Subject: Refrigeration

Class: Fourth Year
Course Tutor: Assist.Prof.Dr.Obaid T.Fadhil

Introduction

Air conditioning deals with artificial tampering of the conditions of air that may involve cooling as well as heating coupled with ventilation, filtration, and air circulation. However, air conditioning is generally perceived as the process relating primarily to cooling of air. Control of environment through supply of heat, however, is generally treated as a process of heating.

Refrigeration, on the other hand, deals solely with cooling and one of its most important applications is air conditioning. Thus refrigeration and air conditioning are very closely interrelated as highlighted in Figure 1.1. For the same reason, very often the two subjects are treated in the same book. In the present book the discussion on air conditioning will focus more on providing a cool environment; the application of air conditioning to heating will be limited to that provided by a heat pump.

FIGURE 1.1 Relationship of refrigeration and air conditioning.

Refrigeration has played an important role in the growth and attainment of the present-day standard of living. Because of refrigeration, bulk of the perishable foodstuffs wasted hitherto can
not only be preserved but also marketed to far flumg corners of the world. Its application to air-corditioning enabled taming the natural climate into creating comfortable environment even in blistering summer. There has also been dramatic and continuous growth in the air-conditioning industry since the turn of the century. Air conditioning is no longer considered a luxury. The benefits of air conditioning are well established so much so that today it has become a necessity and a tool for higher productivity.

1.1 HISTORY OF REFRIGERATION

Refrigeration means the artificial withdrawal of heat, producing in a substance or within a space a temperature lower than that which would exist under the natural influence of the surroundings. Cooling effect created by a machine or mechanical device is classified as mechanical refrigeration.

Since prehistoric times, artificial cooling has been recognized as desirable: food was kept in cold air in caves and wells to keep it fresh for longer periods.

Two physical phenomena were used in most remote times-without much understanding of the principles involved-evaporation of water, especially through vases of porous pottery (Figure 1.2) widely used in Egypt, India and China, and terrestrial radiation towards clear sky during the night. It is known that several centuries before the birth of Christ, Egyptians made ice by this means by putting porous earthen pots on the roof of the house during the night. Evaporation of water in cool dry air together with radiative heat transfer during a clear night caused ice formation even when the ambient temperature was above the freezing temperature.

FIGURE 1.2 Earthen containers used by Egyptians for cooling water and making ice.

The first attempt to produce artificial cooling was made in 1755 when Cullen built an apparatus to make ice artificially by vaporization of water at reduced pressure. This experiment was followed by others over the years. A phenomenon called Peltier effect was discovered in 1834 which was commercialized after more than a century and culminated in the development of thermo-electric refrigerators. Refrigeration by this method is based on the fact that when an electric current is passed around a circuit composed of two different metals one junction becomes cool and the other becomes warm. Production of cold by mechanical methods is a relatively recent development. The first development took place in 1834 when Perkins proposed a handoperated compressor machine working on ether. In 1851, Gorrie developed air refrigeration which was followed by the development of absorption systems and vapour compression systems using ammonia as refrigerant. Pictet liquefied oxygen in 1877 which signaled the era of cryogenics, a field of very low temperature refrigeration. By 1890 the refrigerating industry was fairly established, and within the next few years machines using ammonia, carbon dioxide and sulphur dioxide were developed. Vortex tube was discovered by Ranque in 1931, which is simply a straight length of tubing into which compressed air is admitted tangentially at the outer radius and so throttled that the central core of the resulting stream can be separated from the peripheral flow. The central core of air is found to be cold (as low as $40^{\circ} \mathrm{C}$ below the inlet temperature) relative to the hot air at the periphery.

With the advent of electric motors and halogenated hydrocarbon refrigerants during the first-half of the twentieth century, rapid developments in the application of refrigeration to commercial and industrial fields followed.

1.2 APPLICATIONS OF REFRIGERATION

Modern refrigeration is mostly applied in four general fields (Figure 1.3).

FIGURE 1.3 Applications of refrigeration.

Ice making

Over centuries natural ice was harvested for subsequent use or transported to warmer places lacking natural ice. The use of natural ice progressively increased as can be appreciated from the fact that millions of tons of natural ice were consumed in the United States in late nineteenth century. Thus the stage was set for the introduction of large-scale artificial refrigeration. With the introduction of refrigeration machinery, ice-plants were built near the consumers to produce ice on a commercial scale.

Preservation and transportation of perishables

Refrigeration is widely used for the preservation of foodstuffs. Its purpose is to prevent or check spoilage, the more important causes of which are:

- Excessive growth of microorganisms, bacterial and fungal
- Changes due to oxidation, giving off flavours $2,+\mathbb{F}$
- Enzymatic and fermentive processes, causing rancidity oivil
- Drying.

Apart from dramatically reducing the spoilage of perishable foodstuffs, refrigeration has altered the pattern of consumption and movement of foodstuffs. With the parallel development of refrigerated transportation including reefer ships, the transformation of supply chain/system, as shown in Figure 1.4, has done away with the dependence on local markets as exporting to overseas markets became possible.

FIGURE 1.4 Supply system transformations with the availability of refrigeration.

A global frozen food chain has been firmly established, opening the frontier of transcontinental transportation and distribution of perishable foodstuffs. Typically, the chain consists of the following links: refrigerated warchouses, refrigerated road transports, refrigerated (reefer) ships, port facilities and domestic refrigerators. Where a fully developed cold chain is in place, as illustrated in Figure 1.4(b), surplus agricultural and dairy produces are transported to production warehouses located near the growing areas. From there the processed food is transported to long-term warehouses for long-term storage. Canned food items are also transported from canning factories to the long-term warehouses. These products are then transported to distribution warehouses from where these are made available to consumers through supermarkets or grocers. The final link of the chain is the domestic freezer and refrigerator.

A brief description of the elements of cold chain (see Figure 1.5) will be useful to understand their specific roles and features.

FIGURE 1.5 Elements of a frozen food chain.

Cold store is a building designed to store certain goods, particularly foodstuffs of perishable nature, in well-derined conditions of temperature and relative humidity. Based on types of activities, cold stores can be classified into (i) multi-purpose cold stores and (ii) specialized cold stores. The multi-purpose cold store is designed, built and equipped to store all varieties of products for short as well as longer periods. The specialized cold store is generally designed and equipped to store only a single type of product complementary to an agricultural or foodstuff industry, e.g. dairy, slaughterhouse, fruit packing station, etc.

Refrigerated transport is the main link of the frozen food chain. It can be broadly classified into refrigerated trucks and trailers, trains and refrigerated ships (reefers). A special feature of marine transport is the varying climate, ranging from extreme hot to extreme cold, through which the ship has to pass during the course of its journey. Since the cargo may vary from time to time, the refrigeration system should be capable of providing any temperature between -23.5 to $12.5^{\circ} \mathrm{C}$.

Domestic refrigerators and freezers are the last link of the cold chain. These machines have become standard fixtures of most homes even in developing countries, particularly, since the prices have come down dramatically with the introduction of mass produced hermetically sealed compressors.

Special industrial processes

Refrigeration has applications in diverse industries, such as manufacturing chemicals, petroleum refineries, paper and pulp industries. It is also a necessary part of many chemical processes. It is needed frequently throughout the refining process. One of the main purposes is to crystallize wax and separate it out. It is also needed for fractional distillation of the lighter hydrocarbons and for desalination of water. It has also application in many heat treatment processes. Civil engineering projects are often aided by the use of refrigeration. Moisture laden soils are frozen to prevent cave-ins and to obtain soil samples. Ice and chilled water have been used in making concrete mix.

Air conditioning

Air conditioning is one of the most important applications of refrigeration and a rapidly expanding field of engineering. Further details have been elaborated later in the chapter as well as in subsequent chapters.

1.3 SCOPE OF AIR CONDITIONING

Climates in the different parts of the world vary with season of the year and with geographical locations and hence, in very few places the natural environment is comfortable for human beings or suitable for a specific product or process throughout the year. There is, thus, a need for the control of the environment for human comfort as well as for some specific equipment, material or process. Heating is essential in cold climates while cooling is generally desirable in hot climates. Figure 1.6 shows the climatic variation in different geographical zones of the world.

Apart from temperature, human comfort is greatly affected by humidity. Consequently in addition to cooling, dehumidification and humidification processes are necessary for humid and

Q32] Hot arid

FIGURE 1.6 Different climatic zones of the world.
arid tropics respectively. Indoor air tends to get fouled due to absorption of pollutants from many different sources and the same needs to be controlled to an acceptable level. These processes involving artificial tampering of air and its proper distribution in an indoor environment, in fact, constitute air conditioning (Figure 1.7). More formally, air conditioning may be defined as a form of air treatment which controls simultaneously the temperature, humidity, cleanliness and distribution of the air to meet the requirements of the conditioned space. To provide these functions with most natural atmospheres, heating, cooling and regulation of

FIGURE 1.7 The functions of air conditioning.
thermal radiation will be required for temperature control; humidification and dehumidification will be required for humidity control and introduction of outside ventilation air, filtration, washing or odour absorption will be required for cleaning the air. Control of sound produced by the air-conditioning system itself is also important.

Besides controlling the temperature and humidity of the environment, air conditioning serves other useful purposes as well. By air conditioning, dust, bacteria, allergens such as pollens, noxious gases and odours can be removed from the air. It can assist in protection from such undesirable things as high levels of noise, and it can make possible the exclusion of harmful or annoying insects. However, the most important function of air conditioning remains the creation of an acceptable thermal environment.

The use of air conditioning is no longer confined to the earth. Man has been able to stretch his reach to the outer space as well as to the depth of ocean with the help of air conditioning. Man's landing on moon, prolonged stay in orbital spaceships, space shuttles and submarines have all been possible because of man's ability to create artificial environment.

1.4 HISTORICAL NOTES

The need for air-conditioning was first realized when it was found that certain products could be produced better in the right environment. With air-conditioning, there was no dependence of the product quality on the uncertainties of the weather and the factory sites were not limited to areas with a suitable climate. First to realize the importance of treatment of air was the textile industry which traditionally had to build its mills in areas with satisfactory humidity. Industrial air conditioning later spread to various other areas such as manufacture of rayon and plastics, colour printing, pharmaceuticals, tobacco industry, manufacture, development, reproduction of photographic materials, precision machine works involved in mass production, electrical equipment, and many hygroscopic products. These industrial applications were installed for the need of the products and not for personnel comfort.

Although sporadic attempts have been recorded for improving the ventilation and thermai conditions of indoor spaces, the first use of air-conditioning by mechanical means for human comfort was introduced in the United States of America at the turn of the twenticth century. There were few comfort cooling installations before 1920, but in the mid-twenties theatres all across the country were air conditioned to draw more customers. This was followed by the use of air conditioning in other commercial premises such as restaurants, night clubs, office blocks, etc. In the 1930s, air conditioning was introduced in transportation systems such as trains, airplanes, buses and trolleys. After the Second World War, with the rising family income there was a boom in domestic air conditioning. This trend of use in the United States was subsequently repeated in the developing countries as more and more countries achieved higher standards of living.

1.5 CLASSIFICATION OF AIR-CONDITIONING SYSTEMS

There are several different ways of classifying air-conditioning systems, as graphically illustrated in Figure 1.8.

FIGURE 1.8 Classification tree of air-conditioning systems.

Based on major function

Comfort air-conditioning systems: Their purpose is to create atmospheric conditions conducive to human health, comfort, and efficiency. Air-conditioning systems in homes, offices, stores, restaurants, theatres, hospitals, and schools are of this type.
Industrial air-conditioning systems: The purpose of these systems is to control atmospheric conditions primarily for the proper conduct of research and manufacturing operations. Some of these systems also serve incidentally for human comfort, but some do not.

Based on season of the year

Winter air-conditioning systems: These systems when properly designed and installed, maintain indoor atmospheric conditions for winter comfort and involve heating of the air and bring the moisture content, i.e. humidity, up to an acceptable level. Heating is accomplished by furnaces or boilers fired with gas, oil, or coal.

Summer air-conditioning systems: These systems are meant for controlling the atmospheric conditions for summer comfort. In humid tropics, it involves cooling the air and removing excess moisture from it. For arid tropical climates, cooling is likely to be carried out in conjunction with humidification.

Year-round air-conditioning systems: These systems comprise heating and cooling equipment with automatic controls and associated components to produce conditions for human comfort for all time of the year.

,cd on equipment arrangement

nitary systems: These systems make use of air conditioners which are completely factory ssembled and are designed to provide the functions of cooling, dehumidification, cleaning and aovement of air.
Jentral-station systems: In these types of systems the various components are selected by the lesign engineer, procured from several manufacturers and erected on the job at site, usually in he central plant room.

1.6 APPLICATIONS OF AIR CONDITIONING

The main application of air conditioning is for human comfort. Summer cooling has become abiquitous in large modern office and institutional buildings throughout the world. Even in slimates where summer temperature is not very high, such buildings are air conditioned, primarily to offset the heat generated due to occupancy, lighting and equipment, computers and their paraphernalia.

The other applications, known as industrial air conditioning, are for maintaining optimum environments for specific products or processes in factories and industrial premises, which do not necessarily encompass complete air conditioning as in the case of comfort cooling. These applications will be discussed in greater detail in subsequent chapters of this book.

1.7 CURRENT STATUS AND FUTURE TRENDS

Currently, most of the air-conditioning systems use vapour compression refrigeration cycles. Vapour absorption cycles are competitive in those areas, where waste heat is available or an abundant supply of natural gas is available easily. Solar-powered absorption cycles have been built and commissioned but they are yet to be viable economically. Evaporative cooling is economical and viable in hot and dry climates. Uses of steam jet refrigeration cycle, vortex tube, thermo-electric cycle, or air and vapour expansion cycles are limited to special applications where economic considerations are secondary. For example, in aircraft, where the primary concerns are power-to-weight ratio and safety, air expansion cycles are used since the conventional vapour compression cycles are unsuitable. In the case of air conditioning of submarines, quietness is the primary concern to avoid detection by the enemies and, hence, thermo-electric cooling devices are employed, which meet the same criteria. Vortex tubes have similarly been useful in mine air conditioning due to their safety features.

Two of the dominating issues that confront today's world are the energy and environmental problems which are closely related. In the aftermath of the oil price boom in the early 1970s, energy conservation measures have become very important factors in the design and operation of air-conditioning systems. There are constant endeavours to introduce newer methods of air conditioning which are more energy efficient. Solar powered air conditioning is an attractive option from the environmental point of view, despite the fact that these systems are not currently economical. However, with further developments and more so if the energy prices soar, solar systems may become competitive in the tropical climates. Amongst other types of systems under development, desiccant air conditioning in the near future has some potential to become viable in the humid tropics. Desiccant cooling allows the atmospheric moisture to be removed by desiccants, followed by evaporative or mechanical cooling. Another interesting option being
explored is the radiant cooling in conjunction with chilled ceiling with or without desiccant dehumidification. The discovery of the depletion of ozone layer and global warming has become two of the dominating issues since the 1980s. Due to the harmful effects of the chlorofluorocarbon (CFC) refrigerants on the ozone layer, these are being phased out and replaced by environmentally-friendly refrigerants.

Thermal energy storage for cooling or cool storage air conditioning is rapidly gaining popularity in the United States and Japan because it can significantly reduce the peak electrical consumption of buildings. The basic concept of cool storage involves operating the cooling system at or near the full capacity during the off-peak hours to generate and store chilled water or ice which would be later used during periods of peak electrical and/or cooling demand to supplement or replace conventional mechanical cooling. The current trend towards the use of cool storage systems for air conditioning has been accompanied by an increasing interest in the distribution of lower temperature air at as low as $5-6^{\circ} \mathrm{C}$. The use of lower supply air temperature is attractive because smaller fans, ducts, pumps, and piping can be used, resulting in lower first costs, reduced electrical demand, and lower operating costs in comparison to conventional systems.

BIBLIOGRAPHY

American Society of Heating, Refrigerating and Air Conditioning Engineers, ASHRAE Handbook of Fundamentals, 1993.
American Society of Heating, Refrigerating and Air Conditioning Engineers, ASHRAE Handbook of HVAC Applications, 1995.
American Society of Heating, Refrigerating and Air Conditioning Engineers, ASHRAE Handbook of HVAC Systems and Equipment, 1996.
American Society of Heating, Refrigerating and Air Conditioning Engineers, ASHRAE Handbook of Refrigeration, 1998.
Tnévenot, R., History of refrigeration throughout the world, International Institute of Refrigeration, 1978.

REVIEW EXERCISES

1.1 Briefly describe how refrigeration and air conditioning are related to one another.
1.2 How did the Egyptians produce ice?
1.3 What are the major links of a frozen food chain?
1.4 What are the different methods of refrigeration employed in refrigerated transports?
1.5 Name the different types of cold stores and describe their purposes.
1.6 What are the different ways of classifying the air-conditioning systems?
1.7 What are the different functions of air conditioning?
1.8 Point out the differences between the requirements of summer and winter air conditioning.
1.9 What air-conditioning processes are involved in humid tropics and arid tropics?
1.10 What is the difference between industrial and comfort air conditioning?

Review of Basic Principles

We explained in Chapter 1 that air conditioning is concerned with controlling the temperature, humidity and velocity of air motion in an enclosed space to maintain a comfortable environment. Towards that end, refrigeration needs to be used to bring about cooling of the air. Anyone pursuing the study of refrigeration and air conditioning usually goes through courses on thermodynamics, fluid mechanics and heat transfer as necessary prerequisites. Hence, any detailed discussion of any topic related to those subjects is not considered necessary in this book. However, a brief review of a number of physical principles related to the study of refrigeration and air conditioning has been included to help students understand the subject and use the same as reference material.

2.1 UNITS

Unit is a relative idea, which is very important for measuring physical quantities. Unit may be defined as any specified amount of a quantity through which any other quantity of the same kind is measured. Metres, centimetres, kilometres, feet are all units of length.

There are two systems of units:
(a) The International System of units, or the SI system
(b) The British engineering system of units, or the British system

SI units

The International System of units (for the French words Système Internationale d'Unites) or SI is by far the most important and widely accepted system used in the world today. It is controlled by an international organization called the General Conference on Weights and Measures. The base units in SI are listed in Table 2.1.

TABLE 2.1 SI base units

Physical quantity	Name of unit	Symbol
length	metre	m
mass	kilogram	kg
time	second	s
electric current	ampere	A
thermodynamic temperature	kelvin	K
amount of substance	mole	mol

The SI unit of length is the metre (m) and is defined as $1,650,763.73$ wavelengths in vacuum of the orange-red line of the spectrum of krypton- $86(\mathrm{Kr}-86)$. The SI unit of time is the second (s). The second is defined as the duration of $9,192,631,770$ cycles of the radiation associated with a specified transition of the cesium atom ($\mathrm{Cs}-133$). The SI unit of mass is the kilogram (kg). It is defined as the mass of a particular cylinder, maintained under prescribed condition, of platinumiridium alloy kept at the International Bureau of Weights and Measures in France.
Derived units: A derived unit involves combinations of the base (or fundamental) units. For example, the SI unit of force is a derived (or secondary) unit; it is called the newton (N) and defined from the Newton's second laws of motion, i.e.

$$
F \propto m a \quad \text { or } \quad F=k m a
$$

In a coherent system of units such as SI, $k=1$, hence:

$$
F=m a
$$

The newton (N) is defined as the force required to accelerate a mass of 1 kg at the rate of $1 \mathrm{~m} / \mathrm{s}^{2}$, i.e.

$$
1 \mathrm{~N}=(1 \cdot \mathrm{~kg})\left(1 \mathrm{~m} / \mathrm{s}^{2}\right)=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}
$$

The weight of the body is the force of gravity. This is the force with which the body is attracted to the earth or some other body. The weight of an object can vary as it is calculated from the mass of the body and the local acceleration due to gravity. While a weight of a substance can vary, its mass remains constant.

Similarly, it follows that the SI unit of work (i.e. force \times distance) is the newton metre ($\mathrm{N}-\mathrm{m}$). A general unit for energy, more specifically heat and work, is introduced by giving the N -m the name joule (J). Thus,

$$
1 \text { joule }(\mathrm{J})=1 \text { newton }(\mathrm{N}) \times 1 \text { metre }(\mathrm{m}) \quad \text { or } \quad 1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}
$$

A quantity that is closely related to work is power, the rate at which work is done. A commonly used unit of power is watt (W) defined as

$$
1 \mathrm{watt}(\mathrm{~W})=1 \mathrm{~J} / \mathrm{s}=1 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}
$$

Another base unit that is frequently used in thermodynamics is the mole (mol). Mole is defined as the amount of substance containing as many elementary entities as there are atoms in 0.012 kg of carbon-12. These elementary entities may be atoms, molecules, electrons, ions or other particles or specified groups. For example, one mole of diatomic oxygen having a molecular weight of 32 (compared to 12 for carbon) has a mass of 32 g . The gram molecular weight of a substance is the number of grams per mole of that substance. Thus the gram
aolecular weight of oxygen is $32 \mathrm{~g} / \mathrm{mol}$. But normally kmol is used. If the number of kilomoles of a substance is n, then it can be determined as
where

$$
n=\frac{m}{M}
$$

m is the mass (kg)
M is the molecular weight ($\mathrm{kg} / \mathrm{kmol}$).

2.2 THERMODYNAMICS

Thermodynamics is the science of the relationship between heat and work and the properties of substances in systems. Its development is based on some natural and experimental observations. Engineering thermodynamics is also the study of systems and the interaction of them with their surroundings. System can be studied from a macroscopic or a microscopic point of view. In the macroscopic approach the focus is on the gross or average effects of many molecules of a substance. These effects can be sensed and measured by instruments. This is called classical thermodynamics. On the other hand, in microscopic approach, the average value of all the molecules in a substance is considered. Thus it is concerned directly with the structure of the matter and is called statistical thermodynamics. Classical thermodynamics is a direct approach and needs fewer mathematical computations and is usually adopted for engineering analysis. But in this modern age, thermodynamics is perceived as the science that deals with energy.

Concept of systems

In thermodynamic analysis, the system is whatever chosen to be studied, i.e. it is the concept of identifying the subject. Normally the system is a specified region that can be separated from everything else by a well-defined surface. The defining surface is known as the control surface or system boundary. The boundary may be static (fixed) or dynamic (moveable). Anything . external to the system is the surrounding. Thus a system may be defined as a collection of matter within the prescribed and identifiable boundaries. In the example of a piston-cylinder arrangement shown in Figure 2.1, the gas is the system as it is intended to be studied.

FIGURE 2.1 Example of a system.
There are two kinds of systems-closed systems and open systems which are sometimes referred to as control volume. A system of fixed mass is referred to as a closed system. When
there is flow of mass through the control surface, the system is called a control volume or open system. Thus in closed systems there is constant quantity of matter whereas the open systems deal with the variable quantity of matter. Consequently, in open systems mass may flow but in the closed systems mass is constant.

Characteristics of systems

The condition of a system at any instance is called its state. After defining a system, tools are needed to describe it and predict its behaviour. With properties we can describe system behaviour.

Properties are the macroscopic characteristics of a system having numerical values and are independent of the path or the process of the substance. Some examples of properties are mass, volume, energy, pressure, and temperature. There are two types of properties, extensive properties and intensive properties. Simply stated, an intensive property is independent of mass while an extensive property is mass dependent, i.e. its value varies with the mass and size of the system and can change with time. Mass, volume, and energy are extensive properties. An intensive property is not dependant on the size of the system and can vary from place to place within a system. Pressure and temperature are important intensive properties.

When we know the thermodynamic properties of a system, then we know the system behaviour or condition at any time. This system condition is known as state. More specifically, a state represents the condition of a phase. Phase is defined as a quantity of matter that is homogeneous throughout in both chemical composition and physical structure. Homogeneous in physical structure means whether the matter is all solid or all liquid or all vapour. A system may have different phases. A system of liquid water and water vapour contains two phases. In each phase the system may exist in different states. If more than one phase is present in the system at a time, the phases are separated from each other by phase boundaries. A pure substance is one that is uniform and invariable in chemical composition. It can have more than one phase but its chemical composition must be the same in each phase. For example, if liquid water and water vapour form a system of two phases, the system can be treated as a pure substance because each phase has the same composition as shown in Figure 2.2.

FIGURE 2.2 Example of a system of two phases.
Generally speaking, the term property is meant to be the property of a system and not the property of a substance. This is only possible when the system is in equilibrium state. Equilibrium means the condition of balance, i.e. where two opposite forces are equal.
equilibrium can be in various forms. A system is in thermal equilibrium if the temperature of the system is same in every place of the system. And if there is no change in pressure, then it is called mechanical equilibrium. If a system involves two phases, then it is called phase equilibrium. And if the chemical composition is same throughout the system, then it is called chemical equilibrium. When a system is in equilibrium with all possible changes of state, then it is called thermodynamic equilibrium.

If a system changes from one equilibrium state to another equilibrium state, then it is called a process. The various states through which a system passes during a process constitute the path of the process as illustrated in Figure 2.3.

FIGURE 2.3 Path of a process.
The actual process which occurs in a non-equilibrium condition can be described using the quasi-equilibrium concept. A quasi-equilibrium state is one where deviation from thermodynamic equilibrium is infinitesimal. All the states of a quasi-equilibrium process may be considered as an equilibrium process. If the process is not possible to be described through the quasi-equilibrium process, then the states of the system are described both before the process occurs and after the process is completed, thus restoring equilibrium.

When a system goes through a number of changes of states from its initial state and finally returns to its initial state, it is called a cycle (Figure 2.4). A cycle may have different processes.

State 1

FIGURE 2.4 A cyclic process.

Intensive properties: specific volume, pressure, temperature
From the macroscopic point of view we are always concerned with large volume. We are not interested in molecular dimensions and the behaviour of individual molecules. So from the
macroscopic point of view, the substance is considered to be a continuous, homogeneous matter, that is a continuum. This concept of continuum is valid as long as we work with volumes, areas, and lengths that are large relative to their intermolecular space. With the continuum concept, it is possible to determine the intensive thermodynamic property at a point.
Specific volume: The specific volume of a substance is defined as the volume per unit of mass, i.e.

$$
v=\frac{V}{m}
$$

If a small volume δV of a system has a mass of δm, then the specific volume will be

$$
v=\lim _{\delta V \rightarrow \delta V^{\prime}} \frac{\delta V}{\delta m}
$$

where δV^{\prime} is the smallest volume for which the system can be considered as a continuum. This is the specific volume at a point and can vary with elevation, but the systems we normally consider are relatively small and the change in specific volume with elevation is not significant. The units of the specific volume are $\mathrm{m}^{3} / \mathrm{kg}$ and $\mathrm{m}^{3} / \mathrm{mol}$.

Density is the reciprocal of specific volume as it is defined as the mass per unit volume. Specific volume is represented by the Greek symbol v and density is represented by the Greek symbol ρ. The relation between specific volume and density is

$$
v=\frac{1}{\rho}
$$

Pressure: This intensive property is very important and significant when we consider gas and liquids. Pressure is defined as the normal component of force per unit of area. The pressure in a fluid at rest at a given point is the same in all directions. If δA is a small area and δF is the component of force normal to that small area, then pressure p is defined as

$$
p=\lim _{\delta A \rightarrow \delta A^{\prime}} \frac{\delta F}{\delta A}
$$

where δA^{\prime} is the smallest area for which we can consider the fluid a continuum. The unit of pressure is the force of 1 newton acting on a square metre area. It is called pascal (Pa). Thus,

$$
1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}
$$

Another unit of pressure is bar, where

$$
1 \text { bar }=10^{5} \text { pascal }
$$

Sometimes atmospheric pressure is used as a standard to express other pressures, where

$$
1 \mathrm{~atm}=101,325 \text { pascal }
$$

Pressure as discussed above is called the absolute pressure. In measuring pressure, two types of pressures are frequently used. One is gauge pressure and the other is vacuum pressure. When the pressure in the system is greater than the local atmospheric pressure, then the gauge pressure term is used for measurement. Thus,

$$
p(\text { gauge })=p \text { (absolute) }-p_{\text {atm }} \text { (absolute) }
$$

When the local atmospheric pressure is greater than the pressure in the system, then the vacuum pressure term is used in the measurement. Thus,

$$
p(\text { vacuum })=p_{\text {atm }}(\text { absolute })-p(\text { absolute })
$$

The relationship between the various methods of pressure measurement is shown in Figure 2.5.

FIGURE 2.5 Relationship between different pressures.

The two commonly used devices for measuring pressure are manometer and bourdon tube. Manometers measure pressure differences in terms of the length of a column of liquid such as water, mercury.

The manometer shown in Figure 2.6 has one end opened to the atmosphere and the other end is attached to a closed vessel containing a fluid. From the length of the manometer fluid, the difference between the fluid pressure and that of the atmosphere can easily be measured from the equation

$$
p-p_{\mathrm{atm}}=\rho g L
$$

where p is the fluid pressure, $p_{\text {atm }}$ is the atmospheric pressure, ρ is the density of the manometer fluid, L is the difference in liquid levels, and g is the acceleration of gravity.

Temperature and zeroth law of thermodynamics

It is not easy to give an exact definition of temperature. We can sense whether a body is hot, cold or warm, but cannot assign any numerical value. And our sense may be wrong because sometimes different materials show different characteristics at the same temperature. For example,

FIGURE 2.6 Manometer.
a metal chair will feel much cooler than a wooden chair at the same temperature. The basis of temperature measurement is the zeroth law of thermodynamics, which states that:

When two bodies have equality of temperature with a third body then the two bodies have equality of temperature with each other.

Equality of temperature means that they are in thermal equilibrium, i.e. there is no heat transfer between the two bodies when they are in contact. From the zeroth law if we consider the third body as a mercury thermometer, then we can measure the temperature of substances using the principle of thermal equilibrium.

Several properties of materials change with temperature, which form the basis of accurate temperature measurement. An example is the expansion of mercury with temperature. But now we need a temperature scale to relate between the different temperature-measuring devices. The temperature scale will be discussed with the second law of thermodynamics.

The first law of thermodynamics and energy

The first law of thermodynamics is called the law of the conservation of energy. Prior to defining this law, it is helpful to discuss work and heat as they are parts of the first law.

Work: When a body moves through a distance by the action of a force, work is said to be done. The direction of the force is in the direction of body movement. The expression of work can be written as follows:

$$
\begin{equation*}
W=\int_{1}^{2} F \cdot d s \tag{2.1}
\end{equation*}
$$

From the thermodynamic point of view, it is important to know the work in relation to systems, properties, and processes. Work done is observed to be energy in transition that is never contained in a body nor possessed by a body. The sign convention of work is as follows:

In the SI system of units, the work is represented as joule (J). If 1 newton force is applied to a body and the body moves through a distance of 1 m as the result of force, then

$$
1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}
$$

Work done during a quasi-equilibrium process can be found by integrating the following equation:

$$
\begin{equation*}
W=\int_{1}^{2} p d V \tag{2.2}
\end{equation*}
$$

The shaded area in Figure 2.7 represents the work done on a $p-V$ diagram.

FIGURE 2.7 The p - V diagram.
Heat: It is defined as the form of energy that is transferred across the boundary as a result of temperature differences between the two systems. If $Q>0$ then heat is transferred to the system and if $Q<0$ then heat is transferred from the system. The units of heat and the units of work are same as both work and heat are a form of energy. In the SI system, the unit of heat is defined as joule.

The first law of thermodynamics for a thermodynamic cycle states that the integral of heat of a cycle is proportional to the integral of work of that cycle. Energy will be introduced as a new property as the first law is applied to a system that undergoes a change of state. It can be shown as follows:

$$
\text { Heat }- \text { Work }=\text { Energy }
$$

or

$$
\begin{equation*}
\delta Q-\delta W=d E \tag{2.3}
\end{equation*}
$$

Energy E represents all the energy of the system in the given state. This energy can be present in a variety of forms such as potential energy, kinetic energy, and internal energy. Kinetic energy and potential energy of the system are associated with the motion and position of the molecules respectively. And all the other energy of a system is defined as internal energy. Thus,

$$
\text { Energy }=\text { Internal energy }+ \text { Kinctic energy }+ \text { Potential energy }
$$

The kinetic energy is expressed as $1 / 2 m \bar{v}^{2}$ and potential energy as $m g z$, where z is the elevation of a system. Then the integral form of heat transfer between two states can be expressed as follows:

$$
\begin{equation*}
{ }_{1} Q_{2}=U_{2}-U_{1}+\frac{m\left(\bar{v}_{2}^{2}-\bar{v}_{1}^{2}\right)}{2}+m g\left(z_{2}-z_{1}\right)+{ }_{1} W_{2} \tag{2.4}
\end{equation*}
$$

Enthalpy: Sometimes, the combinations of thermodynamic properties also form a new thermodynamic property. If there is a constant pressure process and there are no changes in kinetic or potential energy and work is done only by boundary movement, then applying the first law we can write

$$
\begin{equation*}
\delta Q=\delta W+\delta E \tag{2.5}
\end{equation*}
$$

By introducing the equation of work done $W=\int_{1}^{2} p d V$, the above equation can be written in the following form:

$$
\begin{equation*}
Q=(U+p V)_{\text {state } 1}+(U+p V)_{\text {salate2 }} \tag{2.6}
\end{equation*}
$$

So the heat transfer during the process is given in terms of change of $U+p V$ between the initial and final states. All of these quantities are thermodynamic properties and only depend on the state. So it is defined as an extensive property called enthalpy (H). Therefore,

$$
\begin{equation*}
H=U+p V \tag{2.7}
\end{equation*}
$$

Change of state

The prerequisite to conversion of a solid to a liquid, and liquid to a gas is to overcome the molecular forces. There are certain energy relationships for different substances to bring about these transitions from one state to another. When sufficient heat energy is supplied to a liquid, it boils and vapour is given off. When enough heat energy is taken away from a liquid, it freezes and becomes a solid. Figure 2.8 illustrates the energy-state-temperature relationship for water. The starting point is 1 kg of ice at condition point $\mathrm{A}\left(-10^{\circ} \mathrm{C}\right)$ in the diagram. As heat is slowly

FIGURE 2.8 The temperature versus enthalpy diagram for water at various states.
added to the ice, the temperature is found to rise till it reaches $0^{\circ} \mathrm{C}$. It may be noted that with the addition of heat the temperature rises. Since the rise in temperature can be detected by our senses, this is termed sensible heat. Referring again to the diagram, the water (1 kg) is now at condition point B still solid ice at a temperature of $0^{\circ} \mathrm{C}$. If more heat is added to the ice, it is noted that no further temperature change occurs but the ice starts to melt. Since the additional heat during the melting process BC does not result in a temperature change, it is not sensible heat, as its effect cannot be measured by a thermometer. It is virtually hidden from our sensory perception, and so it is called latent hect. Latent heat is defined as the heat which, when supplied to or removed from a substance, produces a change of state without any change in temperature. The latent heat of fusion is the heat which must be added to 1 kg of solid already at its melting point temperature to change its state to liquid at the same temperature.

If we add more heat to water (point C), the temperature starts rising again, so this is again sensible heat. As more heat is slowly added to the water the temperature is found to rise till it reaches $100^{\circ} \mathrm{C}$ (Point D). Continuing to add heat, another change of state takes place along the DE segment of the diagram. The latent heat of vaporization is the heat which must be added to 1 kg of liquid (already at its boiling point temperature) to change its state to vapour at the same temperature. Further heating will result in increasing the temperature of the vapour (steam) and EF is, therefore, a sensible heat process.

The second law of thermodynamics

Like other physical laws the basis of the second law of thermodynamics is experimental evidence. There are many statements of the second law. Among them, the two classical statements of the second law are the Kelvin-Planck statement and Clausius statement.

According to Kelvin-Planck statement:
It is impossible for any system to operate in a thermodynamic cycle and deliver a net amount of energy by work to its surroundings while receiving energy by heat transfer from a single thermal reservoir.

Thus work can be done in a cycle by transferring heat only if there are two temperature levels. Thermal reservoir is a concept where energy remains constant even though energy is added or removed. So in the thermal reservoir, heat can be transferred indefinitely without change in the temperature of the reservoir. The reservoir from which heat is transferred is called source and the reservoir to which heat is transferred is called sink. The intensive property can be changed but the temperature remains constant.

According to Clausius Statement:
It is impossible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a cooler body to a hotter body.
From the Clausius statement it is impossible to construct a refrigerator that operates without an input of work.

Reversible and irreversible processes

The reversible process means an ideal process. Simply stated, a reversible process can easily be reversed to its initial state. In a reversible process there will be no change in surrounding and system. Generally, a process becomes irreversible by the following ways.

Friction is the main cause that makes a process irreversible. Unrestrained expansion of gas causes irreversibility. Heat transfer through a finite temperature difference is an irreversible process. But it becomes reversible if the temperature difference approaches zero. Electric current flow through a resistance causes irreversibility.

Irreversibility is divided into two parts-internal and external. Internal irreversibilities occur within the system and external irreversibilities occur within the surroundings. In a reversible process, the deviation from equilibrium is infinitesimal. But the actual process occurs at a finite rate, so deviation from equilibrium is finite. So the actual process is irreversible to some degree.

Based on the second law of thermodynamics the most efficient cycle is the Carnot cycle. The Carnot cycle operates between two reservoirs:' (a) low-temperature reservoir and (b) hightemperature reservoir (Figure 2.9). If every process is reversible, the cycle is also reversible and it becomes a refrigerator when the cycle is reversed.

