = 3.146177452
X9 = 3.146188209

n+l

;. Xx=3.15t0 3s.f.
http://www.youtube.com/watch?v=0LgdJMjzib8

Exercise
1. Show that the equation x* —x —2 =0 has a root between 1 and 2, and can be arranged in
the form x=3%x+2.

Use the iterative formula
X, =3/X, +2 to find the value of the root to 3 d.p.

2. Show that the equation e ™ —x +2 =0 has a root between 2 and 3.

Use the iterative formula
X, =€ ™ +2  tofind the value of the root to 3 d.p.

3. Show that the equation e* +x—6 =0 has a root between 1 and 2.

Show that the equation can be arranged in the form x =In(6 —x).
Use the iterative formula
Xy =IN6—-X,) to find the value of the root to 3 d.p.

1.1.521, 2.2.120, 3.1.503
ADnS.


http://www.youtube.com/watch?v=OLqdJMjzib8
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Runge-Kutta Methods

Although it is possible to derive solution formulas for some ordinary
differential equations many differential equations arising in applications
are so complicated that it is impractical to have solution formulas. Even
when a solution formula is available, it may involve integrals that can be
calculated only by using a numerical quadrature formula. In either
situation, numerical methods provide a powerful alternative tool for solving
the differential equation.

This chapter is devoted to solving ordinary differential equations of the form

dy

I J(x,y)

In Chap. 1, we used a numerical method to solve such an equation for the velocity of
the falling parachutist. Recall that the method was of the general form

New value = old value + slope X step size
or, in mathematical terms,

Yit1 = Yi T ¢h (25.1)

According to this equation, the slope estimate of ¢ is used to extrapolate from an old value
y; to a new value y; ; | over a distance h (Fig. 25.1). This formula can be applied step by
step to compute out into the future and, hence, trace out the trajectory of the solution.



Yi+1 =yr'+th

Step size = h

Graphical depiction of a one step method.

All one-step methods can be expressed in this general form, with the only
difference being the manner in which the slope is estimated. As in the
falling parachutist problem, the simplest approach is to use the differential
eqguation to estimate the slope in the form of the fi rst derivative at xi. In
other words, the slope at the beginning of the interval is taken as an
approximation of the average slope over the whole interval. This
approach, called Euler's method, is discussed in the fi rst part of this
chapter. This is followed by other one-step methods that employ
alternative slope estimates that result in more accurate predictions. All
these techniques are generally called Runge-Kutta methods.



Euler's method

EULER’S METHOD

The first derivative provides a direct estimate of the slope at x; (Fig. 25.2):

b =[x, y)
where f(x;, y;) is the differential equation evaluated at x; and y;. This estimate can be

substituted into Eq. (25.1):

Yir1 = ¥i T f(xi, y)h (25.2)

This formula is referred to as Euler’s (or the Euler-Cauchy or the point-slope)
method. A new value of y is predicted using the slope (equal to the first derivative at the
original value of x) to extrapolate linearly over the step size h (Fig. 25.2).

Euler's Method
Problem Statement. Use Euler’s method to numerically integrate Eq. (PT7.13):
dy

— = =2x" + 12¢% — 20x + 8.5
d.x X



from x = 0 to x = 4 with a step size of 0.5. The initial condition at x = 0 is y = 1.
Recall that the exact solution is given by Eq. (PT7.16):

y = —0.5x" + 4 — 105" + 8.5x + 1

Solution.  Equation (25.2) can be used to implement Euler’s method:
y(0.5) = y(0) + f(0, 1)0.5
where y(0) = 1 and the slope estimate at x = 0 is
£(0, 1) = —2(0)* + 12(0)* — 20(0) + 8.5 = 8.5
Therefore,
¥(0.5) = 1.0 + 8.5(0.5) = 5.25
The true solution at x = 0.5 is
y = —0.5(0.5)* + 4(0.5)° — 10(0.5)* + 8.5(0.5) + 1 = 3.21875
Thus, the error is
E, = true — approximate = 3.21875 — 5.25 = —2.03125
or, expressed as percent relative error, & = —63.1%. For the second step,
y(1) = y(0.5) + f(0.5, 5.25)0.5

=525 + [—2(0.5)° + 12(0.5)% — 20(0.5) + 8.5]0.5
= 5.875

The true solution at x = 1.0 is 3.0, and therefore, the percent relative error is —95.8%.
The computation is repeated, and the results are compiled in Table 25.1 and Fig. 25.3.

TABLE 25.1 Comparison of true and approximate valves of the integral of
y = —=2xX + 12x* — 20x + 8.5, with the initial condition that y = 1 at
x = 0. The approximate values were computed using Euler’s method with a
step size of 0.5. The local error refers to the error incurred over a single
step. It is calculated with a Taylor series expansion as in Example 25.2.
The global error is the total discrepancy due to past as well as present steps.

Percent Relative Error

x Yirve Yeoler Global Local
0.0 1.00000 1.00000

0.5 3.21875 5.25000 -63.1 —-63.1
1.0 3.00000 5.8/7500 —-058 —28.1
1.5 2.21875 5.12500 -131.0 -1.4
2.0 2.00000 4.50000 - 1250 20.3
2.5 271875 4.75000 747 17.2
3.0 4.,00000 5.87500 —46.9 3.9
3.5 4./71875 /7. 12500 -=51.0 =11.3

4.0 3.00000 7.00000 —133.3 =531




True solution

FIGURE 25.3

Comparison of the true solution with a numerical solution using Euler's method for the integral of
y = =2x>+ 12x* — 20x + 8.5 from x = O to x = 4 with a step size of 0.5. The initial
condifionatx = Qisy = 1.



PARTIAL DIFFERENTIAL
EQUATION:

Finite Difference: Elliptic Equations

Elliptic equations in engineering are typically used to characterize
steady-state, boundary value problems. Before demonstrating how
they can be solved, we will illustrate how a simple case—the Laplace
equation—is derived from a physical problem context.

