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Introduction

International System of Units

TABLE 1-3 Prefixes

Exponential Form Prefix SI Symbol

Multiple

1 000 000 000 10° giga G

1 000 000 107 mega M

1 000 108 kilo k

Submuluple

0.001 104 milli m

0.000 001 10 micro m

0,000 000 001 10 nano n
Example:

(50 kN)(60 nm) = [50(10%) N][60(107%) m]
= 300010 N-m = 3(10 ) N-m = 3mN+m

Dimensional Homogeneity

1
s=vt +§at"2

m +1m
—s+—-——=5
s 252

m



Chapter One

Equilibrium

Support Reactions

TABLE 1-1
Type of connection Reaction Type of connection Reaction
0 V{;L = AE
F "
- i — i
Al - 0000
Cable One unknown: F External pin Two unknowns: F,, F,
FJ‘
[ o F, [
I —
F
Roller One unknown: F Internal pin Two unknowns: F,, F,
M F
(6 —_—— Fx l—
0 /ZJ —
E/g
Smooth support One unknown: Fixed support Three unknowns: F,, F,. M
Examples

Determine the reactions of the simply supported beam.

5 KN/m
JY VbV i by bedvbabty

-

|

4m |




Solution 5 KN/m

TR RER RN RRTY

N

R1 TRE

XEE=0->N=0
XMp, =0 > Ry 4 —-5%x4%4/2=0->R; =10kN

Determine the resultant internal loadings acting on the cross section
at C of the cantilevered beam shown in Fig. 1-4a.

270 I*_»I_fm
A . B
l-— 3m ! ¢ fm !
(a)
Fig. 1-4

Solution

Free-body diagram. From table 1-4, fixed support has three reactions



SYF, = 0; —Na =0
Ny=0
+12F, = Va —1215N =0
Va =1215N
(+SM, = 0; ~M, —1215N(3m) = 0
M, = —3645 N-m
SMON
180 N/m
M :HH“}‘HHLHH
oL —
X ——
(b)
SIF, =0; ~N¢c =0
Ne =0
+13F, = 0; Ve — 540N =0
Ve = 540N
(+3SMg = 0; ~M¢ — 540N(2m) = 0

Mc = —1080N+m



Determine the horizontal and vertical components of reaction on the
beam caused by the pin at B and the rocker at A as shown in Fig. 5-12a.
Neglect the weight of the beam.

y
600 N 200N 600 sin 45° N
200N
45° O.Zlm ¥ 600 cos 45° N 0.2+m Y o,
A F - B A ‘!‘.—1— . _j:—ht X
4 ‘ Dl' :
—2m [ 3m 2m—
2m | 3m 2m—
\ A, B,
100N 100N
(a) (b)

Fig. 5-12

Free-Body Diagram. The supports are removed, and the free-body
4\ diagram of the beam is shown in Fig. 5-12b. (See Example 5.1.) For
T < simplicity, the 600-N force is represented by its x and y components as
319N shown in Fig. 5-12b.

319N 319N SOLUTION
[
A

319N
© Equations of Equilibrium. Summing forces in the x direction yields
L 3F, =0 600 cos 45°N — B, =0
B, = 424 N Ans.

A direct solution for A, can be obtained by applying the moment
equation My = 0 about point B.
C+EIMp =0, 100 N(2 m) + (600 sin 457 N)(5 m)

— (600 cos 45°N)(0.2m) — Ay(7Tm) = 0

A, = 319N Ans.

Summing forces in the y direction, using this result, gives

+13F, =0; 319N — 600sin45°N — 100N — 200N + B, =0
B, = 405N Ans



Chapter 2-- Stresses

Average Normal Stress in an
Axially Loaded Bar

This bar is prismatic since all cross sections are the same

Homogeneous material has the same physical and mechanical properties
throughout its volume, and isetropic material has these same properties

in all directions.
If i
- or= g o= E
Region of ) o - o
g uniform
deformation
of bar
P 1
P

Tension Compression

~u

E L~} “°
g g g P e
s A G S S S ———
o | |

(b)




Examples

The bar in Fig. 1-16a has a constant width of 35 mm and a thickness
of 10 mm. Determine the maximum average normal stress in the bar
when it is subjected to the loading shown.