FIGURE 2.9 Camot refrigeration cycle.
Two important conclusions can be made from the second law of thermodynamics. They are known as Carnot principles.

- The efficiency of an irreversible heat engine is always less than the efficiency of a reversible engine operating between the same two reservoirs.
- The efficiencies of all reversible heat engines operating between the same two reservoirs are the same.

The details of Carnot cycle and heat pump will be discussed in Chapter 3 on vapour compression refrigeration cycle.

Temperature scale

A temperature scale is necessary in order to use a common basis for measurement. The common bases are the freezing and the boiling points of water. They are also called the ice point and the steam point. The temperature scale used in SI system is the Celsius scale. Earlier it was called the
centigrade scale. Now it is known as the Celsius scale after the Swedish astronomer Anders Celsius. In the English system, the temperature scale is known as the Fahrenheit scale. Fahrenheit scale is named after the German instrument maker G. Falrenheit. In the Celsius scale the ice and the steam points are $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ and in the Fahrenheit scale $32^{\circ} \mathrm{F}$ and $212^{\circ} \mathrm{F}$ respectively.

In thermodynamics, it is very important to have a temperature scale that is independent of the properties of any substance. It is developed in conjunction with the second law of thermodynamics. The second Carnot principle states that all reversible heat engines have the same thermal efficiency operating between the same two reservoirs. That is, the thermal efficiency of a reversible engine is independent of the working fluid and is a function of the reservoir temperatures only. Thus,

$$
\begin{equation*}
\eta_{\text {hlh,rev }}=1-\frac{Q_{L}}{Q_{H}}=\int\left(T_{H}, T_{L}\right) \tag{2.8}
\end{equation*}
$$

The thermal efficiency can also be expressed in the following form from the point of view of thermodynamic concept.
i.e.

$$
\begin{equation*}
\eta_{\mathrm{hh}}=1-\frac{Q_{L}}{Q_{H}}=1-\frac{T_{L}}{T_{H}} \tag{2.9}
\end{equation*}
$$

From this if the efficiency of a Carnot cycle operating between the two given constant temperatures is known, the ratio of the reservoir temperatures can be determined. The temperature scale is not completely defined by the above equation since it gives only a ratio of temperatures. We need to know the magnitude of the scale. At the International Conference on Weights and Measures held in 1954, the triple point of water was assigned the value 273.16 K . The magnitude is defined as $1 / 273.16$ of the temperature interval between absolute zero and the triple point temperature of water.

Properties of a pure substance

A pure substance is one that has a homogeneous and invariable chemical composition and may have more than one phase. Water is a good example of a pure substance. Water can exist in different forms such as steam, ice, or a mixture of both. Their chemical composition is same in all the phases. The major properties of pure substances are pressure, specific volume, and temperature. Temperature and specific volume are known as independent properties and pressure is determined as a function of temperature and specific volume. We have to know some terms for proper understanding of the properties of pure substances. These are as follows:
Saturation temperature: It is defined as the temperature at which vaporization takes place at a given pressure.
Saturation pressure: The pressure at saturation temperature is called the saturation pressure.
Saturated liquid: A substance is called the saturated liquid if it exists as liquid at the saturation temperature.
Subcooled liquid: A substance is called subcooled liquid if it exists as liquid at saturation pressure but below the saturation temperature.
Quality of substance: If a substance exists as part liquid and part vapour at the saturation temperature, then its quality is defined as the ratio of the mass of vapour to the total mass.

Saturated vapour: A substance is called saturated vapour if it exists as vapour at saturation temperature.

There is a relationship between the saturation pressure and saturation temperature. A typical curve is shown in Figure 2.10.

FIGURE 2.10 The pressure-temperature relationship of a pure substance.
If we determine the temperature and volume relationship under various pressures, the resulting curves will be like those shown in Figure 2.11.

FIGURE 2.11 The temperature-volume curves for water.

Figures 2.11 and 2.12 show the $p-v-T$ surface of a substance, such as water that expands on freezing. The coordinates of a point on the $p-\nu-T$ surface represent the values that pressure, specific volume and temperature would assume when the substance is at equilibrium. There are regions on the $p-v-T$ surfaces labelled solid, liquid and vapour. In these single-phase regions, the state is fixed by any two of the properties, i.e. pressure, specific volume, and temperature, since all of these are independent when there is a single phase present. Located between the

FIGURE 2.12 The pressure-volume-temperature relationship.
single-phase regions are the two-phase regions, where the two phases exist in equilibrium, i.e. liquid-vapour, solid-liquid, and solid-vapour. In these regions the state cannot be fixed by temperature and pressure alone; however, the state can be fixed by specific volume and either pressure or temperature. Three phases can exist in equilibrium along the line labelled triple line. At the top of the dome, where the saturated liquid and saturated vapour lines meet, is the critical point. The critical temperature of a pure substance is the maximum temperature at which liquid and vapour phases can coexist in equilibrium.

Properties of a perfect gas

Two regions are important in considering the properties of a perfect gas.

- The region of high temperature, i.e. the temperature above the critical temperature.
- The region of low pressure, i.e. the pressure of one atmosphere or less.

The permanent gases oxygen, hydrogen, etc. lie in the first region at ordinary working temperature. The water vapour in the atmosphere lies in the second region. The behaviour of substances in these two regions of states is very close to that of perfect gas. The perfect gas can easily be represented by simple equations relating primary properties, i.e. pressure, specific volume, and temperature.

The relation between pressure, specific volume and temperature or the equation of state was first developed by Robert Boyle. It is often known as Boyle's law. According to Boyle's law, the product $p V$ remains constant when varying the pressure and volume of a gas while keeping the temperature constant. At low pressure (near to zero) the relation ($p V / T$) equals to R (Universal gas constant). Mathematically the equation of state can be expressed as:

$$
\begin{equation*}
\frac{p v}{T}=R \tag{2.10}
\end{equation*}
$$

Taking mass into account, the equation of state of a perfect gas becomes

$$
\begin{equation*}
p V=m R T \tag{2.11}
\end{equation*}
$$

2.3 HEAT TRANSFER

From thermodynamics we can calculate the amount of energy required to change a system from one equilibrium state to another equilibrium state since thermodynamics deals with systems in equilibrium. But if we want to know the rate of heat transfer or how fast a system will change from one equilibrium state to another then we have to know the subject of heat transfer. Heat transfer occurs by three basic mechanisms, i.e. conduction, convection and radiation.

Conduction

When heat transfer occurs through a substance without any motion of the substance, then the mode of heat transfer is called conduction. Like thermodynamics, the equation representing the rate of conduction is established from physical phenomena and from experiments. Fourier presented a mathematical model for the conduction phenomena as follows:
where

$$
\begin{equation*}
q=-k A \frac{\partial T}{\partial l} \tag{2.12}
\end{equation*}
$$

q is the heat transfer rate
k is the thermal conductivity
A is the cross-sectional area
$\partial T / \partial l$ is the temperature gradient in the x-direction.
The same has been illustrated in Figure 2.13

FIGURE 2.13 Representation of Fourier principle.

Equation (2.12) is negative because heat must flow downside according to the second law of thermodynamics (Figure 2.13). Thermal conductivity is an important property of a material. Thermal conductivity gives us a macroscopic representation of molecular effects of substances that contribute to the conduction of heat. From the Fourier equation, thermal conductivity can be determined for various substances. The thermal conductivity of a substance gives us the knowledge of how fast heat will be conducted through that substance. Table 2.2 shows the thermal conductivity of some materials.

TABLE 2.2 Thermal conductivity of various metals at $0^{\circ} \mathrm{C}$

Material	Thermal conductivity $(\mathrm{W} / \mathrm{m} \cdot \mathrm{K})$
Silver	410
Copper	385
Aluminium	202
Carbon steel	43
Sandstone	1.83
Glass	0.78
Ice	2.22
Water	0.556
Ammonia	0.540
Air	0.024
Water vapour	0.0206

Convection

If heat transfer through a substance is due to the movements of the substance, then it is called convection heat transfer. Convection is divided into two parts-natural convection and forced convection. Natural convection is caused by the density differences resulting from the process of heat transfer. But in forced convection external devices are used to increase the convection phenomena. The equation for representing convective heat transfer also came from the observation of physical phenomena. Heat transfer per square area by convection is observed to be proportional to the temperature difference. It can be expressed as follows.

$$
\begin{equation*}
\frac{Q_{\epsilon}}{A} \propto\left(T_{w}-T_{\alpha}\right) \tag{2.13}
\end{equation*}
$$

In Figure 2.14, T_{w} is the uniform wall temperature of a heated plate. The uniform flow velocity is U_{α} and the ambient fluid temperature is T_{α}. If we introduce the proportionality constant then the equation will be

$$
\begin{equation*}
\frac{Q_{c}}{A}=\bar{h}_{c}\left(T_{w}-T_{\alpha}\right) \tag{2.14}
\end{equation*}
$$

FIGURE 2.14 Convection heat transfer.
where \bar{h}_{c} is the average convection heat transfer coefficient. It is also called the film conductance. The above equation is called the Newton's law of cooling. For some systems the coefficient can be calculated analytically but for complex cases it must be determined empirically.

Radiation

Heat can also be transferred without any medium, i.e. in the vacuum. This phenomenon is described as electromagnetic radiation. There are many types of electromagnetic radiations, for example, X-rays, gamma rays, visible spectrum, etc. The net heat transfer by radiation phenomenon occurs due to temperature difference. To demonstrate the heat transfer rate by radiation, it is useful to introduce a substance that emits radiation ideally, i.e. a blackbody. The radiation heat transfer rate for a blackbody is proportional to the fourth power of its absolute temperature, i.e.

$$
\begin{equation*}
\frac{Q_{r}}{A} \propto T^{4} \tag{2.15}
\end{equation*}
$$

Introducing a proportionality constant, the equation becomes
Sin:

$$
\begin{equation*}
Q_{r}=\sigma A T^{4} \tag{2.16}
\end{equation*}
$$

where σ is called the Stefan-Boltzmann constant and its value is

$$
\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}
$$

But most real material surfaces do not emit electromagnetic radiation ideally. And these materials are called gray substances. For gray substances a new dimensioniess factor called emissivity is introduced; emissivity for an ideal blackbody is 1 and but for a gray body it is always less than unity. There is another important factor called the shape factor. The shape factor tells us how much energy will leave from one surface and how much energy will arrive directly on the other surface. Like emissivity, the shape factor is also dimensionless and less than unity. Now introducing these two new factors (emissivity and shape factor), the net radiant exchange between two surfaces at temperatures T_{1} and T_{2} respectively can be expressed as

$$
\begin{equation*}
Q_{r}=\sigma A_{1} F_{1-2}\left(T_{1}^{4}-T_{2}^{4}\right) \tag{2.17}
\end{equation*}
$$

where A_{1} and F_{1-2} are the area of the body and the shape factor respectively.

Thermal circuit

Thermal circuit or network is a useful concept for the analysis of heat transfer problems. In the thermal circuit concept, equations of thermal resistance are introduced for different modes of heat transfer. For conduction, the heat transfer equation can be written as

$$
\begin{equation*}
Q_{c}=\frac{T_{1}-T_{2}}{l / k A} \tag{2.18}
\end{equation*}
$$

In analogy with electronic circuits, $\left(T_{1}-T_{2}\right)$ can be considered as the potential that causes heat to flow against the resistance $l / k A$. So for conduction, the thermal resistance is

$$
\begin{equation*}
R_{k}=\frac{l}{k A} \tag{2.19}
\end{equation*}
$$

The Newton's law of cooling, or the convection heat transfer equation, can be rearranged as
follows:

$$
\begin{equation*}
Q_{c}=\frac{T_{w}-T_{\alpha}}{1 /\left(\bar{h}_{c} A\right)} \tag{2.20}
\end{equation*}
$$

The thermal resistance for convection heat transfer is, therefore, given by

$$
\begin{equation*}
R_{c}=\frac{1}{\bar{h}_{c} A} \tag{2.21}
\end{equation*}
$$

Overall heat transfer coefficient

For the case of combined heat transfer the term overall heat transfer coefficient is very important. For example, if convection and conduction is present then the overall heat transfer will be the ratio of the overall temperature difference to the sum of the thermal resistances, i.e.

$$
\begin{equation*}
Q=\frac{T_{1}-T_{2}}{(1 / h A)+(l / k A)} \tag{2.22}
\end{equation*}
$$

where $1 / h A$ represents the thermal resistance for convection and $l / k A$ represents the thermal resistance for conduction. The overall heat transfer coefficient is denoted by U and expressed by the following relation

$$
\begin{equation*}
Q=U A \Delta T \tag{2.23}
\end{equation*}
$$

where

$$
\begin{equation*}
U=\frac{1}{(1 / h A)+(l / k A)} \tag{2.24}
\end{equation*}
$$

Materials in series

For the materials placed in series like in Figure 2.15, the overall heat transfer will be the ratio of the overall temperature difference and the sum of the thermal resistances, i.e.

$$
\begin{equation*}
Q=\frac{T_{0}-T_{2}}{\frac{l_{1}}{k_{1} A}+\frac{l_{2}}{k_{2} A}} \tag{2.25}
\end{equation*}
$$

FIGURE 2.15 Materials in series arrangement.

Materials in parallel

For the materials placed in parallel like in Figure 2.16, the overall heat transfer will be

$$
\begin{equation*}
Q=\frac{T_{0}-T_{2}}{\frac{l_{1}}{k_{1} A_{1}}+\frac{l_{2}}{k_{2 a} A_{2 a}+k_{2 b} A_{2 b}}} \tag{2.26}
\end{equation*}
$$

Viscosity is the most important property of a fluid and shows the resistance to being moved from place to place. Consider a situation as shown in Figure 2.17 where a fluid is flowing between two parallel plates.

Stationary plate
FIGURE 2.17 Fluid flow between two parallel plates.
Here the upper plate is moving with a velocity \bar{v} and the lower plate is stationary. Physically it can be understood that fluid molecules will face resistance adjacent to the lower stationary surface: While the upper plate is moving, so it creates a force on the lower layer of the fluid along the cross-section. The shear stress developed by the fluid is given by

$$
\begin{equation*}
\tau \propto \frac{d \bar{v}}{d y} \tag{2.2}
\end{equation*}
$$

If we introduce a constant then the equation looks like the following.

$$
\begin{equation*}
\tau=\mu \frac{d \bar{V}}{d y} \tag{2.28}
\end{equation*}
$$

The proportionality constant μ is called the dynamic viscosity (units $\mathrm{kg} / \mathrm{m} . \mathrm{s}$). There is another form of viscosity called the kinematic viscosity, represented by v (units $\mathrm{m}^{2} / \mathrm{s}$). The relationship between dynamic and kinematic viscosities is expressed by

$$
\begin{equation*}
v=\frac{\mu}{\rho} \tag{2.29}
\end{equation*}
$$

where ρ is the density.
In air conditioning and refrigeration the main application of fluid mechanics is in the modelling of piping and duct systems. The Bernoulli equation which is widely used for relating pressure, velocity and elevation of a fluid is significant in designing piping and ducts of thermal systems. For steady frictionless and incompressible flow, the Bernoulli equation is stated as follows:

$$
\text { Pressure head }+ \text { Velocity head }+ \text { Elevation head }=\text { Constant }
$$

i.e.

$$
\begin{equation*}
\frac{p_{2}-p_{1}}{\rho}+\frac{\bar{v}_{2}^{2}-\bar{V}_{1}^{2}}{2}+g\left(z_{2}-z_{1}\right)=0 \tag{2.30}
\end{equation*}
$$

$$
\begin{equation*}
\frac{p_{2}}{\rho}+\frac{\bar{v}_{2}^{2}}{2}+g z_{2}=\frac{p_{1}}{\rho}+\frac{\bar{v}_{1}^{2}}{2}+g z_{1}=\text { Constant } \tag{2.31}
\end{equation*}
$$

If we consider a flow system where a fluid flows through a pipe with work and friction, then the equation will be

$$
\begin{equation*}
\frac{p_{1}}{\rho}+\frac{\bar{v}_{1}^{2}}{2}+g z_{1}=\frac{p_{2}}{\rho}+\frac{\bar{v}_{2}^{2}}{2}+g z_{2}+\text { Work }+ \text { Loss }=\text { Constant } \tag{2.32}
\end{equation*}
$$

The last term in LHS of Eq. (2.32) is also termed head loss and can be expressed with a dimensionless parameter f which is called the Darcy friction factor. Thus,

$$
\begin{equation*}
\text { Head loss }=f \frac{L \bar{v}^{2}}{d 2 g} \tag{2.33}
\end{equation*}
$$

where
f is the friction factor
L is the distance along the duct
d is the inner diameter
\bar{v} is the mean velocity.
The friction factor is determined from the flow Reynolds number and the relative roughness.

BIBLIOGRAPHY

Bejan, A., Heat Transfer, John Wiley \& Sons, New York, 1993.
Cengel, Y.A. and M.A. Boles, Thermodynamics: An Engineering Approach, 4th ed., McGraw-Hill, 2002.

Holman, J.P., Heat Transfer, McGraw-Hill, 4th ed., New York, 1976.
Incroprera, F.P. and D.P. DeWitt, Introduction to Heat Transfer, 3rd ed., John Wiley \& Sons, New York, 1996.
Moran, M.J. and H.N. Shapiro, Fundamentals of Engineering Thermodynamics, 3rd ed., Wiley, New York, 1995.
Van Wylen, G.J., R.E. Sonntag, and C. Borgnakke, Fundamentals of Classical Thermodynamics, 4th ed., John Wiley \& Sons, New York, 1993.

난

Vapour Compression Cycle and Heat Pump

SECTION A: VAPOUR COMPRESSION CYCLES

Although different types of refrigeration systems may be employed to carry out the cooling and dehumidification processes, two methods of refrigeration currently in common use in majority of the systems are mechanical vapour compression cycle and vapour absorption cycle. Up to the present time, the use of other cycles such as thermo-elect-ie cofrigeration, air and gas expansion refrigeration, vortex tube, steam jet refrigeration cycles has been limited more to such special applications as in air conditioning of aircraft, ships, submarines, and mines, etc.

3.1 REFRIGERATOR AND HEAT PUMP

In the mechanical vapour compression cycle the specific working fluid used, known as refrigerant, is compressed by a compressor. The compressed vapour is then condensed to a liquid, following which the pressure is reduced through throttling so that the fluid can evaporate at a low pressure. There are two main applications of the vapour compression cycle, namely refrigerators and heat pumps. They are essentially the same device differing in their use and objectives. When the cooling produced by the cycle by removing heat from a cold space is used, for example, to cool air in an air-conditioning application, as shown in Figure 3.1(a), the device used is termed refrigerator. When the heat rejected by the refrigeration cycle is gainfully used such as for providing winter heating, as shown in Figure 3.1(b), the device used is known as heat pump.

FIGURE 3.1(a) Refrigerator mode of the vapour compression cycle.

FIGURE 3.1(b) Heat pump mode of the vapour compression cycle.
In Figure 3.2, the source and sink temperatures of both the refrigerator and heat pump applications have been depicted in relation to ambient temperature. In the refrigerator mode, Q_{L} is the amount of heat removed from the refrigerated space at temperature T_{L}, Q_{H} is the amount of heat rejected to the relatively warm ambient environment at temperature $T_{\text {ambieat }}$ and $W_{\text {in }}$ is the net work input to the refrigerator. In the case of heat pump, Q_{H}. generally rejected to atmosphere is being utilized for space heating, while the cooling produced is unutilized.

Heat sink

FIGURE 3.2 Relationship between refrigerator and heat pump modes.

3.2 BASIC CYCLE THEORY

The theoretical basis of all practical refrigeration systems is the reversed Carnot cycle. First the Carnot cycle will be introduced, followed by the discussion on the reversed Camot cycle. The Carnot cycle is a reversible process operating between two given temperatures as shown in Figure 3.3.

FIGURE 3.3 The T-s diagram of Carnot cycle.

The processes of the Carnot cycle are:
1-2 Isentropic compression
2-3 Isothermal heat addition
3-4 Isentropic expansion
4-1 Isothermal heat rejection
The efficiency of the Carnot cycle is the highest among cycles operating between two given temperatures. This is because all the processes of the Carnot cycle are reversible, that is, impossible to attain in actual cycles.

A reversed Carmot cycle is illustrated in Figure 3.4. The cycle consists of the following processes:

1-2 Isothermal heat addition at lower temperature
2-3 Isentropic compression to higher temperature
3-4 Isothermal heat rejection at higher temperature
4-1 Isentropic expansion to lower temperature

FIGURE 3.4 The T-s diagram of reversed Carnot cycle.
Heat absorbed by the refrigerant in process $1-2$ is the heat removed from the space or material being cooled and is called the refrigerating effect (RE). The index of performance of a refrigeration cycle is the coefficient of performance (COP) defined as the dimensionless ratio of the refrigerating effect and the work energy required for the same, i.e.

$$
\mathrm{COP}_{\text {rev }}=\operatorname{COP}_{\text {Canot }}=\frac{\text { refrigerating effeci }}{\text { net work energy }}
$$

Therefore,

$$
\begin{aligned}
\operatorname{coP}_{\text {Canot }} & =\frac{T_{1}\left(s_{2}-s_{1}\right)}{\left(T_{4}-T_{1}\right)\left(s_{2}-s_{1}\right)} \\
& =\frac{T_{1}}{T_{4}-T_{1}}
\end{aligned}
$$

The COP of the Camot cycle is entirely a function of the temperature limits and can vary from zero to infinity. Since all the processes in the Carnot cycle are thermodynamicaliy reversible, the COP obtained from the above equation is higher than that achievable in an actual cycle and is the maximum possible for a given temperature limit. Hence, this value of COP can be used as a yardstick for the performance of an actual cycle. In the case of irreversible cycle, the COP is less than that for the reversible one, i.e.

$$
\mathrm{COP}_{\text {irrev }}<\frac{T_{1}}{T_{4}-T_{1}}
$$

The COPs of most practical vapour compression heat pump cycles usually have a value about half of that of Carnot COP.

1

3.3 IDEAL VAPOUR COMPRESSION REFRIGERATION CYCLE

The mechanical vapour compression cycle utilizes the evaporation of a liquid refrigerant to absorb heat and lower the temperature of its surroundings at the evaporator. The simple cycle, as shown in Figure 3.5, comprises four main components: compressor, condenser, evaporator, and the expansion device.

FIGURE 3.5 Simple vapour compression cycle.

The vapour compression refrigeration cycle operates by continuously changing the physical properties of a fluid through a cycle, as illustrated in Figures 3.5 and 3.6. The processes constituting the standard vapour compression cycle are:

1-2 Isothermal heat absorption of low temperature heat energy in the evaporator
2-3 Isentropic compression by the compressor to condenser pressure
3-4 Heat rejection through constant pressure cooling in the condenser
4-1 Adiabatic expansion through a throttling device which meters the flow of refrigerant to the evaporator in response to the load.

FIGURE 3.6 Ideal vapour compression cycle.
The working substance i.e. the refrigerant in the same refrigeration system, enters the compressor as saturated vapour at state 2 which is then compressed isentropically to state 3 . The refrigerant then enters the condenser at state 3 in superheated condition and leaves as saturated liquid at state 4 following heat rejection to the surroundings. Hot refrigerant vapour is thus liquefied after rejecting the heat to the condensing media such as air or water. The saturated liquid at state 4 then expands to evaporator pressure at state 1 through a throttling device such as an expansion valve or capillary tube. Consequent to the adiabatic expansion, the refrigerant temperature drops below the ambient temperature, which is a prerequisite of heat flow from the surroundings to the refrigerant in the evaporator. The refrigerant enters the evaporator at state 1 as wet vapour and leaves the evaporator at state 2 as dry saturated vapour and re-enters the compressor, thus completing the cycle.

From the analysis of the cycle, it is obtained that:

$$
\text { Refrigerating effect (RE) } Q_{r}=Q_{1-2}=\dot{m}_{r}\left(h_{2}-h_{1}\right)
$$

Work input

$$
\dot{W}_{\dot{W}}=\dot{W}_{2-3}=\dot{m}_{r}\left(h_{3}-h_{2}\right)
$$

Heat rejection $\quad Q_{c}=Q_{j-4}=\dot{m}_{r}\left(h_{3}-h_{4}\right)$

and

$$
\mathrm{COP}=\frac{\dot{m}_{r}\left(h_{2}-h_{1}\right)}{\dot{m}_{r}\left(h_{3}-h_{2}\right)}=\frac{h_{2}-h_{1}}{h_{3}-h_{2}}
$$

where
\dot{m}_{r} is the mass flow rate of the refrigerant
h_{1} is the enthalpy of the refrigerant at the evaporator inlet
h_{2} is the enthalpy of the refrigerant at the evaporator outlet and compressor inlet
h_{3} is the enthalpy of the refrigerant at the compressor outlet and condenser inlet
h_{4} is the enthalpy of the refrigerant at the condenser outlet.
The ability to use the latent heats of vaporization and condensation of a refrigerant enables a vapour compression cycle to obtain greater refrigeration effect per unit mass of refrigerant,

In choosing the evaporator and condenser temperatures, it has to be ensured that the temperature of the refrigerant in the condenser is higher than that of the surrounding to effect heat rejection. Similarly, the evaporator temperature would have to be lower than the required cooling temperature (Figure 3.7). A temperature differential of around 5 to $7^{\circ} \mathrm{C}$ is commonly practised.

FIGURE 3.7 Evaporator and condenser pressure limitations in practical cycles.

3.4 PRACTICAL VAPOUR COMPRESSION REFRIGERATION

In practical systems, however, the refrigerant follows the modified Rankine cycle, shown in Figures 3.7 and 3.8. The actual refrigeration cycle differs fundamentally from the ideal cycle in respect of pressure drops in refrigerant flow and heat transfer to or from the surroundings. There are cther differences between this cycle and the theoretical cycle.

FIGURE 3.8 Simplified practical cycles.
Normally in the practical cycles the temperature of the liquid refrigerant leaving the condenser is lower than the saturation temperature, and this difference is termed degree of subcooling. Subcooling ensures that no vapour enters the expansion valve and furthermore it increases the refrigerating effect. The refrigerant is also superheated before leaving the evaporator to make sure that only the dry vapour will enter the compressor. Because of the extremely small clearance between the piston and cylinder head, it is necessary to ensure that there is no liquid in the gas entering the compressor as that may cause damage to the piston. The compression is not isentropic and the expansion is close to isenthalpic. During the compression process there are
jreversibilities and heat transfer either to or from the surroundings. The heat iransier thoce depends on the temperature of the refrigerant and the surroundings. Consequently, the entropy might increase or decrease as represented by $1-2^{\prime}$ and $1-2$ lines in Figure 3.9. Due to friction the pressure of the liquid leaving the condenser will be less than the pressure of the vapour entering it. There is also some pressure drop in the evaporator. Being an irreversible cycle, practical cycles have a lower COP than the reversed Carnot cycle when operating between the same temperature limits.

FIGURE 3.9 Actual cycle details.
Figure 3.10 shows a practical vapour compression refrigeration cycle with typical operating conditions.

FIGURE 3.10 Schematic diagram of a refrigeration cycle showing typical temperatures and pressures for a summer cooling application.

The capacity of a refrigeration cyele can be measured in any one of several wnits such as $\mathrm{Btu} / \mathrm{h}$ or kW or $\mathrm{kcal} / \mathrm{h}$. Another unit very commonly used is ton of refrigeration (TR), which is the amount of cooling produced by one US ton (2000 lb) of ice in melting over a period of 24 hours. Therefore,

$$
1 \mathrm{TR}=\frac{1 \times 2000 \times 144}{24}=12,000 \mathrm{Btu} / \mathrm{h}
$$

where the heat of fusion of ice is $144 \mathrm{Btu} / \mathrm{b}$.
1 TR is thus equal to $12,000 \mathrm{Btu} / \mathrm{h}$ or $200 \mathrm{Btu} / \mathrm{min}$ or 3.516 kW of useful heat removal.

Vapour compression cycle calculation

Basically in the calculation of performance of a vapour compression cycle, the equations given in Section 3.3 can be used. As regards the eathalpies at the various points in the system, the same can be obtained either from the Tables of the respective refrigerants or from the p-h diagrams. In a typical table of thermophysical properties of a refrigerant, for example that of refrigerant R134a (see the Appendix B), the enthalpy values of the refrigerant in saturated liquid and saturated vapour state are provided against a particular temperature/pressure. Additionally, the same tables also provide the values of specific heat, entropy, viscosity, thermal conductivity, etc. The properties of superheated vapour state can also be obtained from the tables of 'properties
of-superheated vapour'. of superheated vapour'.

The same enthalpy values can also be obtained from the pressure-enthalpy (p-h) diagrams of the respective refrigerants. A skeleton diagram of a typical refrigerant is shown in Figure 3.11, By plotting the different points in the cycle from the known pressures and temperatures, the corresponding enthalpy values can be readily obtained.

FIGURE 3.11. Skeleton pressure-enthalpy diagram.
The values obtained from the Tables are generally more accurate than those obtained from the $p-h$ diagrams. However, practising engineers find it easier to use the $p-h$ diagrams.

EXAMPLE 3.1

A vapour compression cycle using refrigerant R 22 operates at condensing temperature of $34^{\circ} \mathrm{C}$ and evaporative temperature of $-10^{\circ} \mathrm{C}$ as shown in Figure 3.12. For a mass flow rate of the refrigerant equal to $0.33 \mathrm{~kg} / \mathrm{s}$, determine the following:
(a) The compressor power
(b) The refrigerating effect
(c) The coefficient of performance.

FIGURE 3.12 Example 3.1.

Solution

From the $p-h$ diagram (Figure 3.12) and tables of R22, we get

$$
h_{2}=401.07 \mathrm{~kJ} / \mathrm{kg} \quad h_{3}=427 \mathrm{~kJ} / \mathrm{kg} \quad h_{4}=241.84 \mathrm{~kJ} / \mathrm{kg}=h_{1}
$$

Compressor work, $\dot{W}=\dot{m}\left(h_{3}-h_{2}\right)=0.33 \mathrm{~kg} / \mathrm{s} \times(427-401.07) \mathrm{kJ} / \mathrm{kg}=8.55 \mathrm{~kW}$
Refrigerating capacity $=\dot{m}\left(h_{2}-h_{1}\right)=0.33(401.07-241.84)=52.54 \mathrm{~kW}$
Coefficient of performance, $\mathrm{COP}=\frac{\mathrm{RE}}{\dot{W}}=\frac{52.54}{8.55}=6.14$

EXAMPLE 3.2

A vapour compression cycle using reffigerant R 22 operates at condensing temperature of $36^{\circ} \mathrm{C}$ and evaporative temperature of $-16^{\circ} \mathrm{C}$ as shown in Figure 3.13. For a system capacity of 55 kW , determine the follwing:
(a) The mass flow rate
(b) The compressor power
(b) The refrigerating effect
(c) The coefficient of performance.

FIGURE 3.13 Example 3.2.

Solution

From the $p-h$ diagram and tables of R22, we get

$$
h_{2}=398.64 \mathrm{~kJ} / \mathrm{kg} \quad h_{3}=428 \mathrm{~kJ} / \mathrm{kg} \quad h_{4}=244.44 \mathrm{~kJ} / \mathrm{kg}=h_{1}
$$

Refrigerating capacity $=\dot{m}\left(h_{2}-h_{1}\right)=\dot{m}(398.64-244.44)=55 \mathrm{~kW}$
Therefore, $\dot{m}=0.36 \mathrm{~kg} / \mathrm{s}$
Compressor work, $\dot{W}=\dot{m}\left(h_{3}-h_{2}\right)=0.36 \mathrm{~kg} / \mathrm{s} \times(428-398.64) \mathrm{kJ} / \mathrm{kg}=10.57 \mathrm{~kW}$
Coefficient of performance, $\mathrm{COP}=\frac{\mathrm{RE}}{\dot{W}}=\frac{55}{10.57}=5.20$

EXAMPLE 3.3

An ice plant operates on the ideal vapour compression cycle using refrigerant R134a. The refrigerant enters the compressor as saturated vapour at 0.15 MPa and leaves the condenser as saturated liquid at 0.7 MPa . Water enters the ice machine at $30^{\circ} \mathrm{C}$ and leaves as ice at $-5^{\circ} \mathrm{C}$. For an ice production rate of 10 kg per hour, determine the power input to the ice plant. The specific heats of ice and water are 2.1 and $4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$, respectively, and the latent heat of fusion of ice is $334 \mathrm{~kJ} / \mathrm{kg}$.

Solution

Heat needed to be removed per kg of water to convert it to ice at $-5^{\circ} \mathrm{C}$ is given by

$$
Q=\dot{m} c_{\text {wiet }} \times\left(t_{\text {water }}-0\right)+m L_{f}+m c_{\text {ive }}\left(0-t_{\text {ice }}\right)
$$

swhere
m is the mass of water/ice (kg)
L_{f} is the latent heat of fusion of ice ($\mathrm{kJ} / \mathrm{kg}$)
or

$$
\begin{aligned}
Q & =1 \times 4.18 \times(30-0)+334+1 \times 2.10 \times\{0-(-5)\} \\
& =125.4+334+10.5=469.9 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Therefore, to produce $10 \mathrm{~kg} / \mathrm{h}$ of ice, the refrigerating capacity required is

$$
\frac{10}{3600} \times 469.9=1.30 \mathrm{~kW}
$$

From the p-h diagram and tables of R134a, we get

$$
h_{2}=389.11 \mathrm{~kJ} / \mathrm{kg} \quad h_{3}=425 \mathrm{~kJ} / \mathrm{kg} \quad h_{4}=236 \mathrm{~kJ} / \mathrm{kg}=h_{1}
$$

Refrigerating capacity $=\dot{m}\left(h_{2}-h_{1}\right)=\dot{m}(389.11-236)=1.30 \mathrm{~kW}$
Therefore, $\dot{m}=0.0084 \mathrm{~kg} / \mathrm{s}$
Compressor work, $\dot{W}=\dot{m}\left(h_{3}-h_{2}\right)=0.0084 \mathrm{~kg} / \mathrm{s} \times(425-389.11) \mathrm{kJ} / \mathrm{kg}$

$$
=0.301 \mathrm{~kW}
$$

Coefficient of performance, $\mathrm{COP}=\frac{\mathrm{RE}}{\dot{W}}=\frac{1.30}{0.301}=4.31$

EXAMPLE 3.4

A refrigerator using refrigerant R134a as a working fluid operates on an ideal vapour compression refrigeration cycle between 0.12 and 0.7 MPa as shown in Figure 3.14. The mass flow rate of the refrigerant is $0.06 \mathrm{~kg} / \mathrm{s}$. Show the cycle on a T-s diagram, and determine the following:
(a) The rate of heat removal of the refrigerated space and the power input to the compressor
(b) The rate of heat rejection to the environment
(c) The coefficient of performance.

FIGURE 3.14 Example 3.4.

Solution

From the p-h diagram and tables of R134a, we get

$$
h_{2}=385.43 \mathrm{~kJ} / \mathrm{kg} \quad h_{3}=428 \mathrm{~kJ} / \mathrm{kg} \quad h_{4}=236 \mathrm{~kJ} / \mathrm{kg}=h_{1}
$$

Refrigerating capacity $=\dot{m}\left(h_{2}-h_{1}\right)=0.06(385.43-236)=8.96 \mathrm{~kW}$
Compressor work, $\dot{W}=\dot{m}\left(h_{3}-h_{2}\right)=0.06 \mathrm{~kg} / \mathrm{s} \times(428-385.43) \mathrm{kJ} / \mathrm{kg}$

$$
=2.55 \mathrm{~kW}
$$

Rate of heat rejection $=8.96+2.55=11.51 \mathrm{~kW}$
Coefficient of performance of the refrigerator, $\mathrm{COP}=\frac{\mathrm{RE}}{W}=\frac{8.96}{2.55}=3.51$

EXAMPLE 3.5

In a refrigeration system, would you recommend condensing the refrigerant R134a at a pressure of 0.8 MPa or 1 MPa if heat is rejected to a cooling medium at $30^{\circ} \mathrm{C}$?

Solution

Allowing a temperature difference of $7^{\circ} \mathrm{C}$ for effective heat transfer, the condensation temperature of the refrigerant should be $37^{\circ} \mathrm{C}$ or higher. The saturation temperafere corresponding to $37^{\circ} \mathrm{C}$ is 0.937 MPa . Therefore, the recommended pressure would be 1 MPa .