Laplace’s equation
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2 2
From the equation above, k[ﬂ + o J =% it is clear that if the heat flow is

x> ay2

D or . .
steady, 1.e. time independent, then ™ = 0so the temperature satisfies the equation
it

o’r o’
>t =0
ox oy
This gives us the two-dimensional Laplace equation
o’V o'V e
—+——=0 used to model equilibrium situations.
ox~  oy”

Laplace’s equation arises in
» Electrostatics (J being the electrostatic potential in a free charge region)
Gravitation (V7 being the gravitational potential in free space)
Steady state flow of inviscid fluids

Steady state heat conduction

YV VYV

We can also have a three-dimensional

version of Laplace’s equation,

and a polar coordinate form when Pierre-Simone Laplace

we consider circular sheets. France 1745 - 1827
There are other important partial differential equations in science and engineering,
such as Poisson’s equation, Helmholtz’s equation, Schrodinger’s equation and
Tranverse vibrations equation.
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We will look at some solutions to the Wave, Heat Conduction and Laplace’s
equations.

Examples
Show that f =x?— y2 satisfies Laplace’s equation

6—f‘:2 g:—Zy
Ox oy
of, >/,
o2 sz
o°f o f
Laplace’s equation is —2-|-
ox éjz
o’f of
here ? + ? —92_2 ~0

hence, f =x? — y? satisfies Laplace’s equation
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ii)  Show that f =3x?y— y’satisfies Laplace’s equation

q:my g:?,x2 ~3y°
ox oy
o’ f o’ f
o o
2 2
hence %+% =6y—-6y =0
= oy

hence, [ = 3x? V- y3 satisfies Laplace’s equation

i11)  Show that f :ln(x2 + yz)satisﬁes Laplace’s equation

of 2 o 2y
ox x2+y2 ay x2+y2
o’ f _(x2+y2)2—2xXZx _2y2—2

x2
o (2452 (2 +22f
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o’ f _(x2+y2}2—2xx2x _2322—2.1«‘2

2
ox (x2 + y2 (x2 +y2)z
o’ f _(x2+y2}2—2yx2y C2x? -2y?
- = et ey
ay (x2 + yz)z (x2 +y?
2 2
hence %WL % =0
ox® oy
hence, f satisfies Laplace’s equation

above functions are said to be solutions of Laplace’s equation.

2 2
. . . . 3
iv)  Show that f'=sin2xcos 3 satisties the wave equation o7 —%% if c=+—
c” ot

o2 N
g:20052xc053t g=—35in2x51n3f
ox ot
2 2
%:—4sm2xcos3t %:—9sin2xcos3t
ox ot
2 2
therefore, if %:%%
ox c” ot

—4si112xcos3z‘:L2(—9siancos3t)
c

-2

c
;22
4
c:iE
2
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v)  The temperature gradient 7' at a point in a solid is 7= ¢ * sin2x . Show that T
satisfies the heat conduction equation with k= 1.

g = —4e* sin 2x g =2¢™ Y cos 2x
ot ox
2
% — —de Y sin2x
ox
2
therefore, if q = kg
ox ot

—de ¥ sin2x = k(— 4e ¥ sin 2,\")

which is true when k=1

This represents a bar at end x=0, the temperature varies along the bar, decaying
exponentially with 7.

oS L1y oS
o’ yoy o’
Show that f = 43 +3xy4 satisfies this equation.

vi) Consider y2

q:12x2+3y4 gZIQchg'
Ox y
2 2
os { = 24x s { =36xy°
ox o
2 2
therefore y? %+l@ —% = y2(24x)+l(12xy3)— 36xy°
o Yoy oy y

= 24xy2 +12xy2 —36xy2 =0 as required

therefore the given function f'satisfies this equation

vil) If 7 =x*+ax?y? +by*where a and b are constants, show that xgi + y?yp =4f
o 4.3 2 o 2 3
——=4x" +2 — =2ax"y+4b
o axy Y y+aby
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therefore

x%+yg = 4xt + 2ax?y? 4+ 2ax?y? + 4by?
= 4(x4 +ax’y? + by4)
=4f as required

viii) For f=x*+ax?y? + by* | find the constants @ and b so that f satisfies Laplace’s

equation.
A —4x3 4 Zcmyz g = 2ax2y + 4by3
ox o

SO
o’f 2 2 o’ f 2 2
—5 =12x7 + 2ay T = 2ax” +12by
ox y
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using Laplace’s equation 62_f +52—f = 12x° +2ay* + 2ax? +125y?
g p q axz ayz - Oy y
= x*(12+2a)+ y*(2a +12b)
this will be equal to zero when
12+2a=0 a=-6
and  2a+126=0 b=1

SO [ =x*—6x*y? +y* _satisfies Laplace’s equation

2 2 2
ix) If = (1+x)sinh(5x —2y) verify that 42;; +20 Ou 25 Cu _

+ 0
0Ox0Oy ol

% =sinh(5x —2y)+ 5(1 + x)cosh(5x —2y)

o°u B
S

=10cosh(5x —2y)+25(1 + x)sinh(5x — 2y)

Scosh(5x —2y)+ Scosh(5x — 2y)+25(1 + x)sinh(5x — 2)
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% = -2(1+x)cosh(5x -2y)

2
:x—(;;) =2cosh(5x —2y)—10(1 + x)sinh(5x — 2y)

62"f41 inh(5x—2
— = 4(1+ x)sinh(5x - 2y)

a%u 120 o%u 125 ou

ox? oxoy oy’

therefore =40cosh(5x—2y)  +100(1+ x)sinh(5x —2y)
~40cosh(5x—2y)  —200(1 + x)sinh(5x — 2y)
+100(1 + x)sinh(5x —2y)

Il
<

as required
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Lecture: Round-off Error:
Definition and Examples

Summary: There are two sources of error - one comes from approximating numbers
and another from approximating mathematical procedures. In this lecture, the error,
round-off error, that is a result of approximating numbers is defined and shown through
an example.

Learning Objectives: After this lecture, you will be able to identify and calculate one
of the two sources of errors in numerical methods - round-off errors.