A B 9kN C 4kN p
12 kN 22 kN
r & S —
| 9 kN

35 mm

(a)

12 kN 4—@:|—> Pup=12kN

9kN
12 KN et | —“Il } | P = 30 kN
9 kN

Pep =22 KN i T C3—> 2 kN
T N

(®)

o Psc_ 30(10°) N
B A 7 (0.035m)(0.010 m)

= 85.7 MPa Ans.

10 mm
\I

I/
F 30 kN

35 mm 85.7 MPa



The casting shown in Fig. 1-18a is made of steel having a specific
weight of yy = 490 lb/ft3. Determine the average compressive stress
acting at points A and B.

W,

< —-

Y 2751t

9.36 psi
(b) (©)

Fig. 1-18

SOLUTION

Internal Loading. A free-body diagram of the top segment of the
casting where the section passes through points A and B is shown in
Fig. 1-18b. The weight of this segment is determined from W = vy, V.
Thus the internal axial force P at the section is

+13F, =0; P-W,=0
P — (490 Ib/ft3)(2.75 ft)[#(0.75 ft)2] = 0
P =23811b

Average Compressive Stress. The cross-sectional area at the sec-
tion is A = 7(0.75 ft)?, and so the average compressive stress becomes

P 2381 Ib
ar =— =

A 7(0.75 ft)?
o = 13475 1b/ft? (1 ft?/144 in®) = 9.36 psi Ans.

= 1347.5 Ib/ft?



Member AC shown in Fig. 1-19a is subjected to a vertical force of
3 kN. Determine the position x of this force so that the average
compressive stress at the smooth support C is equal to the average
tensile stress in the tie rod AB. The rod has a cross-sectional area of

400 mm? and the contact area at C is 650 mm?.

Fap 3kN

Fig. 1-19
SOLUTION
+12F, = 0; Fag+ Fc—3000N =0 1)
+EM,=0;  —3000N(x) + Fc(200mm) =0 )

Average Normal Stress. A necessary third equation can be written
that requires the tensile stress in the bar AB and the compressive

stress at C to be equivalent, i.e.,

~ Fup  Fg
or = b — b
400 mm 630 mm
Fc = ].ﬁZSFAB

Substituting this into Eq. 1, solving for F 4p. then solving for F, we

obtain
Fap=1143N

Fe=185TN
The position of the applied load is determined from Eq. 2,
x = 124 mm Ans.

NOTE: 0 < x < 200 mm, as required.

200 mnr

(b)

Fe



Average Shear Stress

Shear stress has been defined in Section 1.3 as the stress component that
acts in the plane of the sectioned area.

F

- Fig. 1-20b, indicates that the shear force V = F/2 must be
applied at each section to hold the segment in equilibrium. The average

shear stress distributed over each sectioned area that develops this shear
force is defined by

Tavg = E (1_7)

The loading case discussed here is an example of simple or direct
shear, since the shear is caused by the direct action of the applied load F.

Fig. 1-20



Examples

If the wood joint in Fig. 1-23a has a width of 150 mm, determine the
average shear stress developed along shear planes a—a and b-b. For
each plane, represent the state of stress on an element of the material.

6 kN
01m ' 0125m '
(a)
Fig. 1-23

SOLUTION

Internal Loadings. Referring to the free-body diagram of the

member, Fig. 1-23b,

SHIF, =0; 6kN-F—-F=0 F =3kN

Now consider the equilibrium of segments cut across shear planes a—a

and b—b, shown in Figs. 1-23¢ and 1-234.
= - S5IF, =0; V,-3kN=0 V,=3kN
;:fh
——— S3IF, =0: 3KN -V, =0 V,=3kN

Va
Average Shear Stress.
(©)
v, 3(10%) N
=— = = 200 kPa Ans.
(Fa)ae = - (0.1 m)(0.15 m)

3kN ——
e v, 3(10°) N

< (Tb)ave = A, (0125 m)(0.15 m) 160 kPa Ans.

(d)



The inclined member in Fig. 1-24a is subjected to a compressive force
of 600 1b. Determine the average compressive stress along the smooth
areas of contact defined by AB and BC, and the average shear stress
along the horizontal plane defined by DB.