EXAMPLE 3.6

A refrigeration system operating on a vapour compression cycle with refrigerant R134a as a working fluid has a cooling capacity of 10 kW . The refrigerant enters the compressor as saturated vapour at 0.14 MPa and is compressed isentropically to 1 MPa . The refrigerant leaves the condenser as saturated liquid and expands adiabatically through an expansion device. Determine the following:
(a) The quality of the refrigerant at the end of the throttling process
(b) The power input to the compressor
(c) The coefficient of performance,

Solution

From the $p-h$ diagram (Figure 3.15) and tables of R134a, we get

$$
h_{2}=387.89 \mathrm{~kJ} / \mathrm{kg} \quad h_{3}=435 \mathrm{~kJ} / \mathrm{kg} \quad h_{4}=256.35 \mathrm{~kJ} / \mathrm{kg}=h_{1}
$$

(a) The quality (x) of the refrigerant at the end of the throttling process is'

$$
x=\frac{h_{1}-h_{f}}{h_{f g}}=\frac{256.35-176.39}{211.5}=0.37
$$

where x, the quality or dryness fraction, denotes the fraction of dry refrigerant in the two-phase mixture at a particular point.
(b) Refrigerating capacity $=\dot{m}\left(h_{2}-h_{1}\right)=\dot{m}(387.89-256.35)=10 \mathrm{~kW}$ or mass flow rate, $\dot{m}=0.076 \mathrm{~kg} / \mathrm{s}$

FIGURE 3.15 Example 3.6.

Compressor work, $\dot{W}=\dot{m}\left(h_{3}-h_{2}\right)=0.076 \mathrm{~kg} / \mathrm{s} \times(435-387.89) \mathrm{kJ} / \mathrm{kg}$

$$
=3.58 \mathrm{~kW}
$$

(c) Coefficient of performance of the refrigerator, $\mathrm{COP}=\frac{\mathrm{RE}}{\dot{W}}=\frac{10}{3.58}=2.79$

EXAMPLE 3.7

Refrigerant R134a enters the compressor of a refrigerator as superheated vapour at 0.14 MPa and $-12^{\circ} \mathrm{C}$ at a rate of $0.076 \mathrm{~kg} / \mathrm{s}$ and leaves at 1 MPa and $70^{\circ} \mathrm{C}$. The refrigerant is cooled in the condenser to $36^{\circ} \mathrm{C}$ and 1 MPa and is throttled to 0.15 MPa . Ignoring any heat transfer and pressure drop in the connecting lines between the components, determine the following:
(a) The rate of heat removal from the refrigerated space
(b) The power input to the compressor
(c) The isentropic efficiency of the compressor
(d) The coefficient of performance.

Solution

The enthalpies of the refrigerant at various states are determined from the refrigerant tables and/or p-h diagrams (Figure 3.16) of R134a

$$
\begin{array}{lll}
p_{2}=0.14 \mathrm{MPa}, & T_{2}=-12^{\circ} \mathrm{C}, & h_{2}=398 \mathrm{~kJ} / \mathrm{kg} \\
p_{3}=1 \mathrm{MPa}, & T_{3}=70^{\circ} \mathrm{C}, & h_{3}=450 \mathrm{~kJ} / \mathrm{kg} \\
p_{4}=1 \mathrm{MPa}, & T_{4}=36^{\circ} \mathrm{C}, & h_{4}=255 \mathrm{~kJ} / \mathrm{kg} \\
h_{4} \equiv h_{1} \text { (throttling) } & h_{1}=255 \mathrm{~kJ} / \mathrm{kg} &
\end{array}
$$

(a) Heat removal from the refrigerated space

$$
\dot{m}\left(h_{2}-h_{1}\right)=0.076(398-255)=10.86 \mathrm{~kW}
$$

(b) Compressor work, $\dot{W}=\dot{m}\left(h_{3}-h_{2}\right)=0.076 \mathrm{~kg} / \mathrm{s} \times(450-398) \mathrm{kJ} / \mathrm{kg}$

$$
=3.95 \mathrm{~kW}
$$

FIGURE 3.16 Example 3.7.
(c) Isentropic efficiency η_{c} of the compressor is deternined from,

$$
\eta_{c}=\frac{h_{3 s}-h_{2}}{h_{3}-h_{2}}=\frac{442-398}{450-398}=0.84 \text { or } 84 \%
$$

(d) Coefficient of performance of the refrigerator, $\mathrm{COP}=\frac{\mathrm{RE}}{\dot{W}}=\frac{10.86}{3.95}=2.75$

SECTION B: PULTIPRESSURE VAPOUR COMPRESSIOA CYCLES

The simple vapour compression system that has been dealt with up to this point is a two-pressure system. However, there are many installations that require refrigerated spaces to be maintained at various temperature levels like those in a multi-product cold store storing different products at different temperatures. Ideally, this can be achieved by employing two independent systems, which however, is not a desirable choice because of the obvious investment of additional initial cost.

3.5 MULTIPRESSURE SYSTEMS

A multipressure system is a refrigeration system that has two or more low-side pressures. Systems with more than two pressures may be necessary due to (a) multistage or compound compression or (b) due to supplying refrigerant to a multi-evaporator system. Cascade systems which employ more than one refrigerant also have multipressures, although each refrigerant circuit operates on a two-pressure system only.

Figure 3.17 illustrates the classification of vapour compression refrigeration cycles.

Multistage vapour compression cycles

For high condensing and low evaporating temperature applications, staging of compressors is necessary because of reduced volumetric efficiency. By employing multiple compressors combined with intercooling, this handicap may be overcome. Generally, compound compression is employed when the pressure ratio exceeds 4 or 5 . While with a single-stage compression the

FIGURE 3.17 Multipressure systems.
lowest temperature achieved could be in the region of $-30^{\circ} \mathrm{C}$, with two-stage compression a temperature as low as $-55^{\circ} \mathrm{C}$, and with three-stage compression a temperature down to $-80^{\circ} \mathrm{C}$ is achievable.

Figure 3.18 shows a schematic diagram of a two-stage cycle using ammonia as the refrigerant while Figure 3.19 shows the thermodynamic processes of the same cycle. The high-pressure side of the cycle represented by states 3-4-5-6 is theoretically comparable to a

FIGURE 3.18 Schematic. diagram of a two-stage compression system with water and flash intercooling.
single-stage system, with the exception that the evaporator has been substituted by the flash intercooler and the remaining components constitute the low pressure system. The wapour is compressed isentropically by the low-pressure compressor to the intermediate pressure (state 2). The refrigerant is then precooled in a water intercooler to state 2^{\prime}. Superheated discharge gas
from the low-stage compressor at state Z^{\prime} bubbles through the liquid in the intercooler and thess gets cooled to the saturation temperature at the pressure of the flash chamber (state 7) and a pars of the liquid evaporates which goes to the higher stage along with the vapour from the lower stage (state 3). Complete desuperheating has been assumed in the case shown in Figures 3.18 and 3.19 , which is not practical though. The refrigerant at state 3 enters the compressor and compressed to state 4. It then eniers the condenser and after condensing leaves the condenser in saturated liquid condition (state 5). It then expands through the expansion value to state 6 . Saturated liquid at the cycle intermediate pressure and temperature is drawn from the flash intercooler and throttled through the low-stage expansion valuc. The liquid and vapour mixture enter the evaporator at state 8 and leave at state 1.

FIGURE 3.19 Thermodynamic cycle for the system in Figure 3.18.

Intercooling: With certain refrigerants, such as NH_{3} and CO_{2}, the refrigerant effect is greatly improved and power requirement decreased by precooling the liquid just before the final expansion into the evaporator or flash intercooler. The flash intercooler is a pressure vessel or tank in which a fixed liquid level is maintained by a float valve. The water-cooled intercooler may be satisfactory for multistage air compression, but water is usually not cold enough to be suitable for refrigerant compression. Figure 3.20 shows how compression with intercooling appears on the $p-h$ diagram of a refrigerant. Processes $1-2-3$ and $2^{\prime}-4$ are on lines of constant entropy but the slope of the process $2-3$ is flatter than that of $2^{\prime}-4$, indicating reduced work input. In the case of R12 and R22, intercooling is not effective since the slopes before and after the intercooler are about the same and, hence, there is no savings in work. It may be noted that a part of the heat of low stage compression can be removed by water intercooling in case the discharge temperature from the stage is substantially higher than the cooler water temperature.

For two-stage compression of a refrigerant with complete intercooling, for minimum work, the interstage pressure p_{i} is given by

$$
p_{i}=\left(p_{1} p_{2}\right)^{1 / 2}
$$

where p_{1} is the suction pressure of the low-pressure compressor and p_{2} is the discharge pressure of the high-pressure compressor.

FIGURE 3.20 Intercooling of a refrigerant in two-stage compression.

Multi-evaporator systems

There are many installations that require refrigerated spaces to be maintained at various temperature levels. For example, in a cold store there may be different rooms for different products maintained at different temperatures. Figure 3.21 shows the schematic layout of e typical multi-evaporator system. Figure 3.22 is the $p-h$ diagram of the multi-evaporator system of Figure 3.21.

FIGURE 3.21 Schematic diagram of a multi-evaporator system.

FIGURE 3.22 The $p-h$ diagram of the multi-evaporator system of Figure 3.21.

Cascade system

For the production of low temperatures $\left(-75^{\circ} \mathrm{C}\right)$ with vapour compression cycles, the common alternative to multistage compression is the cascade system. In these systems a series of refrigerants with progressively lower boiling points may be used in a series of single-stage units. Figure 3.23 shows a schematic diagram of a simple cascade system using two single-stage cycles

FIGURE 3.23 Schematic diagram of a cascade system.

using refrigerants R 13 and R 22 respectively. Figure 3.24 shows the T-s diagram of the craeade system. The cascade condenser is the common intermediate heat exchanger which server as the condenser of the low-temperature stage and evaporator of the high temperature stage. In this case R13 is condensed and R22 is evaporated in the cascade condenser. Thus each refrigerant circuit

FIGURE 3.24 The T-s diagram of the cascade system of Figure 3.23.
is comparatively simple and is a system in itself, and each refrigerant can be chosen that operates best within the required temperature and pressure range. The cascade system may not be more efficient than the multi-stage systems but its use is primarily to obtain a lower temperature. Using a single refrigerant has a number of limitations because of which multiple refrigerants are used in a cascade system. Some of the limitations are (a) solidification of refrigerants at low evaporating temperature; (b) with high boiling refrigerant, very low pressure in evaporator and large suction volume; (c) with low boiling refrigerant, extremely high pressure in condenser; (d) low COP with high pressure ratio; and (e) operational difficulties of mechanical equipment at low temperatures.

EXAMPLE 3.8

In an NH_{3} refrigeration system installed in a cold store (Figure 3.25), the evaporator provides 300 kW of refrigeration at $-30^{\circ} \mathrm{C}$. The system uses two-stage compression as shown in the figure, with intercooling and removal of flash gas. The condensing temperature is $35^{\circ} \mathrm{C}$. Draw the cycle on a p - h diagran and calculate the following:
(a) The power required by the compressors
(b) The coefficient of performance.

Solution

$p_{\mathrm{s}}=$ saturation pressure at $-30^{\circ} \mathrm{C}=119.9 \mathrm{kPa}$
$p_{d}=$ saturation pressure at $35^{\circ} \mathrm{C}=1352 \mathrm{kPa}$
$p_{i}=\sqrt{119.2 \times 1352}=402.7 \mathrm{kPa}$

FIGURE 3.25 Example 3.8.

$$
\begin{aligned}
& h_{1}=h_{g}-30{ }^{\circ} \mathrm{C}=1423 \mathrm{~kJ} / \mathrm{kg} \\
& h_{2}=1582 \mathrm{~kJ} / \mathrm{kg} \text { from the } p-h \text { diagram of } \mathrm{NH}_{3} \\
& h_{3}=h_{g} \text { at } 402.7 \mathrm{kPa}=1459.84 \mathrm{~kJ} / \mathrm{kg} \\
& h_{4}=1632 \mathrm{~kJ} / \mathrm{kg} \\
& h_{5}=h_{f} \text { at } 35^{\circ} \mathrm{C}=366 \mathrm{~kJ} / \mathrm{kg}=h_{6} \\
& h_{7}=h_{f} \text { at } 402.7 \mathrm{kPa}=191.8 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

FIGURE 3.26 The $p \cdot h$ diagram for Example 3.8.

$$
\begin{aligned}
\dot{m}_{r 1}=\frac{300 \mathrm{~kW}}{h_{1}-h_{8}} & =\frac{390 \mathrm{~kW}}{1423-191.8}=0.244 \mathrm{~kg} / \mathrm{s} \\
\dot{m}_{r 1} & =\dot{m}_{r 2}=\dot{m}_{r 7}=\dot{m}_{r 8}
\end{aligned}
$$

Heat and mass balance about the intercooler gives

$$
\begin{aligned}
& \dot{m}_{r 2} h_{2}+\dot{m}_{r 6} h_{6}=\dot{m}_{r 7} h_{7}+\dot{m}_{r 3} h_{3} \quad\left(\dot{m}_{r} \bar{j}=\dot{m}_{r 3}, \dot{m}_{r 7}=\dot{m}_{r 2}\right) \\
& (0.244 \times 1582)+\dot{m}_{r 3} \times 366=0.244 \times 191.8+\dot{m}_{r 3} \times 1459.84
\end{aligned}
$$

Solving, $\dot{m}_{r 3}=0.31 \mathrm{~kg} / \mathrm{s}$
(a) Low-stage power $=\dot{m}_{r 2}\left(h_{2}-h_{1}\right)=0.244 \times(1582-1423)=38.8 \mathrm{~kW}$

High-stage power $=\dot{m}_{r 3}\left(h_{4}-h_{3}\right)=0.31 \times(1632-1459.84)=53.4 \mathrm{~kW}$
Total power $=38.8+53.4=92.2 \mathrm{~kW}$
(b) $\mathrm{COP}=\frac{\text { refrigeration effect }}{W_{\text {in }}}=\frac{300 \mathrm{~kW}}{92.2}=3.25$

EXAMPLE 3.9

In a R22 refrigeration system, as shown in Figure 3.27 one evaporator is required to provide 160 kW of refrigeration at $-30^{\circ} \mathrm{C}$ and another evaporator is required to provide 190 kW at $5^{\circ} \mathrm{C}$. The system uses two-stage compression with intercooling and is arranged as shown in the figure. The condensing temperature is $30^{\circ} \mathrm{C}$.

Draw the cycle on a p-h diagram and calculate the following:
(a) The power required by the compressor
(b) The coefficient of performance.

FIGUP玉 3.27 Example 3.9.

Solution

$$
\begin{aligned}
& h_{\mathrm{i}}=h_{g}\left(-30^{\circ} \mathrm{C}=393.14 \mathrm{~kJ} / \mathrm{kg}\right. \\
& h_{2}=424 \mathrm{~kJ} / \mathrm{kg} \\
& h_{3}=407.14 \mathrm{~kJ} / \mathrm{kg} \\
& \dot{h_{4}}=425 \mathrm{~kJ} / \mathrm{kg} \\
& h_{5}=h_{\mathrm{fla}} 30^{\circ} \mathrm{C}=236.66 \mathrm{~kJ} / \mathrm{kg}=h_{6} \\
& h_{7}=205.9=h_{8} \\
& \dot{m}_{1}=\frac{160 \mathrm{~kW}}{h_{1}-h_{8}}=\frac{160 \mathrm{~kW}}{393.14-205.9}=0.855 \mathrm{~kg} / \mathrm{s} \\
& \dot{m}_{1}=\dot{m}_{7}=\dot{m}_{2}=\dot{m}_{\mathrm{s}}
\end{aligned}
$$

FIGURE 3.28 The p - h diagram for Example 3.9.

Heat and mass balance equations about both the high temperature evaporator and the intercooler, are as follows:
or $\quad m_{3}(407.14-236.66)=190+362.52-176.04$
or

$$
\dot{m}_{3} \times 170.48=376.48
$$

$$
\therefore \quad \dot{m}_{3}=\frac{376.48}{170.48}=2.208 \mathrm{~kg} / \mathrm{s}
$$

The power required by the compressors:
(a) Low-stage power $=0.855(424-393.14)=26.39 \mathrm{~kW}$

High-stage power $=2.208(425-407.14)=39.44 \mathrm{~kW}$
Total power $=26.39+39.44=65.83 \mathrm{~kW}$
(b) $\mathrm{COP}=\frac{\text { Total cooling produced }}{W_{\text {in }}}=\frac{190+160}{65.83}=5.32$

EXAMPLE 3.10

A two-stage ammonia system designed for a fish freezing plant, uses flash gas removal and intercooling operation (Figure 3.29). The condensing temperature is $35^{\circ} \mathrm{C}$. The saturation temperature of the high-temperature evaporator is $0^{\circ} \mathrm{C}$ and its capacity is 90 kW . The saturation temperature of the low-temperature evaporator is $-40^{\circ} \mathrm{C}$ and its capacity is 170 kW of refrigeration.

Draw the cycle on a p-h diagram. Determine the following:
(a) The rate of refrigerant compressed by the high-stage compressor
(b) The power required by the compressors
(c) The coefficient of performance.

FIGURE 3.29 Example 3.10.

Solitison

Here,

$$
\begin{aligned}
& h_{1}=h_{8} \Theta-40^{\circ} \mathrm{C}=1408.41 \mathrm{~kJ} / \mathrm{kg} \\
& h_{2}=1655 \mathrm{~kJ} / \mathrm{kg} \\
& h_{3}=1461.70 \mathrm{~kJ} / \mathrm{kg} \\
& h_{4}=1626 \mathrm{~kJ} / \mathrm{kg} \\
& h_{5}=h_{f\left(635^{\circ} \mathrm{C}\right.}=366.07 \mathrm{~kJ} / \mathrm{kg}=h_{6} \\
& h_{7}=h_{8}=200 \mathrm{~kJ} / \mathrm{kg} \\
& \dot{m}_{1}=\frac{170 \mathrm{~kW}}{h_{1}-h_{8}}=\frac{170 \mathrm{~kW}}{1408.41-200}=0.1407 \mathrm{~kg} / \mathrm{s} \\
& \dot{m}_{1}=\dot{m}_{7}=\dot{m}_{2}=\dot{m}_{8} \\
& \dot{m}_{5}=\dot{m}_{3}
\end{aligned}
$$

FIGURE 3.30 The p - h diagram for Example 3.10.
(a) Heat and mass balance equations about both the high temperature evaporator and the intercooler are given below:

$$
\begin{array}{ll}
& \dot{m}_{5} h_{5}+90+\dot{m}_{2} h_{2}=\dot{m}_{3} h_{3}+\dot{m}_{7} h_{7} \\
& \dot{m}_{2}=\dot{m}_{7}=0.1407 \mathrm{~kg} / \mathrm{s} \\
\therefore \quad & \dot{m}_{5} \times 366.07+90+0.1407 \times 1655=\dot{m}_{3} \times 1461.70+0.1407 \times 200 \\
\text { or } \quad & \dot{m}_{3}(1461.70-366.07)=90+0.1407(1655-200) \\
\text { or } & \dot{m}_{3} \times 1095.63=294.72 \\
\therefore \quad & \dot{m}_{3}=0.269 \mathrm{~kg} / \mathrm{s}
\end{array}
$$

(b) The power required by the compressors:
(i) Low-stage power $=0.1407\left(h_{2}-h_{1}\right)=0.1407(1655-1408.41)=34.69 \mathrm{~kW}$

High-stage power $=0.269\left(h_{4}-h_{3}\right)=0.269(1626-1461.70)=44.20 \mathrm{~kW}$
Total power $=34.69+44.20=78.89 \mathrm{~kW}$
(ii) $\mathrm{COP}=\frac{\text { Total cooling produced }}{W_{\mathrm{in}}}=\frac{90+170}{78.89}=3.30$

SECTION C: HEAT PUMPS

Heat pump is the expression for a refrigerating system in which the heat discharged at the condenser is of principal interest and importance (Figure 3.31). The cooling effect produced by the evaporator is secondary and is not necessarily utilized. The medium being cooled serves as a heat source, and the compressor pumps the heat, picked up by the refrigerant in the evaporator, to the higher level in the condenser for practical use. However, in a combined heating and cooling system there is a reversible valve enabling the cycle to operate as an air cooler or as an air heater as shown in Figure 3.31. The three basic heat sources that have been used are air, water, and the earth.

FIGURE 3.31 Heat pump.

3.6 HEAT PUMP CYCLE ANALYSIS

Referring to the same cycle as shown in Figure 3.6 and repeated below as, Figure 3.32, the COP of the heat pump can be deduced which is greater than that of the refrigeration cycle.

FIGURE 3.32 Ideal vapour compression cycle.
Refrigerating effect, $Q_{1-2}=\dot{m}_{r}\left(h_{2}-h_{1}\right)$
Work input, $W_{2-3}=\dot{m}_{r}\left(h_{3}-h_{2}\right)$
Heat rejection, $Q_{3-4}=\dot{m}_{r}\left(h_{3}-h_{4}\right)$
Coefficient of performaule, $\operatorname{COP}_{\mathrm{tp}_{p}}=\frac{\dot{m}_{r}\left(h_{3}-h_{4}\right)}{\dot{m}_{r}\left(h_{3}-h_{2}\right)}=1+\operatorname{COP}_{r}$
A refrigerator may be converted into a heat pump by reversing the direction of flow of the refrigerant when the roles of the evaporator and the condenser are reversed. To accomplish that, a reversing valve is needed as shown in Figure 3.33.

FIGURE 3.33 The reversing valve operation in a refrigeration cycle.

Cengel, Y.A. and M.A. Boles, Thermodynamics: An Engineering Approach, 4th ed., McGraw-Hill, 2002.

Moran, M.J. and H.N. Shapiro, Fundamentals of Engineering Thermodynamics, 3rd ed., Wiley, New York, 1995.
Van Wylen, G.J., R.E. Sonntag, C. Borgnakke, Fundamentals of Classical Thermodynamics, 4th ed., John Wiley \& Sons, New York, 1993.

REVIEW EXERCISES

3.1 What modifications are necessary to convert a domestic air-conditioner meant for summer cooling for use in winter as well?
3.2 Sketch an ideal vapour compression cycle on p - h and T-s diagrams. Label each point on the diagram and show the comparable locations on a sketch of the refrigeration system.
3.3 Sketch an ideal refrigeration cycle on $p-h$ diagram and show the refrigerating effect, that ci compression and heat of rejection. What is their arithmetic relationship?
3.4 Describe the effect of changing the evaporating temperature on system performance characteristics. Use a sketch of the p-h diagram as an aid.
3.5 What is subcooling? What are the effects of subcooling?
3.6 A refrigeration system operating on a vapour compression refrigeration cycle using refrigerant R134a as the working fluid has a cooling capacity of 6 kW . The refrigerant enters the compressor as saturated vapour at 0.14 MPa and is compressed isentropically to 0.8 MPa . The refrigerant leaves the condenser as saturated liquid and expands adiabatically through an expansion device.

Show the cycle on a T-s diagram with respect to saturation lines, and determine the following:
(a) The quality of the refrigerant at the end of the throttling process
(b) The coefficient of performance.
3.7 $\mathrm{An} \mathrm{NH}_{3}$ refrigeration system designed for a refrigerated warehouse (Figure 3.27) has one evaporator that provides 200 kW of refrigeration at $-20^{\circ} \mathrm{C}$. The system uses two-stage compression as shown in the figure, with intercooling and removal of flash gas. The condensing temperature is $35^{\circ} \mathrm{C}$. Draw the cycle on a $p-h$ diagram and calculate the following:
(a) The ratio of the power required by the high-stage and low-stage compressor.
(b) The cocfficient of performance.
3.8 In an R22 refrigeration system, one evaporator is required to provide 150 kW of refrigeration at $-30^{\circ} \mathrm{C}$ and another evaporator is required to provide 200 kW at $5^{\circ} \mathrm{C}$. The system uses two-stage compression with intercooling and is arranged as shown in Figure 3.27 . The condensing temperature is $36^{\circ} \mathrm{C}$. Calculate the coefficient of performance.

Refrigerants

A refrigerant is any body or substance, which acts as a cooling agent by absorbing heat from another body or substance. With regard to the vapour compression cycle, the refrigerant is the working fluid of the cycle, which alternately vaporises and condenses as it absorbs and gives off heat. Theoretically, any reasonably volatile substance which is liquid at the iemperature desired in the evaporator can be used as a refrigerant, but in practice the choice is limited by factors such as toxicity, cost, flammability, chemical stability, etc.

A primary refrigerant is one, which is used in a recirculating cycle and is accompanied by a change in state. During the cyclic process it undergoes compression, condensation, expansion, and evaporation. A secondary refrigerant is one, which is used as a heat transfer medium without a change of state but with a change in temperature. Chilled water used in a conventional air-conditioning plant and circulated through the air-cooling coils is an example of a secondary refrigerant. Figure 4.1 shows an air-conditioning system that uses both primary and secondary refrigerants.

FIGURE 4.1 Air-conditioning system using both primary and secondary refrigerants.

4.1 CLASSIFICATION

Many refrigerants have been used over the years and some of them have become obsolete and since replaced by newer refrigerants. Some currently popular refrigerants are being phased out due to their damaging effect on ozone layer.

The generic classification of refrigerants is shown in Figure 4.2. Based on this classification, some of the popular refrigerants have been listed in Tables 4.1 to 4.4. The detailed properties of some of these refrigerants have been discussed at length later in this chapter.

FIGURE 4.2 Classification of refrigerants.
TABLE 4.1 Halocarbon refrigerants

Designation	Chemical name	Chemical formula	Use	Remarks
R11	Trichloromonofluoromethane	$\mathrm{CCl}_{3} \mathrm{~F}$	Air conditioning	
R12	Dichlrodifluoromethane	$\mathrm{CCl}_{2} \mathrm{~F}_{2}$	Do	Being phased out
R22	Monochlorodifluoromethane	CHClF_{2}	Refrigeration and air conditioning	Still acceptable
R134a	Tetrafluoroethane	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{~F}$	Air conditioning	Substituting R12
R40	Methyl chloride	$\mathrm{CH}_{3} \mathrm{Cl}$	Refrigeration	Obsolete

TABLE 4.2 Inorganic refrigerants

Designation	Chemical name	Chemical formula	Use	Remarks
R 717	Ammonia	NH_{3}	Industrial refrigeration	Still popular
R 718	Water	$\mathrm{H}_{2} \mathrm{O}$	Absorption cycles	
R 729	Air		Refrigeration and air conditioning	Still acceptable
R 744	Carbon dioxide	CO_{2}	Marine refrigeration, Ice making	Discontinued
R 764	Sulphur dioxide	SO_{2}	Air conditioning	Discontinued

TABLE 4.3 Hydrocarbon refrigerants

Designation	Chemical name	Chemical formula	Use	Remarks
R50	Methane	CH_{4}	No direct use	-
R170	Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	Gas liquefaction	-
R290	Propane	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Gas liquefaction	-

TABLE 4.4 Common azeotropes

Group	Designation	Composition		Chemical formula	Use	Remarks
	R500	R12	73.8\%		Cascade systems	
		R115	26.2\%	$\begin{gathered} \mathrm{CCl}_{2} \mathrm{~F}_{2} \\ \mathrm{CH}_{3} \mathrm{CHF}_{2} \end{gathered}$		-
	R501	R22	75\%	CHClF_{2}		-
		R12	25\%	$\mathrm{CCl}_{2} \mathrm{~F}_{2}$		-
	R502	R22	48.8\%	CHClF_{2}		-
		R115	51.2\%	$\mathrm{CClF}_{2} \mathrm{CF}_{3}$		-

Halocarbon refrigerants, listed in Table 4.1, contain one or more of the three halogenschlorine, fluorine, and bromine. These refrigerants are obtained by replacing one or more hydrogen atoms in a hydrocarbon molecule such as ethane or methane with the above-mentioned halogens. The halocarbon family is comprised of refrigerants which are non-flammable and most of them are non-toxic too. Thus a refrigerant can be found in this group to fit practically any application. Because of their overall performance, these synthetic refrigerants have replaced the classic refrigerants like $\mathrm{NH}_{3}, \mathrm{CO}_{2}$, and water etc. listed in Table 4.2.

However, in recent years some of the refrigerants in the halocarbon family have lost favour because of their negative impact on environmental issues. Because of their great stability, fully halogenated compounds, such as chlorofluorocarbons (CFCs) persist in the atmosphere for many years and eventually diffuse into the stratosphere. The molecules of CFCs, such as R11 and R12, contain only carbon and the halogens contain chlorine and fluorine. Once in the upper atmosphere, the CFC molecules break down releasing chlorine, which destroys ozone and causes ozone depletion. In the lower atmosphere, the CFC molecules absorb infrared radiation, which may contribute to the warming of the earth, i.e. global warming. Substitution of a hydrogen atom by one or more of the halogens in a CFC molecule greatly reduces its lifetime in atmosphere and consequently its negative impact. These compounds are referred to as hydrochlrofluorocarbons (HCFCs). The ozone depleting CFC refrigerants will be phased out as per the decision of the Montreal protocol, an international treaty.

Like halocarbon refrigerants, many hydrocarbon refrigerants, listed in Table 4.3, are suitable as refrigerants. They are commonly used as refrigerants in liquefaction of gases.

Azeotropes, listed in Table 4.4 are those mixtures of two or more substances which behave as if they were compounds, for they cannot be separated into their components by distillation. An azeotrope evaporates and condenses as a single substance with properties that are different from those of its constituents.

4.2 DESIRABLE PROPERTIES OF REFRIGERANTS

No single refrigerant satisfies all the attributes desired of a refrigerant for all operating conditions. So a refrigerant is chosen that has the greatest number of advantages and the least number of disadvantages for the specific application involved. Obviously, in most cases there must be a compromise. The best refrigerant for producing low temperatures is not necessarily the best one for producing moderate temperatures. Similarly, the refrigerant chosen for a reciprocating compressor is usually different from the one that is chosen for a centrifugal compressor.

The important properties that relate to the overall performance of a refrigeration system are tabulated in Table 4.5, followed by a review of some of the refrigerant properties which affect the refrigerant cycle performance.
TABLE 4.5 Comparative refrigerant performance per kilowatt of refrigeration ${ }^{2}$

Refrigerant		Evaporator pressere, MPa	Condenser pressure, MP2	Compression ratis	Net refrigerating effect, kJ/kg	Refrigerant circulated, kgfs	Liquid circulated, L/s	Specific volame of suction $\mathrm{gas}_{3} \mathrm{~m}^{3} / \mathrm{kg}$	Compressor displacement, L/s	Power consumption, kW	$\begin{aligned} & \text { Coefficient } \\ & \text { of } \\ & \text { performance } \end{aligned}$	Cemp. discharge temperature, K
No.	Chemical name or compesitien (\% by mass)											
744	Carbon dioxide	2.291	7.208	3.15	134.24	0.00745	0.0123	0.0087	0.065	0.338	2.96	343
290	Propane	0.291	1.977	3.71	279.88	0.00357	0.0074	0.1542	0.551	0.211	4.74	320
502	$\begin{aligned} & R 22 / 115 \\ & (48.8 / 51.2) \end{aligned}$	0.349	1.319	3.78	104.39	0.00958	0.0080	0.0500	0.479	0.226	4.43	310
22	Dichlorodi. fleromethase	0.296	1.192	4.03	162.46	0.00616	0.0053	0.0774	0.476	0.210	4.75	326
717	Ammonis	0.236	1.164	4.94	1102.23	0.00091	0.0015	0.5106	0.463	0.207	4.34	371
500	$\begin{aligned} & R 12 / 152 \mathrm{a} \\ & (73.8 / 26.2) \end{aligned}$	0.214	0.879	4.11	140.95	0.00709	0.0062	0.0938	0.665	0.213	4.69	314
12	Dictlorodiflaoromethane	0.183	0.745	4.07	116.58	0.00858	0.0066	0.0914	0.784	0.213	4.69	311
134a	Tetralluoroethane	0.160	0.770	4.81	150.71	0.00664	0.0056	0.1224	0.812	0.226	4.42	316
600	Butame	0.056	0.283	5.05	292.01	0.00342	0.0060	0.6641	2.274	0.214	4.61	318

Adapted by permission from ASHRAE Fundamentals 1989. Notes: "Based on 258 K evaporation and 303 K condensation.

Evaporator and condenser pressure

It is desirable that both these pressures be positive, yet not too high above the atmospheric pressure. Positive pressure prevents leakage of air and moisture into the system and also makes it easier to detect leaks. The pressure at which the refrigerant vapour will condense at ordinary air or water temperatures should be low. A high condensing pressure would require heavy material for compressors, piping and coils, and also increase the tendency to leakage.

Critical temperature

High critical temperature is desirable as it is impossible to condense the refrigerant at a temperature above the critical, no matter how much the pressure is increased. The critical temperature of all refrigerants except CO_{2} is sufficiently high and such refrigerants, therefore, present no problem. In the case of CO_{2} the pressure at the end of compression would be too large, necessitating heavy construction to withstand such high pressure. The critical temperatures and pressures of some common refrigerants are listed in Table 4.6.

TABLE 4.6 Critical temperature and pressure of various refrigerants

Refrigerants	Critical temperature $\left({ }^{\circ} \mathbf{C}\right)$	Critical pressure in bar
R 11	197.96	44.0
R 12	111.78	41.24
R 22	96.14	49.90
R 134 a	101.03	40.56
R 502	82.20	40.75
NH_{3}	132.22	113
$\mathrm{H}_{2} \mathrm{O}$	373.99	220
CO_{2}	30.98	74
CH_{4}	190.55	45.9

Boiling and freezing temperatures

A refrigerant should have a low boiling temperature, otherwise it would become necessary to operate the compressor at high vacuums with the resulting lowered efficiency and capacity. The refrigerant chosen must have a freezing point well below any temperature that would be encountered in operation.

Density

Low refrigerant densities are usually preferable, since they permit the use of small suction and discharge lines without excessive pressure drops. For larger capacity machines, however, a high vapour density is desirable since this results in a need for a smaller compressor and a smaller gas piping.

Latent heat of vaporization

A high latent heat at the evaporator temperature is desirable because it is usually associated with a high refrigerating effect per unit mass of refrigerant circulated. The values of enthalpy of vaporization of a number of common refrigerants are listed in Table 4.7.

TABLE 4.7 Enthalpy of vaporization at 1 atmosphere pressure (1.01 bar)
Refrigerant \quad Saturation temperature $\left({ }^{\circ} \mathrm{C}\right)$ at 1 atm . Enthalpy of vaporisation $(\mathbf{k J} / \mathbf{k g})$

R11	23.71	181.36
R12	-29.80	165.91
R22	-40.80	233.79
R134a	-26.07	216.83
R114	3.6	131.45
R502	-45.42	172.48
R717	-33.33	1369
R744	-78.4	571.5
R718	100	2257

$$
J, f
$$

Stability and inertness

An ideal refrigerant should not decompose at any temperature normally encountered. Disintegration of refrigerants may result in non-condensable gases in the system as well as sludge.

Corrosive properties

The refrigerant should not react with any of the materials normally used in system construction. Any such reaction would lead to corrosion products, contaminating the system and possibly resulting in leakages.

Specific volume

A refrigerant should have low volume per kg when in gaseous state. This not only reduces the size of the equipment but also means higher compressor efficiency. Figure 4.3 shows the relative displacement volume required by different refrigerants. As high displacement volume of

FIGURE 4.3 Graphic representation of displacement volume required by different refrigerants.
refrigerants is desirable for centrifugal compressors, the refrigerants shown on the left-hand side of the vertical line are preferred for this duty. Likewise, the refrigerants on the right of the vertical line are desirable for use in reciprocating compressors.

Viscosity

It is desirable that both the liquid and the vapour refrigerants have low viscosities because of the lower pressure drops in passing through liquid and suction lines. Heat transfer is also improved in the evaporator and the condenser due to low viscosity.

Thermal conductivity

For efficient use of evaporator and condenser surfaces, a refrigerant should possess a high value of thermal conductivity.

Dielectric strength

The electrical resistance of a refrigerant is important if it is to be used in a hermetically sealed unit with the motor exposed to the refrigerant.

Oil effect and miscibility with oil

The refrigerant should have no chemical reaction with the lubricating oil. Such reaction would modify the lubricating properties, and hence, affect lubrication. Certain reactions can even acidify oils. As regards miscibility, oil miscible refrigerants are advantageous in that they give better lubrication because the refrigerant acts as a carrier of oil to the moving parts. They also eliminate oil separation problems and aid in the return of oil from the evaporator.

\section*{n-}
 Toxicity and explosive properties

The refrigerant should ber particularly, there should be no odour. An ideal refrigerant any air-conditioning application, explosion or fire, either in combination with air or in association with lubricating oil.
Celell let

Effects on perishable products

In case of leakage, an ideal refrigerant should have no effect on any perishable materials with which it may come into contact.

Leak detection

10 20
A leak should be susceptible to detection by some mechanical or chemical means. The detection of leaks just by odour can be very dangerous as well as deceiving.

Refrigeration and Air Conditioning
Cost
In very small plants requiring a small charge of refrigerant, the cost factor is unimportant. But the cost factor assumes significance in large plants, and the tightness of the construction and leakage minimization are looked after with much care. The rate of leakage is inversely proportional to the square root of molecular weight. It also depends on the pressure differential, velocity, density, and capillarity.

4.3 COMMON REFRIGERANTS

The characteristics and properties of a number of commonly used refrigerants are discussed below.

