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Creep is indicated when strain in a solid increases with time while the 
stress producing the strain is kept constant. In more practical terms, creep is 
the increased strain or deformation of a structural element under a constant 
load. Depending on the construction material, structural design, and service 
conditions, creep can result in significant displacements in a structure. Severe 
creep strains can result in serviceability problems, stress redistribution, 
prestress loss, and even failure of structural elements.
Creep and shrinkage of concrete are two physical properties of concrete. 
The creep of concrete, which originates from the calcium silicate hydrates (C-S-H) 
in the hardened Portland cement paste (which is the binder of mineral 
aggregates), is fundamentally different from the creep of metals and polymers. 

https://en.wikipedia.org/wiki/Properties_of_concrete
https://en.wikipedia.org/wiki/Creep_(deformation)
https://en.wikipedia.org/wiki/Calcium_silicate_hydrate
https://en.wikipedia.org/wiki/Portland_cement


Unlike the creep of metals, it occurs at all stress levels and, within the service stress range, 
is linearly dependent on the stress if the pore water content is constant. Unlike the creep of 
polymers and metals, it exhibits multi-months aging, caused by chemical hardening due 
to hydration which stiffens the microstructure, and multi-year aging, caused by long-term 
relaxation of self-equilibrated micro-stresses in the nano-porous microstructure of the C-S-H. 
If concrete is fully dried, it does not creep, but it is next to impossible to dry concrete fully 
without severe cracking.

Changes of pore water content due to drying or wetting processes cause significant volume 
changes of concrete in load-free specimens. They are called the shrinkage (typically causing 
strains between 0.0002 and 0.0005, and in low strength concretes even 0.0012) or swelling 
(< 0.00005 in normal concretes, < 0.00020 in high strength concretes). 
To separate shrinkage from creep, the compliance function            defined as the 
stress-produced strain    (i.e., the total strain minus shrinkage) caused at time t by a unit 
sustained uniaxial stress                             is measured as the strain difference between the 
loaded and load-free specimens.

https://en.wikipedia.org/wiki/Stress_(mechanics)
https://en.wikipedia.org/wiki/Hydrate
https://en.wikipedia.org/wiki/Microstructure
















METHODS OF PRESTRESSING

* Pretensioning
In this method steel tendons, in the form of wires or strands, are tensioned between  

end-anchorages and the concrete members cast around the tendons. Once the concrete has 

hardened sufficiently, the end-anchorages are released and the prestress force is transferred to 

the concrete through the bond between the steel and concrete. The protruding ends of the 

tendons are then cut away to produce the finished concrete member. Pretensioned members 

usually have a large number of wires or strands to provide the prestress force, since the force in 

them is developed by bond to the surrounding concrete, and as large an area of surface contact 

as possible is desirable.



METHODS OF PRESTRESSING

* Pretensioning
This method is ideally suited to factory production since large anchorages are required to anchor all the 

tendons, and several members can be cast along the same set of tendons (Fig. 1.9). It is important to ensure 

that the members are free to move along the prestressing bed, otherwise undesirable tensile stresses may be 

set up in them when the end-anchorages are released.

It is interesting to note the use of in situ prestressing in cable-stayed and suspension bridge construction. In 

the former, the stays are tensioned in order to reduce the deflections of the bridge and also to optimize the 

deck cross-section. Pretensioning of suspension bridge cables has also been employed to ensure that the 

grout used to protect them from corrosion remains in compression, and therefore crack-free, under all load 

conditions. Some examples of pretensioned members, other than beams, which are commonly produced are 

shown in Fig. 1.10.



METHODS OF PRESTRESSING









Post-tensioning
The prestress force is applied in this case by jacking steel tendons against an already cast

concrete member. Nearly all in situ prestressing is carried out using this method. The tendons are threaded 

through ducts cast into the concrete, or in some cases pass outside the concrete section. Once the tendons 

have been tensioned to their full force, The jacking force is transferred to the concrete through special 

built-in anchorages. The prestress force in post-tensioned members is usually provided by many individual 

wires or strands grouped into large tendons and fixed to the same anchorage. The concentrated force applied 

through the anchorage sets up a complex state of stress within the surrounding concrete, and reinforcement 

is required around the anchorage to prevent the concrete from splitting. In most post-tensioned concrete 

applications the space between the tendon and the duct is injected with a cement grout. This not only helps 

to protect the tendons, but  also improves the ultimate strength capacity of the member.