SOURCE OF ERROR: Round-off Error

In this segment we're going to talk about round-off errors. There are several possibilities of error
whenever you're going to use numerical methods, but we want to concentrate here on just two
errors, one is the round-off error and the other is the truncation error.

So those are the sources of error which we are going to talk about, because those are the ones which
are coming from something on which you may or may not have as much control as other errors, like for
example if you have made a mistake in programming, or if your logic is wrong, those are not the kind
of errors which we are talking about when we talk about numerical methods.

So you're going to have two sources of error, which you are going to have. One is round-off error and
the other one is called truncation error. And let's go ahead and concentrate on what round-off error is.

Now round-off error is defined as follows, it is basically the error which comes from error created
due to approximate representation of numbers. So the round-off error is simply the error created by
the approximate representation of numbers, because in a computer you'll be able to only represent a
number only so approximately. For example, if you have a number like 1 divided by 3, and you had a



six significant digit computer let's suppose in the decimal notation, then this can be only approximated
as 0.333333 a simple rational number like 1 divided by 3 cannot be written exactly in the decimal format.
So the amount of round-off error which you are getting here is the difference between the value of 1
divided by 3 and the value of 0.333333. So in this case, this error is 0.0000003333 and so on and so
forth.

You're going to get similar round-off errors from other numbers also, like, you may have pi, that also
cannot be represented exactly, even in a decimal format, and then square root of 2, things like that.
So you're finding out there are many, many numbers, individual numbers, like 1 divided by 3, or pi, or
square root of 2, which cannot be represented exactly in a computer.

So that's why this creates the round-off error, the round-off error is the difference between what you
want to, what you want to be able to approximate, of what you want to be able to denote, and what you
are able to get as its approximation. So that's the, that's what we call as round-off error. So that's the
end of this particular segment here.

Truncation Error: Definition

Summary: There are two sources of error - one comes from approximating numbers
and another from approximating mathematical procedures. In this lecture, the error,
called truncation error, that is a result of approximating mathematical procedures is
defined.

Learning Objectives: After this lecture, you will be able to identify and calculate one
of the two sources of errors in numerical methods - truncation errors.

In this segment we're going to talk about truncation error. | want to say that we have sources of error in
numerical methods. And we're not talking about the errors which are created by writing the wrong
program, so far as logic or syntax is concerned, but the errors which are inherent when you are using
numerical methods, and one is called the round-off error, and the other one is called the truncation
error. So in this segment we're going to talk about, what does it mean when we say that, hey, we are
having a truncation error? So let's go ahead and write down the definite of truncation error.
Truncation error is defined as the error created by truncating a mathematical procedure

Now, some people don't like the word truncating in the definition of truncation error itself, because
they say that it doesn't mean much. So I'm going to cross it off there, and I'm going to say, hey,
approximating a mathematical procedure. So if you're going to approximate a mathematical procedure,
it is going to create some error, and that error is associated with truncation error. Please don't think
that truncation error is something which is associated with rounding off numbers. Itis, truncation
error is related to the error which is created by approximating, not numbers, but a mathematical
procedure. Examples of truncation error as follows, so let's look at some examples. In this segment I'm
just going to enumerate the examples, and then we will have three more segments, which will show
each individual example with some numbers.



One of the examples is, let's suppose you are using Maclaurin series. The Maclaurin series for e to the
power X is 1 plus x plus x squared by factorial 2 plus x cubed by factorial 3, and plus so on and so forth.

So you have infinite number of terms in this particular series for e to the power x. So if you want to
calculate e to the power x at some value of x, let's suppose. And let's suppose if somebody says, hey,
calculate e to the power 0.5, so | would say 1 plus 0.5 plus 0.5 squared divided by 2 factorial plus 0.5
cubed, factorial 3, and so on and so forth. Now you can realize that since there are infinite terms in this
Maclaurin series to calculate e to the power 0.5, | don't have the privilege or the luxury to use all the
terms, all the infinite number of terms which | have in that particular series. If somebody were to say,
hey, I'm going to use only the first three terms of the series to calculate my value of e to the power 0.5.

So what's happening is that you are not accounting for these other infinite terms after the fourth term,
you're not accounting for those terms at all in your calculation e to the power 0.5, and whatever is
leftover is your truncation error. Because what you did was, the original mathematical procedure
required you to use infinite number of terms, but you are using only three terms, so whatever is leftover
is truncation error, because you have basically truncated a procedure, a mathematical procedure
requiring you to use infinite number of terms, and you're using only a few terms out of that . . . out of
that series there. Now what happens is that, in the past, | used to give only this as an example of
truncation error, and many students would think that truncation error is something which is only related
to series. But there are other examples where you will see how a mathematical procedure gets
truncated. So let's look at that.

For both types, the relationship between the exact, or true, result and the approximation can be
formulated as
True value = approximation + error 3.1

By rearranging Eq. (3.1), we find that the numerical error is equal to the discrepancy
between the truth and the approximation, as in

E, = true value — approximation (3.2)



. . . true error
True fractional relative error = ———
true value

where, as specified by Eq. (3.2), error = true value — approximation. The relative error
can also be multiplied by 100 percent to express it as

true error
g=—"-"100% (3.3)
true value

where g, designates the true percent relative error.

Calculation of Errors

Problem Statement. Suppose that you have the task of measuring the lengths of a
bridge and a rivet and come up with 9999 and 9 cm, respectively. If the true values are
10,000 and 10 cm, respectively, compute (a) the true error and (b) the true percent rela-
tive error for each case.