Ammonia

Ammonia is one of the oldest and most widely used of all refrigerants. It is extensively used in large refrigeration plants such as ice plants, breweries, and industrial processing plants. Ammonia gives a large amount of refrigeration per cubic metre of compressor displacement, which results in low compressor cost. The cost of ammonia itself is less than that of any refrigerant except that of carbon dioxide and water. Ammonia is a low-density refrigerant which creates smaller pressure drops for a given size line. For these reasons, an ammonia system is the most economical system available for large-sized reciprocating refrigerating systems. The freezing point of ammonia, $-60^{\circ} \mathrm{C}$, is low enough so that there is no problem with ordinary refrigeration temperatures. The odour of ammonia gives instant warning of a leak. A small amount of sulphur dioxide causes a dense white smoke to appear at an ammonia leak, indicating the source of leak. Sulphur candles made of wood or metal pieces dipped in molten sulphur are used for leak detection.

Against the above-mentioned advantages, ammonia is highly toxic and highly irritating. Ammonia is flammable in mixtures of between 16 and 25 per cent in air. Because of its affinity for water, it is difficult to kecp ammonia perfectly dry. When ammonia contain any water, it is corrosive to copper and most copper alloys. Accordingly, copper, brass or bronze should not be used in pipes, fittings and bearings in ammonia systems.

At high discharge temperature of ammonia, unless controlled, discharge temperatures can carbonize or otherwise damage lubricating oil. At the high discharge temperatures generated by ammonia, there is a tendency for ammonia to dissociate, i.e. breakdown into its constituents of nitrogen and hydrogen. These gases, unless disposed off, collect in the condenser. Their pressures are added to the normal condensing pressure, which increases the total head pressure and power required. Because of high discharge temperatures, the cylinders of ammonia compressors are water-jacketed. Water-cooling is necessary to keep the cylinder walls cool enough to make satisfactory lubrication possible.

In spite of these disadvantages, ammonia gives excellent economical service in large compression refrigeration systems when the systems are under the supervision of competent operating personnel. Ammonia is used fairly extensively in semi-automatic and automatic refrigeration plants like cold stores, fish freezing plants, etc. Because of the negative impact of CFC refrigerants on the environment, the industry is showing renewed interest in environmentally safe refrigerants like ammonia.

Carbon dioxide

Carbon dioxide is one of the first refrigerants to be used in mechanical refrigerating systems. It is odourless, non-toxic, non-flammable, non-explosive, and non-corrosive. Because of its safe properties, it has been widely used in the past for marine service and for air conditioning in hospitals, theatres, and hotels and in other places where safety is the prime consideration. At the present time, the use of carbon dioxide is limited to some extremely low temperature applications, particularly in the production of dry ice, i.e. solid CO_{2}.

One of the main disadvantages of carbon dioxide is its high operating pressure, which under standard conditions of $-15^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ is 22.2 bar and 71 bars respectively. The high suction pressure gives a small piston displacement resulting in smaller compressors, but this requires the use of extra heavy equipment and piping. Normal condensing temperatures are near the critical temperature of $31^{\circ} \mathrm{C}$ for carbon dioxide. This leads to excessive power costs, nearly three times those of other refrigerants. Carbon dioxide is non-miscible in oil and, therefore, does not dilute the oil in the crankease of the compressor. Like ammonia, carbon dioxide is lighter than oil.

Next to water, carbon dioxide is the cheapest refrigerant. But its high pressure, and the difficulty in leak detection, results in higher replacement cost compared to that associated with ammonia. Because of these disadvantages, carbon dioxide was replaced when other safe refrigerants became available. Leak detection is carried out by soap solution only.

Water

The principal advantage of water as a refrigerant is its availability at virtually no cost. Another obvious advantage of water is that it is non-toxic and non-flammable. The two disadvantages of water are its high freezing point and high vacuum required. The very large volume of water vapour at such low operating pressures makes the use of ordinary compression equipment impossible.

In the past the steam-jet system with water as the refrigerant has had some use in large air-conditioning systems. The lithium bromide absorption refrigeration system, using water as refrigerant, is extensively used in large air-conditioning applications.

Sulphur dioxide

Sulphur dioxide was the most used domestic refrigerant in the 1920s and 1930s, having been replaced first by methyl chloride and later by the more desirable fluorocarbon refrigerants. It is highly toxic, but non-flammable and nonexplosive. As sulphur dioxide is not oil miscible, it simplifies the problem of oil return, which accounts for the relative popularity of sulphur dioxide for small automatic equipment used in the earlier days.

Like most common refrigerants, sulphur dioxide in the pure state is non-corrosive to metals normally used in the refrigerating systems. However, it combines with moisture to form sulphurous acids $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$ and sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, both of which are highly corrosive.

Methyl chloride

Methyl chloride is a halocarbon of the methane series. It has many of the properties desirable in a refrigerant, which accounts for its wide use in the past in both domestic and commercial
applications. Methyl chloride is corrosive to aluminium, zinc, magnesium and the compounds formed in combinations with these materials. It is also both flammable and explosive. In the presence of moisture, methyl chloride forms a weak hydrochloric, acid, which is corrosiye to both , ferrous and non-ferrous metals. Since natural rubber and synthetic néoficene are dissolved by methyl chloride, neither is a suitable gasket material for use in methyl chloride systems.

$$
\therefore D
$$

Halocarbon refrigerants

Due to limitations of the other refrigerants, studies were made to investigate the possibility of using synthetic chemicals as refrigerants. The outcome of these studies was the development of the halocarbon group of refrigerants. The refrigerants of this group are non-flammable and most of them are non-toxic. They are available with evaporating temperature at atmospheric pressure from approximately $100^{\circ} \mathrm{C}$ below zero to $100^{\circ} \mathrm{C}$ above zero. Thus, a refrigerant can be chosen from this group that will fit practically any application.

All refrigerants in this family are derivatives of the hydrocarbons, methane and ethane. Refrigerants of this family are called halogenated hydrocarbons, or more simply halocarbons, because chlorine and fluorine are part of a family of chemicals called halogens.

Leaks in halocarbon systems may be detected in two ways-by a special torch or by an electronic leak detector. The presence of any halogen will change the colour of a blue gas flame in the presence of copper to green or purple. Another halogen leak detection device depends on a cell whose electrical characteristics change in the presence of halocarbon gases. A change in electric current through this cell triggers a relay, which operates a light or buzzer to indicate a leak. One unsafe characteristic of all halocarbons is, that they break down at high temperature to give very irritating and toxic compounds. The temperature at which this happens is high enough and does not occur in an operating system.
Refrigerant-11 ($\left.\mathrm{CCl}_{3} \mathrm{~F}\right)$: It is non-corrosive, non-toxic and non-flammable refrigerant. The low operating pressures and the relatively high compressor displacement required necessitate the use of a centrifugal compressor. Like other fluorocarbon refrigerants, Refrigerant-11 dissolves natural rubber. Refrigerant-11 is used mainly in the air-conditioning of small office buildings, factories, stores, theatres, etc. A halide torch may be used for leak detection.
Refrigerant-12: It has been by far the most widely used refrigerant until recent years. It is a completely safe refrigerant in that it is non-toxic, non-flammable, and non-explosive. Moreover, it is a highly stable compound and, therefore, difficult to break down even under extreme operating conditions. Refrigerant-12 condenses at moderate pressures under normal atmospheric conditions and is a suitable refrigerant for use in high, medium and low temperature applications and with all the three types of compressors. Refrigerant-12 is oil miscible under all operating conditions that not only simplifies the problem of oil return but also tends to increase the efficiency and capacity of the system. The horsepower required per kilowatt of capacity compares favourably with that required for other commonly used refrigerants. However, this refrigerant is being phased out because of its damaging effect on ozone layer.
Refrigerant-22: This refrigerant was developed primarily as a low temperature refrigerant and it is extensively used in domestic and farm freezers and in commercial and industrial low temperature systems down to evaporator temperatures as low as $-70^{\circ} \mathrm{C}$. It is also widely used in packaged air conditioners, where, because of space limitations, the relatively small compressor displacement required is a definite advantage. Both the operating pressures and the adiabatic discharge temperature are higher for Refrigerant-22 than for Refrigerant-12. Horsepower
requirements are approximately the same. Although miscible with oil at temperatures prevailing in the condensing sections, Refrigerant- 22 will often separate from the oil in the evaporator. With proper piping design this problem may be surmounted. Oil separators should always be used in low temperature applications.

The ability of Refrigerant-22 to absorb moisture is considerably greater than that of Refrigerant-12 and therefore less trouble is experienced with freeze ups in Refrigerant-22 systems. Being a fluorocarbon, Refrigerant-22 is a safe refrigerant. A halide torch may be used for leak detection. This refrigerant is also being phased out.
Refrigerant-134a: Due to phasing out of, Refrigerant-12, which was the most widely used refrigerant up to recent years, there was frantic search for a suitable replacement. At this point in time, R134a is considered to be the most direct substitute for R12 and as a replacement in higher temperature applications. Its net refrigerating effect (based on $-15^{\circ} \mathrm{C}$ evaporator and $30^{\circ} \mathrm{C}$ condenser temperature) is $151 \mathrm{~kJ} / \mathrm{kg}$ against $116.58 \mathrm{~kJ} / \mathrm{kg}$ for R12.

BIBLIOGRAPHY

American Society of Heating, Refrigerating and Air-Conditioning Engineers, ASHRAE Handbook of Fundamentals, 1993.
American Society of Heating, Refrigerating and Air-Conditioning Engineers, ASHRAE Handbook of Fundamentals, 1997.

ASHRAE Standard 62-1989, Ventilation for Acceptable Indoor Air Quality, Atlanta: American Society of Heating, Refrigerating and Air Conditioning Engineers.
Chemical Engineer's Handbook, 5th edition, 1973. McGraw-Hill, New York.
McLinden M.O., Thermodynamic properties of CFC alternatives: A survey of available data, Int. Journal of Refrigeration, Vol. 13, May, 1990.
Sand, J.R. et al., Experimental performance of ozone-safe alternative refrigerants, ASHRAE Transactions, Part 2, Vol. 96, pp. 173-182, 1990.
Stewart, R.B., R.T. Jacobse, and S.G. Penoncello, ASHRAE Thermodynamic properties of refrigerants, ASHRAE, 1986.

REVIEW EXERCISES

4.1 Describe the desirable and undesirable features of ammonia for use as a refrigerant.
4.2 Why is it that most of the currently popular halocarbon refrigerants are being phased
4.3 What piping material would you recommend for ammonia systems?
4.4 What is an azeotrope? Which popular halocarbon refrigerant is an azeotrope? For what reason it is often used instead of R22?
4.5 Why are positive condenser and evaporator pressures desirable?

Vapour Absorption Cycle

Vapour compression refrigeration cycles discussed in Chapter 4 are heat pumps in which the energy input to operate the system is in the form of mechanical work. In certain circumstances it is desirable to use heat directly as the operating energy, for instance in a plant where there is waste heat from co-generation or process steam plants. The absorption refrigeration system developed by Ferdinand Carré in France, and later patented in the United States in 1860 during the period of civil war, is such a heat operated cycle. These cycles are also economical where inexpensive heat energy sources such as geothermal energy, solar heat and cheap natural gas are available in abundance.
5.1 SIMPLE VAPOUR ABSORPTION CYCLE

The simple vapour absorption refrigeration cycle, as shown in Figure 5.1, is similar to the vapour compression cycle in many ways, however, it differs in the method employed for compressing the fluid. In this cycle the compressor is substituted by a generator, an absorber and a pump. There is another difference, that is, in addition to the refrigerant another fluid known as absorbent is used in vapour absorption cycles.

Two common combinations of refrigerant-absorbent are: (a) a solution of lithium bromide in water, water being refrigerant and lithium bromide (LiBr), which is a highly hygroscopic salt, being the absorbent, and (b) aqua-ammonia, where ammonia $\left(\mathrm{NH}_{3}\right)$ is the refrigerant and water or aqua is the absorbent. The former combination is used in air conditioning but is not suitable for low temperature applications. Due to the toxicity of ammonia the latter, combination is not used in air-conditioning applications. The absorbent should have a greater affinity for the refrigerant and the two must be mutually soluble over the desired range of operating conditions. Ideally, the absorbent should have a low volatility and the refrigerant should have a reasonably high latent heat.

FIGURE 5.1 Comparison of simple vapour compression and vapour absorption cycles.
The operating principle is explained in terms of the various processes that the absorption cycle undergoes in the course of an aqua ammonia cycle as shown in Figure 5.2. In this cycle, water (aqua) is the absorbent and ammonia is the refrigerant. After leaving the evaporator the

FIGURE 5.2 Schematic representation of an aqua ammonia absorption cycle.
refrigerant (ammonia) is absorbed by the liquid solution that has a very high affinity for the refrigerant in the absorber. The strong, i.e. the refrigerant-rich solution formed in the absorber is then pumped mechanically into the generator at a higher pressure. The refrigerant is distilled from the solution by the application of heat in the generator, and is then passed to the condenser, after which the weakened solution returns to the absorber to repeat its cycle. The refrigerant that goes to the condenser gets condensed and then expands through the expansion valve before entering into the evaporator.

The work done on compression is less than that done in the vapour compression cycle since pumping a liquid requires much less work than compressing a vapour between the same pressures. But in this cycle, a heat input to the generator is required. But unlike vapour compression cycles, the heat, however, may be supplied by any convenient form, i.e. gas, steam, or electricity.

5.2 PRACTICAL ABSORPTION SYSTEMS

The basic components of a practical vapour absorption cycle are described below. In order to improve efficiency, some items of additional auxiliary equipment are added in practical systems. However, detailed studies need to be carried out to ensure the most desirable balance between the initial cost and the operating cost. The purposes and locations of the main components and auxiliaries are discussed in the following paragraphs.

Generator

The generator unit is basically a shell partly filled with a strong solution and automatically maintained at a constant level covering the submerged steam or the hot gas/water tubes. Energy is provided from an external source such as process/waste steam or even solar-heated water.

Absorber

In industrial systems the absorber may consist of one or more shells similar to the shell-and-tube type condensers containing water cooling tubes. The weak solution from the generator and the refriger-
 solution is drawn off from the absorber. The purpose of the cooling water in the tubes is to remove the heat of condensation and heat of absorption as the vapour condenses and is absorbed by the weak solution. The lower aqua ammonia temperature in the absorber allows more absorption of vapour, leading to a refrigerant rich solution.

Heat exchanger

The most common auxiliary is the heat exchanger (Figure 5.3) located between the absorber and the generator to heat the cool solution from the absorber on its way to the generator and to cool the solution returning from the generator to the absorber. This operation economises on the amount of cooling needed for the absorber and the amount of heat needed for the generator. Shell-and-tube heat exchangers are commonly used in large installations. Sometimes a second heat exchanger may be used to subcool the refrigerant entering "the expansion valve as shown later in Figure 5.5.

FIGURE 5.3 Use of heat exchanger in an absorption cycle.

For aqua ammonia systems (Figure 5.4) two additional components-analyzer and rectifier-are used in addition to the generator, absorber, condenser, evaporator and heat

FIGURE 5.4 Aqua ammonia absorption cycle with analyzer and rectifier.
exchanger(s). Both the analyzer and the rectifier are used to remove water vapours from the ammonia going to the evaporator. When ammonia is evaporated in the generator, some water is also vaporized and tends to flow into the condenser along with the refrigerant. The analyzer and rectifier are added to the system to separate the water vapours leaving the generator so as to send dry ammonia to the condenser.

Analyzer

The analyzer may be built as an integral part of the generator or as a separate equipment. Both the strong aqua from the absorber and the returning aqua from the rectifier are introduced from the top and these flow downward into the generator. In this way the escaping water vapour is cooled by the incoming solution and most of the vapour is condensed. As the aqua is heated by the vapour, less heat is required in the generator, thus effecting economy.

Rectifier

The purpose of a rectifier is to cool further the vapour leaving the analyzer so that the residual vapour is condensed, leaving the dehydrated ammonia vapour to flow into the condenser. The rectifier is generally water-cooled and may be similar in construction to conventional watercooled condensers. Temperatures of 40 to $50^{\circ} \mathrm{C}$ will usually dehydrate ammonia sufficiently.

Figure 5.5 shows an aqua ammonia absorption cycle-complete with the basic components and all the auxiliaries including two heat exchangers.

FIGURE 5.5 Absorption cycle with auxiliaries and two heat exchangers.

One of the promising areas of development is the exploitation of solar energy for absorption cycles. Solar collectors can be used to heat water and in turn supply the stored energy in the generator. Figure 5.6 shows a schematic layout of a solar-powered absorption cycle.

FIGURE 5.6 Solar powered absorption cycle.

5.3 PROPERTIES OF REFRIGERANTS AND ABSORBENTS

The properties of refrigerants were discussed in Chapter 4. Here the desirable properties of absorbent and refrigerant-absorbent combinations will be discussed.

Absorbents

One of the important properties of an absorbent is that it should have a greater affinity for the refrigerant than the ordinary law of solubility would indicate. It should have negligible vapour pressure at generator temperature compared to the refrigerant. The absorbent should be stable and capable of withstanding the heating operation at the maximum temperatures encountered in the generator. It should remain liquid throughout the cycle and should have low specific heat, low surface tension and low viscosity. Lithium bromide (LiBr) is'a highly hygroscopic salt with great affinity for water. Similarly, ammonia is highly soluble in water, but the solubility decreases with temperature rise.

Refrigerant-absorbent combinations

The desirable refrigerant-absorbent combination should be highly soluble at conditions in the absorber but should have low solubility at conditions in the generator. The combination must not have non-reversible chemical reaction in the operating temperature range. The two substances should have a large difference in their normal boiling points, as high as around $200^{\circ} \mathrm{C}$, so that the absorbent exerts negligible vapour pressure at the generator temperature. The viscosity should be low to minimize pump work. The lithium bromide-water system is operated under high vacuum that necessitates the use of a purge unit to remove air and non-condensable gases. For these systems, the temperature needed to be maintained in the generator should be less than $120^{\circ} \mathrm{C}$ to avoid corrosion. In the case of ammonia-water system, the difference in their boiling temperatures is relatively $\operatorname{low}\left(138^{\circ} \mathrm{C}\right)$ resulting in the evaporation of some water vapour that is carried away by the refrigerant, i.e. ammonia.

Although ammonia-water and lithium bromide-water are the most popular combinations, other combinations have been tried such as methylene chloride and dimethoxy tetraethylene glycol. In the lithium bromide-water system, water being the refrigerant it cannot be used in a low-temperature application because water will freeze at $0^{\circ} \mathrm{C}$. Consequently, its use is limited to air-conditioning applications only.

5.4 COMPARISON OF VAPOUR COMPRESSION AND ABSORPTION CYCLES

The major differences between the two cycles are as follows:

1. Unlike the vapour compression cycle, the vapour absorption cycle is a heat-operated cycle. The need for electric power is only to operate a pump, which is a small fraction of the power needed to drive the compressor in a vapour compression cycle. Use of direct low grade heat compared to electric power, which is high grade energy, is inherently economical.
2. The vapour compression cycle transforms the low-pressure vapour to high-pressure vapour by a compressor, whereas in the absorption cycle the same is accomplished by a generator, an absorber and a pump.
3. In an absorption system the only moving part is the pump, and that too is of small capacity. Hence, essentially the operation of such a system is very quiet and noise-frec. For the same reason, the wear and tear is also minimal resulting in a longer life span compared to that of a vapour compression system.
4. The absorption units generally take up more space than that required by the compression systems; however, the equipment can be located outdoors and assembled as a vertical unit.
5. Absorption cycles are almost as efficient at part load as at full load. Load fluctuations are taken care of by controlling the quantity of the liquid solution and the quantity of steam supplied to the generator.

5.5 ABSORPTION CYCLE ANALYSIS

In order to perform thermal calculations on the absorption refrigeration cycle, in addition to temperature-pressure-concentration diagram for lithium bromide-water solutions, the enthalpy data must be available for the working substances at all important points of the cycle.

Neglecting the pump work the coefficient of performance of the absorption cycle COP $\mathrm{Cbs}_{\mathrm{ab}}$ is defined as

$$
\begin{equation*}
\mathrm{COP}_{\mathrm{abs}}=\frac{\text { rate of refrigeration }}{\text { rate of heat supply to the generator }} \tag{5.1}
\end{equation*}
$$

and considering pump work, the $\mathrm{COP}_{\text {abs }}$ becomes

$$
\begin{equation*}
\mathrm{COP}_{\mathrm{abs}}=\frac{\mathrm{RE}}{Q+W_{P}} \tag{5.2}
\end{equation*}
$$

where Q is the heat supplied to the generator and W_{P} is the pump work.
The COP of an absorption cycle is usually less than 1 compared to 3 and above for the vapour compression cycle, however, the absorption cycle being a heat-operated one, the cost of energy input is considerably less (approximately one-third) than that in a work-operated compression cycle. Absorption cycles become economic when waste steam is available for the operation of the system.

Heat balances across the main components, i.e. the condenser, the evaporator, the generator and the absorber are fairly straightforward and the same have been explained in the worked-out examples.

Vapour absorption cycle calculation

Basically in the calculation of performance of a vapour absorption cycle, two charts need to be used-(a) the equilibrium chart for aqueous lithium bromide solutions (Figure B3, Appendix B) and (b) the enthalpy-concentration diagram for lithium bromide-water solutions (Figure B4, Appendix B). With the known solution and refrigerant temperatures the corresponding refrigerant concentration (percentage) in the mixture can be obtained from the equilibrium chart for aqueous lithium bromide solutions. Then with the known refrigerant concentration (mass percentage) and solution temperature we can get the enthalpy of the solution from the concentration diagram for lithium bromide-water solutions.

As regards the enthalpy values of water, the same can be obtained from the Table of saturated water.

Commercial absorption units

In commercial absorption plants, the condenser and generator are combined into one vessel since these components operate at the same pressure. Similarly, since the evaporator and the absorber operate at the same pressure, these components may also be combined into one vessel with an internal separator between the high- and low-pressure chambers.

Cooling water from the cooling tower passes in series through the absorber and condenser, extracting heat from both the components.

5.6 OPERATION OF ABSORPTION CYCLES

For the efficient operation of a water-lithium bromide cycle, crystallization of lithium bromide needs to be avoided. Crystallization results in the formation of a slush, which can block the flow in a pipe, and interrupt the operation of the absorption unit.

With the reduction in refrigeration load capacity, control is necessary to avoid freezing of refrigerant water. The three common methods used are:
(a) Reducing the refrigerant water solution flow rate by the pump
(b) Reducing the generator temperature
(c) Increasing the condensing temperature.

EXAMPLE 5.1

The operating temperatures of a lithium bromide-water absorption system, as shown in Figure 5.7, are as follows:

Generator	$100^{\circ} \mathrm{C}$
Condenser	$35^{\circ} \mathrm{C}$
Evaporator	$5^{\circ} \mathrm{C}$
Absorber	$30^{\circ} \mathrm{C}$

FIGURE 5.7 Example 5.1: Lithium bromide-water absorption system.
The mass flow rate delivered by the aqua pump is $0.4 \mathrm{~kg} / \mathrm{s}$. Calculate:
(a) The heat supplied to the generator
(b) The heat rejected at the condenser and absorber
(c) The cooling produced by the evaporator
(d) The coefficient of performance of the cycle.

Solution

Total mass flow balance:

Lithium bromide balance:

$$
\dot{m}_{3}=\dot{m}_{4}+\dot{m}_{5}=0.4 \mathrm{~kg} / \mathrm{s}
$$

$$
\begin{aligned}
& \dot{m}_{3} x_{3}=\dot{m}_{4} x_{4} \quad \text { or } \quad 0.4 \times 0.53=\dot{m}_{4} \times 0.69 \\
& \therefore \quad \dot{m}_{4}=0.307 \mathrm{~kg} / \mathrm{s} \\
& \text { and } \\
& \dot{m}_{5}=\dot{m}_{3}-\dot{m}_{4}=0.4-0.307=0.093=\dot{m}_{1}=\dot{m}_{2}
\end{aligned}
$$

where x_{3} and x_{4} are the concentrations of lithium bromide in the solution and calculated from the equilibrium chart (Figure 5.8) for the aequeous lithium bromide solution as follows:
(i) For $30^{\circ} \mathrm{C}$ absorber temperature and $5^{\circ} \mathrm{C}$ evaporator temperature, $x_{3}=0.53$
(ii) For $100^{\circ} \mathrm{C}$ generator temperature and $35^{\circ} \mathrm{C}$ condenser temperature, $x_{4}=0.69$

FIGURE 5.8 Example 5.1: chart.
From the enthalphy of lithium bromide-water solution chart:

$$
\begin{aligned}
& h_{3}=h \text { at } 30^{\circ} \mathrm{C} \quad \text { and } \quad x=0.53=65 \mathrm{~kJ} / \mathrm{kg} \\
& h_{4}=h \text { at } 100^{\circ} \mathrm{C}, \quad x=0.69=275 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Enthalpies of water and liquid vapour are:

$$
\begin{aligned}
& h_{5}=h_{100^{\circ} \mathrm{C}}=h_{g}=2676 \mathrm{~kJ} / \mathrm{kg} \\
& h_{1}=h_{35^{\circ} \mathrm{C}}=h_{f}=146.68 \mathrm{~kJ} / \mathrm{kg} \\
& h_{2}=h_{5^{\circ} \mathrm{C}}=h_{g}=2510.6 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

(a) Heat transfer rate to the generator:

$$
\begin{aligned}
Q_{g} & =\dot{m}_{5} h_{\mathrm{S}}+\dot{m}_{4} h_{4}-\dot{m}_{3} h_{3} \\
& =0.093(2676)+0.307(275)-0.4(65) \\
& =248.8+84.42-26 \\
& =307.22 \mathrm{~kW}
\end{aligned}
$$

(b) Heat transfer rate from the condenser

$$
\begin{aligned}
Q_{c} & =\dot{m}_{5} h_{5}-\dot{m}_{1} h_{1} \\
& =0.093 \times 2676-0.093 \times 146.68=248.87-13.64=235.23 \mathrm{~kW}
\end{aligned}
$$

Heat transfer rate from the absorber:

$$
\begin{aligned}
Q_{a} & =\dot{m}_{4} h_{4}+\dot{m}_{2} h_{2}-\dot{m}_{3} h_{3} \\
& =0.307 \times 275+0.093 \times 2510.6-0.4 \times 65 \\
& =84.43+233.48-26 \\
& =291.91 \mathrm{~kW}
\end{aligned}
$$

(c) Heat transfer rate to the evaporator:

$$
\begin{aligned}
Q_{\varepsilon} & =\dot{m}_{2} h_{2}-\dot{m}_{1} h_{1} \\
& =0.093 \times 2510.6-0.093 \times 146.68 \\
& =233.48-13.64=219.84 \mathrm{~kW}
\end{aligned}
$$

(d) Coefficient of performance:

$$
\begin{aligned}
\mathrm{COP} & =\frac{219.84}{307.22} \\
& =0.715
\end{aligned}
$$

EXAMPLE 5.2

A lithium bromide-water absorption system incorporating a heat exchanger, as shown in Figure 5.9 , operates at the following temperatures:

Generator temperature	$=100^{\circ} \mathrm{C}$
Condenser temperature	$=36^{\circ} \mathrm{C}$
Absorber temperature	$=28^{\circ} \mathrm{C}$
Evaporator temperature	$=10^{\circ} \mathrm{C}$
Mass flow rate delivered	$=0.55 \mathrm{~kg} / \mathrm{s}$
Solution temperature bentering the	$=50^{\circ} \mathrm{C}$

entering the generator

FIGURE 5.9 Example 5.2: Lithium bromide-water absorption system.

Calculate:

(a) The rates of heat transfer to or from the generator, the condenser, the evaporator, and the absorber
(b) The coefficient of performance of the cycle.

Solution

Here,

$$
\dot{m}_{1}=\dot{m}_{2}=0.55 \mathrm{~kg} / \mathrm{s}
$$

Total mass flow balance about the generator:

$$
\dot{m}_{2}=\dot{m}_{3}+\dot{m}_{5}=\dot{m}_{1}=0.55 \mathrm{~kg} / \mathrm{s}
$$

From the equilibrium chart (Figure 5.10) for the aqueous lithium bromide solution:

FIGURE 5.10 Example 5.2: chart.

For $28^{\circ} \mathrm{C}$ absorber temperature and $10^{\circ} \mathrm{C}$ evaporator temperature, $x_{2}=0.48$
For $100^{\circ} \mathrm{C}$ generator temperature and $36^{\circ} \mathrm{C}$ condenser temperature, $x_{3}=0.68$
Lithium bromide balance:

$$
\dot{m}_{2} x_{2}=\dot{m}_{3} x_{3} \quad \text { or } \quad 0.55 \times 0.48 \stackrel{\because}{=} \dot{m}_{3} \times 0.68
$$

$\therefore \quad \dot{m}_{3}=0.388 \mathrm{~kg} / \mathrm{s}=\dot{m}_{4}$
and

$$
\dot{m}_{5}=\dot{m}_{6}=\dot{m}_{7}=0.55-0.388=0.162 \mathrm{~kg} / \mathrm{s}
$$

From the enthalphy of lithium bromide-water solution chart:

$$
\begin{aligned}
h_{1}= & 51 \mathrm{~kJ} / \mathrm{kg}\left(h \text { at } 28^{\circ} \mathrm{C}, x=0.48\right) \text { from the enthalpy concentration diagram for lithium } \\
& \text { bromide-water solutions } \\
h_{3}= & 275 \mathrm{~kJ} / \mathrm{kg}\left(h \text { at } 100^{\circ} \mathrm{C}, x=0.68\right)
\end{aligned}
$$

Enthalpies of water and liquid vapour are:

$$
\begin{aligned}
& h_{5}=h_{1000^{\circ}}=h_{g}=2676 \mathrm{~kJ} / \mathrm{kg} \\
& h_{6}=h_{36^{\circ} \mathrm{C}}=h_{f}=150.86 \mathrm{~kJ} / \mathrm{kg} \\
& h_{7}=h_{10^{\circ} \mathrm{C}}=h_{g}=2519.8 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Heat transfer rate from the condenser:

$$
\begin{aligned}
Q_{c} & =\dot{m}_{5} h_{5}-\dot{m}_{6} h_{6} \\
& =0.162 \times 2676-0.162 \times 150.86 \\
& =433.51-24.44 \\
& =409.07 \mathrm{~kW}
\end{aligned}
$$

Heat transfer rate to the evaporator:

$$
\begin{aligned}
Q_{e} & =\dot{m}_{7} h_{7}-\dot{m}_{6} h_{6} \\
& =0.162 \times 2519.8-0.162 \times 150.86 \\
& =408.2-24.44=383.76 \mathrm{~kW}
\end{aligned}
$$

The temperature of 48% solution leaving the heat exchanger at 2 is $50^{\circ} \mathrm{C}$. From the enthalpy concentration diagram, $h_{2}=101 \mathrm{~kJ} / \mathrm{kg}$.

$$
\begin{aligned}
& \left.\begin{array}{rl}
Q_{\text {hest exchanger }}= & \dot{m}_{1}\left(h_{2}-h_{1}\right) \\
= & 0.55(101-51)=28.05 \mathrm{~kW} \\
\text { or } & \\
\therefore \quad &
\end{array}\right) .05=\dot{m}_{3}\left(h_{3}-h_{4}\right)=0.388 \\
& \\
& h_{4}=202.71 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

or

From the chart, 68% solution with an enthalpy of $202.71 \mathrm{~kJ} / \mathrm{kg}$ has a temperature of $58^{\circ} \mathrm{C}$.
Heat transfer rate to the generator:

$$
\begin{aligned}
Q_{g} & =\dot{m}_{5} h_{5}+\dot{m}_{3} h_{3}-\dot{m}_{2} h_{2} \\
& =0.162 \times 2676+0.388 \times 275-0.55 \times 101 \\
& =433.51+106.70-55.55 \\
& =484.66 \mathrm{~kW}
\end{aligned}
$$

Heat transfer rate from the absorber:

$$
\begin{aligned}
Q_{a} & =\dot{m}_{7} h_{7}+\dot{m}_{4} h_{4}-\dot{m}_{1} h_{1} \\
& =0.162 \times 2519.8+0.388 \times 202.71-0.55 \times 51 \\
& =408.2+78.65-28.05 \\
& =458.8 \mathrm{~kW}
\end{aligned}
$$

Coefficient of performance,

$$
\begin{aligned}
\mathrm{COP} & =\frac{383.76}{484.66} \\
& =0.792
\end{aligned}
$$

EXAMPLE 5.3

In the planning stage for a cooling project, two options were considered: (a) vapour compression system and (b) vapour absorption system. The cost of fuel on a heating value basis is Rs 0.5 per mega joule. The COP and the relevant efficiencies for the two systems are tabulated below. At what cost of electricity would the operating cost for both the cycles be equal? Assume 100% steam cycle efficiency.

Vapour compression	Vapour absorption
$C O P=3.2$	$C O P=0.75$
Motor efficiency, $\eta_{m}=85 \%$	Boiler efficiency, $\eta_{b}=80 \%$

Solution

Per kWh of refrigeration:
Input to absorption machine from steam $=\left(\frac{1}{0.75}\right) \mathrm{kWh}$
Input to steam from boiler $=\frac{1}{0.75} \times \frac{1}{\eta_{s}}$, where $\eta_{s}(=100 \%)$ is the steam cycle efficiency
Input to boiler from gas $=\frac{1}{0.75} \times \frac{1}{\eta_{s}} \times \frac{1}{0.8}=\frac{1.667}{\eta_{s}}=\frac{1.667}{1}=1.667 \mathrm{kWh}$
$1 \mathrm{kWh}=3600 \mathrm{~kJ}=3.6 \mathrm{MJ}$
Cost of gas $=0.5 \times 3.6 \times 1.667=$ Rs 3
Input to vapour compression machine from motor $=\left(\frac{1}{3.2}\right) \mathrm{kWh}$
Input to motor from electricity $=\frac{1}{3.2} \times \frac{1}{0.85}=0.368 \mathrm{kWh}$
\therefore Cost of 0.368 kWh of electricity is to be Rs 3
$\therefore \quad$ Cost of 1 kWh of electricity can be $\frac{3}{0.368}=$ Rs 8.15

BIBLIOGRAPHY

American Society of Heating, Refrigeration and Air Conditioning Engineers, ASHRAE Handbook of Refrigeration, 1998.
Cengel, Y.A. and M.A. Boles, Thermodynamics: An Engineering Approach, 4th ed., McGraw-Hill, 2002.

Moran, M.J. and H.N. Shapiro, Fundamentals of Engineering Thermodynamics, 3rd ed., Wiley, New York, 1995.
Stoecker, W.F. and J.W. Jones, Refrigeration and Air Conditioning, McGraw-Hill, New York, 1982.

REVIEW EXERCISES

5.1 Name any two combinations of refrigerant-absorbent and their applications. Which combination is used in the air-conditioning application? Give reasons in support of your answer.
5.2 Why are analyzer and rectifier employed in the ammonia-water absorption system but not in a lithium bromide-water system?
5.3 What are the desirable characteristics of absorbent and the absorbent-refrigerant combinations in a vapour absorption refrigeration cycle?
5.4 What is the role of a heat exchanger in a vapour absorption cycle? Draw a schematic diagram of an absorption cycle with heat exchanger and explain how it improves the operational efficiency?
5.5 The operating temperatures of a lithium bromide-water absorption system, as shown in Figure 5.1, are as follows:

Generator	$100^{\circ} \mathrm{C}$
Condenser	$35^{\circ} \mathrm{C}$
Evaporator	$10^{\circ} \mathrm{C}$
Absorber	$30^{\circ} \mathrm{C}$

The mass flow rate delivered by the aqua pump is $0.5 \mathrm{~kg} / \mathrm{s}$. Calculate:
(a) The heat supplied to the generator
(b) The heat rejected at the condenser and absorber
(c) The cooling produced by the evaporator
(d) The coefficient of performance of the cycle.
5.6 A lithium bromide-water absorption system incorporating a heat exchanger, as shown in Figure 5.3, operates at the following temperatures:

$$
\begin{array}{ll}
\text { Generator temperature } & =100^{\circ} \mathrm{C} \\
\text { Condenser temperature } & =36^{\circ} \mathrm{C} \\
\text { Absorber temperature } & =28^{\circ} \mathrm{C} \\
\text { Evaporator temperature } & =10^{\circ} \mathrm{C} \\
\text { Mass flow rate delivered by the pump } & =0.65 \mathrm{~kg} / \mathrm{s} \\
\text { Solution temperature entering the generator } & =52^{\circ} \mathrm{C}
\end{array}
$$

Calculate:
(a) The rates of heat transfer to or from the generator, the condenser, the evaporator, and the absorber
(b) The coefficient of performance of the cycle.

1. $T=\Sigma_{q}^{3} n_{e} X+T^{*} \Sigma_{o}^{3} A_{2} X^{n}$ Soletion temp, ${ }^{\circ} \mathrm{C}$
2. $T^{+}=\left(T-\Sigma_{o}^{1} B_{s} X^{*}{ }_{y} \Sigma_{e}^{\prime} A_{s} X^{*}\right.$ Refrigerant temp, ${ }^{\circ} \mathrm{C}$ 3. $\log P=C+D T^{*}+E T^{2}, \quad P=\mathrm{kPa} ; \quad T^{\prime}=\mathrm{K}$ 4. $T^{\prime}=\frac{-2 E}{D+\left[D^{2}-4 E(C-\log D)\right]^{0.5}}$
$A_{0}=2.00755 \quad B_{0}=124.937$
$\mathrm{C}=-1596.49$
$\mathrm{E}=-104095.5$
Saturation pressure (P), kPa
Reprinted by permission from ASHRAE, 1997 (page 19.85).