600 1b

1.5 in.
(a) Fig. 1-24

SOLUTION
Internal Loadings. The free-body diagram of the inclined member Fie

is shown in Fig. 1-24bh. The compressive forces acting on the areas of
contact are

SIF, =0,  Fu—6001b(}) =0 Fu5=3601b
+13F, = 0; Fge — 6001b(%) =0 Fpe = 4801b

Also, from the free-body diagram of the top segment ABD of the
bottom member, Fig. 1-24¢, the shear force acting on the sectioned
horizontal plane DB is

53F, =0 V =3601b

Average Stress. The average compressive stresses along the
horizontal and vertical planes of the inclined member are

Fap 360 Ib .
_ 4B = 240 Ans.
TAB = 4 (Lin)(LSin.) P! "
F 430 Ib
Bc = 160 psi Ans.

7BC T Age ~ (2in)(151in.)
These stress distributions are shown in Fig. 1-24d.
The average shear stress acting on the horizontal plane defined by
DB is
360 1b

T T )15y P "




Show that the average normal and shear stresses on the shade section in the figure
below are given as

P <— /—‘— P
Do 4

V =Pcost), N = Psind,
P

o = —sin? 0, Tayg = 7 sin 26

A 2A

The exercise below is on the normal stress (D1Y)

The plate has a width of (.5 m. If the stress distri-
bution at the support varies as shown, determine the force
P applied to the plate and the distance d to where it is
applied.

4m

|P

~ d =

o = (15)‘__1#‘2) MPa 30 MPa



Chapter 3
Strains

Normal Strain. If we define the normal strain as the change in
length of a line per unit length, then we will not have to specify the actual
length of any particular line segment.

_ As' — As

As" — As

E =
B—Aalongn  AS

Undeformed body
(a)

Deformed body
(b)

Units: In SI units: m/m or cm/cm or mm/mm or % = 10"%m/m and in Inch-
pound in/in.



for experimental work, strain i1s expressed as a percent, e.g.,
0.001 m/m = 0.1%. As an example, a normal strain of 480(107°) can be
reported as 480(107°) in./in., 480 wm/m, or 0.0480%. Also, one can state

this answer as simply 480 w (480 “micros™).

Shear Strain. Deformations not only cause line segments to
elongate or contract, but they also cause them to change direction. If we
select two line segments that are originally perpendicular to one another,
then the change in angle that occurs between these two line segments is
referred to as shear strain. '

Undeformed body Deformed body
(a) (b)
m : '
2 B— Aalongn
C — Aalongt




Examples:

When force P is applied to the rigid lever arm ABC in Fig. 2-5a, the
arm rotates counterclockwise about pin A through an angle of 0.05°. \7
Determine the normal strain developed in wire BD. D

SOLUTION | P 300 mm

— 1

C B Aa‘
—400 mm‘-‘

Elongation inrod Ly,

ALgp = sin(0.05) * 400mm = 0.3491 mm

Straininrod Lg, IS

_ ALBD . 0.3491 mm
LED 300 mimn

€RD = 0.00116 mm/mm Ans.



Due to a loading, the plate is deformed into the dashed shape shown
in Fig. 2-6a. Determine (a) the average normal strain along the side
AB, and (b) the average shear strain in the plate at A relative to the

x and y axes.
y

Line AB, coincident with the y axis, becomes line AB' after

SOLUTION
Part (a).
deformation, as shown in Fig. 2-6b. The length of AB' is
3 mm
__‘§| | : AB' = V(250 mm — 2mm)? + (3 mm)? = 248.018 mm
mm
/ BT The average normal strain for AB is therefore
250 mm| | (1g)us = AB — AB _ 243018 mm — 250 mm
ARTa AB 250 mm
__A" — ~7.93(107%) mm/mm Ans.
(b) The negative sign indicates the strain causes a contraction of AB.
¥y
Part (b). As noted in Fig. 2-6¢, the once 90° angle BAC between the
sides of the plate at A changes to 8" due to the displacement of B to
2":“@ B'. Since y,, = 7/2 — ¢, then v,, is the angle shown in the figure.
Thus,
4 3mm
Yxy = tan 0mm — 2mm ) 0.0121 rad Ans.

250




Chapter 4
Mechanical properties

The Stress—Strain Diagram

Conventional Stress-Strain Diagram. We can determine the
nominal or engineering stress by dividing the applied load P by the
specimen’s original cross-sectional area Ay,

_ -
Ay

r

Likewise, the nominal or engineering strain is found directly from the
strain gauge reading, or by dividing the change in the specimen’s gauge
length, &, by the specimen’s original gauge length L.