Solution.
(a) The error for measuring the bridge is [Eq. (3.2)]
E, = 10,000 — 9999 = 1 cm

and for the rivet it is
E, =10 -9 =1cm
(b) The percent relative error for the bridge is [Eq. (3.3)]

€ 100% = 0.01%

£ 10,000

and for the rivet it is
1
g = El{){}% = 10%

Notice that for Egs. (3.2) and (3.3), E and e are subscripted with a t to signify that the error is normalized
to the true value. In Example 3.1, we were provided with this value. However, in actual situations such
information is rarely available. For numerical methods, the true value will be known only when we deal
with functions that can be solved analytically. Such will typically be the case when we investigate the
theoretical behavior of a particular technique for simple systems. However, in real-world applications,
we will obviously not know the true answer a priori. For these situations, an alternative is to normalize
the error using the best available estimate of the true value, that is, to the approximation itself, as in

approximate error
g = — 100% (3.4)
approximation




where the subscript a signifi es that the error is normalized to an approximate value. Note also that for
real-world applications, Eq. (3.2) cannot be used to calculate the error term for Eq. (3.4). One of the
challenges of numerical methods is to determine error estimates in the absence of knowledge regarding
the true value. For example, certain numerical methods use an iterative approach to compute answers.
In such an approach, a present approximation is made on the basis of a previous approximation. This
process is performed repeatedly, or iteratively, to successively compute (we hope) better and better
approximations. For such cases, the error is often estimated as the difference between previous and
current approximations. Thus, percent relative error is determined according to

current approximation — previous approximation
€ = . 100% (3.5)
current approximation

Error Estimates for lterative Methods

Problem Statement. In mathematics, functions can often be represented by infinite
series. For example, the exponential function can be computed using
.«:":I+,1r+x—z+x—3+-~+£ (E3.2.1)
2 13 n!
Thus, as more terms are added in sequence, the approximation becomes a better and better
estimate of the true value of €'. Equation (E3.2.1) is called a Maclaurin series expansion.
Starting with the simplest version, ¢* = 1, add terms one at a time to estimate ¢,
After each new term is added, compute the true and approximate percent relative errors
with Egs. (3.3) and (3.5), respectively. Note that the true value is ¢ = 1.648721 . ...
Add terms until the absolute value of the approximate error estimate g, falls below a

prespecified error criterion g, conforming to three significant figures.
Solution.  First, Eq. (3.7) can be employed to determine the error criterion that ensures
a result is correct to at least three significant figures:

g, = (0.5 x 10> )% = 0.05%

Thus, we will add terms to the series until g, falls below this level.
The first estimate is simply equal to Eq. (E3.2.1) with a single term. Thus, the first es-
timate is equal to 1. The second estimate is then generated by adding the second term, as in
e =1+x
or for x = 0.5,
P =1+05=15
This represents a true percent relative error of [Eq. (3.3)]

1648721 — 1.5

;= 100% = 9.02%
& 1.648721




Equation (3.5) can be used to determine an approximate estimate of the error, as in

1.5 -1
g, = ———100% = 33.3%
1.5
Because g, is not less than the required value of &,, we would continue the computation
by adding another term, x*/2!, and repeating the error calculations. The process is con-
tinued until &, < &,. The entire computation can be summarized as

Terms Result £, (%) £, (%)
1 1 393
2 1.5 902 33.3
3 1.625 1.44 769
4 1.645833333 0.175 1.27
5 1.648437500 0.0172 0.158
6 1.648697917 0.00142 0.0158
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Introduction and definitions

A matrix is a set of numbers arranged in rows <«— and columns i
to form a rectangle, and enclosed in brackets ().

Note: 1 matrix, 2 matrices

rows
3 8

I columns

5 2y —p
For example 6

This matrix has 2 rows and 3 columns, this is a 2 x 3 matrix (we say 2 by 3 matrix)

the 5, 7, 2, 6, 3, 8 are elements of the matrix.

(2 5 9) isarow matrix of order 1 x 3

2
4 is a column vector of order 3 x 1
7

We can refer to each element of the matrix by its position within the matrix. That is, by its row
number and column number

dyy  azy;  axz| ayis the element in the

i th row and j th column

We usually identify matrices by a capital letter, so for example

2 5
A=|-1 0.6 The order (or size) of this matrix is 3x2
4 3



b)

c)

d)

Special matrices

A matrix that has the same number of rows as columns is a square matrix

4 ~1.5 2.6
For example B=|73 -9.1 4.2
0.3 25 -92

A matrix that only has values on the “leading diagonal” is a diagonal matrix, (all other elements

are equal to 0)

4 0 0
For example c=|0 -9.1 0
0 0 92

A matrix that only has the value 1 on the “leading diagonal” is the identity matrix, (all other
elements are 0)

1 0 0
For example I=|0 | 0 We call this matrix
0 0

A matrix is lower triangular if a; = Ofori<j

1 0 0
D=2 3 0
~1 4 -2
and is upper triangular if a;; = O0fori >
1 5 -7
E=|0 3 2
0 0 -2

The zero or null matrix has all elements equal to zero.

0 0 0
N =
[0 0 0)



g)

h)

The transpose of an m x» matrix A is the » x m matrix AT with the (7, )"l'

(aT ),-» = a;(i.e. the rows and columns are interchanged).

1 -2 1 0 3 1 2 -1
2 3 1 2 -1 -2 3 4
Soif A=|-1 4 21 -2 |then 4T =1 | -2
-3 1 1 -1 3 0 2 1
0 -1 1 2 4 3 )

The transpose of a row matrix is a column matrix and vice-versa.

The transpose of the transpose of a matrix is the original matrix i.e. (AT)T =4

If the square matrix 4 is equal to its transpose i.e. 4 = AT then A is symmetric.

1 -2 1 0 3

-2 3 4 1 -1
A=|1 4 2 1 —4|=4"

0 1 1 -1 =2

3 -1 4 2 4

Two matrices are said to be equal if each of the corresponding elements of the two matrices are

equal

a a a 5 7 8
S ( J implies a;| =5 etc.
dy| doo a23 2 3 6

element of



3. Addition and subtraction of matrices

Two (or more) matrices can only be added or subtracted if they are the same size (that is, they
have the same number of rows and the same number of columns). We add or subtract the
corresponding elements.