Post-tensioning
 One advantage of post-tensioning over pre-tensioning is that the tensioning can be carried out in stages, for 

all tendons in a member, or for some of them. This can be useful where the load is applied in well-defined 

stages. An important different between pretensioned and post-tensioned systems is that it is easy to 

incorporate curved tendons in the latter. The flexible ducts can be held to a curved shape while the concrete 

is poured around them (Fig. 1.11). The advantages of having curved tendons will become apparent later. 

With pretensioned members, it would be extremely difficult to arrange for a pretensioned curved tendon, 

although it is possible to have a sharp change of direction, as shown in Fig. 1.12. This involves providing a 

holding-down force at the point of deflection, and this is another reason why such members are nearly 

always cast in a factory, or precasting yard, where the holding-down force can be accommodated more 

easily.



An anchorage zone refers to the region of the structure in which the prestress force is transferred 

from the prestressing steel to the concrete and distributed more widely to the member. In 

post-tensioned structures the anchorage zone is subdivided into the local zone and general zone.

➢ In post-tensioned prestressed concrete members, the prestress forces are directly applied to the end of 

the members with relatively very small mechanical anchorages and large forces. 

➢The PT concentrated force induces a complex 3D stress pattern near the anchorage zone. 

➢For practical purposes the anchorage zone design is simplified from 3D to 2D. 

➢A single tendon jacking force could vary from 100 tons to about 1000 tons. 

➢Single PT anchorage has been studied both theoretically and experimentally. However, in 

reality multiple anchorages with different configurations and cross sections exist. ➢Improperly 

design and detailing of anchorage zone can cause longitudinal and vertical cracks around 

anchorage zone.

















. There are other methods available for prestressing concrete (Ramaswamy, 1976) but the 
ones described above are by far the most common.































From Fig. 1.24 it can be seen that, by deflecting a tendon from the straight position, a downwards 

force is required to maintain the tendon in the deflected position, and this force is transmitted to the 

concrete as an upwards force. In the case of a continuously curved tendon, there must be a distributed 

force applied to the concrete to maintain the tendon in position (Fig. 1.28). In order to determine the 

value of this force, consider a small, but finite, section of the tendon (Fig. 1.29(a)). If the frictional 

forces between the tendon and the surrounding concrete are ignored, the force in the tendon at either 

end of the element Δs is equal to T. If w is the uniformly distributed load on the tendon required to 

maintain it in position, then, from the triangle of forces Fig. 1.29(b):

wΔs=2Tsin (Δθ/2).

For small changes of angle, sin (Δθ/2)=Δθ/2. If the element is made smaller and smaller, in the limit 

the force at a point on the tendon is given by

w=Tdθ/ds.

FORCES EXERTED BY TENDONS
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Flexural Analysis 





















  Self-weight Service load
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Shear Design 



Analysis for Shear 
Introduction: 
•The analysis of reinforced concrete and prestressed concrete 
members for shear is more difficult compared to the analyses for 
axial load or flexure.
Concrete has more shear resistance, where as shear resistance of 
R.C.C is less. 
The analysis for axial load and flexure are based on the following 
principles of mechanics. 
•1) Equilibrium of internal and external forces 
•2) Compatibility of strains in concrete and steel 
•3) Constitutive relationships of materials. 



Stresses in an Uncracked Beam 
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General design procedure
Design process starts with the choice of a preliminary 
geometry. 
By trial and adjustment, it converge to the final section with 
geometrical details of the concrete section and the alignment 
of the prestressing strands.
The section has to satisfy the flexural (bending) requirements 
of concrete stress and steel stress limitations. 
Other factors such as shear and torsion capacity, deflection and 
cracking are analyzed and satisfied. 
Additional checks are required at the load transfer and limit 
state at service load, as well as the limit state at failure, with 
the failure load indicating the reverse strength for overload 
conditions. 
All these checks are needed to ensure that at service load 
cracking is negligible and the long term effects on deflection
are well controlled.
A good understanding of the principles of analysis and the
alternative presented thereby significantly simplifies the task of
designing the section. 



Sign convention
A negative sign (-) is used to denote 
compressive stress and a positive sign (+) is 
used to denote the tensile stress in the 
concrete section.
A convex or hogging shape indicates negative 
bending moment (a); a concave or sagging 
shape indicates positive bending moment (b). 