_9
Ly

(3

Elastic behavior

If the load is removed, the specimen will return back to its original shape.

proportional limit

The stress-strain relationship up to this point is linear elastic.
Elastic limit

After this point the stress-strain curve is not linear but still elastic.
Yielding

A slight increase in stress above the elastic limit will result in a breakdown of the
material and cause it to deform permanently and becomes plastic.

Strain hardening

Increase in the stress after yielding until it reaches maximum stress o, .



Necking

r‘T true fracture stress
Of
ultimate
Tu stress fracture
o / stress
! elastic limit
o leld stres
Y
ﬂ-p:'
, , €
elastic |vielding strain necking
_region | hardening X
elastic plastic behavior
behavior
When the
Figure: Stress strain curve for steel.
Necking

A “neck” tends to form due to the elongation in the specimen and finally the
specimen fails at the fracture stress o.

PP e |
\ DAEEE L] e ————— Y

Necking Failure of a
ductile material




True Stress—Strain Diagram.

In reality, due to the elongation of the specimen, the cross-sectional area decreases
and the length increases. As a result, the true stress-strain curve is obtained by

using the real area A then o = g and the true strain is obtained bu using the true

length L then € = SL—L.

Ductile Materials. Any material that can be subjected to large strains before it
fractures is called a ductile material (an example is steel).

Ol g el ea aiall faa

20 | sy sSle) il
bl = gl o
10 F
L L | | I I L | € (In./in.)
,/ 0.050 0.10 '\\ 0.20 0.30 /0.40
= 1 0.001 0.002 0.003 0.004
ey = 0.030 e, = 0.0012 er= 0380

Example of stress-strain curve for steel.
From the above figure we see:

Proportional limit stress is a,,;, = 35 ksi.

Yield stress is oy = 36 ksi



Ultimate stress is oy = 63 ksi

Failure stress is o = 47 ksi
Proportional limit strain €,, = 0.0012
Yield strain €, = 0.03

Failure strain e, = 0.38

Brittle Materials. Materials that exhibit little or no yielding before failure are
referred to as brittle materials (an example is concrete).

o (ksi)

(o = 04 2|

—0.0030 —0.0025—0.0020—0.0015—0.0010—0.0005 | e (in/in)
£ of .
! ! ! ! ! ! 0 0.0005 '

AL

742
/"/
\. __,,// 174

T~ = (0 )max = 5

<+ —6

Hook’s law (Hook 1676)

o = FEe

From the above stress-strain curve of the steel

Opl  35ksi
epr  0.0012 in./in.

E = = 29(10°%) ksi



And E is Young’s modulus of elasticity (Young 1807)

Strain Enerqy density

Energy is work= Force*distance and strain energy
Is work due to deformations. “

For the specimen in tension in this figure, assume
the elongation is 6L and the cross-sectional area is
A, then

Az
Strain energy density is the strain energy divided
by the volume
Ay
_ o %F * OL ' l
Strain energy enszty = AV o

Ax

1 1 1
=——(*xA)*x(exAz) =——=(0€) * (A*Az) = —— (0€) * (4V)

24V 2AV 24V

2

1 1
Strain energy density = 5 (o€) = 3 (o x0/E) = oTid

Modulus of Resilience. I particular, when the stress o reaches
the proportional limit, the strain-energy density is referred to as the

modulus of resilience, 1.c.,

| | (.sz;

U, = E{IPIEP; = ;f

We notice that strain energy density and modulus of resilience are the area under

the stress-strain curve.



r

T pl

EP:

Modulus of resilience u,

Modulus of Toughness. Another important property of a
material 1s the modulus of toughness, u,.
entire area under the stress—strain diagram

Modulus of toughness u,



Examples

A tension test for a steel alloy results in the stress—strain diagram
shown in Fig. 3-18. Calculate the modulus of elasticity and the
yield strength based on a 0.2% offset. Identify on the graph the
ultimate stress and the fracture stress.

o (ksi)

120
110
100
ar=90
80
70

o, =108

O'y_g:68 60

Solution

50 ksi

——

'

e =023

| | |

| 0.0008 | 0.0016 ‘ 0.0024
0.0004 0.0012 0.0020
0.29%,

~ 0.0016 in./in.