Examples
4 2 3 | 8 9
a) +
5 7 6 3 0.5 —4
(41 248 349
(543 7+0.5 64
(5 10 12
(8 75 2
6 5 3 7 6-3 5-7
b) 9 -4 |- 1 23 =19-1 -4-23
2.5 -3.2 -42 2.1 2.5+4.2 -32+2.1
3 -2
=8 -6.3
6.7 -1.1
6 1 2 -1
2 1
c) IfA4=|3 2|,B=|9 -3 andC:5 9
0 -0.5 4 0
find (i) 4+ B (iiy B+C (iii) B— A4
6 l 2 -1 8 0
(i) A+B=|3 2 1+ 9 -3 =|12 -1
0 -0.5 4 0 4 -0.5
(i) B+ C not possible



(iii) BA[

4. Multiplication of a matrix by a number

We can multiply a matrix by a single number (a scalar). Each individual element of the matrix is
multiplied by the number,

6 1 2 -1
soif A=|3 2 land B=| 9 -3
0 -0.5 4 0

4x6 4x1 24 4
44=|4x3 4x2 =12 8
4x0 4x-0.5 0 -2

%xz %X—l 1 ~05
and %B: %9 Ix-3 =145 -15
%x4 %XO 2 0
24 4) (1 -0.5
then 4A+iB =12 8|+[45 15
2 0 -2 2 0

25 35

=165 6.5

2 -2




We now have the properties

Commutative law: A+B=B+A4
Associative law: (4+ B)+ C=A4+(B+C)
Distributive law: MA+B)=24+)\B

These show we can treat matrices as 1f they are ‘number’ as far as addition and multiplication by
a scalar are concerned.

They are not numbers however, and the differences start to appear when we try to multiply two
matrices together.

5.  Multiplication of two matrices together

This can only be done if the number of columns in the first matrix is the same as the number of
rows in the second matrix.
That is; C =4 x B is only possible if the number of columns in A4 is the same as the number of

rows in matrix B. Then,

the number of rows in C = number of rows 1n 4
number of columns in C = number of columns in B

soif 4 isap x g matrix and B is a ¢ x s matrix, C is a p X 5 matrix.

Le. (p X q) X (q X S)—) (p X s)matrix

Examples
. " 1 4 2
a) Find4B if 4= and B =
6 3 5

i

= 1x2 +4x5
22
6%2 +3x5 =
27
Each element in a row in the first matrix is multiplied by the corresponding element in the
column of the second matrix and the results summed to give a single value.

The position of this value in the resulting matrix corresponds to the row number from the first
matrix and the column number from the second.




1
| 9
CD = 8 7
2 1
-7
3 Ix1+4x8+9x-7 I1x9+4x7+9%x3
2x1+0x8+1x-7 2x94+0x7+1x3
- -30 64
(-5 21
2 -1 1 2 1
¢) Find ST where S =|0 | 3land 7' =| —1 3
4 2 ~1 1 ~1
2 -1 1 2 1
ST =10 1 30 -1 3

2x2+-1x-1+ 1x1
O0x2+ Ix—1+ 3xl
4x2+4+ 2x—-1+-1x1

6 -2
0
5 11

Il
[SN]

Note: 78§ is not possible

2x1+-1x3+ 1x-1
Ox1+ 1x3+ 3x-1
4xl+ 2x3+-1x-1

|

If we are given two matrices 4 and B, and we can find both 4B and B4, in general 4B # BA.
In the case where 4B = BA. , 4 and B are said to commute.



1 5 -1
d IfA4=(2 ~1), B:[ 4J and C =|3

e ;]E

A(BC)

I
_—
()
|
k.
[—
W
—
H Il
LN

and
1 5 | :
AB)C = (2 —1 3
( )C ( {2 3 —4]
2
1
=0 7 23 =25
2
We now have the properties
Commutative law: Matrices do not usually commute, i.c. AB # BA

Associative law: A(BC)=(4B)C

Distributive law (over scalar multiplication): M4B)=(24)B = A(\B)

Distributive law (over addition): A(B+C)= 4B+ AC
Multiplication by a unit matrix: I4=A= Al
Transpose of a product: (4B)" = BT AT
Transpose of a sum: (4+ B)T = AT + BT
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6.

Transformations of a matrix

x —y plane v oA

u — v plane

If for every point O(1,v) in the u — v plane there is a corresponding point P(x,y) in the x — y plane,
then there is a relationship between the two sets of co-ordinates.

In the simple case of scaling the co-ordinate where u = ax and v = by we have a linear
transformation which we can write in matrix from as

u) (a 0)x
v Lo b y)
a 0 X
The matrix [0 b) then provides the transformation between the vector ( ] (representing the
y

. . . . u _ . :
point (x,1)) in one set of co-ordinates and the vector ( J (representing the point (u,v)) in the
v
other set of co-ordinates.

Examples
Consider the square with vertices at (0,0), (1,0), (1,1) and (0,1),

a, a
and the matrix A = ( e ] . Then using matrix multiplication the vertices are transformed
azy 4y
to;
a, a\0 _ 0
a,; ayp \O 0

ap a2 1)_
ay; axp )\0

ay 1)_(“}1“’12}
ay; ax 1 ap) tdy
) OJ_(alzJ
and = .
ay; a1 %)

The ‘new square’ is defined by the points

(0.0). (@ 1. (@), +ayy. a5, +ay,) and (ay5.a5,)




2. A square has vertices at (0,0), (1,0), (1,1) and (0,1), and is transformed by the following
matrices. Determine the positions of the new vertices in each case.

, 30
R

By matrix multiplication

b2 |—

(e R VS
<
[
—
I

o W
=
S =

—

I

N T
o W

e

=N
—_— =
~—
1l
—
Bf— W
—
1
1
:
i
¢ --r—-@
i
'
i
'
'
'
'
1
'
Iy
- -

3
0o 1
? t 4>
3 0)0 0
and 1 =,
02 3
The vertices are at (0,0), (3,0), (3,%] and (0,%)
iy A 1 (1 -1
i =—
V2l 1
By matrix multislicati 1 (1 -1)0) (0
Y matrix mulitiplication ,‘/5 | | 0 = 0
(1 -1 1)_{%} .
Tl L T
V2t 1 ho) {4 %O
td . P
L(1 ~1y1) (o0 o« S
L0 o1l V2 Sy L7 \:
\\ , |
. ~ /l |
and L l 71 O — \/E . »
21 1 1) |2
. 1Ll 1
The vertices are at (0,0), [ﬁ’ﬁl (0.\/5) and (_ﬁ’ﬁ)




The inverse of a matrix

Let 4 be a square n x n matrix. Then B is the inverse of A4 if it satisfies the equations
AB=1=BA4, where 7 is the Identity matrix.