FIGURE B4 Enthalpy-concentration diagram for water/lithium bromide solutions.
Reprinted by permission from ASHRAE, 1997 (page 19.84).

of tericersit io the fou ormet

ExERCIESS

1. Define the terns refoigeration, reffigorant nod refoigerating oquipment
2. White a mor notr me the syupent of retojeratios,
3. Briefly espluie the applestions of a vefriguation şaem
4. Buplian the warkiyg of ise nefflgeration with the help of a ample schernatio diagran. Wher ire in drastrocis?

5. Whas do yoe undersuand by relrigeration by exgatsian of airt In which tycle it thic soncept ised
6. Euplain the woriise of a vopour compression refrigeration syakm with de insb of a aea Skeith Name iant of the sommon reffigerants used in this rysem

7. Explain the concep of liguid IIS sefriguntion wilh the help of a diagran. Whore is such refiferaion tased in practice?
8. Descrite die various neitods of refrigeration

Aîr Refrigeration Systems

3.1 TNTRODUCTIOM

 Deviars that prodece refigention ellodt are celled refriperwars (or hern pernps) and the cyctes on which hey operate are callod rofrigeraine eydes. Tho varives refrigetioios cytlet aresemensof Canct cycle, Bell-Celemaral air refrigaration gisls, vypour tompresion relíigralim cyek, eth. Air sefrigentian cyclav ane dralk wish in this chapper.

3.2 DEFRMTIOR

 lowered asd hom mairmined at that low teriperioue ctompared to that of the smourdings. i.e. it is a pleramerge by virtue of Naill ane asduced the trmpeatare of a oonfasd spece compared with thet of the susousainge.

The doviee tesed so pasduce coll or refligeration affect is callod a reftigeration javiett or roffyershor. The basic componeatil of a relrigeration sytem are evapocasor, conpresser, eondenser ind expemion wive. In addion to bese, flre ray be a refogenser scoumalano, semperature coetrollet, ele. The refrigerast is a working nbbiance, waich checiates though the uffiperabiot systen dering is uperation

 सfermod in large air-conditisting sysiens. Air is the nefriperant in ai-vefrigeration tycles.

Unt of retrigeration or rating for robligeration

The definixims of refrigention iafirates that refrigerntion is noting bat the rase of removal ef her. The St usit of heat in joule, the time men of utich is was. The orit of nffrigration effort is uatt ' W] or kilowas (\mathbf{k} W).

The standand usit of sefiggeration is con of refigeration or simely wo descosil by be ryatiol

 of ise at $0^{\circ} \mathrm{C}=144$ Brath

$$
\begin{aligned}
1 \mathrm{TK} & =\frac{1 \times 2000 \mathrm{~B} \times 144 \mathrm{~B}+\mathrm{hl}}{24 \mathrm{~h}} \\
& =12.000 \mathrm{Btah}=200 \mathrm{Bta} / \mathrm{min} \\
1 \mathrm{mR} & =1.055 \mathrm{kI} \\
1 \mathrm{TR} & =211 \mathrm{~kJ} / \mathrm{min} \\
& =3516 \mathrm{~kW}
\end{aligned}
$$

In the atove definition of 1 TR, ate tm equals 2000 b insaled of 2240 th as por the

3.3 REFRIGERATIOT LOAD

The refrigatation effet er cooling effett is prodeced in a refrigeration cycle by He reffigerating equipuant. The average rale at paich trat is removel from the coll space by the oguiporeai is lapan es the cooling bod. It it espuessed in kw ee TR as alasd atove.

The cooling losd ob refrigeratigg equipmest resilts foom several different soartas. Sone of the conasun soubces of heat that cortribate to the cooling loed on the atfogerativg equipment are as follous

1. ligeras of leat into the refrigerated space from ousite by condaction alruagh the itaslated ualls.

 or drough tracks aroual windows and doors.
2. Ileas erithed by wamn products whene temperatus is to be lonered to the sefirigeraied space teaperatars.
3. Heat entiurd by people ocrupying fie refrigecatad space. For cearyple, poople prevem in an air-sonditiseed ppast or as people woting in the sold songes dering loeding
and unlondit the goods and unloudiat the zoods
4. Hest enithed by any heat poacrating equipnent intialled in the tefrigenisd spoos sich as langs, mowors, thentronic devits, ets.
It is to be moted here that all llese seures of heat are soc pievent is every application. The

This oopic it dacussed in mort detail an thls chapter.

3.4 HEATING LOAD

In thase itgiors utrere the atnospateric temperaunt falls cossiterably foelow $10^{\circ} \mathrm{C}$, especially daring winvers, beating is aceded to keep the noons wam. The rabe of hean to be sepplied to suth a conditioned igace is lnorn as heating loss. In Wentem coumentes, the toeses ane facilived widh solar heating sywnes.
3.6 GOHGEYT OF HEST ENONE, REFRIGERATOR ABD NEA FUNP It in a weil-known fuer Dan heat Inws in the direction of docreasitg temperatire, ie. hon a figh tomperatire body wi a tow temperative body Such heat transer cecues in ratar mithat agh
extemal sid or deviot.

Hoest onyưo

 from a duyft resenvir ast comverss aff the hatil into pogaf work. This mests thet the has
 woik. This is shown in Figoes 3.1. It whes hest at ute rane of Q_{1} from the heal sotres and geserobes the work at be rate of Wy udile rejecting beat at the rate of Q_{2} to the leat sirce The peformber of a trat eigine is haowa is 'themal effiviensy' of "Camot efficiery' ard in mohernxiculy raposented as

Revene hazal mareler, i.e, firm a body at low temperatere to a body at high veaperinue, is possibile asly with a special dovice callied reftesersuor.

Powrigaraior

 Refrigerioes are eyefic devices haring wolkige subtances eallod refrigernets tued in relfigzation cyelos. Tw working priaciphe of tiv refrigocatoc (R) is shown in Fiquee 3.2

Here Q_{7} is the anount of hast neocved from the cold npose at wropectione T_{1}, Q_{1} is the
 sefrigeatoc.
 performaice of a devise aems ith alility to comy sut the suggred task.
 outped is alosys less that the iapat. The oatput and iepat çastities cee taken in the same mith.

Flore 22 A retigeatac.
Confficiant of Perforsiance (COP)
The abjective of the retoigernor is to rempe heat $\left(O_{3}\right)$ from a closod spuce. To meromplifh this, in reede W_{m} at wotk inpet. Thesefors, COP of a refrigeramer is:

Bat

$$
\begin{align*}
& \text { COP }_{2}=\frac{\text { Deribodeffat }}{\text { Requirs! irpui }}=\frac{\partial_{1}}{W_{m}} \tag{3.1}\\
& \bar{W}_{E x}=Q_{1}=\underline{Q}_{4} \\
& C O P_{E}=\frac{a_{2}}{a_{1}-a_{2}}+\frac{1}{\left(a_{1} \sqrt{a_{2}}\right)-1} \tag{52}
\end{align*}
$$

The COP may be gieaker that one in many cariel

Hast nump

A beal purn (Hir) trarsfen leal Irom a low lempernave gace bu a Hipher nemperatun space The objocive of a heat panp in to sopaly heak Q. 10 warm a apase as shows in Figare 3.3. The COP of a heat pury is expectsed as the rath of heat supplied $\left(Q_{1}\right)$ to the work inpe (Wen) Mehemutially,

Fleteis Ahaidpary

Ar Anghouretion Jutres

$$
\begin{equation*}
\mathrm{COP}_{\mathrm{w}}=\frac{\text { Defires eflest }}{\text { Workirpet }}=\frac{\text { Heasing effect }}{\text { Work. iapui }}=\frac{O_{1}}{W_{\text {ext }}} \tag{2.3}
\end{equation*}
$$

Comparing Eqs. (3.2) ard (33).

$$
\begin{equation*}
C O P_{m}=C O P_{\mathrm{B}}+1 \tag{3,A}
\end{equation*}
$$

 and ohtr derion, and COP_{17} miry drop betow one when the ousile ivr irroperanues is too lirw.

3.8 AIK REFRIGIRATION SYBTERSS

Air it tiedi as a refriperint (morking nodia) in air mfrigeratien sperma, Air abports heat foom the lav tarpenatert ipase and tejecu how to the ligh Ioropecatare samondings whie
 propess. Therelort, the leat carryias papcity ger uail mase of air is vary imall in conpuriann 0 that of a refrigmast of a vapour comptrssion retileration sycte. To pbtain y required
 sompresior, heat eachinger and expersian device. In ta arcraft ferrmad air is arailabla ind

3.1 Carnot Fieirigaralos

The Carace refogeraige system worls en neversed Carnot oyele. It is oaly a thogretisal iystem in itt concepiloa hat senes as an ideal cycle cever to be actirved in redity. The $p-v$ and $T-4$ liagom of reversed Coract cycle usisg'air an a weelirg modian are thawa in Figue 3.4.

The follpuing frucesses we imagind to tale place in a rexipocathg corrovesion:
Fiscess ($1-2$) nversible adiobetic compersion process; Ale is tompressed fron initial

thip-vidugan

(1) T-1 tagwen

Flow is Reversd Crrat chel.

Procrs ($2 \mathbf{2}-3$ insthmmat compeesiloa proctes Air is compresed hodienally till its prevare rims from ρ_{2} to Ds_{2}. In hasiumad that at point 2, a body ac termperabure F_{2} in booght in pariact wib cylinder. Hean Q_{3} is sejestes st constast temperatare $\bar{\gamma}_{2}$ daring ivohernal cumpussian. The pituon is asimed to rowes at dood show spead,

Process $(3-4)$ reversille allialatic erpansion preceas: Reversible adiabatie exparsion of ar is the clearase wolane tales plase till ins peisure and volume change from p_{3} and n_{1} on To and v_{4} furig which the terpermare folls $10 T_{4}$, The pirnoe is absumed bu move at a great 1pecil

Process (4-1) bochermad inpossion process: Air (rom pis asd v_{4} txpand incthervally
 I_{1} is boogle in cotsact wih the cylonder, leat as aboorbod by the air. To astinfy the isoclemmat lral abvaptian at coestind lempcranse, the pistion has to move as a dead tow apeed. The heal Q_{1} is aboerbed daring the procies. The air aturns the oofigial stine on oonpleting the cycle.
 movrithe ejcic.

The heat absertad from cold body of bongeraturt T_{K} (folfigaraion effer0)

$$
\begin{aligned}
Q & =\operatorname{sed}(1-4-5-6) \text { m } T-8 \text { digram } \\
& =T_{1}\left(x_{1}-x_{4}\right)_{1} \text { in } k M k g
\end{aligned}
$$

Werk bone duing tie tyrle

$$
\begin{aligned}
W & =\text { area }\{1-2-3-4) \text { on } T-5 \text { diggran } \\
& =\left(T_{2}-T_{1} M\left(T_{1}-i_{2}\right)\right. \text { in kling }
\end{aligned}
$$

Coctricient of performase of Carmot rehigeralor.

$$
\begin{align*}
\text { COP }_{2} & =\frac{\text { Reltigeration effect } g_{2}}{\text { Nes mork done } W} \\
& =\frac{T_{1}\left(t_{1}-s_{1}\right)}{\left(T_{2}-T_{1}\right)\left(s_{1}-I_{4}\right)} \\
& =\frac{T_{1}}{\tau_{1}-T_{1}} \tag{3.5}\\
& =\frac{1}{\left(T_{2} / T_{1}\right)-1}
\end{align*}
$$

De COP of heat perrip uodking os asverned Camat cyele,

$$
\begin{aligned}
\text { COP }_{\text {at }} & =\frac{\text { Uieful effect }}{\text { Wotk inpot }} \\
& =\frac{\text { Hest rejechad } Q_{2}}{\text { Wock inpul W }}
\end{aligned}
$$

$$
\begin{align*}
Q_{2} & =h_{\text {rea }}(0-2-3-5) \\
C O P_{11} & =\frac{T_{1}\left(x_{1}-x_{4}\right)}{\left(T_{2}-T_{1}\right)\left(J_{1}-x_{4}\right)} \tag{3,7}\\
& =\frac{T_{1}}{T_{1}-T_{1}} \tag{3.8}\\
& =\frac{1}{1-\left(J_{1} / T_{2}\right)}
\end{align*}
$$

 ast depend upon the worling witsaace (retrigeram) used.

The teversed Cunst cyele may be employed for coolint of heaing paposes. For cooling, lat T_{1} te the refripration turperatare and T_{2} be toe sumonding temperatare. If we satestiture $J_{1}=0$ (olvoluse aero), the miniman posible iefrigeration temperuase, in E_{7} (3.6) then COF $_{k}=0$. The upper Irrit vo veliferation temperatuse is $7_{1}=T_{2}$, ie when the refrigeration
 Cumet COP fee cosling varies belween 0 and ω_{2}

From Eq. B.5.i, is in clear that the Carmat COP for leving variss belvern 1 and $=$. Also,
(6) $t=$ tefrigorion tempernture T_{1} should be as like ta possible, and
(i) the sumpuing tempentare T_{3} shoult be as low an posible.

Thes two poirts ane applicable to all telfigerating machinss, whether theoretioal of pristical A maboasidmation peveals that the refrigeration ana sumfonding tempenture cannal fo varimil at war will.
 the tampeconse of the sitbstace is the sefrigurial quacs to the coolst. Fer example, if the tempersure of the sefrigerimed ipoce would be cay $-5^{\circ} \mathrm{C}$ then the astat refrigerat tempersoure woils be tess bas $-10^{\circ} \mathrm{C}$. This ciftetener in trepersaut will be the tase to decide the evapereor size lor the reppired rate of cooling.

The eflect of reisigg the refrigeration lemperatere of the Camot COP for the fixod smouratiges tenqersuve $47^{\circ} \mathrm{C}$ is shown in Figure 3.5.

 if the triferaiano of the anzilsble coeliag modim lise water or air for beat fejection is lover,

EXAMLPLE 3.1 A sefrigeration sysien operates on reversal Corrol sycle tervetn te
 (b) the lesil refriad froas the wyem per hour, sad (k) the pawer requined. Sivhtiav:

$$
\begin{align*}
\mathrm{COP}_{5} & =\frac{J_{1}}{J_{2}-T_{1}} \\
& =\frac{273-23}{(273+49)-(273-23)}=\frac{251}{318-250}=3.67 \quad \text { Ans. }
\end{align*}
$$

A) Also,

$$
\text { COP }_{\mathrm{I}}=\frac{\text { Refriperaliegeffect }}{\text { Workippt }}
$$

n
Wark isput $=\frac{10 \times 211 \times 60}{3.67}=34,392 \mathrm{kn}$
Hear tejeried $=$ rethigewing effoct per hour + wat imput per hrur

$$
=(10 \times 211 \times 60)+34,332
$$

- 160.932 k Lh
(c)

$$
\text { Pever in } \mathrm{kW}=\frac{34392}{3600}=9.536 \mathrm{~kW}
$$

 korperaurt of golt ind (k) the heat riferidd in klinia. Also caloulse its heat remowal ealo end COF uter this device is used an a heat pury.

Solution: $T_{1}=273-23=250 \mathrm{~K}$
(a$)$ Fer reftgeriar:

$$
\mathrm{COP}_{\mathrm{R}}=\frac{\text { Refrigeraing effect }}{\text { Wrok dme }}
$$

20.2 Limitotions of Reverved Cannot Cycls

 adiabvic sompression (1-2) inolernital cemprasion (2-3), revershle adiabatic expansisa (3-1) and ionthrmal exponsion process (4-1).

Derige the teversitle aliatufic compresion process ($1-2$) , the pigon is syposed to move Yeny fat and for tho isothernat compression procest, the piaven has to mave as a very shou speed, It meass than he pistan has to mone at very high speod in the ficx pan of ias comprosion suidie ond for the remaining jort of the strale, it has to move af very slow speed, which are baib prorically imposibite situtions.

Daring the inothernal grocess, it in asaumed that a hat or cold imaginary body is turoughe it etertaet with ayfinder wills so thet teat exchonge between the sywem and the sumoundiag takes plose. This is also mef practical.

The inlarmal and exnemal frecion is ascumed nagigitie in cyele processes, waich is nat a osrrect assempion. Tar wokling sebognce is the ideal gas. Is prectice there is no woeking reossosee that behoves as ae idett gas. Therefore, the reversod Camet cycte is at ideal cyoie Whick gives the upper limit of the COP for a pertienlar vefrigeraiion syitem.

In 2 practizal refrigeration cyelo working ot air as a refrigerint, the constant pressure hea;
 reversed Cornot rycle.

3.5.3 Biscificed Reversed Carnot Cyele

The reversed Canot cycle with perfers gas as walking faid is the mant affisient eycle. The T-s diagram of such a cycie is a rectangulat one as shown Figure 3.7 .

If air was used as a nffigerial, this cpale would appear like the sne shown in Figue 1.7 The isentropic esrrpuession and esparioion are the procrases. 1-2 and 3-4 respectively. The processes 2-3 and 4-1 we cosstant pressuse cooling and heating processel raspectively. This cyele difters from the Camst cyele (Figuee 3.4) in that is operates berween the same two temperatures bat with additioral two areid X and Y.

At point 4 the iemperature of sie mas be lower than that of cold apate so that sir ahsochi

Figane If Rovesad Cered tyda with ab as nolignox
hoot forn the cold quace aral eapcriencei incrage in irnpernave up to 7 , The addibion of aran Y decurase not usly the COP lat also the refrigerating offect. Similerly, of point 2, the terperatur of ar ram! be figher thin dal af the xarrountirge 90 dat best cah bo rejecced This , alds arca X io de cycle. Therefoce, this addilian of arm X increnaes not grly the power bat aloo dectraies the COP.

3.4. Rourrasd Camol Cycle with Vapour as Barrigerant

Isusid of ait, a refriperant can be uper that condernes doring the hect rivorcion process and
 revened Ciesos spole hoscrasi as if is hra boes firind win the ssarand lypid and zabared ogpor lises as shewa in Fyure 3is.

Process 2-3; Ir it a oorotant tenperaue condensatioe process
Process 4-1: It is also ie obostaat semperabare process trat in evaporidien poceis. The isubarmal abd isoters lites are ose ind the amene in the lwo-phave region.

At paiat 1, the refrigetaat is a inislare of liquid and rapour, When this misisre is
 be troped in the eylinder bead ty ite rising piston, which may damage the values and the pylisder head.

 exupresions, tho liquiad dropiets that see to be vaporiaed by the iniemal hexe tramfer do nof gel

 impossible te verminate the comporstion process exactly at slate point 2
hnother drawhack of wes compression is that the drupleds of Jiquid may wash the fobricating
 and blaw.by logich, cer.

Do socoent of thrse dissivathgoss the dry compression is proferred. For this, the wate ist i should be on the sanuration carne. The eefrigriant mant be an sauratod Fapour sate at the parlize of the cosapoespoe. This is as indicaled in Figure 39.

Comprestion of dry vapoir rescils in a ligh temporatare at the ent of eompression, say, af point 2 This venperzare is meth bigher that the oondessigg temperinen, The nelrigetant laver the compresios in a sapertelted poodition. The asea of that part of the cjele, which is abowe
 ripaired ty dry emrpecision.

In the reversed Cumat cycke it is asimed itas exparsion occur iseatropioally and the
 Ihat is derival by the expruion device is vory amall. Anobor difficully is hat the eqparsion takes ploce in lua ghases and poser the habrizatioe problem Therffors, the recessity is to redice the prepare of tho lirpuid from conderner to evagorome, which is cevtrinly pouside widh a teviting dzvike (a valve of a capiliary tabe). Thin turdiling process $3-4$ is isenthalpie and Governithe in ratere. Therefore, this is ene soore modilication latroduced in the origiral reverad Carast cycle an indicatad by the dashed line 3-4 in Figure 39. Now the cyck $1-2-3-4$ is the sampled wogor compocision infrgardim cyelo whath wruld be discosuad in detzil in the next chapter.

3.5 .5 Ball-Colsmann or ferernad Bryyion or Joule Gycla

The Be! -Coleraino retrigcrabor using air a a refigerart is shewi with the leip of a block Gugrom is Figere 3.10 . Et carsibts of a compoeioor, a cooler, an expander and a seffigeram.

The Defl-Colensan ate oefrigtration gyele in the tmodificuina of the peverued Camot cyck wiga aif as a wokisg incian. It ean be oparamd as art open cyck ahown in Agure 3.10 a), in which dee coll air avilible ar the oulet of the expanikr is teot for reffigeration and is let ost
 cold air ansitulio of fer outhet of the expender is enployed io cool the ober fluit in the heok
sockarger. The otber fluid acts os fie secoadary refigigerast in this cyele.
The syck is represerted en p-y and 7-s diagramis as shows in Figure 3.11 int Figno 3.12 respectively.

Fgars iit Bell Colervan cpols pe T-s digon.
The four processes of the closed cycle ans at Fellions:
Beatapic eanposestion proses (1-2) The air fron the refrigeanar is drawn imo the turpestor and compressed iswatrogicaly is atate 2 . Duriag porpression, tod peisers and
 proces, mo hers is abrocted or rejocisid by the ait.

Constat perzonre coolling preces (2-5in The bigh tempersour air is cooled from

 decreass firme in to is. The hast mincind by the air draing this process it

$$
Q_{3-3}=s_{p}\left(T_{3}-T_{3}\right)
$$

Iseniroptc ergaceloo prosess (3-4): The sir is exponded isestropitally foom prestum

 plats.

Coasinst prewsure hent sbourpdiou preesss ($6-1$); The cold air frem the expoacer is gimulsind trough the refrigentor where it mosots hear foom brion and thuk ccels the brine Dwiag itios, the lemponare of the ar increass from T_{4} to T_{1} and the specific wheme increases from v_{4} to γ_{1}. The heve atacobed frem the refrigerator duing coriatis pressure process per ig $o f$ zir is

$$
\begin{equation*}
Q_{4-1}=c_{1}\left\{T_{1}-T_{4}\right\} \tag{3.9}
\end{equation*}
$$

Work lone furing the ryclo per kg of air

$$
\begin{align*}
& =\text { Heas rejected }- \text { heat atsorbeal } \\
& =c_{p}\left(T_{2}-T_{2}\right)-c_{\mu}\left(T_{1}-I_{4}\right)
\end{align*}
$$

Coeflicient of performace, $\operatorname{COP}=\frac{\text { Heat ahworbed }}{\text { Work inpot }}$

$$
=\frac{T_{\rho}\left\langle T_{1}-T_{4}\right)}{\left.c_{p}\left(T_{2}-T_{1}\right)-\left(T_{1}-T_{4}\right)\right]}=\frac{T_{1}-T_{4}}{\left(T_{2}-T_{3}\right)-\left(T_{1}-T_{4}\right)}
$$

$$
\begin{equation*}
=\frac{T_{4}\left\{T_{1} / T_{4}-1\right)}{T_{1}\left\langle I_{2} / T_{3}-1\right\rangle-T_{4}\left(T_{1} / T_{4}-1\right)} \tag{3.11}
\end{equation*}
$$

For the isentrapic ocmpression process $1-2$,

$$
\frac{r_{2}}{r_{1}}=\left(\frac{p_{1}}{A}\right)^{\frac{y-1}{T}}
$$

Sizuilarly, for the iseuropicq expansion pocess 3-4

$$
\frac{T_{3}}{T_{4}}=\left(\frac{D}{P_{4}}\right)^{\frac{t+1}{\gamma}}=\frac{T_{4}}{T_{3}}=\left(\frac{P_{4}}{P_{3}}\right)^{\gamma-1 / \gamma}
$$

Sirax $p_{2}-p_{0}$ and $p_{1} " p_{c}$ te espatione would be:

$$
\frac{T_{1}}{T_{1}}=\frac{T_{2}}{T_{4}} ; \quad \frac{\zeta_{1}}{T_{3}}-\frac{T_{1}}{T_{4}}
$$

Putling thes values in Eq. (3.11) we zut
whece $r=$ compeesion of expanaion tation $=\frac{P_{2}}{N_{1}}=\frac{p_{2}}{P_{2}}$

 polpuyic procesis $\mathrm{pe}^{2}=$ contant. The COP of the rycle can be cotained as fotour

$$
\begin{aligned}
& =\frac{n}{n-1} E\left(T_{3}-T_{i}\right) \\
& =\frac{n}{n-1} R\left(T_{2}-T_{t}\right) \\
& V=W_{C}-W_{C} \\
& =\frac{n}{n-1} N\left(\left\langle T_{1}-T_{1}\right)-\left[T_{3}-T_{i}\right)\right]
\end{aligned}
$$

$$
\left.=\frac{E}{n-1}\left(\frac{\gamma-1}{r}\right) c_{p}\left(T_{2}-T_{1}\right)=\left(T_{3}-T_{4}\right)\right)
$$

Fitm oor jeesiosas andiydi,

$$
\begin{align*}
& \frac{T_{4}}{T_{1}}=\frac{T_{3}}{J_{3}} \\
& \begin{aligned}
\text { COP } & =\frac{\text { Refizeratiag effect }}{\text { Werk poit }} \\
& =\frac{\frac{n}{n-1}\left(\frac{\gamma-1}{\gamma}\right) c_{p}\left(\left[T_{1}-T_{1}\right)-\left(T_{2}-T_{4}\right)\right]}{\left.T_{4}\right)} \\
& =\frac{c_{p}\left(T_{1}-T_{4}\right)}{n-1}\left(\frac{\gamma-1}{\gamma}\right) C_{p}\left(\left[T_{3}-T_{3}\right)=\left(T_{1}-T_{4}\right)\right. \\
& =\frac{n-1}{n} \times \frac{y}{\gamma-1} \times \frac{T_{4}}{T_{1}-T_{4}}
\end{aligned}
\end{align*}
$$

38.8 Actual Dali-Colamson Cyala

The actmil Bell-Cikmana sir mfrigeration gqeh shous in Figue 3.13 devixes is four wars from the cycle shown is Figue 3 in

Frooss (1-2): The compersion procens is the campriner in nea-isectropic dee to intemal and exicalal fricion betiotes the ain and the sardace trapename J_{1} af the end af compression is moce taan T_{g}.

Frovess (2-3): The opolire of air fiom oempermase T_{2} to T_{3} takes plise in the hea
 between the air and the notal whe wefase a persare lati octus. Thenefort, the voclag procest is not inly at ornam peaner

$$
\left.=\frac{n}{n-1}\left[\rho_{p},-P x\right)\right]
$$

$$
\begin{align*}
& \text { COP }=\frac{T_{4}}{T_{3}-I_{4}}=\frac{1}{\left(T_{3} / T_{4}\right)-1} \\
& =\frac{1}{\left(\frac{D}{D}\right)^{\mid \pi-D / T}-1}=\frac{1}{\left(\frac{D_{1}}{D^{1 / 2}}\right)^{p-1 / T}-1} \\
& =\frac{1}{e^{17-017}-1} \tag{3.12}
\end{align*}
$$

 scocrt of fristion botween the air and the expander suffoce.

Proces ((-1) : This pescess tates place in the bent evolaregor, bance i pessure drop.
Practically, be attuel ryele isdicate dius the actual compravion work is Highar conparad
 aviliblie from isentrpic esprision

3.6.7 Applistion of Arerelt Rainiportion

 camperaion refrigeration cycie employed for the same purpoee des is is nany stomuges

One may ask that since ur ligh alfrude both somoiphorio temperaurs and pressine decrease, then why we airrat sir conditioned? The sosicen are altilutable bo extmal and internal heal Jeakagec. Alsa, tanjerstare of the orter at - $-5^{\circ} \mathrm{C}$ is asodod to proserve food and ende dirla.

Fellowing are the exerall teur iouses shich add the hert in de coceprimen af ocespans

Extemel hast sourcen

1. Solar mativions exter the compurtients tiveugh vivions
 condoriod toto the compensens.

 body gets heard

hrivent hoot soures

 fer sect a huge hest bat, oor ropuies air coationing.
2. Erectal asd elecaronic coryvetits genorse lans thoughet deir use

3.7 WETHODS OF ATR REFRIGERATIOA SYSTENA

- Simple air-ponlog syian
- Simple si-craporatie teoling dysim
- Aoce-dirap air coctite aybire
- Boob-jbip air erapantive conlog spstan
- Refured ambien af cooling ryster
- Reganertine aie costing gywen
2.7.1 Simpls Nir-cooling Sfatan

 soupled to a tribine, a hest extongst, a codirg tirtion, and ax aivooding fin.

A pat of the rase dir blod off at sisee polint 3 is coolsd in a beat exchagger with the help. of rumed air to inale peint 4. It is furter cooted the in expansion to cabio poesore in the cocling aurtire and is thes utppliad 15 the cobin. The wote of espansion of esolirg tertine is asod to drive the sir cooling tan which dran the sem air though the beat exchager.

The remaining sir at a high preture (pi) and a high lenperinume $\left(T_{3}\right)$ and the exropesied sir is sagplied to gas nutise trough the coribuntian chamber. Turbise power is ased to drive the main corepessor sont ofer eqsipment of ite arceaft.

Simple ai-soding spsem is isefil for ground surfers air cooling and for, aiconfi at low spetik.

 oction is stown by the vertial lat 1-2 is Figure 3.15. In praction, bocsuse of interal friction

 wa now po and T_{2} respostios)

$$
\text { is }=\frac{\text { Actaal wasure rise }\left\langle p_{i}-\bar{p}\right\rangle}{\text { Ideal prisure rise } \left.\left\langle p_{2}-p\right\rangle\right\rangle}
$$

Lee is apply be srady flow etergy equation to the namring process (fiffuien) Let y_{1} and v_{2} le the whive velocitien of air in m/s befort tod affer dilifiser mepertively.

$$
A_{1}+\frac{x^{2}}{2}=A_{2}+\frac{n^{3}}{2}
$$

Bl $r_{2}=0$ ater ram compraision.

Figert 2.15 T-u dagan ter single ve coolog spiton.

We loue thes $\quad c_{p}-c_{c}=f$

$$
c_{r}\left[1-\frac{c_{v}}{c_{p}}\right]=h \quad \text { or } \quad c_{p}\left[1-\frac{1}{r}\right]=8 \quad\left\{\because c_{p}, c_{v}=\gamma\right\rangle
$$

$$
c_{p}=\frac{7 \pi}{\gamma-1}
$$

$$
T_{2}=T_{1}+\frac{1}{2}\left(\frac{\gamma-1}{\gamma}\right) \frac{v_{1}^{2}}{n}
$$

Nowt that

$$
\begin{aligned}
& \frac{T_{2}}{T_{1}}=1+\frac{i \gamma-1) r_{1}^{2}}{2 \cdot \gamma R T_{1}} \\
& T_{Y}=T_{2}
\end{aligned}
$$

$$
\begin{align*}
& h_{2}-\omega_{1}=\frac{v_{2}^{2}}{2} \\
& c_{n}\left(T_{2}-T_{1}\right)=\frac{p^{2}}{2} \text { for anit mass of तों. } \\
& J_{2}=T_{1}+\frac{v^{2}}{2 \tau_{r}} \\
& =\frac{I_{2}}{J_{1}}=1+\frac{v^{2}}{2 c_{p} T_{1}} \tag{a.14}
\end{align*}
$$

Aus seaik velocity of antient aic, $a_{9}=\sqrt{\gamma \beta T_{1}}$
$\therefore \quad \frac{\vec{\tau}_{2}}{\tau_{1}}=1+\left(\frac{\bar{y}-1}{2}\right) \frac{y^{2}}{\varepsilon_{1}^{2}}=1+\left(\frac{\gamma-1}{2}\right) u^{2}$
Where Mach muter,
and

$$
\begin{equation*}
M=\frac{\text { Actux velocity, } v_{1}}{\text { Sound velucity, } q} \tag{0.16}
\end{equation*}
$$

$$
\begin{equation*}
\frac{P_{x}}{A_{1}}=\left(\frac{F_{1}}{F_{3}}\right)^{-\sqrt{r}=0} \tag{3.17}
\end{equation*}
$$

where if in the mach mamber of the fight. It is defieed as the rafig of airmat velocify (i) to the local soind velocily (r)

The empecalare $T_{1}=T_{y}$ is callad the shagnatias ievpronoure of the ambient air esiering the main monprower. The velocily of sir at the eutet of the diffuser is asuonal to be sero which is why the 'staguation' Is uned The puoperties oarrespandieg to the paist are atogeation properties. The stagnation presiore afber iseatropic compremion (pis) is devernised wih the help of ulflice thisimag,
Compreiaian procea: The iarrirapic compressiso of air in the main sompussor is repopserical by the line $z^{\prime}-1$, is practize, berasse of tricrion, the oompoessios pracess does not remsin isemropk. So the acoul conyression in repaserted by the sarve $2^{\prime}-3$ on $T-J$ diggrase. The wedk dant for compeession process is gives by

$$
\begin{equation*}
W_{c}=x_{r},\left\{\tau_{y}-\tau_{x}\right\} \tag{3.13}
\end{equation*}
$$

where $n_{0}=$ mass of air alod fiom the nain conjeresuer for refrigecsion papeses since we are malyeng the refigetaion sysem

 in a preasare dop in the heat eschanger, which is not shown in ife Sgare The iemperature of ar decrates Fion T_{y} to T_{4}. The hat acjoded in the licat exchatger is givea by,

$$
\begin{equation*}
Q_{r}=\alpha_{2} r_{2}\left(\gamma_{i}-\gamma_{4}\right) \tag{3.19}
\end{equation*}
$$

Forpanion percesst The croled ar is naw expanded iseanopdeally in dr coaling auchas an
 4-5". The work sbained is cooling tatine det mo expansion peocrat in gien by

$$
\begin{equation*}
W_{s}=r_{s} c_{p}\left(X_{i}-\Gamma_{s}\right) \tag{3.20}
\end{equation*}
$$

The work of this tartice is used to crive the cooligg air fan, whith arms cralizg air frien the heal evelargen.
 suppled to the cakin asd coclpit whers it getr laaked by the beat of efripreat and oceaparcy, 0

This process is shaw by the curve $5^{2}-6$ in Figure 3.15. The aefigerating efirtit producod or tral stocobed is given by

$$
\begin{equation*}
=x_{1} c_{1}\left(T_{t}-T_{s}\right)-m_{2}\left(\lambda_{s}-h_{3}\right) \tag{321}
\end{equation*}
$$

$$
4
$$

where

$$
\bar{T}_{5}=\text { inside tempenturs of tie eatin. }
$$

COP of the air crcle,

If Q toes of refrigetrion is the cootirg load in the catin. then at air reguled for the refrigerrion pirpose

$$
\begin{equation*}
m_{0}=\frac{211 Q}{4_{3}\left(T_{6}-\tau_{3}\right)} \text { bghtun } \tag{373}
\end{equation*}
$$

$1 T P=211$ folminn
Power iscuisd for the refriguration iyalan,

$$
P=\frac{\pi_{2} x_{z}\left(T_{y}-T_{z}\right)}{60} \mathrm{aW}
$$

And COP of the relfigtraing syater

$$
\begin{equation*}
=\frac{211 Q}{\sigma_{0} \sigma_{p}\left(\sigma_{y}-\bar{T}_{y}\right)}=\frac{211 Q}{P \times 60} \tag{3.25}
\end{equation*}
$$

EKAMPLE 33 An airchet air crondtiming needs velfigentian copaciy of 10 TR. At the alfiufe of aieraf the ausospoeric pressie and enperaure we 09 boe and $10^{\circ} \mathrm{C}$ roposively. The pressues of ale afier ramitg effect in a fiffiser increars to 1.013 bar . The tempetature of the air is relased by $50^{\circ} \mathrm{C}$ in the heal exchatgec. The presstre is the cabin is 101 ter and Be senperatue of air lesrigg the catin is $25^{\circ} \mathrm{C}$. The presume of the curpreesed air is 3.5 bar ,
 if de compression and expension efficiencies are 90%.

Deiemine the following:
(a) Power soquired to take lat load of cooling in the eatin.
(b) COP of the syiter.

If ite affitizzizt of the expantisn and rongressios poscesses are 90\%; malyse dir problem for poact requirtinat in both the caish.

Satution: Refer se Figure 3.36.
Given: $Q=10 \mathrm{TR} ; P_{1}=0.9 \mathrm{bor} ; T_{1}=10^{\circ} \mathrm{C}=10+273-283 \mathrm{~K}$; $p_{2}=1.013 \mathrm{bar}, p_{3}=\mathrm{N}=1.01$ bar; $T_{\mathrm{S}}=25^{\circ} \mathrm{C}=25+273=29 \mathrm{~K} ; p_{1}=35$ ter.
Cair 1: Wilh 100 x efficiercy of conpression and expanaios procesues:

Faus 3.11 T-it digrat bet inple mitecoirg splos-Exanpla 13.
Tenperavie after namming effect

$$
\frac{T_{3}}{T_{1}}=\left(\frac{D_{2}}{A}\right)^{(r-i) p,}-\left(\frac{L .049}{0.9}\right)^{1.4-1 / 1 / 4}-(1.123)^{1235}-1.034
$$

$$
\therefore \quad T_{1}=T_{1} \times 1.094=283 \times 1.034=2526 \mathrm{~K}
$$

Similarly.