= 31.2(10%) ksi

1 1 1 e | | | | 1 1 1
O 0.020.040.060.080.100.120.140.16 0.18 0.200.22 0.24

e (in./in.)

Yield Strength. For a 0.2% offset, we begin at a strain of 0.2%
or 0.0020 in./in. and graphically extend a (dashed) line parallel to
OA until it intersects the o—e curve at A'. The yield strength is
approximately

Tyg — 68 ksi

Ans.



Ultimate Stress. This is defined by the peak of the o—e graph,
point B in Fig. 3-18.

o, = 108 ksi Ans.
Fracture Stress. When the specimen is strained to its maximum of
e; = 0.23in./in., it fractures at point C. Thus,

op = 90 ksi1 Ans.

Example

The stress—strain diagram for an aluminum alloy that is used for
making aircraft parts is shown in Fig. 3-19. If a specimen of this
material is stressed to 600 MPa, determine the permanent strain that
remains in the specimen when the load is released. Also, find the
modulus of resilience both before and after the load application.

o (MPa)
750 +
B
600 |- — F
oy =450} —/A
parallel
300
150 |
¢ D L € (mm/mm)
o| /001 | 002} 003 0.04
ey = 0.006 0.023
l=— €

Fig. 3-19



SOLUTION

Permanent Strain. When the specimen is subjected to the load,
it strain-hardens until point B is reached on the o—e diagram. The
strain at this point is approximately 0.023 mm/mm. When the load is
released, the material behaves by following the straight line BC,
which is parallel to line OA.

450 MPa
= = 75.0 GP
0.006 mm/mm !
From triangle CBD, we require
BD o 600(10°%) Pa
E = D’ 75.0(107) Pa = D

CD = 0.008 mm/mm

This strain represents the amount of recovered elastic strain. The
permanent strain, eg¢, 1s thus

egc = 0.023 mm/mm — 0.008 mm/mm

= 0.0150 mm,/mm
Modulus of Resilience. ST T T T
1 1
(U, )initial = ST pl€pl = 5(45{] MPa)(0.006 mm/mm)
= 1.35MJ/m’ Ans.

Area under the curve CB
1 1
(4,)final = ST pi€pl = 5(6[]{} MPa)(0.008 mm/mm)

= 2.40 MJ/m? Ans.

* Work in the SI system of units is measured in joules,where 1 J = 1 N-m.



An aluminum rod shown in Fig. 3-20a has a circular cross section and is
subjected to an axial load of 10 kN. If a portion of the stress—strain
diagram 1s shown in Fig. 3-20b, determine the approximate elongation
of the rod when the load is applied. Take E, = 70 GPa.

Example
o {MPH]
56.660 | -ﬁ--"‘"""ﬂ
50 F
= 40 /
30 |
fg I epc = 0.0450
0 0.02 0.0% 0.06
(b)
A l B l &
10 kN - : » 10 kN
P 600 mm —-\7 400 mm ‘-\
(a)
P 10(10°) N
Tap=—= = 31.83 MPa
AP A 7(0.01 m)?
10(10°) N
JEC=£: (19 2:56.59MP3
A 7(0.0075 m)



From the stress—strain diagram, the material in segment AB is
strained elastically since o 45 < oy = 40 MPa. Using Hooke’s law,

__oap _ 31.83(10°) Pa
AB By 70(10%) Pa

= 0.0004547 mm/mm

The material within segment BC is strained plastically, since
ogpc = oy = 40 MPa. From the graph, for op- = 56.59 MPa, ep- =~
0.045 mm/mm.

The total elongation of the rod is the elongation in AB (which is elastic) and the
elongation in BC (which is plastic) as follow

6 = ZelL = 0.0004547(600 mm) + 0.0450(400 mm)
= 18.3 mm Ans.