  



Loading stages of prestressed concrete



Stress distribution across the depth of the critical section



Allowable stresses of concrete



Summary of equations of stress



Load-deformation curve of typical prestressed beam



Decompression stage
The decompression stage denotes the 
increase in steel strain due to the increase in 
load from the stage when the effective 
prestress (Pe) acts alone to the stage when 
additional load causes the compressive stress 
in the concrete at the cgs level reduce to 
zero.
The change in concrete stress due to 
decompression is: 

 



Selection of geometrical properties

1. Minimum Section Modulus: 
To design or choose the section, a 
determination of the required minimum 
section modulus has to be made first. 
Determination of the minimum section 
modulus is dependent on the prestressing
steel profile where different equation can be
used.

 



1.1 Beams with variable tendon eccentricity
The section should have section moduli values:  
 
 
 
 
The required eccentricity of prestressing tendons at 
the critical section (Mid span) is: 

Where      is the concrete stress at transfer at the 
level of the centroid cgc of the concrete section and 
given as: 



Maximum fiber stresses of Beams with variable tendon eccentricity
(a) Critical section. (b) Support section of simply supported beam.  



1.2 Beams with constant tendon eccentricity
The section should have section moduli values:  
 
 
 
 
The required eccentricity of prestressing tendons at 
the critical section is: 

Where      is the concrete stress at transfer at the 
level of the centroid cgc of the concrete section and 
given as: 



Maximum fiber stresses of beam with straight tendons



Service load design example (1) 
Variable tendon eccentricity













Service load design example (2)  
Variable tendon eccentricity with no height limitation 















Service load design example (3)  
Constant tendon eccentricity











Envelops for tendon placement

The tensile stress in the extreme concrete fiber under
service load conditions cannot exceed the stresses 
allowable by codes.
It is important to establish the limiting zone in the concrete 
section; an envelope within which the prestressing force 
can be applied without causing tension in the extreme 
concrete fibers. 
It can be determined by assuming the allowable stress 
equals to zero,    
 

 Giving  Hence, the lower kern point is:  

 Similarly, if ,  

  Hence, the upper kern point is:  

 



Envelops for tendon placement



Limiting eccentricity envelopes



Limiting eccentricity envelopes





Prestressing tendon envelope, Example













Page 190 

(i)  precast slab;  
(ii)  precast slab and topping;  

(iii)  precast slab and topping, with slab propped at midspan;  
(iv)  propping removed and an imposed load of 3 kN/m2 applied.  
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11  

 
Indeterminate structures  

 
11.1 INTRODUCTION  

 
All of the prestressed concrete members so far considered have been statically 
determinate. This reflects the major use of prestressed concrete in building structures, 
since the most common type of prestressed concrete construction is in the form of 
simply supported beams. However, there are important applications of prestressed 
concrete in statically indeterminate structures. Many of the features of the analysis 
and design of these structures are similar to those used for statically determinate 
structures, as outlined in previous chapters. There are two important differences, 
however: the introduction of secondary moments and the behaviour at the ultimate 
limit state. These will be discussed in the following sections.  

The most important application of prestressed concrete indeterminate structures is 
in the field of multi-span bridges. This is a specialized area of design and construction 
and is well beyond the scope of this book, but many excellent reference books on the 
subject may be found in the Bibliography.  

In the field of building structures, continuous prestressed concrete beams are 
sometimes employed, but a more widespread use is in prestressed concrete flat 
slabs.  The design of these will be discussed in detail in Chapter 12.  

 
 

11.2 SECONDARY MOMENTS  
 

It was shown in Chapter 1 that for a statically determinate prestressed concrete 
member the line of pressure in the concrete is coincident with the resultant force due 
to the prestressing tendons, provided that there is no applied axial load on the member. 
For statically indeterminate prestressed concrete structures, this is not necessarily the 
case. The prestress moment in a statically determinate member at any section is  
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Pe, which is known as the primary prestress moment. In statically indeterminate 
structures, secondary or �parasitic� prestress moments may be introduced into the 
structure due to prestressing. Support reactions and shear forces will also be present in 
this case, even though there is no applied load on the structure. The presence of these 
secondary moments involves extra work in the analysis and design of statically 
indeterminate prestressed concrete structures, although in nearly all other respects the 
design and analysis procedures outlined in the preceding chapters are applicable.  

In order to understand how these secondary moments arise, consider a two-span 
continuous beam, as shown in Fig. 11.1(a), which has a constant prestressing force P 
acting at an eccentricity e.  