The temperanure of air is reduced by $50^{\circ} \mathrm{C}$ in the teac etchatger, Acrefoen, the temperature of air kaving the heat asturger.

We amou dhat

$$
\begin{aligned}
& T_{4}=146-50=944^{\circ} \mathrm{C}=36 \mathrm{~T} \mathrm{~K} \\
& \frac{T_{3}}{T_{4}}=\left(\frac{p_{2}}{p_{4}}\right)^{(\mathrm{g}-1) / 2 \mathrm{~T}}=\left(\frac{1.97}{3.5}\right)^{(14-1) 14}=(0.289)^{0355}=0.7 \\
& T_{3}=T_{4} \times 0.7=367 \times 0.7=257 \mathrm{~K}
\end{aligned}
$$

We kuam that de mass of air required for the refrigenation purpose is

$$
N_{s}=\frac{211 Q}{c_{p}\left(T_{5}-T_{s}\right)}=\frac{211 \times 10}{12298-257}=51.2 \mathrm{~kg} / \mathrm{min}
$$

$$
\begin{aligned}
& \frac{T_{1}}{T_{2}}=\left(\frac{B_{1}}{D_{2}}\right)^{\mid p-i j / 2}=\left(\frac{35}{1.913}\right)^{(t a-1 \mid n A} \\
& -(3.65)^{128}=1.425 \\
& T_{1}=T_{7} \times 1.425=252.6 \times 1.425=417 \mathrm{~K}=144^{\circ} \mathrm{C}
\end{aligned}
$$

[1] Foiet rergriont to thete the lood of cooling in the rabin.

$$
P=\frac{\theta_{3} c_{p}\left[T_{3}-7_{1}\right]}{60}=\frac{51.2 \times 1 .(41 T-292.6)}{60}=105 \mathrm{~kW} \mathrm{Anc} .
$$

(b) CCP of the syatent:

We lones that COP of the syuter in

$$
=\frac{2110}{P \times 60}=\frac{211 \times 10}{106 \times 00}=0.33
$$

Case $\mathrm{z}:+$ When the efficiercier of compoessise asd enpuntion ano 90\%: Cotrpiestise $\{2-3)$!

$$
\begin{aligned}
& \Pi_{5}=\frac{T_{3}-T_{2}}{T_{y}-T_{2}}=0.9=\frac{417-292.6}{J_{y}-292.6} \\
& T_{3}=4308 \mathrm{~K}=1578^{\circ} \mathrm{C}
\end{aligned}
$$

 of atr lowing the have esctanger is

$$
T_{4}=157.8^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}=107.8^{\circ} \mathrm{C}=3808 \mathrm{~K}
$$

We know that

$$
\begin{aligned}
& T_{1}=T_{4} \times 0.7=380.8 \times 0.7=2665 \mathrm{~K}
\end{aligned}
$$

Terbine ellcienay:

$$
\pi_{1}=\frac{T_{4}-\tau_{5}}{\tau_{4}-T_{5}}=0.9=\frac{380.3-T_{5}}{330.8-266.5}
$$

$$
T_{\mathrm{T}}=21791 \mathrm{~K}
$$

Mas of air requived for the refingeration furpeses,

$$
\pi_{e}=\frac{211 Q}{\Gamma_{F}\left(T_{4}-T_{5}\right)}=\frac{211 \times 10}{1(298-27793)}=1046 \mathrm{~kg} / \mathrm{min}
$$

(a) Power requived is thee the Joad of cocling in the catin.

$$
P=\frac{\pi_{\mu} c_{p}\left(T_{y}-T_{1}\right)}{60}=\frac{1046 \times V(400,8-292.6)}{60}=2409 \mathrm{~kW} \mathrm{As}
$$

13) COP of the sysiers:

We lrow that COP of the syseen is

$$
=\frac{211 Q}{\rho \times 60}=\frac{211 \times 10}{2409 \times 60}=0.145
$$

From the shove calculaioe it is erident that a 10% reficion in tle efficiency of bodh compossian and eqpassian processes woold incresse the power requirement froen $106 \mathrm{~s} \mathbf{W}$ to 200.9 dW . in perceniags, it is 3 m incizase of 127%. It is clear bat utnent race should te takro in maintain the condition of both the compoesser, and tritine to the maximum posaible.
EXAMFLE MA An aircraft refrigetuion plan has a tapasity of 30 TR. The anbient
 The air in then Durfer compressed in a songressor is 4.75 bar and is thea ceoled in a heat exchanger to $67^{\circ} \mathrm{C}$ to thre mapands is a turtias to 1 tar befone it is supplied to the cuisis. AL laves the cabis as $27^{*} \mathrm{C}$. The inemocic efficirncies of the conapesor and the farbive are 0.9. Detemitse lite following:
(a) Mass flow rane of air ciecthatedsesocd
(b) COP.
(c) Sposific power required. Tase $c_{p}=1.004 \mathrm{kd} \mathrm{kg}-\mathrm{K}$ anal $\gamma=1.4$ for air. Slevet the tyde on T-t diagran.
Solubige: Refer on Fipuess 1.17 and 3.18 .

Figu 217 Sirgle anmoleg spose-Esanple 14.

$$
\text { Givent Capacily }=30 \mathrm{Th}=30 \times 3517=10551 \mathrm{iw}
$$

$$
\begin{array}{lll}
J_{1}=17^{\circ} \mathrm{C}=250 \mathrm{~K} & P_{1}=0.95 \mathrm{bar} & I_{2}=30{ }^{\circ} \mathrm{C}=309 \mathrm{~K} \\
\rho_{9}=4.75 \mathrm{bx} & T_{4}=65^{\circ} \mathrm{C}=305 \mathrm{X} & \mathrm{~S}_{3}=1 \mathrm{bat}
\end{array}
$$

Cabin suit uxppoatart $=27^{\circ} \mathrm{C}=300 \mathrm{~K} ;$ Alse, $\mathrm{T}_{\mathrm{C}}=\Pi_{\mathrm{T}}=0.9$

In corpressor,
$T_{1}=T_{2}\left(\frac{B_{2}}{D_{1}}\right)^{\frac{p}{2}-b_{t}}=303\left(\frac{4.75}{0.95}\right)^{\mathrm{nB}-1164}$
$\stackrel{\square}{n}$
$T_{1}=479.89 \mathrm{~K}$
$\Pi_{6}=\frac{T_{3}-T_{1}}{7_{Y}-T_{2}}=0.9=\frac{479.83-300}{T_{Y}-303}$
A

$$
t_{f}=49935 \mathrm{~K}
$$

For nurtint,

$=1.005050-230.05=3029510 \mathrm{~g}$
Cepacity $=10631 \mathrm{k}$ W

Wiat doon $W=W_{C}-W_{T}$
$\mathrm{COP}=\frac{\text { Capacy }}{W}=\frac{105.51}{130.56}=0.31$
(c) Specitic pouer required (kWrTTV $=\frac{\text { WarkinkW }}{\text { Cajaciy is TR }}=4.352$ KWTR

$$
\begin{align*}
W & =c_{i}\left(T_{y}-T_{1}\right)-c_{i}\left(T_{4}-T_{3}\right] \\
& =1095(69955-303-340+230.06) \\
W & =87.04 \mathrm{kJtE} \\
W & =87.04 \times 1.5=130.56 \mathrm{~kW}
\end{align*}
$$

(0)

$$
\begin{aligned}
& T_{5}=213.86 \mathrm{~K} . \\
& \Pi_{\mathrm{r}}=\frac{T_{t}-T_{y}}{T_{4}-T_{3}}=0.9=\frac{340-T_{y}}{360-217.54} \\
& T_{5}=2300 \mathrm{~K}
\end{aligned}
$$

Res.
 the anblerk presurur and emperanire ate 6.15 bur and $-15^{\circ} \mathrm{C}$ respectively. The cabin of the plane is naitained at $25^{\circ} \mathrm{C}$ by sting a simple air vefigerbios sysiera The pressure ratio of cempressor is 3 . The zir is pursed throcght heat eachanger afirr oougression and cooled to its original conditiso erreriag imo the plane. A pressurt loss of 0.1 bar takes plate in the hrak exchaygr. The peesure of the air leaviag the cooling tathine is 1.06 and the zir pressure in de cabis is 1.013 tex. Considerive the toal cooling load of plase to be 70 kW , deternize the tollowing:
(2) Stagnation iempeatare and pressone.
(b) Mass flow rate of sir circulalad Aroagh the cabin.
(c) Volumt hatiled by the compresoce and expancer.
(d) Net powrr delivered so the refrigeraion spsiem and COP of the syurm.

Given:
Plase speed, $C=1000 \mathrm{kmf}=277.78 \mathrm{~ms}$
pretrare at exit of surtine $=1.05$ buy presware in the cabin $=1.013$ bar, cocolag kod $=70 \mathrm{NW}$
(a)

$$
\text { Sagration tempentwe, } T_{7}=T_{1}+\frac{c^{2}}{2000 c_{p}}
$$

$$
-258+\frac{(277.79)^{2}}{2000 \times 1.005}
$$

Sugnaina prosirs.

$$
T_{2}=206.6 \mathrm{~K}
$$

Ies.
Stygration pressies,

$$
\begin{aligned}
& -A=0.35 \text { ber; } \quad T_{1}=-15{ }^{\circ} \mathrm{C}=258 \mathrm{~K} \text {; } \\
& \frac{p_{1}}{p_{1}}=3 \quad \text { or } \quad p_{2}=3 p_{3} \\
& r_{4}=\left(p_{3}-0.1\right) \text { tac; eakin Imperature }=25^{\circ} \mathrm{C}=280 \mathrm{X}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\hat{n}_{2}}{n_{1}}=\left(\frac{\tau_{2}}{T_{1}}\right)^{Y 6-0} \\
& p_{1}=0.35\left(\frac{2066}{259}\right)^{1 / 05}=0.57 \mathrm{bar} \\
& \hat{p}_{2}=0.57 \text { tar } \\
& \rho_{1}=3 p_{2}=1.71 \text { bar } \\
& T_{3}=\Gamma_{2}\left(\frac{p_{2}}{p_{2}}\right)^{\mathrm{tr-ury}}=405.97 \mathrm{~K}
\end{aligned}
$$

Enhiguranenendai Cendiesivg

Turbas inke itmpenture a erigizal imperause of the air eatering the plane ie.

$$
J_{4}=258 E
$$

Turbine exit vomp, $T_{3}=T_{4}\left(\frac{p_{2}}{p_{4}}\right)^{(\alpha-3 / \gamma}$

$$
T_{3}=258\left(\frac{106}{161}\right)^{24-014}-264.25 \mathrm{~K}
$$

Refrigerating effoct in cabin $=c_{p}\left(T_{4}-T_{1}\right)=1.005(258-264.25)$ $=33.92 \mathrm{k} \mathrm{k} \mathrm{kg}$
(9) Mans Itox max
(c) Volure Arough compursore

$$
=\frac{\pi 0}{33 x_{2}}=205 \mathrm{~kg}
$$

$$
=\frac{\mathrm{m}^{2} \mathrm{VT}_{2}}{P_{1}}=\frac{2.06 \times 0.287 \times 256.6}{0.57 \times 10^{2}}=1.66 \mathrm{~m}^{1} / \mathrm{s} \quad \mathrm{Ars}
$$

$$
\text { Volame tharugh exprader }=\frac{n 0 T_{3}}{B_{s}}=\frac{2.05 \times 0.217 \times 22935}{1.05 \times 10^{2}}=1.232 \mathrm{n} / \mathrm{s} \text { Ans. }
$$

of
and

$$
\mathrm{COP}=\frac{Q}{W}=\frac{70}{167,33}=0.42
$$

EMAMTLE 3.5 An az-boditg yyutm for a jer plate codipit aperades on the simple cyde.
 ind $-15^{\circ} \mathrm{C}$ respectively. The ponsurt mitio of the jet comprovar is a. The spest of the plane is 1000 lont . The poenser frop fonogh the tooker twin is 0.1 bar. The preigare of the ir leavire the ctoline wistiat is L.0s bar and the is the codgin is 1.01325 bes. The pockpit coming lood is S305 kW ,

Cixulue the folleving:
(3) 5 inguion teapentue and pestue of the air manriat de compessor.
(9) Mass Pow rate of the air cinculued.
(c) Volure handed by the compresor and expander.
ifil Ner poned delivered by te enjise to de refiggeratios unit.
(e) COP of di= system.

Solatisu:
Givent \quad Coclait vaperithe $=25^{\circ} \mathrm{C}=298 \mathrm{~K}$

$$
\begin{aligned}
& p_{1}=0.35 \text { bar, } T_{1}=-15^{\circ} \mathrm{C}=258 \mathrm{~K} \\
& \frac{p_{1}}{p_{2}}=3 \text { or } p_{1}=3 p_{3} .
\end{aligned}
$$

Plare spiod, $\mathrm{C}=1000 \mathrm{kmh}-277.78 \mathrm{ar}$
Presuae diop trough the esolet osil $=0.1 \mathrm{hz}$, Plessere of air leavigg the luthise $=1.06$ her Fresurg of sit in the cockpil $=1.00325$ bar, Cooling lood $=\$ 8.05 . \mathrm{KW}$

Sagnation temparantr, $T_{1}=T_{1}+\frac{c^{1}}{2 c,}$

$$
\begin{align*}
& \text { Ner work }=W_{c}-W_{T}=W_{c}\left(T_{2}-T_{2}\right)=\operatorname{wn}_{c}\left(T_{4}-T_{n}\right) \tag{械}\\
& \left.=n c_{-} / I_{3}-T_{1}-I_{\mathrm{s}}+T_{3}\right) \\
& W=2.06 \times 1.005(406.97-296.6-250+229.36) \\
& \text { W=167.33 } \mathrm{kW}
\end{align*}
$$

$$
\tau_{2}=258+\frac{(277,78)^{2}}{2 \times 1000}=296.58 \mathrm{~K} \quad \text { Ars }
$$

$$
\text { Sragnaion peissre, } \beta_{2}=\beta_{1}\left(\frac{J_{2}}{T_{5}}\right)^{A r-0}=0.35\left(\frac{256.58}{258}\right)^{1.4614-11}=0.57 \text { ber }
$$

(8) Conpressor culet pussure p) $=3 \rho_{7}=1$. II ber
= cropler inlet preatere

Cocler exit pressuft $=$ cooler lelet - porasare drop

$$
=1.71-0.1=1.61 \text { tor }
$$

- tabian in'zt prouse

Assaming cooling tarbine inlef terperanut is $30 \% \mathrm{C}=300^{\circ} \mathrm{K}$

$$
\frac{\text { Tubine eait vemp }}{\text { Tubine inlet imp }}=\left(\frac{\text { Tuatine evit pressare }}{\text { Tertine inlet pressare }}\right)^{\text {to }-4 / 4}
$$

Terbine esit isrrperatare $=303\left(\frac{1.06}{1.61}\right)^{20.4-2014}=294,1 \mathrm{~K}$
 $-1.005 / 298-294.15=8.92 \mathrm{kNkg}$

Masn flow meve $=\frac{\text { Cooling requind in } \mathrm{kI} / \mathrm{h}}{\text { Refriperatirgerfest } \mathrm{kMt}}=\frac{54.05}{2.5}=23.2 \mathrm{kgh} \mathrm{Am}$
(e)
(d) Assuming loenropic compoession in compueiser,

Congresine woth $=$ Miss flae $\times W=23.22 \times 109.91=2552.0 \mathrm{LD}$
Tuepise work $/ \mathrm{s}=\mathrm{rcc}, \Delta \mathrm{T}$

$$
=23.22 \times 1.005333-295.51\rangle=174.5 ? 115
$$

$$
\text { Net srark }=W_{C}-W_{\mathrm{T}}=2552-174.97=1677.12 \mathrm{kWs} \text {. Aus. }
$$

$$
\text { COP }=\frac{\text { Retrgerying effocr in 113 }}{\text { Net wodk in } \mathrm{E} 1 \mathrm{~s}}=\frac{55: 06}{1677.13}=0.035 \mathrm{Ams}
$$

SKAMELE 3.7 A simple air refigeration aysien is oved for an aitriat io tabe a fras of 20 TR . The inliere prosume atd semperatart are 0.9 ber asd $22^{*} \mathrm{C}$ sefpectizzly, The pressont of air is ircreaned to 1 lar das to ioretropic rartring action. The air is farther compressed in a compresper io 35 ber and thon cooled is a hoth astanger to $72^{\circ} \mathrm{C}$. Finsly the or is posied tiroagh ter cooling ferbias and thes supplied to the cabin of L of ber. The eir leaves the dibia at $25^{\circ} \mathrm{C}$. hsumiag the iscatropie efficiency of oomputssor and lutine as 30% and 75% respectively, find
(a) the pawer reydired to tale the cooling lasd in the cabin.
(b) ins COP of the syspm

Thase $\varepsilon_{p}=1.005 \mathrm{kHkg} \cdot \mathrm{K} ; ~ r=1 \mathrm{~A}$

Givis:
$0=20 \mathrm{TR}=20 \times 3.517=7034 \mathrm{kNn}: p_{1}=09 \mathrm{tar} \vec{F}_{1}=22 \mathrm{~K}_{\mathrm{C}}=22+213=295 \mathrm{~K}$:
$\beta_{1}=1 \mathrm{bar}, \mathrm{pr}_{5}=\beta_{3}=\beta_{4}-3.5 \mathrm{bar} \quad J_{4}=72^{\circ} \mathrm{C}=72+275=345 \mathrm{~K}:$
$T_{\mathrm{s}}=25^{\circ} \mathrm{C}=25+273=258 \mathrm{~K} ; \quad P_{5}=P_{r}=p_{5}=2.03 \mathrm{Dar} ;$
加 m 30\%; 加 $=75 \%$
Nian tempression (1-2); For ismtropic process,

$$
T_{7}=T_{i}\left(\frac{\rho_{2}}{n_{1}}\right)^{\hat{z-4 i \gamma}}=205\left(\frac{1}{05}\right)^{\frac{1}{2-h_{014}}}=304 \mathrm{~K}
$$

$$
\begin{aligned}
& T_{3}=T_{2}\left(\frac{D_{1}}{A_{1}}\right)^{-\mathrm{th}}=206.51\left(\frac{1,71}{0.77}\right)^{\mathrm{N}-\mathrm{b} \omega t} \\
& T_{5}=406.9 \mathrm{~K} \\
& \text { Campresur wrekkg }=c_{1}\left(\tau_{3}-J_{1}\right)=1006(995.9-296.51) \\
& W=105.9 \mathrm{kN} / \mathrm{kE}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Congressce voluns }=\frac{i e N J_{2}}{p_{2}}=\frac{25.25 \times 0.287 \times 296.39}{0.57 \times 19^{2}} \\
& -34.67 \mathrm{~m}^{1} / \mathrm{h} \\
& \text { Expander sulure }=\frac{\text { riht }}{n}=\frac{23.22 \times 0.287 \times 295.51}{\| .06 \times 10^{2}}=18.13 \mathrm{~m} / \mathrm{h} \text { Ars }
\end{aligned}
$$

Cumpresar: Corsider the itenbepic process (2-3)

$$
\begin{aligned}
& T_{y}=T_{2}\left(\frac{B_{y}}{\beta_{2}}\right)^{0 \mathrm{~T}-024}=304\left(\frac{35}{1}\right)^{\sqrt{14}-4114}=434.8 \mathrm{~K} \\
& \Gamma_{c}=\frac{T_{1}-J_{7}}{T_{3}-T_{3}} \text { or } 0.8=\frac{434.8-304}{T_{2}-304} \text { or } T_{3}=457.5 \mathrm{~K}
\end{aligned}
$$

Cooling hutise: Contider the isentropis-pucess [4-5')

$$
\begin{aligned}
& T_{r}=T_{4}\left(\frac{B_{2}}{R}\right)^{\text {pith }}=345\left(\frac{1.03}{35}\right)^{(164 \pi t}=241.2 \mathrm{~K} \\
& \mathrm{~T}_{\mathrm{r}}=\frac{T_{4}-T_{3}}{J_{4}-T_{5}} \text { or } 0.75=\frac{345-T_{3}}{345-243.2} \text { or } T_{3}=263.7 \mathrm{~K}
\end{aligned}
$$

(a) Pôater requind n tule the cooling lod is cabin

Let st, be the mass floe rie tircelated to cabin.

$$
Q=\pi_{1} c_{p} k T_{\theta}-\tau_{3}
$$

$$
70.34=\operatorname{mo} \times 1.005(253-258.7)
$$

$$
\dot{\pi}_{0}=23187 \mathrm{kps}
$$

Net wark (Fawer) $=$ rba $_{2} r_{2}\left(T_{3}-T_{2}\right)=2.3897 \times 1.005 \times(4675-304)$

$$
=392.5 \mathrm{kJs} \mathrm{re} \mathrm{~kW} \quad \text { Ans. }
$$

(b) COP of the systern

$$
\mathrm{COF}=\frac{\text { Peligeratigg effoet in kW }}{\text { Nes wost in kW }}=\frac{70.34}{3925}=0.179 \quad \text { Ars }
$$

 Anbern air cemperames and paesane $=20^{\circ} \mathrm{C}$ and 0.8 har
Ram air jrisuat
Compressor oustet pressure
$=0.9$ bar \cdots
Compressor suifet pressue
a 3.6 bar
Teriperane of ait leaving H.E
$=$ F9PC.
Poraure of air lowvigg the turtine
$=1$ bur
$=22^{\circ} \mathrm{C}$

- 80%
- 75%

Asuame no presyant drop in HE and asrimgic ramning poocesh
Sletth der cyclo on T-J und p-v Cagrart.
Caloulare the net poner noprired and the COP of the spatem.
Solailaw: Rofer io Fyare 3.22
Given: $B_{C}=20 \mathrm{TR}=20 \times 351 \mathrm{~T}=70.34 \mathrm{kI} / \mathrm{s}$
Arrient presswas, $A_{1}=0.8$ lus; Anbirnt termeratere, $T_{1}=200^{\circ} \mathrm{C}=293 \mathrm{~K}$;

Tempecanse as esit of beat exclanger. $\bar{T}_{4}=60^{\circ} \mathrm{C}=60+273=333 \mathrm{X}$;

Tabinactlicicocy, $7 \mathrm{r}=72 \mathrm{Z}$;
$T_{6}+22^{2} \mathrm{C}=22+273=295 \mathrm{k}$.

Sttowemet owlab Cawericeivg

Gas trintines. For the iurrropic eapansion prosais ($4-5^{\prime}$)

$$
\begin{aligned}
& T_{v}=7_{4}\left(\frac{p_{2}}{p_{4}}\right)^{\text {tr } \mathrm{Cog}}=333\left(\frac{1}{3.6}\right)^{\sqrt{14-141.4}=2359 \mathrm{x}} \\
& J_{r}=\frac{T_{5}-T_{5}}{J_{4}-T_{y}} \text { or } 0.75=\frac{333-J_{5}}{313-230.9} \\
& J_{1}=236.4 \mathrm{~K}
\end{aligned}
$$

간

$$
N_{c} \pi \theta_{e} \times g /\left\{T_{i}-r_{2}\right)
$$

$$
70.34=1, \times 1.000,255-256.41
$$

$$
\therefore \quad \quad A_{4}=1.813 \mathrm{~kg}
$$

(3) Not sumplesoor poraer reguired P

$$
\begin{aligned}
P & =\Omega_{0} c_{p}\left(T_{2}-T_{2}\right) \\
& =1.313 \times 1.035(6370-3030) \\
& =335.12 \mathrm{k} \mathrm{f}_{3} \text { or } \mathrm{LW}
\end{aligned}
$$

$$
C 0 P=\frac{A_{x}}{P}=\frac{26.34}{3393}=0.2038
$$

37.2 Simpls Nir Evzporsitiot Cooling Sysism

The simple te enaporative coaling syshm is timily it the simple air cooliag syworn with yut
 Es a lerge evers bofore it it aspended ie the cooling sarbins. A simple dir eraporative coolay syalen is thann in Figure 3.23.

 08 to 8.9 bas. Ware bails und porstes a cooting effer to the air

$$
\begin{aligned}
& T_{Y}=T_{1}\left(\frac{p_{2}}{p_{2}}\right)^{\mathrm{b}-1 \mid / \gamma}=303\left(\frac{3.6}{0.9}\right)^{\left.\frac{1}{2}-1 \right\rvert\, 14.4}=450.2 \mathrm{~K} \\
& \overrightarrow{T c}=\frac{T_{y}-T_{1}}{7_{3}-T_{2}} \text { ce } 0.8=\frac{450.2-300}{7_{3}-301} \\
& T_{7}=417.0 \mathrm{~K}
\end{aligned}
$$

The vaious proceism involved is the simple tir evapaaing uefigeatios cpele art:
Procens $(1-2) \quad \rightarrow$ 1feal ram ctmpreivins
Process ($1-2^{\prime}$) \rightarrow Actual an compresion
Process (Z-3) \rightarrow Itertropic compresion of air in mais costronere
Process ($2-3$) \rightarrow Aftial curipressios of air in main esmperssor
Procest (3-4) \rightarrow Consant poeswire air cooling by fate air in heat exchsuger
Process (4-4) \rightarrow Constazt proure air cooliog by seffigerart in evaporator
Frocesi (e-5) \rightarrow Iirniopiz expassion of aic in cooling tartine
Procest ($\left.4^{\prime}-5^{\prime}\right) \rightarrow$ Actall exparaiso of sir in coojing tublias

The T-d diugron for a simple evepontise aoding systen is shown in Figire 3.24,

The cooling effest adirvod in the siend reffigudion syatm

$$
=M_{\mathrm{p}} \times c_{p} \|\left(T_{t}-T_{y}\right)
$$

whare is, is tat mas thow ane of air in lglinis, T_{5} and T_{8} wre the cabin temperatire and
 the calin, ten the tir sequired foe the refigeration plupose,

$$
\dot{B}_{\mathrm{s}}=\frac{211 Q}{c_{p}\left(T_{6}-T_{5}\right)} \mathrm{kg} / \mathrm{min}
$$

Power requirod for ate sefiggoratily syman,

$$
P^{\prime}=\frac{\hat{u}_{0} \mathrm{c}_{r}\left(T_{y}-T_{r}\right)}{60} \mathrm{k} w
$$

hand COP of the ittogerating sysiem

$$
=\frac{211 g}{M_{1} c_{j}\left(T_{T}-T_{i}\right)}=\frac{211 g}{P \times 60}
$$

EXAMPLE 39 A simple evapontive air refrigeration syatem is usod for mo seroplore to take 20 The of refrigeration load to mainowiz the ebhin lemporztune at 25 C . The ainheut ate condinins are $29 \times \mathrm{C}$ and 0.9 bar . The ambitet air is raneed isentropitally to s pressure of t bur The air teaving the main oompressor at powsore 4 ther is firm molad in the leat exchanger wo
 The aie foons the evaponoro is passed through ene cooling larbias ard than it is sapplist to she fenhin at a preastr of 1.06 tor. If the conpression efliciescy of the corrgresor is 30% and he eoponsion efficiency of cooling tuition is 75 hi, detrmine the followity:
(a) Mass of air tied off the mion cospossse
op) Poure refried for the refligetasag syatem.
(c) COp of the velrigeroting ryitm

5ufutias:

Given:	$\begin{aligned} & Q=20 \mathrm{TB;} \\ & p_{1}=09 \mathrm{ker}, \\ & \mathrm{H}_{\mathrm{r}}=75 \% \\ & \mathrm{~T}_{5}=25^{\circ} \mathrm{C}=25+2 \mathrm{~T}=250 \mathrm{CK} \end{aligned}$	

 is shown in Figue 3.25.
Sappese $\quad T_{1}=$ tempersine of ait euteding the main conpreaum,
$T_{1}=$ tempenatire of ait afier isentropic corporsion in De anaia congressor,
$T_{\gamma}=$ acual itmperabue of air leavitg the mais onppoessor, and

We kanw bat for an iumtapic amming procen ! 2 , tiviag $\{y=1.4\}$

$\therefore \quad r_{1}=T_{1} \times 1.85=295 \times 1.03=301.1 \times$
Now for ille listropic compension poseess 2-3,

$$
\begin{aligned}
& T_{2}=T_{1} \times 1 \text { ASS }=301.6 \times \text { L.ASS }=488.5 \mathrm{~K}
\end{aligned}
$$

We kraw fiat ite elficiency of the comproser,

$$
\begin{aligned}
& 0.8=\frac{4485-301.3}{T_{T}-301.5}=\frac{146.6}{T_{y}-301.8} \\
& \gamma_{7}=301.8+146.50 .8=485.1 \mathrm{~K}
\end{aligned}
$$

The evorgeriame of air learing the fist teat exchayget, given is the canaple, $T_{i}=100 \mathrm{C}$ The tomperatire of air in the evepoestive tope he is sotased by $10^{\circ} \mathrm{C}$, termon the ismperatare of air learing the evapoenire ant enverige the cooting hartire,

$$
T_{e}=T_{4}-10=100=10=900^{\circ} \mathrm{C}=363 \mathrm{X}
$$

Now for the isnmopiz exparisisi process e-5.
$\therefore \quad \tau_{5}=T_{s} / 1 . A 1=3691.46=247.6 \mathrm{~K}$
Efficiency of the codits lurbing,
ar

$$
\begin{aligned}
0.75 & =\frac{363-\tau_{y}}{363-2576}=\frac{351 . \pi-\tau_{y}}{115.4} \\
T_{y} & =363-0.75 \times 115.4-276.45
\end{aligned}
$$

(4) The rrass of air Had off the wain crerpmesser,

$$
x_{4}=\frac{211 \varrho}{r_{5}\left(T_{4}-T_{5}\right)}=\frac{211 \times 20}{1(202-2054)}=155 \text { pimin }
$$

(a) Pover required for the zefigmating symem,

$$
P=\frac{m_{y} r_{y}\left(T_{J}-\Gamma_{Z}\right)}{60}=\frac{195 \times 1(485.1=391.19}{60}=595 . \pi \mathrm{kW}
$$

(x) The COP ef the refligetation syaten

$$
=\frac{210 Q}{P \times 60}-\frac{210 \times 25}{5857 \times 60}=0.011
$$

27.3 Bocl-strap Air Cecling Syaism

A bookitap sir cooling sybum is stonn in Fipue 1.25. The trais advangege of thia sputem is

 coled in the fire lrat esctanger uirg cold an aiz. This coolod ais, ather coerpresions in the secindry compersot, leads io the mocosd heat esctanges, where it is again cooles by the rean
 tope sixcraft.

The τ-s dagrim far a boosstrap air spele coriing sywem if shows in Figure 327 . The

Figare 125 Bad-atip it whigevion ryda far argat.

Preess 1-2: It repracats the iernopic ramming of anbient ait firm pressure p_{1} and
 manirg proces.
 proceis $2-5$ mpresuts the asonal corgrestion of ofr.
Precess \bar{x}-At The compressed air foien the mbin compreator is sooled in teat exctanger 1 Esiag cas ofr. The persure drop in the hat exchanger is aeglected.
Procase 4-5; The isensopic comprestion of cooled sir is foom the fint teat authanger, in the scond conpessar. The atial campresian in mprevented by the peocess 4-5.
Frscass 5-6; The conpoessed alr from its securdry tompraur is cooled ia heat enchonget II using an tir. The pesurs dop in the that exchonger is refocted.
Preces 6-7i $\%$ is iseanopic expantion of coseled sir is the costiog tubioe op to the catin presure. Thr procep f-7' npreseds the actave expasian of the conlad air in the cooligg tation.

The quartity of air requind for the refrigersion papose 00 neta he Q Th of fefrigentima luse in the catin is

$$
\hat{a}_{e}=\frac{211 Q}{c_{p}\left(T_{1}-T_{p}\right)} \text { kpjinia }
$$

Power nested fie the refrigerating sjusem.

$$
P=\frac{\pi_{y} e_{y}\left(T_{y}-T_{y}\right)}{60} \mathrm{KW}
$$

and COP of the refrigerming syatem

$$
=\frac{2110}{m_{0} c_{2}\left(\Gamma_{y}-T_{z}\right)}=\frac{211}{8 \times 60}
$$

ELAMPIE 3.10 A boot-strap coaling aysten is rend in an seroplane for 15 TR capacity. The

 The efficiency of zach of the congressors is BS\% and that of the wation is 905.755 of lit beve contars of the air cinchagged from the nili comperaver is rameved an tis luai eactergen

 pressue to be 0.9 bar and he tempervaire of to alr leavitg the cobia ia te nol mose taxn $20^{\circ} \mathrm{C}$, find the following:
(b) The mess of air blod off the anain curpotenar:
(b) The pouper sequired to dpenas fle syatrm
(0) Te COP of the system:

Thle $\gamma=1.4$ and $\varsigma_{p}=1 \mathrm{kHg} \cdot \mathrm{k}$

Solvirien:

Given: $\quad Q=15 \mathrm{TR}$;
$p_{1}=0.85$ bw:
$p_{3}=p_{3}=p_{4}=3 \mathrm{bar}$

$$
p_{1}=p_{r}=p_{1}=0.0 \mathrm{bars}
$$

$$
y=1, A ; c_{p}=1 \mathrm{k} \mathrm{~m}_{\mathrm{g}} \mathrm{~N}
$$

$T_{1}=20^{\circ} \mathrm{C}=20+273=203 \mathrm{~K}$
$\mathrm{Pa}_{1}=1 \mathrm{bar}$
$p_{3}=p r=p_{4}=4.5 \mathrm{bar}$
$\pi \mathrm{r}=50 \%$
$T_{i}=200^{\circ} \mathrm{C}=20+273 \mathrm{~K}$

 We know tha for isstrupie raming poocels 1-2,

$$
\therefore \quad T_{1}=T_{1} \times 1.097=293 \times 1.03=306.1 x
$$

Now for the isestropio oongresibe proces 2-3,

$$
\begin{array}{ll}
& \frac{J_{2}}{J_{2}} n\left(\frac{\rho_{1}}{\rho_{1}}\right)^{\mathrm{ir}-3 / r}=\left(\frac{3}{1}\right)^{2.4-14 n c t}=[3)^{21 / H}=1.37 \\
\therefore \quad & T_{3}=T_{2}=137=306.5 \times 1.37=430.3 \mathrm{X}
\end{array}
$$

besiropic ellidioncy of the soripressuc.

For perfect iawocooling, the tarperatare of air at dee oullet of lieat ewhonger 1 is nusal is

$$
\begin{aligned}
& 0.1=\frac{4213-306.3}{J_{5}^{2}-306.8}-\frac{113.5}{J_{3}-106.5} \\
& T_{J}=306.8+113.50 .8=449.5 \mathrm{~K}=125.7^{\circ} \mathrm{C}
\end{aligned}
$$

corgresine heal is itmoved and is bet temperature of air at point 4 is

$$
\tau_{4}=\tau_{2}+0.25\left(7_{3}^{\prime}-I_{2}\right)-366.8 \div 0.25(120.3-306.2)=315 . \mathbb{E}^{\prime}
$$

De ineatopic process *-5,

443.7

Isetrogic efficiency of the amiliary (sebentary) temparanoe,
${ }^{6}$

$$
A
$$

$$
\begin{gathered}
0.85=\frac{376-335.85}{7_{y}-335}-\frac{41}{7_{y}-335} \\
T_{y}=383.2 \mathrm{~K}=110 \mathrm{C}
\end{gathered}
$$

For perfoct ater-cooting, the impraius of à at be oodet of trat exictonger Il is cgat
 arly 30% of ite cmprestion tear is ronovet. Therefors, br temperane of air at peirt 6 is

$$
\bar{r}_{6}=\tau_{t}+a \eta_{1}\left(T_{r}-T_{s}\right)-335+0.2(3832-335)=3657 \%
$$

For the issmopic process $6-7$.