Jali 0l yalae e allall Ladaly Juadll 138 404,




Chapter 5
Axial Loading

P s
" A(x) €T dx

Provided the stress does not exceed the proportional limit, we can apply
Hooke's law: 1.e.,

and

or

o = EE
P(x
Plx) _ E(ﬁ)
Al(x) dx
P(x) dx
dé = —(————
A(x)E
I X ! !-ka’x - )
Py _ii—::l\—i—> P, P{_x)<—|:F>P{_1.)
4 '|-_d.,
. g a1
(@) (b)

For the entire length L of the bar, we must integrate this expression to

find &. This yields
5 /LP(x) dx
~Jo A(x)E

IF the P, E and A are constants then

PL

° " AE

If many members have same P, E and A then

PL

0= 2F




Examples

The A-36 steel bar shown in Fig. 4-6a is made from two segments
having cross-sectional areas of A,p = 1in? and Agp = 2in
Determine the vertical displacement of end A and the displacement
of B relative to C.

15 kip 15 kip 15 kip 15 kip

) ’1_ f t

21t : : . ‘
4kip | | 4 kip l. 4kip| |4kip  4kip|  4kip
l Pag = 15 kip ,l, ,L ,l,
BY Y
1.5 ft _ 8 ki 8 ki
8 kip 8 kip r + .
C‘_ - — Pj;(*:?k‘ip
1ft , ¥
D |
Pep=9ki
(a) (b) )=

< PL [+15kip](2ft)(12in/ft)  [+7kip](1.5 ft)(12 in./ft)
o= 2 AE  (1in?)[29(10%) kip/in] ' (2in%)[29(10%) kip/in?]
[—9 kip](1 ft)(12 in./ft)
+
(2in%)[29(10°) kip/in?]
= + 0.0127 in. Ans.

PpcLpc  [+7kip](15 ft)(12in./ft)

S/c = _ — +0.00217 in. Ans.
BC ™ TApcE  (2in?)[29(10°) Kip/in’] e A

Positive displacements mean elongation.



Statically Indeterminate Axially Loaded Member
If the equilibrium equations are not enough to solve the problem, use the compatibility
equations with the equilibrium equations to solve the problem.

The steel rod shown in Fig. 4-12a has a diameter of 10 mm. It is fixed

= 0.2 mm
to the wall at A, and before it is loaded, there is a gap of 0.2 mm between P .—-.20 KN A

| -

the wall at B" and the rod. Determine the reactions at A and B’ if the C 2
rod is subjected to an axial force of P = 2() kN as shown. Neglect the e 800 mm !
size of the collar at C.Take E, = 200 GPa. i ©
Let’s check if the load is enough to cause the end B to contact the wall.
20000*400 .
g = — = 0.509 mm > 0.2mm then B will contact the wall.
Equilibrium
5 3F, =0 —F, — Fp +20(10°)N = 0 1) (P =20kN
- - - F"'" * ' | |"—F3
Two unknown and one equation then indeterminate. ®)
Compatibility
_ _ FaLsc  Fpleg Fy > F
53..-‘.4 = 0()0()21’]’1 = AE AE
F 4(0.4 m) Fr—> '
0.0002 m = A ©

7(0.005 m)?[200(10°) N/m?]
- Fp(0.8m)
7(0.005 m)?[200(10%) N/m?]

or
Fa(0.4m) — Fy(0.8m) = 314159 N-m )

Solving Egs. 1 and 2 yields
Fq=160kN Fp =4.05kN Ans.



Another solution (Called flexibility or force method)

SOLUTION

Compatibility. Here we will consider the support at B' as
redundant. Using the principle of superposition, Fig. 4-17b, we have

(5) 0.0002m = 86p — (1)

The deflections ép and dp are determined from Eq. 4-2.

PL 20(10°) N](04 m
L R 2) L . ) - = 0.5093(107) m
AE  7(0.005 m)4200(10°) N/m?] —
nitia
Fyl Fp(120m = | s i b
= BLAB _ Bg )9 = 76.3944(107°)F P( 20kN position
AE - (0.005 m) [200(10°) N/m’] Pﬁ:‘
Substituting into Eq. 1, we get Final
; | : - bﬂposition
0.0002 m = 0.5093(107%) m — 76.3944(10~°)F ) &
, - e [y
Fp=405(10°)N = 405kN Ans.
Equilibrium. From the free-body diagram, Fig. 4-17c, (b)
BIF, =0, ~Fy+ 0KN - 40SKN=0 Fy=160kN Ans 4 2 30N




Chapter 6

Torsion

v

\ Circles remain

: circular ‘r
Longitudinal
lines become

twisted
e
Radial lines
remain straight
Before deformation After deformation
(a) (b)

Deformed -
plane

d d a¢

X = - = —_—

Y pp-o>y=p T

Since dx and d¢ is the same for all elements located at points on the cross section
dx . . . . . .

at x, then y IS constant over the cross section, y increases linearly with distance

from the center of the axis of the shaft,

Yy = Zymax

If the material 1s linear-elastic, then Hooke’s law applies, 7 = G, and
consequently a linear variation in shear strain, as noted in the previous
section, leads to a corresponding linear variation in shear stress along
any radial line on the cross section.