If the central support were unable to restrain vertical upward movement of the 
beam, the deflected shape of the beam due to the prestressing force would be as 
shown in Fig. 11.1(b). The beam is now effectively statically determinate and the 
prestress moment at any section would be the primary moment Pe (Fig.  11.2(a)). 
However, in practice the beam would be restrained at the central support, and in order 
to maintain compatibility of displacements at this position, a downward reaction R 
must be applied at the support. The distribution of secondary moments induced in the 
beam by this reaction is shown in Fig. 11.2(b), whilst Fig. 11.2(c) shows the total 
distribution of the moments along the beam. Note that the secondary moment diagram 
varies linearly between supports, since it is produced only by the reactions at the 
supports induced by prestressing.  

The resulting prestress moment at any section shown in Fig. 11.2(c) may be written 
as Py, where y is some displacement. This may then be considered as the eccentricity 
of the resultant line of pressure in the concrete, and the locus of y along the beam may 
be considered as an effective tendon profile. The effective profile is obtained by 
raising or  

 
 

 

Figure 11.1 Continuous prestressed concrete beam.  
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Figure 11.2 Secondary moments.  

 

 

Figure 11.3 Effective tendon profile.  

 
lowering the actual profile at interior supports, while keeping the basic shape of the 
profile constant, as shown in Fig. 11.3.  

All the expressions given in Chapter 9 may be used for the design of statically 
indeterminate structures if, once the secondary moments have been determined, the 
actual eccentricity e is replaced by the effective eccentricity y. However, 
determination of the cable profile is generally then an iterative procedure.  

 

Example 11.1   
A two-span continuous beam ABC has spans of 10 m and a prestress force of 1500 

kN acting at a constant eccentricity of 300 mm. Determine the distribution of prestress 
moments along the beam and the support reactions induced by prestressing.  

On the assumption that there is no vertical restraint at the central support, the beam 
is subjected to a pair of end-moments equal to Pe,  
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that is 1500×0.3=450 kNm.  The midspan upward deflection of a beam subjected to a 
pair of end-moments M is given by  
 

M=ML2/8EI,  
 

where EI is the constant flexural stiffness of the beam and L is the span.  
Thus, for this example,  
 

M=450×202/8EI=22 500/EI.  
 

For a downward force R at the central support, the downward deflection at this point 
is given by  
 

R=RL3/48EI  
=R×203/48EI=166.7 R/EI.  
 

For compatibility of displacements at the central support, these two deflections must 
be numerically equal. Thus:  
 

22500/EI=166.7R/EI  
 R=135 kN.  

 
The end-support reactions are thus each 67.5 kN, upward.  

The primary, secondary and total distributions of prestress moments along the beam 
are shown in Fig. 11.4(a)�(c), respectively, whilst the effective tendon profile is 
shown in Fig. 11.5.  

An alternative method of analysis for the secondary moments is to consider the 
primary moment as a distributed applied moment on the structure and then to analyse 
it using any of the common methods of structural analysis. For the beam in this 
example, the method of moment distribution will be used. The fixed-end moments for 
each span may be  

 
 

 

Figure 11.4 Prestress moments for beam in Example 11.1 (kNm).  
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Figure 11.5 Effective tendon profile for beam in Example 11.1.  

 

 

Figure 11.6 Primary moment as distributed applied moment.  

 
found by considering the span as simply supported and with distributed moment, MP, 
and end-moments, MF, applied as shown in Fig. 11.6(a) and (b), respectively. From 
symmetry, the fixed-end moments MF at each end of the span must be equal. The 
rotations at each end of the span due to the combination of MP and MF are zero for a 
fixed-end condition.  This rotation may be found conveniently using the virtual work 
method. The same simply supported span is shown in Fig. 11.6(c), with a unit 
moment applied to the left-hand end. The rotation at this end due to the moments MP 
and MF is then given by  
 

 
From Simpson�s rule:  
 

A=(L/6EI)[( MP+MF)(1)+4( MP+MF)(1/2)]  
=( Mp+MF)L/2EI.  
 

Since this rotation must be zero, Mp=MF. In this example, Mp= 450 kNm and so the 
fixed-end moments are 450 kNm. The moment distribution is shown in Fig. 11.7, 
showing that the secondary moment  
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A      C    
AB  

  
BA  

B 
BC  

  
CB  

D.F.  0.5  0.5  
F.E.M.  450  450  450  450  
Balanace  450    450  
Carry-over  

  

 
225  225  

  

   

Total  0  675  675  0  
Figure 11.7 Moment distribution for beam in Example 11.1 (kNm).  
 
at support B is 675 kNm, as found previously. The resulting total distribution of 
prestress moments throughout the structure is shown in Fig.  11.4(c).  