If so, then B is denoted as AL

A7Yis called the inverse of 4 and we have the equation Ad =T1=47"4
We use the inverse of a matrix for division. Note: the inverse of a matrix does not always exist!

Example
s s 2 7]- . . . ~1 1 1
Verify that if A4 = { then its inverse is 4~ = { 5

Using A4 =1

2 -1)1 1 1 0 .
= as required
-1 i1 2 0 l

and Ata=1
1 1Y2 -1 1 0 )
= as required.
l 201 1 0 |

We use the inverse of a matrix to solve a set of linear equations Ax = b,
Then, if A~ 'exists, the solution is given by x = A7

To find the inverse of a 2x2 matrix

b d —b
A= R e
c d ad —be\ —c¢ a

Step 1: work out ad — be
Step 2: swap elements on leading diagonal
Step 3: change signs of other elements
Step 4: multiply b
P ply by ud —be
Example

5
Find the inverse of A4 :( 3Jand show that 44 '=A47'4=1.



Step 1:

Step2:

Step 3:

Step 4:

Check:

Check:

ad — be

swap

signs

multiply

=18+10 =28

PR 3 -5
2812 6
4 1( 6 5Y3 -5
A4 = —
I N
1 6x3+5%2
T 281 —2x3+3x2

1(28 0
- 2810 28

iy ] 3 -5\ 6
- 2812 6 -2

28 2x6+6x-2

1 (28 0
2810 28

] (3x6+(—-5%x-2)

6x-5+5x%6
2x-54+3x6

the identity matrix

y

3x5+(-5x%3)
2x5+6x3

the identity matrix



The determinant of a 2X2 matrix

The quantity ad — bc is called the determinant of the matrix A4,
the notation is \A|

=ad - bc

IfA:(a b]then 4= b‘
c d c

d

Sometimes, the determinant ‘A| of the matrix A4 is equal to zero.

Then 4 is called a singular matrix and it does not have an inverse.

9. Applications of matrices to solving two simultaneous equations
a)  Applying Kirchoff’s law to a circuit gives the following equations
30!’1 - lOIz = 12
—10i; +35i, =5 where j and i, represent current.
Solve the equations for 7 and i, .
First write equations as matrices
30 -10Y 12
10 35)\i) (5
or AX =B
30 -10 i 12
where A= , X= .1 and B =
-10 35 i S
I .
We want to find X = ( ! ) to solve our equations.
Iy
Now if AX = B and we can find the inverse matrix 4~
Then Atax =47'B
but Ara=1
50 X=4'B




That is, to solve for X we

find the inverse matrix 4~ and multiply it by matrix B.

, 30 -10
In this example, A= R
-10 35
So |4 =30x35-(~10)x(-10) =950
35 10 7 2
So g _1
950110 30 1901 2 6
-1 1 (7 2)\12
then X=A4"B =—
1901 2 605
1 (84410
190124+ 30
~(0.495
10284
The solution to the simultaneous equations is i = 0.495, i, =0.284

b)  Solve the simultaneous equations
52x-03y =12.66

2.1x+1.6y = 4.08

First write equations as matrices

Bl )

or AX =B
52 0.3
Here, A= ,
2.1 1.6
50 |4 =52x1.6-2.1x(-03)
4 1 (16 03
So A=
895\-2.1 52

=8.95




1 1.6  0.3)12.66
5.2 )\ 4.08

then X=4'B —
8.95| 2.1
! 20.256 +1.224
895 —26.586+21.216
1 (2148
- 895\ —5.37
(24
1-06

y=-0.6

The solution to the simultaneous equations is x = 2.4,
10. The Determinant of a 3 x 3 matrix, minors, cofactors and adjoint

a b ¢
For a 3x3matrix where A4=|a, b, ¢,
ay by cy
The determinant is defined as
b, ¢ a, ¢ a, b
or ‘A| = al & 2 -0 2 % + Cl 2 2
by ¢y ay ¢ ay by

Example
6 3 -2 .

then ‘A‘ =0
4 —4

if 4A4=(2 1 5
7 4 —4
=-17
The Minor of a 3 x 3 matrix

by ¢,| . _

The is the minor for a;

by 3
b, ¢

and the minor for a, is
3 C3
that 1s, the row and column containing the element are ignored and

the 2 x 2 determinant of the remaining rows and columns is calculated




Cofactors of a 3 x 3 matrix

+ - 4+
Associated with each minorisasign |- + -
+ - +

A minor together with its associated sign is called the cofactor

The cofactor of a» is denoted by 4>

where |4, = —

Thus we can define the determinant of 4 as a;A4; + biB; +¢;C;

Adjoint of a square matrix
To form the Adjoint of a matrix, it is the transpose of the matrix of cofactors.