The notice efficiency.
of

$$
\text { Mr }=\frac{\text { Astal decrave in tenjerater }}{\text { Istinopis detreise in iemperatare }}=\frac{T_{5}-T_{T}}{T_{6}-T_{7}}
$$

$$
0.9=\frac{358.7-T_{7}}{36 \varepsilon .7-2) 2.6}=\frac{368.7-T_{T}}{136.1}
$$

$$
J_{T}=246.2 \mathrm{~K}=-26.8^{\circ} \mathrm{C}
$$

(a) Fiow rale of ar :

The trass of air bled off dar male curnaresser

$$
\dot{R}_{6}=\frac{2112}{c_{p}\left(T_{1}-3_{r}\right)}=\frac{211 \times 35}{1 \times(293-258.2)}=67.3 \mathrm{kginin}
$$

$$
\begin{aligned}
& =00225 j^{1215}=0.653 \\
& \therefore \quad T_{\mathrm{T}}=T_{4} \times 0.231=16.7 \times 0.63 \mathrm{l}=232.6 \mathrm{~K}=-40.35 \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{I_{4}}{T_{1}}=\left(\frac{p_{1}}{n_{4}}\right)^{t \mathrm{f}-\mathrm{Blt}}=\left(\frac{4.5}{3}\right)^{0 .-1 \mathrm{n} .4}=[1.5)^{p a m n}=1.122 \\
& \therefore \quad T_{3}=T_{4} \times 1.122=339 \times 1.122-176 \mathrm{~K}=\text { (1tK.9C) }
\end{aligned}
$$

(b) Power required to qpenite the sysutm.

$$
P=\frac{0_{0} \tau_{p}\left(T_{J}-T_{z}\right)}{60}=\frac{573 \times 1(488.7-306.8)}{60}=159 \mathrm{~kW}
$$

(c) COP of the spman:

We knous the COP of the syatem $n 0$ be

$$
=\frac{211 Q}{n_{2}<,\left(T_{y}-T_{3}\right)}=\frac{211 \times 15}{67.3 \times 1\langle 44 k 7-3068)}=0.33
$$

EKAMPLE 3.11 An acroplate eses the bootatiap alr cooling syatem. It sequites 16 TR of refrgeratise. Ambiant temperatuer and prossere ant $-13^{\circ} \mathrm{C}$ and 0.6 the rapecively. The speed of the plann is 300 krogh . The ram air in compressed is the main compressse up ts 3.6 bar pressue and this is further compressed is the cecondary compoeser up to 4.4 bar. The isentupis efficiency for exch compersior is 85%. The air in the heat exclanger I is boolat us to $113^{\circ} \mathrm{C}$ by man air while the air foom the secondery compesser is rooled by ram air up $1087^{\circ} \mathrm{C}$. This cooled air is then expanded in cooling earkine up to the caltis pressure of 1 bar wih as inerropio ethcieory of 906 , The cabin temperame is required to be maintained at $20^{\circ} \mathrm{C}$. Find the follorwing:
(a) Mas Clow rane of alt in keinin.
(b) Power replintal to operace the systen.
(c) COP of the jusim.

Assime, $\gamma=1.4$ ant cp $=1.91 \mathrm{kH} / \mathrm{hg}-\mathrm{K}$
Solvitiow:
Given:

$$
\begin{aligned}
& Q=16 \mathrm{TR} \\
& \vec{n}_{1}=0.6 \text { bor } \quad \vec{T}_{1}=-13^{\circ} \mathrm{C}=-13+273=260 \mathrm{~K} \\
& p_{3}=p_{y}=p_{4}=3.6 \mathrm{bar}
\end{aligned}
$$

$$
\begin{aligned}
& T_{5}-87^{\circ} \mathrm{C}=87+273=360 \mathrm{~K} \\
& T_{1}=20{ }^{\circ} \mathrm{C}-20+273=253 \mathrm{~K} \\
& C=300 \mathrm{kmph} \text {, } \\
& p_{s}=p_{y}=p_{c}=4.4 \mathrm{bar} \\
& \nabla_{f}=50 \% \\
& p_{1}=p_{7}=p_{1}=1 \text { tar } \\
& \mathrm{T}_{4}=113^{\circ} \mathrm{C}=113+273=386 \mathrm{X}
\end{aligned}
$$

The $T-4$ diagrem is sbown in Figue 3.29 and systess diagram in Fipure 3.26
Rem campression (1-2):

$$
\begin{aligned}
& \text { Velocity of air, } C=300 \mathrm{kzuhh}=\frac{300 \times 1000}{3600}=222.2 \mathrm{mh} \\
& T_{1}=T_{1}+\frac{c^{2}}{2 \varphi_{2}}=260+\frac{(222.2)^{2}}{2 \times(1.01 \times 1000)}=234.5 \mathrm{x}
\end{aligned}
$$

Figan 120 t-s dogran for boci thap air sispontive codiog sprem-Exyple 21 L
Prowes (2-3) in matin compersers

$$
J_{1}=J_{2}\left(\frac{D_{2}}{D_{2}}\right)^{20-111 \%}=2.44 .5\left(\frac{3.6}{0.222}\right)^{(0.4-111.4}
$$

6

$$
T_{3}=433.7 \mathrm{~K}
$$

$$
J_{c l}=\frac{T_{1}-T_{1}}{T_{y}-T_{2}} \text { i.e. } J_{y}=T_{3}+\frac{T_{y}-T_{2}}{T_{<1}}
$$

$$
J_{Y}=234.5+\frac{(433.7-234.5)}{0.85}=460.0 \mathrm{E}
$$

Secendary compresivion process $(6-5):$

B4
of

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{ar}}=\frac{T_{2}-T_{4}}{T_{2}-T_{4}} \\
& T_{Y}=T_{4}+\frac{J_{3}-I_{\mathrm{i}}}{\sum_{\mathrm{ct}}}=335+\frac{(415.0-3(6)}{0.85}=452.5 \mathrm{~K}
\end{aligned}
$$

${ }_{6}$

$$
\begin{aligned}
& T_{7}=T_{\mathrm{S}}\left(\frac{p_{r}}{p_{6}}\right)^{(\mathrm{rr}-10 \mathrm{y}}=300\left(\frac{1}{4.4}\right)^{(0.4-1) / 14} \\
&=235.5 \mathrm{~K} \\
& \mathrm{~N}_{\mathrm{r}}=0.9=\frac{360-T_{\mathrm{T}}}{360-235.3} \\
& T_{\mathrm{T}}=248.2 \mathrm{x}
\end{aligned}
$$

(a) Rrfrigmaing alloct, Le, hooring of air in tahin in purcess ($7-8$)

$$
\begin{gathered}
Q=\dot{B}_{,} c_{p}\left(T_{1}-T_{r}\right) \\
16 \times 211=m_{2}=1.01(293-243.2)
\end{gathered}
$$

$$
\pi 0_{2}=74.61 \mathrm{~kg} / \mathrm{min} \quad \text { Ans }
$$

(b) Total sonquewsc power mequed is to ma the Ealn parmpesser.

$$
\begin{aligned}
P_{C} & =\delta_{4}\left\{v_{c}\left[\bar{T}_{5}-T_{3}\right]\right. \\
& \left.=\frac{74.61}{60} \times 1.0164600-224.5\right)=200.00 \mathrm{kN} / \mathrm{s} \text { or } \mathrm{kW} \quad \mathrm{Nms}
\end{aligned}
$$

(0)

$$
\text { Sirce 1 TR = 3517 } \mathrm{aW}
$$

$$
\mathrm{COP}=\frac{Q}{P_{C}}=\frac{16 \times 3.517}{210.6}=0.155
$$

 reingesation loed. The probiets air ogniliten are $15^{\circ} \mathrm{C}$ and 0.9 bar. This air is romnod

 ispotogic effiviency of bath ibe conquestres is 9014 and that of sooting tartene is 85%. Te effectiverear of bolh the bex enchangers is 0.6. tf be cabia is to tre maisizind st $23 \times \mathrm{C}$ and the presure in the caloin is 1 bar, fied ea followige
(a) Mass of air passiag farough the cabin.
(a) Power ersed for the rolrigeraion spyem
(c) DOP of be spyert

Soforion: Figue 3.90 shaws do $T v I$ divgexn.
Givea!
Refrigeralian elfoct $=10 \mathrm{~T}=30 \times 3.517=35.17 \mathrm{k}$ 贾;

$$
\begin{aligned}
& \mathrm{Cl}=0.0 \mathrm{har} \\
& T_{1}=15^{\circ} \mathrm{C}=15+273=288 \mathrm{~K} \\
& s_{2}=1.1 \mathrm{har} \quad \quad p_{1}=B_{5}=A=35 \mathrm{hz}
\end{aligned}
$$

$\begin{array}{ll}\mathrm{M}\end{array} \mathrm{Fy}=\mathrm{Py}=2.5 \mathrm{mar}$

$$
x_{r}=852_{s}
$$

$E_{y}=E_{, 1}=E_{\text {d }}=0.0$
Cabis tamperatiat, $T_{2}=25{ }^{\circ} \mathrm{C}=25+279=208 \mathrm{~K}, \rho_{7}=n=\rho_{1}=1$ ber
Istutripir ram conpresstion ($\mathrm{I}-\mathrm{D}$)

$$
\tau_{2}=T_{3}\left(\frac{D_{1}}{R_{1}}\right)^{8-11 / 7}=283\left(\frac{2.1}{69}\right)^{0,1 / 124}=305 \mathrm{~K}
$$

Mais competiset: lieitropic compression pooceis (2-3)

$$
\begin{aligned}
& \mathrm{O}_{\mathrm{cl}}=\frac{T_{3}-T_{1}}{T_{Y}-T_{7}}: 0.9=\frac{42 \epsilon .5-305}{T_{y}-305} ; \quad \therefore T_{y}=4378 \mathrm{x}
\end{aligned}
$$

Beat enchanger (IIE-I) Its efferiveness is

$$
E,=\frac{T_{T}-J_{4}}{T_{T}-T_{2}} ; 0.6=\frac{437.8-J_{4}}{437.3-305} ; \quad+T_{4}=158.1 \mathrm{~K}
$$

Secondary cempressert Casvider he ierrirogie procest (4-5i.

$$
\Gamma_{1}=J_{4}\left(\frac{P_{2}}{R_{2}}\right)^{\mid 6-4 \cdot \%}=353.1\left(\frac{45}{3.5}\right)^{(04-1 \mid 114}=354.8 \mathrm{~K}
$$

$$
9 \mathrm{Fz}+0.9=\frac{3548-353.1}{T_{r}-351.1}: \quad \therefore 7_{5}^{\prime}=357.5 \mathrm{~K}
$$

Hest earhanger It Its affectiverem is

$$
\begin{gathered}
E,=\frac{T_{5}-T_{5}}{T_{y}-T_{2}} \\
\text { Herice, } \quad 0.6=\frac{387.8-T_{6}}{287 B-305}: \quad \therefore T_{6}=338.1 \mathrm{~K}
\end{gathered}
$$

Conling tarhinas Consider hur iscairopic pruceis (6-T)

$$
\begin{aligned}
& T_{7}=T_{6}\left(\frac{p_{7}}{D_{1}}\right)^{\mathrm{tr}-n_{p}}-335.1\left(\frac{1}{4.5}\right)^{\sqrt{14-1 / 24}}=220 \mathrm{E} \\
& D_{r}=\frac{T_{5}-T_{T}}{T_{6}-T_{7}}
\end{aligned}
$$

(a) Mhas of air pausing troagh the cabin, ma

$$
\text { Retrigeratig effect }=\omega_{4} \times x_{p}\left(\bar{T}_{n}-T_{T}\right)
$$

$$
\begin{aligned}
35.17 & =\pi_{0} \times 1 \times(290-237 J) \\
A_{4} & =0.58325 \mathrm{kgis}=35 \mathrm{kghmin}
\end{aligned}
$$

(b) Power nequied for de relfigmation systern, P_{4}

$$
\begin{aligned}
P_{s}=m_{4} \times c_{y}\left(T_{7}-T_{2}\right) & =0.58325 \times 1 \times\langle 4378-105\rangle \\
& =77,46 \mathrm{~kW}
\end{aligned}
$$

(c) COP of the system

$$
\mathrm{COP}=\frac{\text { Robrigerating effert }}{\text { Power sappliel }}=\frac{35.17}{77 \mathrm{A6}}=0.554
$$

EXAMPLE 3.13 A boot-leap nefrigeration systen is aed in an aliplase. The following
 6 niming atios at pessure itcreases of I ber. Thit rim air is ured for hew exchargers. This
 the sosendary compreisor in 425 bar. Assusut compengion efficiency of 0.9 and outhina efficieocy of 0.85 . Effectiveners for bolk the hos eactingers is 07 . The cabin peesiare in 0.9
 ispoliopic. Caloulare the COP asd ter power noqsired pee ivo of refiggeratim.

Solitione Refer ta Figued 3.3 f for the cycte and det \bar{T}-d diagram
Gisen :

$$
\begin{aligned}
& r_{1}-15^{\circ} \mathrm{C}=15+273=253 \mathrm{x} \quad \beta_{1}=0.15 \text { bor. } p_{2}=1 \mathrm{bar} \\
& P_{y}=p_{y}=3.25 \text { ber } \quad \quad \quad \bar{P}_{y}=P_{s}=4.25 \text { bor } \\
& \eta_{a}=\nabla_{c t}=0.9 \quad \Pi_{r}=0 S_{,} E_{,}-E_{n}=E_{-2}=0 . J \\
& D_{n}=p_{T}=P_{1}=09 \text { bec } \quad T_{1}=22^{\circ} \mathrm{C}=23+273=295 \text { K }
\end{aligned}
$$

Keutrapic rann caspreseino (1-2):

$$
T_{2}=T_{1}\left(\frac{D_{2}}{h_{1}}\right)^{\text {0-1ij }}=218\left(\frac{1}{0.85}\right)^{0 . A-1014}=301.7 \mathrm{~K}
$$

Mein cemprasoar; Consibering iseripopic compression,

$$
T_{1}=T_{2}\left(\frac{P_{2}}{r_{2}}\right)^{p-i 1 t}=3017\left(\frac{325}{1}\right)^{\sqrt{1-4-1 / 14}}=4225 \mathbb{K}
$$

Bat the comptesien is nat inestrupia:

$$
T_{51}=0.9=\frac{T_{3}-T_{2}}{T_{3}-T_{2}}=\frac{422.5-301.7}{T_{y}-301.7} ; \quad T_{T}=435.9 \mathrm{~K}
$$

Heat cachanger' In Ram air is eriployed is tho hast aschargers foe oooline the compoussed air. las effectivencis E_{F} in

$$
E_{r}=\frac{J_{y}-I_{4}}{T_{y^{2}}-T_{7}} ; \quad 0.7=\frac{435.9-I_{4}}{435.9-301.7}
$$

$$
T_{4}=302.0 \mathrm{~K}
$$

Disal exchanger II: Cohd ran air is zopd for cooling the conpeessed air in Hill Tixechart,

$$
E_{5}=\frac{T_{3}-T_{t}}{T_{3}-T_{3}} ; \quad 0.7=\frac{3722-T_{6}}{372.2-301.7}
$$

$\therefore: \quad J_{6}=3228 \mathrm{~K}$
Cosling turline
Contialaing isomopic eapsmise ($6-7$).
(a) Consiter 1 kg of air.

Crapeestar work $=c_{(}\left(T_{y}-T_{2}\right)+c_{1}\left(T_{5}-T_{2}\right)$

$$
\begin{aligned}
& =1.005[435.9-301.7)+[372.2-3420] \\
& =134.9+30.35=165.2 \mathrm{kj} / \mathrm{kg}
\end{aligned}
$$

Specifit rehtgeaving effect, $Q_{1}=c_{2}\left(7_{1}-7_{7}\right)=1.605(295.0-230.9)$

$$
\begin{aligned}
3 & =65 \mathrm{kJigg} \\
\mathrm{COP} & =\frac{\text { Raligering effot }}{\text { Work inpu! }}=\frac{6}{1651}=0.393
\end{aligned}
$$

(b) Poucr refuipal par las of aethiparion P
$1 \mathrm{TR}=3.517 \mathrm{k} / \mathrm{s}$

$$
\begin{aligned}
& J_{T}=\nabla_{5}\left(\frac{p_{2}}{D_{1}}\right)^{07-017}=3203\left(\frac{0.9}{4.25}\right)^{0.4-014}=3012 \mathrm{~K} \\
& \text { 开 }=\frac{T_{i}-F_{2}}{F_{6}-T_{T}}, \quad 0.60=\frac{322.8-J_{T}}{3228-20 T_{i} .2} \\
& T_{\mathrm{Y}}=2903 \mathrm{X}
\end{aligned}
$$

$$
\begin{aligned}
& T_{3}=I_{4}\left(\frac{\Gamma_{1}}{\Gamma_{4}}\right)^{\frac{\gamma-101 \%}{}}=342\left(\frac{4.25}{3.25}\right)^{() 4-1) / 24}=3693 \mathrm{~K} \\
& \pi_{4}=0.9=\frac{3692-342}{T_{5}-362}, \quad \therefore T_{5}=3722 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } \\
& \begin{aligned}
\hat{n}_{c} & =\frac{1 \text { TR }}{\text { Spucific refriguraing effect }}=\frac{3.517}{65} \text { Lyls } \\
P & =5 n_{3} \times \text { esmpressor werk }=\frac{3.517}{65} \times 165.2 \\
& =8.94 \mathrm{~kW}
\end{aligned}
\end{aligned}
$$

$$
Q=\dot{n}_{2} n \cdot q
$$ Ans

2.7A Bool-6rap Air Evaporaive Cooling Systam

A tos-strap air evaporative cooling syatem is shows in Figan 332. The simple toot sexop air conling, gssen is modified intoodasing in eveporator between the second bes exchinger atd
 is the coollag thetite This improves the COP of the cjele or regriane lesp cerrponsar wedk for the itime refrigention efloct.

The T-d diagras for a boot-sirep al enaperative cooling sysem is stown is Figem 1.31.

 in the boce-shap eveporesive ofsem is lower than that of the simpls boet-scop syater, the masp of ar $\left(\sim_{0}\right)$ per IR af retrigeration is las in te Boo-stup exaporative syipm.

The quinity of ar required for the reltigemion load of Q TR in the catin will be

$$
N_{0}=\frac{211 g}{s_{p}\left(\bar{C}_{i}-T_{T}\right)} \text { getrin }
$$

Power requind for the refigenation syyem is givea by

$$
P=\frac{W_{r} r_{r}\left(T_{T}-T_{z^{\prime}}\right)}{60} \mathrm{LW}
$$

asd COP of the refrigenrion sysien

$$
=\frac{2 H Q}{\omega_{r} c_{P}\left(\bar{T}_{T}-T_{T}\right)}=\frac{2 H Q}{P \times 60}
$$

375 Reducad Ambient Alr Cooling Syatam

Te rodiced antiest air opoling sysien is stown in Figre 3.34, 此战 uied for air cooling of very high apeed aismit. Due to high spod of the aboraft, the leaperatury of the ran air is retatively high compued with other cooline sygems seen eafier. Therefors, ran air camst be
 cooling the compersied air in the hesc eacharger.

This cooling syatem inclades two cooling tubises and oet heat estronper. This Eiph pressurt ind high tempecatire arir bled off fron the main semprosar is coplod intially in the lent racunger. The coolet air from the lest exchanger is pased throwfi'the semand croling nertive form where the air in sappled is the catin. The work of the cooling larbise is ssed mo dive the cooling fin (hrough seduction gears). ulich daw osoling air foom the has encharger.
 vabions pocesses are as follows:

25 Athigualienavitar Candrikely

Figni 134 Revood arbiert sir cosing yodi for dirat.

Proces (L-A) Esentropic compresion of ram air, actual cospression shown by 1-2 Process (2-3); lienropic compeesion in main compeessar, actral process by $2-3$,
 cormpessor in hras axitanget.
 the aehal expansion is repreponisd by ale pocess ($4-5$).
Frociss (5-6k Ceratant pressure leatiag of aik ap on emperatire T_{5} in colin ts prodice nefriperatirg effoci.

1. Ths gamsiy of air nequied to produce reingeration eflect of Q TR will be

$$
\mathrm{K}_{\mathrm{s}}=\frac{211 Q}{c_{p}\left(T_{e}-T_{5}\right)} \text { Lphin }
$$

2. Poner iequired for the vefrigeration ipites is

$$
P=\frac{\pi_{s} t_{p}\left(T_{3}-\tau_{z}\right)}{60} 1 \mathrm{~W}
$$

3. COP of the sysem

$$
=\frac{211 Q}{r_{x} c_{j}\left\langle T_{y}-T_{z}\right\}}=\frac{211 Q}{P_{\times 60}}
$$

ntere. P = pover in $K W, Q=$ veligeralian effeer in Th.
EXAMPLE 314 The reduced ambient air nofrigostinn syitem usod for an aireraft conists of the coolisy tutioss. oue brot exctonger and ooe aif cooling tas. The ippof of the aircont is 1500 kmh The ambient air cooditians are 0.3 bar and $20^{\circ} \mathrm{C}$. The ammod air used for cooling is exproded in tis first cooling outine add leves it at a presuus of 0.8 bur. The air thed from
 is wo bo maiataseli an $2 \pi^{\circ} \mathrm{C}$ and I ber. If the isemopic efficiency for lhe main compessior is

(a) Maus flow rase of air suppled io cabin is lake a cabin foed of 10 TR of reltigeration.
(4) Quastity of ait passing theoggh the best exchazgar if the temperanee fise of ram sir in binited io 70 K .
ker Power used ts drive the cooling fini.
(10) COe of the spitem

Sahniser:
Givese $V=1500 \mathrm{~km} / \mathrm{h}=417 \mathrm{mik}, \bar{T}_{1}=03 \mathrm{ber} ; T_{1}=10^{\circ} \mathrm{C}=10+273=283 \mathrm{~K}$: $p_{3}=p_{4}=6424 ; \tau_{4}=100^{\circ} \mathrm{C}=100+273=373 \mathrm{X}: \tau_{5}=200^{\circ} \mathrm{C}=20+273=293 \mathrm{~K}_{i} p_{6}=1 \mathrm{kar}$

A Sghigmotiststeldi-Candiaisting

The T - s diagram fee the teduced ambient air refigenuioa system with the given cooditions is showa in Higure 3.36 .

Sappose $T_{3}=$ Sagution tempernture of ambiett alt emering the main sompreasor $\mathrm{F}_{2}=$ Fiessurt of air at the end of isenuopic momming, aed
we karow that $T_{2}=T_{Z}=T_{1}+\frac{\nu^{2}}{2000 c_{p}}=283+\frac{(417)^{2}}{2000 \times 1}=370 \mathrm{~K}$
Isentrople rumming process 1-2:

$$
p_{1}=p_{1}\left(\frac{r_{1}}{T_{1}}\right)^{\frac{\mathrm{r}-15 / \mathrm{T}}{}}=0 . \mathrm{B}\left(\frac{330}{283}\right)^{14(14-1)}=2.06 \mathrm{bar}
$$

The espation of ram air in the first anoling tubine is stown in Figue 3.37. The vertical Fine 2-1 mepeesent the iortarpis eapusion process and tet curve 2-1 pogresents the acfual expatien process.

laresogic exgaztian of ram air in the fint turbires.

$$
\begin{aligned}
T_{2} & =T_{1}\left(\frac{D_{1}}{A}\right)^{\gamma-14 / y} \\
& =370,\left(\frac{206}{08}\right)^{0 \alpha-1 / 104}=282 \mathrm{~K}
\end{aligned}
$$

Tiemeopic etriciency of the firs coslong tuthine,

$$
\begin{aligned}
& 08=\frac{370-\bar{Y}_{1}}{370-282_{1}} \\
& \tau_{\mathrm{r}}=2998 \mathrm{EK}
\end{aligned}
$$

Misin compressor: Corsidering iseatropic compassive (2-3),

$$
T_{1}=T_{2}\left(\frac{p_{1}}{p_{2}}\right)^{\gamma-1 / p_{r}}=370\left(\frac{6}{2.05}\right)^{j 1-p_{14}}=502.6 \mathrm{~K}
$$

We kiow that ineatrogit effitime of tee compurssor,

$$
\begin{gathered}
T_{\mathrm{c}}=\frac{\text { Itentopic incteat is Itmperature }}{\text { Actal iatrease in lemperature }}=\frac{T_{3}-T_{2}}{T_{Y}-T_{1}} \\
0.85=\frac{502.3-379}{T_{Y}-370} ; \quad \therefore T_{Y}=525.5 \mathrm{~K} \\
P_{1}=P_{Y}=N=1.0 \mathrm{bar}
\end{gathered}
$$

Naw for the isentropic espassian of air in the second cooling lertiote (process 4-5),

$$
\begin{gathered}
\frac{T_{4}}{T_{3}}=\left(\frac{R_{5}}{D_{1}}\right)^{00-90 \%}-\left(\frac{6}{1.0}\right)^{(34-1 / 24}=1.660 \\
T_{5}=\frac{T_{4}}{1.660}=\frac{373}{1.669}=223 \mathrm{X}
\end{gathered}
$$

$$
\text { Ir } r=\frac{\text { Actual decresse in temperatues }}{\text { Isentropis decrease in venperuaure }}=0.8=\frac{373-7_{\mathrm{F}}}{373-223}=\frac{373-7_{\mathrm{t}}}{149}
$$

\therefore

$$
T_{f}=253.3 \mathrm{X}
$$

(a) Dais Dow rave of ait supplied to catim:

For mass flow nite of air supplied to cabin, apply the enargy balance equations Toral refligecation load = leat earied amay by the air

$$
\begin{gathered}
211 \times Q=\pi_{3} \times c_{5} \times\left(T_{i}-T_{3}\right) \\
N_{6}=\frac{211 Q}{c_{3}\left(T_{6}-I_{5}\right)}=\frac{211 \times 10}{1(293-2533)}=53.14 \mathrm{kq} / \mathrm{min}
\end{gathered}
$$

(b) Quartity of rim air pessing trough the hax exchanger: Let eng be the quatity of man air pasing llowgh the hes exchaeger. Ceraider the beat balonet for the heon exchanger (Reler Figace $\$.100$ Heat given oat by compressed air $=$ Heal poinsd by wam air

$$
\left.n_{1} c_{1}\left(T_{5}-T_{4}\right)=r_{3} \times c_{p} \text { (increase in tumperatare of } r a n a i f\right)
$$

$$
53.14 \times 1.0 \times(525.6-373)=m_{n} \times 1.0(50)
$$

$$
\therefore \quad m_{2}=101.2 \mathrm{kgi}
$$

(c). Pomer to drive the cooling tas:

Wark sutpet fran the first cosling lurbion,

$$
W_{n}=W_{e} \times c_{p}\left(\tau_{2}-T_{n}\right)
$$

$$
=101.2 \times 1(570-209.5)=7124.5 \mathrm{~L} / \mathrm{min}
$$

asd work oulpul frua the secool cosling witine,

$$
W_{\mathrm{H}}=\pi_{2} x c_{,}\left(\bar{T}_{4}-\tilde{\tau}_{f}\right)
$$

$$
=53.14 \times(373-2593)=6360.8 \text { khtrin }
$$

i Cenhined wedk curpat foon boa, the cosling tutbioss

$$
w_{r}=w_{n}+w_{n}=1134.5+6360.8=13494 \mathrm{mhin}
$$

(d) COP or the gpirn:

We kave that COP of the sytem

$$
-\frac{211 Q}{\Gamma_{2} c_{p}\left(T_{y}-I_{z}\right)}=\frac{211 Q}{53.14 \times(525.60-370)}=0.355
$$

375. Roganaraive Air Cooling System

 is Hgare 3.39. The speciality of tis syonem in the regencxive bex exchaper. The high
 teat exhuger. This ar is tarmer cooles in the regencotive heat enchunger with a periin of
 supergosit airratt and rocketa.

The varions presenes an as follow:
 preese of $2 d r$
Preces 5 - yt Denbopic rocopression of wit in the rath corrpensor and be poosess $\gamma-5$ represens the acinil sanpession of air.

Frocass 3-as Cooling of compressod air by wam air in the host exthangur.
Precese 4-5; Cooing of air in the regeteradive heat exchunger.
Fronas 5-5: lemaspic exfondoa of air in the cooling tartise ep to the cabin presous and 5-6' represcats the athal' expmonion of air.

1. Mass flaw rate of air mopplied is rahis

Let Q TV te the cosing liad in the exion
Mast fow ran of air rapplet to cibin, apply taergy talane oquation.
Tolsi nefrigmena load $=$ hel caried zovsy by the zir

$$
\begin{aligned}
& 211=Q=\pi_{0} \pi c_{7} *\left(T_{1}-T_{5}\right) \\
& \pi_{n} \text { in } 1 \text { ghrin }=\frac{211 Q}{c_{,}\left(T_{1}-T_{Q}\right)}
\end{aligned}
$$

2. Mens live rate of cir Med oll anor cooling tettint and useil Gor regenmeive

 k_{l} ti mas of cold air bled from the ovoling luntine for rzgonentive heat exclanger.
3. Paurer regsired for the refrictration sistem

$$
\overline{\mathrm{F}}=\frac{\mathrm{m}_{\mathrm{y}} c_{y}\left(\bar{\gamma}_{y}-\tau_{z}\right)}{6)} \mathrm{kW}
$$

4. tree of the nifelgoratiog nysiem

$$
m \frac{211 Q}{m\left(c_{p}\left(I_{y}-T_{\tau}\right)\right.}=\frac{211 Q}{P \times 60}
$$

whric. ν^{\prime} w perwer is $k \mathrm{~W}, Q$ = neffigeration eflect is 'TR.

 is 500°; firal the folmaite. to Mas ot the itr Del
(5) Mas ot the sir blat fran cooling tudier bo be isod for negenerative coning.

(c) COO^{\prime} of the syaters

Saturian
Given: $\varrho=20$ TR; $n=08$ bur

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{A}=12 \text { ter } \\
\text { ellintiveres of IRE } \mathrm{n} \text { Q8 }
\end{array} \\
& \begin{array}{l}
\text { ellnctiveres of 12E }=\text { Q8 } \\
f_{1}=2542=25+235=203
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}=16 \mathrm{C}=10+273=283 \mathrm{~K} \\
& P_{3}=\rho_{1}=\rho_{5}=4.75 \text { bar } \\
& T_{3}=69 \mathrm{C}=50+273=533 \mathrm{~K} \\
& \Rightarrow=\pi=川=1 \mathrm{hx}
\end{aligned}
$$

The 7 -s diggran fir the Iegrnerathe air-couling systein is shown in figine M0. For ils isentigic matring of air thocrat 1-2),

$$
\tau_{2}=\tau_{1}\left(\frac{\sigma_{2}}{n}\right)^{1 \mathrm{r}-\mathrm{v}_{\mathrm{r}}}=283\left(\frac{1.2}{0.8}\right)^{0.1-1 / 1 \mathrm{n}}=317.8 \mathrm{~K}
$$

Mala conpressar: Coniderise ineatopir cospresdian

$$
T_{3}=T_{7}\left(\frac{D_{2}}{r_{2}}\right)^{1 \mathrm{f}-5 \%}=3173\left(\frac{4, \pi}{1,2}\right)^{16-11 / 4}=471 \mathrm{H}
$$

Figure 243 Tos fogron for regenoraive is cadisg tyata-Earpe 2.15.
lsentigic affiency of the compresion,

Iffectiveness of dit bean extanger $\left(f_{0}\right)$.

$$
0.8=\frac{T_{y}-T_{4}}{T_{y}-T_{2}}=\frac{488-T_{4}}{488-317.2}=\frac{48 \mathrm{~B}-T_{4}}{170.25}
$$

$$
\therefore \quad T_{4}=35 I . I \mathrm{~K}
$$

berropic espration in the oooling rartise (peecess $5-6$.

Iseatropis efficieticy of the cooling tartire,

$$
\Pi_{r}=\frac{\text { Acsual decrease is temperature }}{\text { Liemopis decrexase in temperarure }}=\frac{T_{9}-T_{5}}{T_{5}-T_{5}}
$$

$$
\begin{aligned}
& \frac{\tau_{5}}{\tau_{4}}=\left(\frac{T_{5}}{\omega_{6}}\right)^{9-101}-\left(\frac{4.75}{1.0}\right)^{\hat{p}-1-1 / 1 / 4}=1.561 \\
& T_{\mathrm{t}}=\frac{T_{1}}{1.561}=\frac{333}{1.561}=2133 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \Pi_{\mathrm{c}}=\frac{\text { Isentrogic incossus is tomperatare }}{\text { Actial incrast in terperafore }}=\frac{T_{2}-T_{2}}{T_{J}-T_{2}} \\
& i . e \\
& \begin{array}{c}
0.5=\frac{471-317.8}{T_{Y}-317.8}=\frac{153.2}{T_{Y}-317.8} \\
T_{Y}=481 \mathrm{~K}
\end{array} \\
& \therefore \quad 7_{T}=483 \mathrm{~K}
\end{aligned}
$$

$$
\begin{gathered}
0.8=\frac{353-T_{i}^{\prime}}{333-213}=\frac{333-T_{i}^{\prime}}{119.7 .} \\
T_{i}^{\prime}-225.2 \mathrm{~K}
\end{gathered}
$$

(a) Mass of air that from the cooling tartive to be asod for regercative cooling

Let $\pi_{2}=$ mass of air bisd from the cooling tarbine on be wasd foe regeneralive cooling n_{6} = vetal man of air bled from the main coppressor, atd $\mathrm{kr}_{1}=$ mans of cold air sapplied to the calin.
Far the noergy bultince of regererative hean dachurger,

$$
\begin{gather*}
\omega_{0}+c_{1}\left(T_{1}-T_{6}\right)=n_{v_{2}}\left(T_{4}-T_{3}\right) \quad \therefore \pi_{1}=\frac{e_{0}\left(T_{4}-T_{5}\right)}{\left(T_{s}-T_{k}\right)} \\
m_{2}=\frac{m_{0}(351.3-533)}{(323-225.2)}=0.1923 \sigma_{4} \tag{i}
\end{gather*}
$$

We krow that the mass of ale segplisd to the cabis,

$$
\begin{align*}
m_{6} & =n_{6}-m_{1} \\
& =\frac{211 \mathrm{Q}}{c_{p}\left(T_{1}-T_{6}\right)}=\frac{211 \times 20}{1(259-225.2)}=590 \mathrm{ky} / \mathrm{min} \tag{iii}
\end{align*}
$$

Fron Eq. (i) we fied ther

$$
\begin{aligned}
\pi_{3}-m_{1} & =53.0 \text { or } m_{6}-0.1923 \mathrm{~s}_{\mathrm{c}}=58.0 \\
m_{3} & =\frac{53.0}{1-0.1523}=71.8 \mathrm{kginis}
\end{aligned}
$$

and

$$
m_{1}=0.1923 \pi_{4}=0.1923 \times 71.8=19.8 \mathrm{~kg} / \mathrm{min}
$$

(b) Power required foe the compresine

Pover requived for mainairiag it cabin ot the asquind condlitint is given as

$$
p_{-}=\frac{n n_{2},\left(T_{3}-T_{2}\right)}{60}=\frac{718 \times 1(483-317.5)}{60}=203.6 \mathrm{~kW}
$$

(c) COP of the syyicm

$$
\text { COP of the vyinm }=\frac{211 Q}{\pi_{r} c_{r}\left(T_{r}-\tau_{3}\right)}=\frac{211 \times 20}{71.5 \times 1(435-317.0)}=0.345 \quad \mathrm{Ans}
$$

3.2 COMPBRISOM OF YARUOUS AR COOLIIGG SYSTEMS USED FOR ANCRAFT

The performance carves tor the waione alr cooling syiters used for aircnft are shom in Fipue 341. These curves are plotisi for vicioss Mech nembers as temperamer of air at the sextos of scoling tubines.

1. Ote can obnerve thy be simple air cooting system zives matimum cooling effoci on
 uirfill for to Msch nombers raying betwees 0.4 asd 1.5. This simple system cas be cmployed with the evoporaties sysiem at high speeds.
2 The hoot-1tmp 3ytem is boaer al bow Mach munber (1.4 and abore) sinse it nonds ram oir for cooling is beat exctergeors

 emperabre ram air would te less elllective in coding the cinpretudair of the main ponpressor in the primary heat evaluager wo tue desivad lam iemperahar.
2. Regeneroive air coolieg symems ane usefle for low Marh manken an can be seee froe be griph

starcises

1. The COP of the lixis panp is gratar by urily parmared to the reversed Camot refigenator yytam. Exylain
2. Disuss the working of a Cernox telfigerater with working subatinice as atr as well as vapour. Derive as exgresion for its COP.
3. Diflerrriate betwen an ergise, a mefrigmator anf a heat punp.

4. Diseass the Bell-Cotmamn At sefroamation cyche with the help of achemaric, par and T-f diagrass. Daduce an exprestion for its COP. For ahat puppose is this rycke used in संच्चरी?
5. What are the stramgen and diadvamages of Bell-Colamann air cyche?
6. Discass the clased Bell-Colemmn air çele. Why ase miaz solations usel in these cyzles?

7. What ane the adramages of besefis of asing tbe air cytles for aircratt cooliag?
8. Draw a sean diagran and explaie the workisg of the simple air oooling cyele for aircrett Ahe tepresent the cyte on T-s diggran and explais the vacions processes involvad Explain the proseture of abaining the COP of the ryche.
IL. Explain the voriatg of hoe-stap air mfrigeration sysion.
9. Desmibe the worling of the simple tir ewaporative crale with the hely of getemaric and T-d diaprama.
10. Diffrastion and ewmerote the afvasugre of the boot-trap air evaporaive syutm from the bootsuay tir tooiling yyate
11. When ear oce prefer 10 hare the refuced smhieal sir tooling system in sifrref? Explain in werkigg with the lelp of a neal stecth
12. Esplain the workive of the segenesaive air cooling pifen with the help of schervicic and I-s diagnms. Explin the virisas procesues iswobred and whe the espeesion far its cop.
13. White stat nowes on the foftowing:

- Limiatiots of Cerast cyche vith gas as rethigerior.
- Reffigertition effert and its usis.
- Aircraft air menditionisg.