  
 
For less simple tendon profiles, the primary moment diagram shown in Fig. 11.6(a) 

is found by plotting the ordinates Pe along the span. The two fixed-end moments at 
either end of the span will, in general, be unequal, and the condition of zero end-slope 
must be applied to each end to enable solution of the unknowns.  

The straight tendon profile shown in Fig. 11.1 was used only to illustrate how 
secondary moments arise. In practice the profile in continuous members is determined 
according to the same underlying principle that is used for simply supported members, 
namely that the prestressing tendons are so positioned as to counteract any tension 
induced by the applied load. In continuous members, hogging support bending 
moments produce tension at the top surface, and so the eccentricity of the tendons is 
usually above the centroid at the supports. A typical tendon profile is shown in Fig. 
11.8(a) and an enlarged detail of the tendon geometry near the support is shown in Fig. 
11.8(b). The inflexion point for the profile is commonly taken as one-tenth of the span.  

A useful method of determining the total prestress moments in an indeterminate 
structure is to analyse the structure under the equivalent loading applied to the 
concrete by the prestressing tendons. For a smoothly draped, or a sharply deflected, 
tendon a vertical force is exerted on the concrete member and the total distribution of 
prestress moments may be determined by any of the usual methods of structural 
analysis. The equivalent loading for the tendon profile in Fig. 11.8(a) is shown in Fig. 
11.9.  
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Figure 11.8 Practical tendon geometry: (a) typical profile; (b) enlarged detail near the support.  

 

 

Figure 11.9 Equivalent loading from tendons.  

 
For the straight tendon in Example 1.1, there is no vertical force exerted on the 
concrete, but there are end-moments as shown in Fig. 11.10. The moment distribution 
for the beam subjected to these end-moments is shown in Fig.  11.11 and the resulting 
distribution of total prestress moments is identical to that shown in Fig. 11.4(c). The 
secondary moments may be found by deducting the primary from the total 
prestressing moments, a procedure useful in analysis at the ultimate limit state, 
described in section 11.4.  
 

Example 11.2   
Determine the distribution of total prestress moments due to a prestress force of 

1000 kN for the beam shown in Fig. 11.12. Also determine the support reactions 
induced by prestressing.  

The equivalent uniform vertical load exerted on the concrete is given by  
 
w=P/rps.  
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Figure 11.10 Applied moments for straight tendon profile (kNm).  
 
 
 

A    C    
AB  BA  

B  
BC  CB  

D.F.  0.5  0.5    
F.E.M.  450  225  

  
225  450  

Total  450  225    225  450  

Figure 11.11 Moment distribution for beam subjected to end-moments (kNm).  
 
 
 

 
 

Figure 11.12  
 
 
Thus:  
 

w1=1000/93.74=10.67 kN/m  
w2=1000/37.45=26.70 kN/m  
w3=1000/9.38=106.61 kN/m.  
 

The beam can now be analysed under the loading shown in Fig.  11.13.  
The resulting distributions of total and secondary prestress moments are shown in 

Fig. 11.14(a) and (b), respectively, the latter also showing the support reactions, and 
the effective tendon profile in Fig. 11.15. Note that, once again, the effective tendon 
profile has been obtained by raising or lowering the actual profile at the supports, 
keeping the shape constant between the supports.  
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Figure 11.13 Equivalent loading for beam in Example 11.2 (kN/m).  

 

 

 
 

Figure 11.14 (a) Total and (b) secondary prestress moments for beam in Example 11.2 (kNm).  

 

 
 

Figure 11.15 Effective tendon profile for beam in Example 11.2.  

 
An alternative method of determining a tendon profile for the given eccentricities is 
shown in Concrete Society (1994). However, this will not always give maximum 
eccentricity at the desired points in the spans.  

The profile shown in Example 11.2 gives rise to equivalent uniform loads.  If there 
is a sharp change in curvature, then the equivalent force on the concrete member is 
concentrated, as described in Chapter 1.  

In many long continuous prestressed concrete structures, such as bridge decks or 
floor slabs, some of the tendons are stopped off within a span. They may end there or 
be connected to other tendons some time later. At these points the effect of a 
concentrated vertical load and moment must be taken into account when applying 
equivalent loads to  
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the structure in order to determine the total prestress moment distribution.  
Once the secondary moments have been determined, the total stresses at the 

serviceability limit state may be found by adding the total prestress moment to the 
applied load bending moment.  

In assessing the elastic distribution of bending moments throughout the structure, 
the following load cases should be considered for beams in buildings without 
cantilevers and with predominantly uniform loads:  

 
(i)  alternate spans loaded with dead load plus imposed load;  

(ii)  any two adjacent spans loaded with dead load plus imposed load and all other 
spans loaded with 1.0×dead load.  