Stepl: Form a new matrix C of the cofactors

4 2 -1
eg. A=|7 8 -2 then
4 -1 5
‘8 -2 ‘7 -2 |7 8‘
-1 5 4 5 4 -1 18 43 -39
2 -1 4 —1 4 2
C=| - — =|-9 24 12
-1 5 4 5 4 -1 4 ) 8
2 —1 4 -1 4 2
8 -2 7 -2 7 8
Step 2: form the transpose of C
38 -9 4
cT =|-43 24 1| thisis called the Adjoint denoted by adjA
-39 12 18

Remember |adid = ct




11. Properties of determinants include:
For the nx n matrices 4 and B

> if 4 is diagonal or triangular, then |4| = a;\ay,a33044 ...y, -
That is, the determinant is the product of the elements on the diagonal.
> |4B|=|4|x[B]
> |4 =]4T]
> =4

There are several properties which help to simplify finding the determinant of a matrix

»  If two rows or columns are equal, or proportional, then the determinant = 0.
»  Multiplying a row, or a column, by a scalar multiplies the determinant by that scalar.
»  Interchanging two rows, or columns, changes the sign of the determinant.
»  Adding multiples of a row to another row does not change the value of the determinant.
»  Adding multiples of a column to another column does not change the value of the
determinant.
Examples
1 2 -2 4
. , . -1 3 6
1) Find the value of the determinant of A4 = 4
0 0 0 3
1 2 -2 4
-1 3 6
0 -1 6
‘ ‘ = =Ix|2 1 4
0 2 4
0 0 3
0O 0 0 3
1 4 2 4 2 1
=—1x —3x +6x
0 3 0 3 0 0
=—Ix3-3x6+6x%x0 =-21
1 2 5 4
. . 1 -1 5 6
2) Find the value of the determinant of B =
1 2 5 4
1 0 5 3

Here, B‘ =0 because row 3 is equal to row 1

(or also because column 3 is a multiple of column 1)

10



12.

Inverse of a 3x3 Matrix

For a 3x3 matrix A its inverse | A" = —x C”

To find the inverse of a matrix A4~
Step 1: Calculate the determinant | 4|

Step 2: Form a new matrix C of the cofactors
Step 3: Form the transpose of C, the adjoint of 4
Step 4: Use A7 = ﬁx c’

6 3 -2
Example if4={2 1 5 then
7 4 -4

11

|4 =6(-4-20)-3(-8-35)-2(8-7)
=17
—-24 43 1
C{4 —10 3}
17 =34 0
24 4 17
ct =] 43 —10 -34
1 -3 0
1 -24 4 17
A =—-"x| 43 -10 -34
17
] -3 0
~24 4 17 Y6 3
A_IA:—%X 43 10 -34(2 1
Check 1 -3 0 )\7 4
~17 0 0
gLyl o 17 0 |-
17
0 0 —17

o = O

-2
5
4

— O O
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Introduction to Curve Fitting

Introduction Historians attribute the phrase regression analysis to Sir Francis Galton
(1822-1911), a British anthropologist and meteorologist, who used the term regression
in an address that was published in Nature in 1885. Galton used the term while talking
of his discovery that offspring of seeds “did not tend to resemble their parent seeds in
size, but to be always more mediocre [i.e., more average] than they.... The
experiments showed further that the mean filial regression towards mediocrity was
directly proportional to the parental deviation from it.” The content of Galton’s paper
would probably be called correlation analysis today, a term which he also coined.
However, the term regression soon was applied to situations other than Galton’s and
it has been used ever since. Regression Analysis refers to the study of the relationship
between a response (dependent) variable, Y, and one or more independent variables,
the X’s. When this relationship is reasonably approximated by a straight line, it is said
to be linear, and we talk of linear regression. When the relationship follows a curve,
we call it curvilinear regression. Usually, you assume that the independent variables
are measured exactly (without random error) while the dependent variable is
measured with random error. Frequently, this assumption is not completely true, but
when it cannot be justified, a much more complicated fitting procedure is required.
However, if the size of the measurement error in an independent variable is small
relative to the range of values of that variable, least squares regression analysis may
be used with legitimacy.

Two types of curve fitting

* Least square regression

Given data for discrete values, derive a single curve that represents the

general trend of the data.
— When the given data exhibit a significant degree of error or noise.

* Interpolation



Given data for discrete values, fit a curve or a series of curves that pass

directly through each of the points.

— When data are very precise.

&
o
o
o

(b)

PART I: Least square regression

There are several models of this method:

Straight line, Polynomial model, Power model, Exponential model,

Logarithmic model ...... etc.

1- Simple Linear Regression (straight line)

Fitting a straight line to a set of paired observations (z1,¥1), (T2, ¥2), . - -, (Tn, Yn)-
Mathematical expression for the straight line (model)
Yy = ag+ ayx

where ay 1s the intercept, and a, is the slope.
Define

€ = Yi measured — Yimodel = Yi — ((1—(] + (1-13.‘-,‘)

Criterion for a best fit:

T

n
min S, = min E ? = min E (yi —ap — (11.-3:3-)2
ag.a] “ 1 an,a] “ 1
1= =

Find a, and a4:



3(10:_22 Yy —ag—ayx;) =0 (1)

asS,
8{11 = -2 ;[(% — anp — alxi):cf] =0 (2)

From (1), > yi — > ap— Y ajx; =0, or
T n
nag + Z Tia] = Z Y (3)
i=1 i=1
From (2), Y57, @iyi — Y1y aoxi — Yy axx; = 0, or
T T n
Z Tiap + Z Tia = Z Ty (4)
=1 i=1 i=1

(3) and (4) are called normal equations.

From (3),
zuf--zml_u—m
z—l

where 7 = 12; 1%’9_,1; ;_13/1

n 1 n 1 n
From (4), > . x> vi— = 1$ a1) + Y Thar = Y T,

Zf 1Ll — 5 :_137!2; 1 Yi
> Lo @)

Ny TiYi — Py Ti D iy Yi
T 2
”Za 1$ ( -.alzle)

or

ay =




Example:

rl1 2 3 4 5 6 7
y0.5 2.5 2.0 4.0 3.5 6.0 5.5

dxi=14+2+...47=28

Y yi=05+25+...+55=24

Sor?=124+22+..  + 72 =140

Z:':.E-_yi_ =1x05+2x25+...+47x5.5=119.5
LMY Ty T Y Tx119.5-28x24

“= n l?:l *‘?;‘2—(21?;1 -'If:')zl XTXMO*QSE 0.8393

ap=9—Tay =13y —art > ;=% x24-0.8393 x L x 28 =0.07143.
Model: y = 0.07143 + 0.8393z.