17. Cempur the different typer of air sooling sysiens is tems of aircratt spesd.

MUMERICALS

1. In a Arll-Colemaen mefigcration plant, the air is dawn from cold chazater at 1 bar and
 is the exparsion cyatider to coll thamber presure of 1 ter.
(s) Deverniae the theoretiral COP of the plate and the thesettien net reffigention efferitg of air. The compression and expensios be aismed inentrepit. Aspume $Y=\mid A 1$ and $c,=1.009 \mathrm{k} \mathrm{M}_{\mathrm{g}}^{\mathrm{g}} \mathrm{E} \mathrm{E}$.
6) If the compresion and elparsion laws followed are $\mathrm{pv}^{13 n}=C$ and $\mathrm{pv}^{13}=\mathrm{C}$ respoctively, how will the result be modifitd?
2. A refrigerttion usit warking on Dell-Colemant cycle thes air from cold chumber at $-10^{\circ} \mathrm{C}$ and compresser it foom I bor wilh iader of compressisn being 1.2 . The compressed sii is cooled to a 1 empersure $10^{\circ} \mathrm{C}$ above the ambieat sempenture of $25^{\circ} \mathrm{C}$ before it is espatided is the eaponder uhere the ladex of expention is 1.35 .
Devermine the following:
(i) COP.
(ii) Quatity of air cirrubsed per minate for the prodactios of 2000 kg ise per doy at ORC trom whes of 207 C
(iii) Copatity of the plant in ton-refriperations Asume $c_{p}=1 \mathrm{k}$ Wg. $\cdot \mathrm{K}$ for air.
3. An air refrigeration plant 25 TR capocity comprines a centrifugal comprentar, a cooler hes etchanger and an \#f urtine. The pompressoe is couplod afrestly to the air purbine. The oomprevior who receive power from another prime nover. The proceises in the compressor and the turbites tee atahatic bat noe isentropic: Air at temperaure $21^{4} \mathrm{C}$ and 0AS bar erters the compuessar. It leaves the compresse at $90^{\circ} \mathrm{C}$. The same air enters the
 tooltr and the feffigenior (erapomat) section, and consiant specific heats $\mu \mathrm{s},=1.006$ $\mathrm{k} / \mathrm{W} \mathrm{kg}-\mathrm{K}$ and $\epsilon_{\mathrm{z}}=0.712 \mathrm{k} / \mathrm{Mg}-\mathrm{K}$, devermine the following
(i) The campossor efficiency.
(ii) The tatbine efficietcy.
(iii) The flow mote of air.
(iv) The power input 00 the plont.
(v) The coefficient of performance,
a. A bigh akionde flight sirctaft is fyitg at an aktiade of 1.5 km with 2 spood of 1.2 mash. The ambistl almospleris piessure ant serapenaure are 0.2 tor and $-40^{\circ} \mathrm{C}$. The canis is pressurked so 0.5 ber and has to be maintsined at $25^{\circ} \mathrm{C}$. The main computsiser presiaurt ratio is 5 and the air entas be cooling aurbise at $40^{\circ} \mathrm{C}$. The exa from the coding burtire in al 0.75 the. The cockipit cooling load is 10 ronat, Asume innemal efficiency of corprespar as 55\% and that of oooling trebine as 75\%, Ram efficiency is 50\%. Assuwe $\gamma=1.4$ and $\mathrm{c},=1 \mathrm{3} / \mathrm{kg}-\mathrm{K}$. Determins the following:
(i) Stagnation temperaure and prespare of Etr eatering ind leaving the mais esmpresase.
(ii) Mass flow rote of air.
(iii) Ram air heat exthanger eftectiveness,
(iv) Volame lazdled by cempressor aad cooling tuebine.
(d) Net power delivered by ergine to the refrigerating unit (Pesssucistion + Befrigentions.
(vi) COp of the sysien based on eompressor work
(vii) Additional pourr only for refigeration.
4. A took-sing aif reingozina syunn is used for an aiplono to take 20 TR of cooling load The ambixit cindifoss an $5{ }^{\circ} \mathrm{C}$ asc 0.85 hay. The air pressut incrases to LIt tar dat is ranarieg artion which is costinked idoal (isempopic). The pressue of sir bind off the mais emapresiot is 3.5 tor and this arr is funticr curyresued in the atemdiry computiatr
 be sesendary comprossor is 903 and thas of the labize is 10%. Heat exchangar eflowiveness of the primery teat enctargar is 06 and bat of seceriday her enctargen 50.6 Atiuring $c,=1.0 \mathrm{dW} / \mathrm{g}-\mathrm{K}$, detamine the felloraing:
(a) The power requived to take the cotion leed and (b) the COF of the sysen.

The colin rayy be roiztaied at 1 ber and $25^{\circ} \mathrm{C}$. The cocling tation nes the atsendary

6. A regonerutbe ait refrigeration syaten of an arcraft with fligit apead of 1500 kinh has 30 Th cooling lrod whilh ate ambient osnditions we 0.1 har and $-6 y^{\circ} \mathrm{C}$ The ran cfficiescy in Vork. The pessare ratio of the muin estuproser is 5 wifl itternal efficiency
 is 60% effective. The air fron the leat cestanger pasies ies on the cooting air urbine whuse inteal effiringy is 0.8 Sense potion of air from the rooling tultire is led in ile
 ir. The cooling air gois bered to $92^{\circ} \mathrm{C}$ before diucharging bo ampophere. The cahia is pergutied ba $0 . f$ bar and mainnised as $25^{\circ} \mathrm{C}$. Detemire in following:
(a) The procetage of air stiracked for regenoraive cooling.
(b) Pover repuiral to mairsin the cohin al the reguteod condition. (c) COP.

7. Tee following dxa vefer to the zircaft eefrigeration aynasa wif eniporation cooling

 eraporative cooling effect $=30 \mathrm{king}$ of aie flow. Deiermine the fellowian: (a) Refigetraisn capecity, (b) Power for itfifyeration, ass (o) COP.

4.1 1PTROOUCTIO:

ADMAMTAGES ADD LDAITAOMAB OF AR REFRIGERATION

4.2.1 Athantioges of At Pobrigertion

7i) Air nelfigurntian aywems unt zir an refrigeron whah is avaihble abustardy fore of coll.
(ii) Air is an ineti gas. It is inflammable, man-suie ond hooct afe as a selipprati.
(iii) Air sefrigention sysums, whith wook on Beth-Colerram cyats, ove suibable bor sifcreft on axuat of avaiboilly of ran sia.

4.2.2 Limilations of Air Refrigention

 fllawe:

 The valus of 4 , is $L .00 \mathrm{kMg}$ which is wery low, Thesefore, for a fixed value of 100

Other Refrigeration Cycles

The vapour compression refrigeration cycle is a firmly established system for refrigeration and air-conditioning applications all over the world. This is because of its high COP and moderate cost. Similarly, the vapour absorption cycles are widely used when a cheap source of energy like waste steam is readily available. There are also other cycles such as (a) thermoelectric system and (b) vortex tube, which are used for specific applications despite the fact that their COPs are not as high as the vapour compression or vapour absorption systems. The steam jet water refrigeration system was very popular in the early days of refrigeration which, however, has been superseded by the newer and more efficient systems.

6.1 THERMOELECTRIC REFRIGERATION

Thermoelectric refrigeration is based on the discovery of Seeback who demonstrated in 1821 that in a circuit of two conductors made of different metals, a current flowed when the two junctions were held at different temperatures. Following this discovery, Peltier demonstrated in 1934 that when an electric current passes around a circuit composed of two different metals, one junction becomes cool and the other becomes warm (Figure 6.1).

FIGURE 6.1 Peltier effect.

With pure metals the Peltier effect is comparatively small; however, with the advent of semiconductors in the 1950s, it became possible in Peltier junctions (Figure 6.1) to produce an effect much larger than that observed with pure metals. Semiconductors are solid crystalline substances, for example germanium or silicon, that have electrical conductivity greater than insulators but less than good conductors. Compounds of the metals lead and bismuth with semimetals tellurium and selenium are the most common semiconductors used for cooling, for example, bismuth telluride. The lowest temperature obtained by this method is $-145^{\circ} \mathrm{C}$.

Thermoelectric refrigerator

The coefficient of performance of a thermoclectric refrigerator is much less than that of a conventional vapour compression system when the required cooling capacity is high. Figure 6.2 shows a simple thermoelectric refrigerator. When current flows through the circuit, the cold

FIGURE 6.2 A simple thermoelectric refrigerator.
junction becomes cold thus serving as a cooler, while the hot junction becomes hot and acts like a condenser in a vapour compression system. The components of this cycle are comparable to those of the vapour compression cycle as shown in Figure 6.3. However, whereas the COP of the conventional unit falls off rapidly as the cooling capacity is decreased, that of the thermoelectric cycle remains almost constant, as shown in Figure 6.4. The thermoelectric method is preferred for low cooling rates. Apart from the low COP, the cost of the thermoelectric units makes them unsuitable for applications where a large cooling capacity must be provided unless other considerations are more important than the economic ones. There are certain advantages offered by the thermoelectric refrigerator, making it suitable for some applications in spite of its obvious handicaps. The cooling units are of compact size, silent, have no moving parts, and contain no liquid or gases. They have a very long life as well. Moreover, it is very simple to control the rate of cooling by adjustment of the current, the response to changes in the supply being very rapid. To obtain larger cooling capacities, many couples may be combined into modules. By reversing the direction of current, a refrigeration unit is transformed into a heat pump.

(a) Thermoelectric refrigeration cycle

(b) Vapour compression cycle

Thermoelectric cycle	Vapour compression
Electron flow (B)	Refrigerant flow (B')
Cold junction (E)	Evaporator (E')
Battery (A) (A) (F)	Compressor (A)
Hot junction (C)	Condenser (F)
Semiconductor (C)	Expansion valve (C)

FIGURE 6.3 Comparison of the components of thermoelectric and vapour compression cycles.

FIGURE 6.4 Variation of COP with cooling capacity.

Currently, the thermoelectric refrigerators are used for cooling instruments, medicines and other electronic devices which generate heat. If at certain times, heating instead of cooling is required to maintain a constant temperature, this heating can be accomplished by reversing the flow of current. Both refrigerators and air conditioners cooled with thermoelectric modules have been built for nuclear submarines, to enable submarines to avoid detection by staying underwater for extended periods.

Much experimental work has been done to find materials that would give the best thermoelectric results. Compounds of the metals lead and bismuth with the semimetals tellurium
and selenium have given the best results. The most common semiconductor used today for cooling purposes is bismuth telluride, $\mathrm{Bi}_{2} \mathrm{Te}_{3}$. To obtain a larger cooling capacity than that produced by a single couple, many couples are combined in modules.

Figure 6.5 shows the schematic diagram of a practical application of a thermoelectric refrigeration cycle.

FIGURE 6.5 Schematic diagram of a thermoelectric couple used in a refrigerator.

Thermodynamic analysis of thermoelectric refrigeration system

In the cooling element shown in Figure 6.2, the Peltier heat absorbed at the cold end and the Peltier heat rejected at the hot end are given by

$$
\begin{align*}
& Q_{c}=\pi_{c} l \tag{6.1}\\
& Q_{h}=\pi_{h} I \tag{6,2}
\end{align*}
$$

where π_{c} and π_{h} are the Peltier coefficients which are functions of temperatures T_{c} and T_{h} of the cold and hot ends respectively. It may be seen that if T_{h} is maintained at ambient temperature, T_{c} will be lower than the ambient temperature. The direction of the flow of current will decide as to which of the junctions or ends will become cold or hot.

The energy balance of the system is

$$
\begin{equation*}
Q_{n}-Q_{c}=E I \tag{6.3}
\end{equation*}
$$

where, I is the current, E is the emf supplied, Q_{c} and Q_{h} are the actual amounts of heat flows at the cold and hot ends respectively.

Thermoelectric phenomena

When two dissimilar metals or semiconductors are connected and the junctions held at different temperatures, five phenomena take place simultaneously:

Thermoelectric Refrigeration

Seebeck \& Peltier effects.

A wod, (é (semionductors) Eve note nime

定攻

Nopose
\&
عنی Fị Nér ${ }^{1}$

i) 3^{3}, 局 कV

 $Z=\frac{\alpha^{2}}{\left(\sqrt{k_{p} \rho_{p}}+\sqrt{k_{n} \rho_{n}}\right)^{2}} \quad Z$ in alith (figure ofmenit)

- Seebeck effect
- Joule effect
- Fourier effect
- Peltier effect
- Thomson effect

Seebeck effect: If ΔE and ΔT are the emf output and the temperature difference of the junctions, then

$$
\begin{equation*}
\Delta E \propto \Delta T \tag{6.4}
\end{equation*}
$$

The proportionality constant is denoted by

$$
\begin{equation*}
\text { Seebeck coefficient, } \alpha_{a b}=\frac{\Delta E}{\Delta T} \tag{6.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{a b}=\alpha_{a}-\alpha_{b} \tag{6.6}
\end{equation*}
$$

and α_{a}, α_{b} are the coefficients for metals A and B or P and N .
Peltier effect: If direct current is passed through a pair of dissimilar metals, there is heating at one junction, cooling at the other depending upon the material combinations. Peltier varied the current I and observed the heating and cooling rate Q for different sets of elements. It is found that:
i.e.

$$
\begin{gather*}
Q \propto I \tag{6.7}\\
Q=\pi_{a b} I \tag{6.8}\\
\pi_{a b}=\pi_{a}-\pi_{b} \tag{6.9}
\end{gather*}
$$

Thomson effect: When a current passes through a single conductor having a temperature gradient, heat transfer is giving by:

$$
\begin{equation*}
\frac{d Q}{d x}=\tau I\left(\frac{d T}{d x}\right) \tag{6.10}
\end{equation*}
$$

where τ is the Thomson coefficient (volt/K) and $d Q / d x$ is the Thomson heat transfer per unit length. Using the first and second laws of thermodynamics, Zemansky obtained the relation between Seebeck and Peltier coefficients as

$$
\begin{equation*}
\pi_{a b}=\alpha_{a b} T \tag{6.11}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\pi_{a}-\pi_{b}}{T}=\frac{d \alpha_{a b}}{d T} \tag{6.12}
\end{equation*}
$$

Substituting Eq. (6.11) into Eq. (6.8), we find that

$$
\begin{equation*}
Q=\alpha_{z b} I T \tag{6.13}
\end{equation*}
$$

Joule effect: When electrical current I flows through a conductor of resistance R, there is dissipation of electrical energy. This is the well known joule effect. The energy dissipated is given by

$$
\begin{equation*}
q \mathrm{t}=I^{2} R \tag{6.14}
\end{equation*}
$$

Fourier (conduction) effect: If the ends of any element are maintained at different temperatures, the heat transfer from the hot end to the cold end is related by

$$
\begin{gather*}
Q_{\text {cond }}=U\left(T_{h}-T_{c}\right) \tag{6.15}\\
U=\frac{k A}{L} \tag{6.16}
\end{gather*}
$$

The cooling and heating effects due to thermoelectric effect are given by

$$
\begin{align*}
& Q_{c}=\alpha_{a b} I T_{c} \tag{6,17}\\
& Q_{h}=\alpha_{a b} I T_{h} \tag{6.18}
\end{align*}
$$

6.2 VORTEX TUBE REFRIGERATION

G. Ranque, a French engineer discovered this phenomenon in 1931 which is called the "vortex effect" and the device is known as vortex tube or Ranque tube. Subsequently, R. Hilsch carried out extensive investigations on vortex tubes and recommended optimum dimensions and measured the performance. Since then, sporadic research has been carried out, mainly in the USSR, in order to improve its efficiency. Though the general principle of operation is fairly clear, the quantitative theory of its performance has not yet been established.

The vortex tube is an instrument capable of converting an ordinary supply of compressed air ($7-10 \mathrm{bar}$) into two streams, one hot and one cold. This device is essentially a straight length of cylindrical tube into which compressed air is admitted tangentially at the outer radius, creating cyclone spinning at very high rpm. While spiralling inwards (Figure 6.6) and so

FIGURE 6.6 Cyclone spinning of air admitted into the vortex tube.
throttled that the central core of the resulting air stream can be separated from the peripheral flow. With this device, cold air temperatures $50^{\circ} \mathrm{C}$ below the nozzle temperature are readily obtainable with moderate inlet pressures. There are two versions of the tube-counterflow (Figure 6.7) or uniflow (Figure 6.8). In the counterflow version, hot air and cold air come out through the opposite ends of the tube. In the uniflow version, the cold stream comes out of the same end as the warm stream, as a central core of air which is separated by a special arrangement of orifice and valve. The uniflow tube is less efficient compared to the counterflow type.

FIGURE 6.7 Counterflow type vortex tube.

FIGURE 6.8 Uniflow type vortex tube.
The counterflow type of vortex tube at one end is partially closed by a diaphragm with a central orifice approximately half the tube diameter. At the other end of the tube a valve restricts the exit. When the valve is partly open, a stream of cold air leaves through the orifice and a stream of warm air leaves through the valve. The temperature of the cold stream and its flow rate depend on the setting of the valve. When the valve is fully closed, all the air comes out through the orifice and no reduction in temperature is found. As the valve is opened, the flow rate of the cold stream rises and its temperature falls to a minimum value when the flow rate is about onequarter or one-third of the total.

The geometry of the vortex tube (Figure 6.9) can be described by the diameter of the vortex tube D, the diameter of the orifice d, the length of the vortex tube L, the geometry and the

FIGURE 6.9 The geometry of Vortex tube.
number of nozzles, and the design of the valve. The setting of the valve determines the ratio of the hot and cold mass flow fractions respectively. The optimum diameter of the orifice is found to be half the tube diameter, i.e.

$$
d_{\text {optimum }}=\frac{D}{2}
$$

Figure 6.10 shows a practical setup of a vortex tube application, where the compressor supplies compressed air to storage tank. The compressed air enters through the nozzle into the vortex tube, where the air is split into two streams. The cold air produced at E flows into the space F that is to be cooled. Warm air is exhausted through the tube D. The system has the advantage of great mechanical simplicity and instantaneous operation but its efficiency is very low.

FIGURE 6.10 A practical vortex tube refrigeration system.

The use of vortex tube is convenient where a supply of compressed air is available, to obtain rapidly and momentarily a fall in temperature. Its applications are still relatively limited to laboratory trials, to control of temperature of small electronic boxes, to aviation or to obtain a rapid fall in temperature in certain manufactures, such as chocolate, or waxes, cooling machining operations, đeep mine air conditioning, etc. The use of vortex cooling may often prove to be a better proposition than the more efficient conventional vapour compression systems when any of the following requirements apply:

- Light weight, portability
- Low capacity or localized cooling or freezing
- No moving parts-high reliability
لرالئى
- May be used where electricity is not available or prohibited on safety grounds
- Low initial cost
- Instantaneous operation
- No expert attendant required

जिए

共

$$
\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{\gamma-1}{\gamma}}
$$

The main disadvantage of the vortex tube is its low efficiency, i.e. COP ranging from 0.1-0.2 It is also uneconomical for large systems.

On comparing with the Joule-Thomson refrigeration system (Chapter 9), it may be observed that the vortex tube system is a modification of the same cycle with the expander having been replaced by a vortex tube. In the Joule cycle, where the work of expansion is utilized, a temperature drop is obtained equal to the isentropic temperature drop (Figure 6.11), i.c. $\Delta T_{s}=T_{3}-T_{4}$, where

$$
\begin{equation*}
\frac{T_{3}}{T_{4}}=\left(\frac{P_{3}}{P_{4}}\right)^{(k-1) / k} \tag{6.19}
\end{equation*}
$$

FIGURE 6.11 Temperature in vortex tube.
The temperature drop obtained with the vortex tube is smaller, about one-half that of isentropic drop. The air expands to a temperature T_{4} and velocity c which is given by

$$
\begin{equation*}
\frac{c^{2}}{2}=c_{p}\left(T_{3}-T_{4}\right) \tag{6.20}
\end{equation*}
$$

If all this kinetic energy could be removed, cold air would be obtained at temperature T_{4}.
From the nozzle, the high velocity gas travels from the periphery of the tube to the axis during which the separation of kinetic energy occurs. The kinetic energy is obtained by the outer layers due to which they are heated and emerge from the hot end of the tube at state h. The central core after having lost the kinetic energy emerges from the cold end at state c, i.e. at a temperature slightly above the static temperature of the expanded gas. The pressure of the cold gas stream is usually lowered further due to expansion in the vortex chamber.

The COP of the system is less than that of the Joule cycle as it can be seen that the temperature drop is less than the isentropic temperature drop. Also, the quantity of cold air is only a fraction of the air supplied. The energy balance of the vortex tube gives

$$
\begin{equation*}
T_{3}=\mu_{c} T_{c}+\mu_{h} T_{h} \tag{6.21}
\end{equation*}
$$

where, $\mu_{c}+\mu_{h}=1$ and T_{c} and T_{h} are the stagnation temperatures of the two streams.
The energy efficiency η_{e} of the vortex tube can now be defined as the ratio of the actual cooling to ideal cooling, which is given by

$$
\begin{equation*}
\eta_{e}=\frac{\mu_{c}\left(T_{3}-T_{c}\right)}{T_{3}-T_{4}} \tag{6.22}
\end{equation*}
$$

It is seen that if all the air goes through the throttle valve, there will be no energy separation. Similarly, if all the air leaves through the orifice, there will again be no energy separation. Thus, there will be optimum values of fractions η_{c} and η_{h} each for the maximum temperature drop, refrigerating effect, and COP.

6.3 STEAM JET WATER VAPOUR REFRIGERATING SYSTEM

Water was considered as a suitable refrigerating medium in the earlier times. However, water could not be introduced for refrigeration due to its inherent disadvantages as a refrigerant, i.e. the high evaporating vacuum required, the enormous volume of vapour to be compressed, and the relatively high freezing point. With the advent of air conditioning requiring relatively a high evaporator temperature, interest in this system was revived. $u=$ 二is

In a steam jet water vapour refrigerating system, refrigeration is obtained by direct evaporation and subsequent self-cooling of water. The principle of operation of this system is based on the fact that water under a high vacuum boils at a relatively low temperature which causes evaporation to occur and this reduces the temperature. Since water is the refrigerant used in this type of systems, only temperatures down to about $4^{\circ} \mathrm{C}$ are practicable and as such its use is limited primarily to air conditioning. If temperatures below $0^{\circ} \mathrm{C}$ are to be maintained in the evaporator, antifreeze may be added or brine may be used, however, such use is uncommon mainly because of the necessity of maintaining extremely high vacuum.

The use of this system is limited to installations where there is an abundance of steam and condensing water at a low cost and where the desired temperatures are in the range of $4^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$. Apart from air conditioning, these systems were particularly adapted to the processing of the cold water for such applications as rubber mills, distilleries, chemical plants, papen, mills, food processing plants and aboard ships. It has another application in the cooling of lettuce and other leafy vegetables. The system, once very popular has largely been superseded by more efficient systemsing, jibs.

The advantages of this cycle in air conditioning comprise complete safety of water as refrigerant, freedom from vibration, and ability to adjust quickly to load variations. In factories or plants, additional auxiliary equipment is not necessary. Moreover, water vapour is non-toxic, non-explosive and cheap. The inherent disadvantages of water as a refrigerant are the high evaporating vacuum required, the enormous volume of vapour to be compressed, and the comparatively high freezing point.

A typical steam-jet system is shown diagrammatically in Figure 6.12 and the corresponding temperature-entropy diagram is shown in Figure 6.13. High pressure steam is supplied to the nozzle inlet and is expanded to 2 in the ejector. Here water vapour, originating from the flash chamber at 6 , is entrained with the high velocity steam jet and compressed through 4 into the diffuser exit at 5 . The velocity of the mixture is then reduced, the kinetic energy is converted into an increase in static head, and the mass is discharged to the condenser. Both the motive vapour and the vapour drawn from the evaporator are condensed, and the condensate is then divided into two flows, one to feed the evaporator as make up water and the other to supply the boiler through a feed pump. The water in the flash chamber is cooled by the absorption from it of the latent heat of that portion of water flashed and removed by the ejector. The amount of water lost in the cooling process is very small and the remaining water is circulated from the chamber as a secondary cooling medium to the point of the load. Upon return it is usually sprayed into the flash chamber to provide exposure of the maximum surface area.

FIGURE 6.12 Water vapour refrigeration system using steam ejector.

FIGURE 6.13 Steam-jet refrigeration cycle represented on a T-s diagram.
The operating pressures required are extremely low, since an evaporation temperature of $4^{\circ} \mathrm{C}$ requires an absolute pressure in the evaporator of 6 mm of mercury. If condensation is to be accomplished at approximately $38^{\circ} \mathrm{C}$, the condenser pressure must be 50 mm of mercury
absolute. Operation under these conditions results in a compression ratio of 8 to 1 , which approaches the limit for efficient operation. The air and water vapour remaining in the condenser are removed by means of a secondary ejector or a vacuum pump and are discharged from the system. .

In Figure 6.12, 1 represents the initial condition of the motive steam before passage through the nozzle to 2 , thereáfter losing kinetic energy the final condition becomes 3. Point 6 represents the initial condition of the water vapour flashed in the evaporator and 4 the respltant condition of the mixture of high-velocity steam and entrained water vapour before compression. If compression were isentropic, the final condition would then be 5^{\prime} at discharge of the mixture to the condenser. Make up water is available at 7, slightly lower in temperature than the condenser conditions, and is throttled to point 8 in the flash chamber. Because of unavoidable losses encountered in expansion, entrainment, and compression, the actual path of expansion and entrainment of the motive steam is 1-2-4. Compression of the mixture actually occurs along 4-5.

The nozzle efficiency η_{n} is the ratio of the actual enthalpy drop to the isentropic enthalpy drop of the motive steam passing through the nozzle. This efficiency will ordinarily range from 0.87 to 0.95 in properly designed nozzles.

The entrainment efficiency, η_{e}, indicates the losses that originate in the transfer of a portion of the kinetic energy of the motive steam to the flashed vapour and should be taken as 65 per cent. The loss of this kinetic energy, $1-\eta_{e}$ is dissipated as heat added to the mixture. The compression efficiency η_{c} indicates the loss encountered in utilizing the kinetic energy of the mixture for compression in the diffuser section of the ejector. The ratio between the isentropic enthalpy increases theoretically required to the actual enthalpy increase needed to accomplish this compression is the compression efficiency, which may be taken as 75 to 80 per cent.

Thermodynamics of cooling

During expansion of steam through the nozzle, the irreversibilities and fluid friction cause the reduction in the speed of steam, i.e. the enthalpy drop is reduced. By definition of the nozzle efficiency,

$$
\begin{equation*}
h_{1}-h_{2}=\eta_{n}\left(h_{1}-h_{2}^{\prime}\right) \tag{6.23}
\end{equation*}
$$

The quantity $\left(h_{1}-h_{2}\right)$ is equivalent to kinetic energy of the motive steam, i.e. $C^{2} / 2$, now available for entrainment of the vapour in the flash chamber. For the well-designed nozzle, the value of η_{m} ranges from 0.9 to 0.94 .

During the entrainment process the motive steam loses its kinetic energy, thereby the state of the motive steam is represented by state -3 , and is expressed by the entrainment efficiency, η_{e}, i.e.

$$
\begin{equation*}
h_{1}-h_{3}=\eta_{c}\left(h_{1}-h_{2}\right) \tag{6.24}
\end{equation*}
$$

The reported values of η_{e} are around 0.65 .
The state of the mixture of motive steam and flash vapour is represented by point 4 .
The isentropic compression of vapour is represented by $4-5^{\prime}$. However, the compression is again far from the ideal value due, to friction, which necessitates the introduction of η_{c}. compression efficiency, whose value ranges from 0.75 to 0.8 , i.e.

$$
\begin{equation*}
h_{5}^{\prime}-h_{4}=\eta_{c}\left(h_{5}-h_{4}\right) \tag{6.25}
\end{equation*}
$$

106

The energy for compression comes from motive steam. If m_{1} be the mass of motive steam per unit mass of flash vapour, then

$$
\begin{equation*}
m_{1}\left(h_{1}-h_{3}\right)=\left(m_{1}+1\right)\left(h_{5}-h_{4}\right) \tag{6.26}
\end{equation*}
$$

where the quantity $\left(m_{1}+1\right)$ is the total mass of vapour compressed. Using Eqs. (6.23-6.25), Eq. (6.26) yields

$$
\begin{align*}
m_{1} & =\frac{\cdots h_{5}^{\prime}-h_{4}}{\eta_{n} \eta_{e} \eta_{c}\left(h_{1}-h_{2}^{\prime}\right)-\left(h_{5}^{\prime}-h_{4}^{\prime}\right)} \\
& =\frac{1}{\eta_{n} \eta_{e} \eta_{c} \frac{h_{1}-h_{2}^{\prime}}{h_{5}^{\prime}-h_{4}}-1} \tag{6.27}
\end{align*}
$$

in terims of isentropic enthalpies, h_{2}^{\prime} and h_{5}^{\prime}.
The flash vapour at state 6 is wet and has to be evaluated. It is done using the ejector as the control volume, i.e.

$$
\begin{equation*}
m_{1} h_{1}+h_{6}=\left(m_{1}+1\right) h_{5} \tag{6.28}
\end{equation*}
$$

Substituting the value of m_{1} from Eq. (6.27) into Eq. (6.28) and simplifying, we get
अ०० :

$$
\begin{equation*}
h_{6}=h_{5}-\frac{h_{1}-h_{5}}{\eta_{n} \eta_{e} \eta_{c} \frac{h_{1}-h_{2}^{\prime}}{h_{5}^{\prime}-h_{4}}-1 / C} \tag{6.29}
\end{equation*}
$$

The refrigerating effect may be evaluated by carrying out energy balance across the flash chamber, i.e.

$$
\begin{equation*}
Q_{r}+\left|W_{p_{3}}\right|+m_{7} h_{7}=m_{6} h_{6} \tag{6.30}
\end{equation*}
$$

Since $m_{6}=m_{7}=1$, we have

$$
\begin{equation*}
Q_{r}=\left(h_{6}-h_{7}\right)-\left|W_{p_{1}}\right| \tag{6.31}
\end{equation*}
$$

The energy input to the steam per unit mass of the flash vapour can be expressed as

$$
\begin{equation*}
Q_{\text {steant }}=m_{1}\left(h_{1}-h_{11}\right)-\frac{\left(m_{1}+1\right)\left(W_{p_{1}}\right)}{\eta_{P_{1}}} \tag{6.32}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\mathrm{COP}=\frac{h_{6}-h_{7}-\mid W_{p_{2}}!}{m_{1}\left(h_{1}-h_{11}\right)-\frac{\left(1+m_{1}\right)\left(W_{p_{1}}\right)}{\eta_{p_{1}}}} \tag{6.33}
\end{equation*}
$$

In practice, the amount of steam ($\mathrm{kg} / \mathrm{min}$) needed for given capacity (TR) of refrigeration plant is required and the same is found from
i.e.

$$
\begin{gather*}
m_{1}^{\prime}=\frac{210 \mathrm{TR} m_{1}^{\prime}}{h_{6}-h_{7}-\left|W_{p_{2}}^{\prime}\right|} \tag{6.34}\\
m_{\text {make-up }}=\frac{1210 \mathrm{TR}}{h_{6}-h_{7}-\left|W_{p_{2}}\right|} \tag{6.35}
\end{gather*}
$$

BIBLIOGRAPHY

Goldsmid, H.J., Thermoelectric Refrigeration, Plenum Press, New York, 1964.
Sparks, N.R. and C.C. Dilio, Mechanical Refrigeration, McGraw-Hill Book Company, Ltd., 1959.

REVIEW EXERCISES

6.1 What is Peltier effect? Briefly discuss how the Peltier effect forms the basis of thermoelectric refrigeration.
6.2 Draw a block diagram of a thermoelectric refrigerator and indicate how different components of this cycle correspond to those of the vapour compression cycle.
6.3 What are the five phenomena that take place simultaneously when two dissimilar metals or semiconductors are connected and the junctions held at different temperatures?
6.4 What are the applications of thermoelectric refrigerators?
6.5 With the aid of a sketch, briefly describe how does the vortex tube refrigerator work?
6.6 What are the advantages and limitations of a vortex tube refrigeration system?
6.7 Why is a vortex tube refrigeration system suitable for mining operations?
6.8 Briefly describe the principle of operation of a steam jet water vapour refrigerating system. What are its advantages and limitations?
6.9 Define the various efficiencies in a steam jet water vapour refrigerating system.
6.10 What is the function of an ejector in a steam jet water vapour refrigerating system?

- The dry saturated vapour (at state 2) is drawn by the compressor from evaporator at lower pressure p_{1} and then it (vapour) is compressed isentropically to the upper pressure p_{2}.
- The isentropic compression is shown by the line 2-3. Since the vapour is dry and saturated at the start of compression it becomes superheated at the end of compression as given by point 3.
- The process of condensation which takes place at constant pressure is given by the line 3-4.
- The vapour now reduced to saturated liquid is throttled through the expansion valve and the process is shown by the line 4-1.
- At the point 1 a mixture of vapour and liquid enters the evaporator where it gets dry saturated as shown by the point 2 . The cycle is thus completed.

Heat extracted (or net refrigerating effect produced).

$$
\begin{aligned}
\mathrm{R}_{\mathrm{n}} & =h_{2}-h_{1} \\
\text { Work done } \quad \mathrm{W} & =h_{3}-h_{2} \\
\therefore \quad \text { C.O.P. } & =\frac{\mathrm{R}_{\mathrm{n}}}{\mathrm{~W}}=\frac{h_{2}-h_{1}}{h_{3}-h_{2}}
\end{aligned}
$$

The values of h_{1}, h_{2}, and h_{3} can be directly read for $p-h$ chart.

3.7. FACTORS AFFECTING THE PERFORMANCE OF A SIMPLE VAPOUR COMPRESSION SYSTEM

The factors which affect the performance of a vapour compression system are as follows:

1. Effect of suction pressure: The effect of decrease in suction pressure is shown in Fig. 3.7. The C.O.P. of the original cycle.

$$
\text { C.O.P. }=\frac{h_{2}-h_{1}}{h_{3}-h_{2}}
$$

Fig. 3.7. Effect of decrease in suction pressure.

The C.O.P. of the cycle when suction pressure is decreased,

$$
\text { C.O.P }=\frac{h_{2^{\prime}}-h_{1^{\prime}}}{h_{3^{\prime}}-h_{2^{\prime}}}=\frac{\left(h_{2}-h_{1}\right)-\left(h_{2}-h_{2^{\prime}}\right)}{\left(h_{3}-h_{2}\right)-\left(h_{2^{\prime}}-h_{2}\right)+\left(h_{3^{\prime}}-h_{3}\right)}
$$

$$
\left(\because h_{1}=h_{1}\right.
$$

This shows that the refrigerating effect is decreased and work required is increased. The net effec is to reduce the refrigerating capacity of the system (with the same amount of refrigerant flow) amthe C.O.P.
2. Effect of delivery pressure: Fig. 3.8 shows the effect of increase in delivery pressure.

Fig. 3.8. Effect of increase in delivery pressure.
C.O.P. of the original cycle,

$$
\text { C.O.P }=\frac{h_{2}-h_{1}}{h_{3}-h_{2}}
$$

C.O.P. of the cycle when delivery pressure is increased,

$$
\text { C.O.P. }=\frac{h_{2}-h_{1}}{h_{3^{\prime}}-h_{2}}=\frac{\left(h_{2}-h_{1}\right)-\left(h_{1^{\prime}}-h_{1}\right)}{\left(h_{3}-h_{2}\right)+\left(h_{3^{\prime}}-h_{3}\right)}
$$

The effect of increasing the delivery/discharge pressure is just similar to the effect of decreasing the suction pressure. The only difference is that the effect of decreasing the suction pressure is more predominant than the effect of increasing the discharge pressure.

The following points may be noted:
(i) As the discharge temperature required in the summer is more as compared with winter, the same machine will give less refrigerating effect (load capacity decreased) at a higher cost.
(ii) The increase in discharge pressure is necessary for high condensing temperature and decrease in suction pressure is necessary to maintain low temperature in the evaporator.
3. Effect of superheating. As may be seen from the Fig. 3.9 the effect of superheating is to increase the refrigerating effect but this increase in refrigerating effect is at the cost of increase in amount of work spent to attain the upper pressure limit. Since the increase in work is more as compared to increase in refrigerating effect, therefore overall effect of the superheating is to give a low value of C.O.P.

Fig. 3.9. Effect of superheating.
4. Effect of sub-cooling of liquid. 'Sub-cooling' is the process of cooling the liquid refrigerant below the condensing temperature for a given pressure. In the Fig. 3.10 the process of sub-cooling is shown by $4-4^{\prime}$. As is evident from the figure the effect of sub-cooling is to increase the refrigerating effect. Thus sub-cooling results in increase of C.O.P. provided that no further energy has to be spent to obtain the extra cold coolant required.

Fig, 3.10, Effect of sub-cooling of liquid.
The sub-cooling or under-cooling may be done by any of the following methods:
(i) Inserting a special coil between the condenser and the expansion valve.
(ii) Circulating greater quantity of cooling water through the condenser.
(iii) Using water cooler than main circulating water.
5. Effect of suction temperature and condenser temperature. The performance of the vapour compression refrigerating cycle varies considerably with both vaporising and condensing temperature. Of the two, the vaporising temperature has far the greater effect. It is seen that the capacity and performance of the refrigerating system improve as the vaporising temperature increases and the condensing temperature decreases. Thus refrigerating system should ahways be designed to operate at the highest possible vaporising temperature and lowest possible condensing temperature, of course, keeping in view the requirements of the application.