 
In the above, the imposed load is either the frequent or rare load combination, 
depending on whether crack widths or concrete stresses are to be determined, 
respectively.  

For framed structures, the axial shortening in the beams caused by prestressing 
must also be considered in determining the secondary moments (see Problem 11.5).  

 
 

11.3 LINEAR TRANSFORMATION AND CONCORDANCY 
  

It was shown in the previous section that the line of pressure can be obtained from the 
actual tendon profile by raising or lowering the profile at an interior support while 
keeping the same basic shape in the spans either side of the support.  This is an 
example of a linear transformation of a profile, since the amount by which the profile 
is raised or lowered at any point is directly proportional to the distance of that point 
from the support that is adjusted. Linear transformations of successive spans can be 
superimposed to produce a combined transformation.  
 
 

 
 

Figure 11.16 Linear transformation.  
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Figure 11.17 Equivalent loading for linear transformation (kN).  

 

 
Consider the beams shown in Fig. 11.16(a) and (b). The profile in Fig. 11.16(b) is a 
linear transformation of that in Fig. 11.16(a). The equivalent loads on the concrete in 
the two cases are shown in Fig. 11.17(a) and (b). The equivalent loads within the 
spans in each case are the same, although the different inclinations of the tendons at 
the supports give rise to different vertical forces there.  Since the loads within the 
spans are the same the distributions of total prestress moments must be the same. The 
lines of pressure in each case must thus be equal. However, the distributions of 
primary and secondary prestress moments, and the support reactions induced by 
prestressing, will be different in each case as shown in Fig. 11.18(a) and (b).  

In Fig. 11.16 the tendon profile is shown with a sharp change of curvature at the 
central support, for simplicity. In practice the profile would be more like that shown 
in Fig. 11.8. For this profile, a linear transformation would slightly alter the inflexion 
point between the two curved regions and similarly affect the equivalent loads within 
the span. A linear transformation of such a profile, in theory, would thus cause a 
change in the total distribution of moments due to the prestress force, but in practice 
this change is very small and is usually ignored.  

A general rule can now be stated, that if a tendon profile undergoes a linear 
transformation, the line of pressure in the concrete remains constant. This property is 
particularly useful in modifying tendon profiles when the limits to the cable zone, 
determined from Inequalities 9.6(a)�(e), do not permit a practical tendon profile. A 
profile can be chosen to lie within the theoretical cable zone, and a linear 
transformation performed to bring the actual profile into a more practical location.  

If the eccentricity of the straight tendon profile shown in Fig. 11.1 (a) is gradually 
reduced, the free upward movement of the member at the central support position also 
becomes smaller. The magnitude of the reaction required to maintain the beam in 
contact with the support is also lessened, and this implies that the secondary moments 
reduce. In the limiting case, the eccentricity becomes zero, and the beam is  
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Figure 11.18 Primary, secondary and total prestress moments for beams (a) and (b) in Fig. 
11.16 (kNm).  

 
concentrically prestressed. The central support reaction and the secondary moments 
are then also zero. The total prestress moment in the beam at every section would be 
equal to the primary moment Pe, and the line of pressure would be everywhere 
coincident with the tendon profile.  

Any tendon profile in a prestressed concrete member that has this property is 
known as a concordant profile. All profiles in statically  
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determinate members are thus concordant, but in statically indeterminate members 
most profiles are non-concordant. For any given member, there can be many different 
basic profiles that are concordant.  

In the design of a statically indeterminate prestressed concrete member, it is not 
necessary to ensure that the chosen profile is concordant, although this simplifies the 
calculations.  In practice it is found that concordant profiles are not the most 
economical, but in the design process it is quite useful to start with a concordant 
profile and then to modify it as necessary.  

Consider now the continuous beam shown in Fig. 11.19(a) with a uniform load on 
each span. The distribution of bending moments is shown in Fig. 11.19(b). If tendons 
are fixed in the beam according to a profile determined from Fig. 11.19(b), then the 
equivalent load on the beam from the tendons must be of the form shown in Fig. 
11.19(a), since any elastic bending moment distribution within a given structure can 
only correspond to one distribution of applied loads. The distribution of total prestress 
moments within the member must therefore be similar to that shown in Fig. 11.19(b). 
Since this distribution of moments is consistent with zero vertical deflection at the 
central support, this tendon profile must be concordant.  