Solution of a system of simultaneous equations:

Method 1: Matrix Method
Method 2: Cramer’s Rule

Method 3: Gaussian Elimination

Method 1: Matrix Method
If AX =B then (since 447 = 1)

To solve a system of simultaneous equations

Step 1: Write system in matrix form A4X =B

Step 2: Find determinant |A‘

Step 3: Find the matrix of co-factors C

Step 4: Transpose C to give C ' (or the adjoint of 4)

Step 5: Find the inverse 4", using A" = %|>< c’

Step 6: Multiply A7'B to give solution

When solving three simultaneous equations, we are finding the intersection (if it exists) of three
planes.

Example
1. Solve the system of simultaneous equations

3x—y+4z =13
Sx+y-3z =5
xX—y+z =3

Step 1: First, writing in matrix form AX =B

3 -1 4\ x 13
Here, | 5 1 3|ly|l=| S
1 -1 I\z 3



Step 2: Finding the determinant ‘A‘

3 -1 4
A=|5 | -3
1 -1 1
1 -3 5 -3 |5
S0 |4 =3 —(-1) +4
-1 1 1 1 |
‘A‘ =3(1-3)+1(5+3)+4(-5-1)
|4 =-22
Step 3: Finding the matrix of co-factors C
-2 -8 —6
C=]|-3 -1 2
-1 29
Step 4: Transpose C to give C*
-2 -3 -1
ch=l-8 -1 29
-6 2 8
C g - . _ 1
Step 5: Find inverse 4", using A~ = MXCT
-2 -3 -1 2
R 1 o29|-L
22 22
-6 2 8 6
Step 6: Multiply A'Bto give solution
X | 2 3 1 \13
=—|8 | -29| 5
4 22
z 6 -2 -8 3
X 2
Y=l
z 2




Method 2: Cramer’s rule

Consider a system of two linear simultaneous equations,

ajpx+byy =k
arx+byy=1Ik,
Cramer’s rule states that

ky b, a ky
ky b, a, ky
X = ) y= 5
a b, a b,
a b, a b,
Example
Solve the simultaneous equations
x + y=3
2x+3y=17
3 1 1 3
By C s rul 7 3 2 7
ramer’s rule Xi= , =
y 1 1 Y 1 1
2 3 2 3
L9 7-6
32 733
x=2, y=1

Gabriel Cramer

Switzerland

1704 - 1752

Cramer’s rule can be extended to systems of linear equations with more than two unknowns.

apx+by+cz=1Ik
Consider arx+byy+cyz =k,

ayx +byy+cyz =ky

Then Cramer’s rule states that

k, by €l ap ky S
ky b, ¢ ar ky ()
oo Iy by 3 e as ks c3
ay b, €] a, by 91
dj b, ) aj b, o)
as by C3 as by C3

t

a b, ky
a by ky
s by ks
aj by €
as b, )
as by €3




Example
Solve the simultaneous equations
X + 2y+4z=2

2x— y-2z=5
2x+2y+3z="17
First, evaluate
a, bl cl 2 1
02 b2 C2 = 2 —l _2
03 b3 C3 2 3
‘—l —2‘ ’2 =2 2 —1‘
=1 =) +1
3 2 3 2 2
=1(-3+4)-2(6+4)+1(4+2)
=1-20+6
=-13
k2 b2 02 -1 -2
k b c 7 2 3
Now, find x = 3 3 3=
al bl Cl —-13
) b, )
as bs C3
-1 -2 5 -2 |5 -1
We want 2 -2 +1
2 3 7 3 2
=2(-3+4)-2(15+14)+1(10+7)
=-39
So X = _—::g giving x =3




al kl Cl ]. ].
az k2 Cz _2
a k c 3
Second, find y = 3 3 3
al bl Cl - ].3
a, b, )
as by C3
5 -2 2 - 5
We want 1 -2 +1
7 3 2 7

=1(15+14)-2(6+4)+1(14-10)

=13
So V= _1—33 giving y =—1
al bl kl ]. 2
az bz kz 2 _]. 5
a b k 2 2 7
Finally, find z = 3 3 3 _
a b, & -13
a b, =)
as bs C3
-1 5 2 5 2 -1
We want 1 -2 +2
2 7 2 2 2

=1(-7-10)-2(14-10)+2(4 +2)
=—13

13

So Z=—
-13

giving z =1

The solution to the simultaneous equations is
x=3, y=-lz=1




Method 3: Gaussian Jordan elimination

Step | — form the augmented matrix

Step 2 — make all the first column values equal to zero, with the exception of one
Step 3 — make just two rows with a non zero value in the second column

Step 4 — interchange rows

Step 5 — detach the right hand column

Step 6 — back substitute, starting with bottom row

Carl Friedrich Gauss
1777 — 1855
German
Example
Solve the system of simultaneous equations

xX+y+2z =9
dx+4y—-3z =3
Sx+y+2z =13
Step | — form the augmented matrix

11 2 :9
4 4 -3 : 3
51 2 :13

4
oy We want to reduce this matrix to one of the form
a 0 0 d,
0 b, 0 d,

I "; A ..' ‘:‘4\L - . I : .
\ 0 0 cs d3

Step 2 — make all the first column values equal to zero, with the exception of one
Here, subtract 5 times row 1 from row 3, giving
I 1 2 iZ 19

4 4 -3 : 3
0 ~d =8 3 =32

and, subtract 4 times row 1 from row 2, giving

1 1 2 ¢ 9
0o 0 -11 : -33
0 -4 -8 : =32



Step 3 — interchange rows 2 and 3

I 1 2 9
0 -4 -8 : =32
0 0 -11 : -33

Step 4 — divide row 3 by —11

r 1 2 : 9
0 -4 -8 : -32
0o 0 1 : 3

Step 5 — add 8 times row 3 to row 2

11 2 : 9
0 -4 0 : -8
0o o0 1 : 3

Step 6 — divide row 2 by —4

1 1 2 9
01 0 : 2
0 0 1 3

Step 7 — subtract row 2 from row |

1 0 2 7
0O 1 0 : 2
0 0 1 :

Step 8 — subtract 2 times row 3 from row |

1 0 0 : 1
0O 1 0 : 2
0O 01 : 3

The solution to the simultaneous equations is
x=1,y=2,2z=3