A general rule thus emerges for determining concordant profiles, that the bending 
moment diagram for any given loading on a structure yields a concordant profile.  

 

Example 11.3   
Determine a concordant profile for the beam shown in Fig. 11.20, using a prestress 

force of 500 kN.  
A uniform load of 12 kN/m will be used to find a concordant profile. The bending 

moment diagram for this loading is shown in Fig. 11.21(a).  
 
 
 

 
 

Figure 11.19 Continuous beam: (a) uniform load on each span; (b) bending moment 
distribution resulting from UDL.  
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Figure 11.20  

 
The concordant tendon profile is obtained by dividing the ordinates of the bending 
moment diagram in Fig. 11.21(a) by the prestress force. The resultant profile is shown 
in Fig. 11.21(b).  

  
 
This profile is just one such concordant profile, since any linear transformation of it 

will not alter the position of the pressure line in the concrete and thus the profile will 
remain concordant. The design could then proceed exactly as for a statically 
determinate structure, since, provided the chosen tendon profile is a linear 
transformation of that shown in Fig. 11.21(b), the secondary moments will be zero.  

The above method of finding a concordant profile is strictly valid only if the 
prestress force is constant along the member.  In practice the prestress force varies, 
and the concordant profile should be obtained by dividing the ordinate of the bending 
moment diagram in Fig. 11.21(a) at any section by the effective prestress force at that 
section.  

 
 

11.4 ULTIMATE LOAD BEHAVIOUR  
 

The analysis of prestressed concrete members at the ultimate limit state outlined in 
Chapter 5 is sufficient for statically determinate structures, since, for these structures, 
once the ultimate moment of resistance has been reached at any section, a mechanism 
is formed and the structure cannot support any more load.  

The situation is different, however, for statically indeterminate structures. As the 
applied load is increased, the ultimate moment of resistance will be reached at some 
point in the structure, but in this case a mechanism will not form. Provided that the 
member at this point will allow rotation to take place at the plastic hinge which has 
formed, additional load can be carried by the structure, which effectively redistributes 
the load to less heavily loaded regions until sufficient plastic hinges have formed to 
produce a mechanism. This description of the plastic analysis of prestressed concrete 
structures is equally applicable to steel, timber or reinforced concrete structures, and 
the general background and details of the theory may be found in Coates, Coutie and 
Kong (1980). The full methods of plastic analysis may be used for prestressed 
concrete structures, but there are important  
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Figure 11.21 Concordant profile for beam in Example 11.3.  

 

 

 

Figure 11.22  

 
limitations imposed in EC2 on the amount of rotation that takes place at a given 
section once a plastic hinge has formed there.  

Consider the two-span continuous beam shown in Fig. 11.22(a), which is subjected 
to a total ultimate uniform load of 20 kN/m. An elastic analysis of the structure would 
give the bending moment distribution shown in Fig. 11.22(b). If the ultimate moment 
of resistance of the beam at the central support is 175 kNm, then the bending moment 
distribution of Fig.  11.22(b) can never be achieved. At a load of 14 kN/m, the 
bending moment diagram would be as shown in Fig. 11.23(a). As the uniform load is 
increased from 14 kN/m to 20 kN/m, the  
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Figure 11.23 Moment redistribution (kNm).  

 
bending moment at the central support is assumed to remain constant at 175 kNm, 
since a plastic hinge has formed there. In order to maintain equilibrium, the bending 
moment diagram becomes that shown in Fig. 11.23(b). Comparison of this with 
Fig.  11.22(b) shows that the elastic bending moment of 250 kNm at the support has 
been redistributed by 30% to give the value of 175 kNm in Fig. 11.23(b). However, 
the ultimate moment of resistance to be provided at the midspan sections has now 
increased to 162.5 kNm.  

Moment redistribution may also be applied to the midspan sections. In this case it is 
the moment of resistance at the supports which must be increased to maintain 
equilibrium.  

The 30% redistribution shown in the above example is the maximum permitted in 
EC2 for post-tensioned tendons. However, in practice the actual amount of 
redistribution permitted for a given section may be less than this figure. This is 
because for a statically indeterminate structure to resist an increase in load once the 
first plastic hinge has formed, rotation must take place at that hinge. The ability of a 
prestressed concrete member to undergo the required rotation once the ultimate 
moment of resistance has been reached is dependent on the position of the neutral axis 
within the section. Typical plots of moment-curvature for a given rectangular 
prestressed concrete section with varying amounts of prestressing steel are shown in 
Fig. 11.24. Each curve also corresponds to a different location of the neutral axis at 
the ultimate moment of resistance. For positions of the neutral axis high in the section, 
the amount of rotation that can take place after the plastic hinge has formed is much 
greater than for positions of the neutral axis lower in the section.  

Strictly according to plastic theory, the ultimate strength of a prestressed concrete 
structure is independent of any secondary moments  
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induced by prestressing, in a similar way that it is also independent of such effects as 
settlement of supports; it depends solely on the mechanisms which can form. 
However, it is stated in EC2 that secondary moments and shear forces should be 
included in ultimate strength calculations, with a value of p of 1.0. The inclusion of 
secondary moments generally increases span bending moments and decreases those at 
supports. For framed structures, such as prestressed flat slabs, described in Chapter 12, 
secondary moments will have an effect on the design moments for the columns.  

The amount of redistribution allowed is linked directly in EC2 to the position of the 
neutral axis.  The permitted values for prestressing tendons of , the ratio of the 
moment at a section after redistribution to that before redistribution, are shown in 
Table 11.1.  

In assessing the elastic distribution of bending moments throughout the structure 
due to ultimate loads, the load combinations described in Section 11.2 should be used, 
in combination with the partial factors of safety given in Chapter 3.  

 
 

 
 

Figure 11.24 Moment-curvature relationships.  
 
 
 
Table 11.1 Limits to redistribution  

Minimum value of   Concrete grade  
Post-tensioning  Pretensioning  

Maximum value of x/d  

C35/45  0.70  0.85  0.8 0.35 0.45  
>C35/45  0.70  0.85  0.8 0.45 0.35  
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Example 11.4   
Determine the maximum ultimate uniform load that can be supported by the beam 

in Example 11.2, if the beam dimensions are 750 mm deep by 400 mm wide and the 
area of prestressing steel is 1030 mm2. Assume that the concrete is grade C40/50 and 
fpk=1850 N/mm2.  

At the central support:  
 
Apfpk/(bdfck)=(1030×1850)/(400×675×40)  
=0.176.  
 

From the design chart shown in Fig. 5.16,  
 

Mu=0.121×400×6752×40×10 6  
=882.1 kNm  
 

Also from Fig. 5.16, x/d is 0.3. Thus from Table 11.1, =0.94 (>0.70).  
For a uniform load, w, over the full length of the beam the maximum elastic support 

bending moment is wL2/8, or 28.13 w. From Fig.  11.14 the secondary moment at the 
support is 18.3 kNm (with p=1.0).  

Thus:  
 
0.94 ( 28.13 w+118.3)= 882.1  

 wult=37.6 kN/m  
 

With no redistribution, wult=31.4 kN/m.  
The secondary moment at midspan is 59.2 kNm. For a support bending moment of 

882.1 kNm the corresponding midspan moment is  
 
=37.6×152/16+59.2  
=588.0 kNm.  
 

Since this is less than the ultimate moment of resistance of the midspan section no 
additional untensioned reinforcement is required.  

  
 
 

PROBLEMS  
 

11.1 For the beam in Example 11.1 determine the midspan deflection under the action 
of prestress force only.  

11.2 For the beam shown in Fig. 11.25, determine the support reactions induced by 
prestressing:  
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Figure 11.25  
 
 

 
 

Figure 11.26  
 
 

 
 

Figure 11.27  
 
 
 
(i)  with the profile as shown;  

(ii)  with the profile at support B lowered by 300 mm, the basic shapes of the profiles 
in the adjacent spans remaining unaltered.  

 
11.3 For the beam in Example 11.1, show that, if the tendon is placed along the 
original line of pressure, the new profile is concordant.  
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11.4 The beam in Example 11.1 is to have a circular cap cable over the central 
support, as shown in Fig. 11.26. The radius of the cable is 20.91 m and the prestress 
force is 900 kN.  If the dimensions of the beam are 750 mm deep by 400 mm wide, 
determine the stresses in the top of the beam over the central support under the effect 
of prestress, self weight and an imposed load of 55 kN/m:  

 
(i)  with no cap cable;  

(ii)  with cap cable.  
 
For case (i), determine the maximum and minimum compressive stresses in the beam 
at midspan.  

11.5 The pinned-base portal frame shown in Fig. 11.27 has a constant cross-section 
of 900×300 mm. It has a parabolic tendon profile in the beam with constant prestress 
force of 2000 kN, and straight tendons in the columns with prestress force of 500 kN. 
Determine the primary and secondary prestress moment diagrams and find the 
secondary support reactions. Assume Ecm=35×103 N/mm2.  
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