(%)
T = | |Tmax
c
p
T = fp{‘r dA) = /p(—)rmaxdﬁl
A A \C

T — Tmex f prdA
€ Ja

Tc
Tmax T
: : Tp
Combing above equations, T = —
dp Solid Shaft. If the shaft has a solid circular cross section, the polai

moment of inertia J can be determined using an area element in the forn

of a differential ring or annulus having a thickness dp and circumference
2mp, Fig. 5-6. For this ring, dA = 27p dp, and so

c C 1
J = /pz dA = /pz(Zﬂ'p dp) = 211'/ pdp = Zﬂ(—)p4
A 0 0 4

C

0

Tabular shafts




Angle of twist

(®

Since Hooke’s law, y = 7/G, applies and the shear stress can be

expressed in terms of the applied torque using the torsion formula
7 =T(x)p/J(x),theny = T(x)p/J(x)G. Substituting

T'(x)
J(x)G

dd =

Integrating over the entire length L of the shaft, we obtain the angle of
twist for the entire shaft, namely,

LT(x) dx
? f J(x)G

Multiple torques

TL
¢ =275




Example
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Lgc/i'/ ¥

e
1T

10Nm
B 60 N-m
150 N-m

(+80N-m) L4p . (=70N-m) Lyc . (=10N-m) L¢p
Pap = JG JG JG

Example

[The gears attached to the fixed-end steel shaft are subjected to the
torques shown in Fig. 5-19a. If the shear modulus of elasticity is 80 GPa
and the shaft has a diameter of 14 mm, determine the displacement of o
the tooth P on gear A. The shaft turns freely within the bearing at B.

SOLUTION

< TL (+150 N-m)(0.4 m)
ba= 276 - 3.771(10~%) m* [80(10°) N/m?]
(—130 N-m)(0.3 m)
_|_
3.771(107%) m* [80(10°) N/m?)]
(—170 N-m)(0.5 m)
+
3.771(107") m* [80(10°) N/m?)]

= —0.2121 rad

Since the answer is negative, by the right-hand rule the thumb is $a= 0212 rad
directed toward the end E of the shaft, and therefore gear A will
rotate as shown in Fig. 5-19d.

The displacement of tooth P on gear A is

sp = ¢4r = (0.2121 rad)(100 mm) = 21.2 mm Ans.




Example

The two solid steel shafts shown in Fig. 5-20a are coupled together
using the meshed gears. Determine the angle of twist of end A of shaft
AB when the torque T = 45 N - m is applied. Take G = 80 GPa. Shaft
AB s free to rotate within bearings E and F, whereas shaft DC is fixed
at D. Each shaft has a diameter of 20 mm.

SOLUTION

Internal Torque. Free-body diagrams for each shaft are shown
in Fig. 5-20b and 5-20c. Summing moments along the x axis of
shaft AB yields the tangential reaction between the gears of F =
45 N-m/0.15 m = 300 N. Summing moments about the x axis of shaft
DC, this force then creates a torque of (Tp), = 300N (0.075m) =
22.5 N -m on shaft DC.

Angle of Twist. To solve the problem, we will first calculate the
rotation of gear C due to the torque of 22.5N-m in shaft DC,
Fig. 5-20c. This angle of twist is

TLpe (+225N-m)(1.5m)

%= 56 T (a2) (0010 m)B0(10°%) Njm?] 0269 rad

Since the gears at the end of the shaft are in mesh, the rotation ¢
of gear C causes gear B to rotate ¢ g, Fig. 5-20b, where

$p(0.15m) = (0.0269 rad)(0.075 m)

We will now determine the angle of twist of end A with respect to
end B of shaft AB caused by the 45 N - m torque, Fig. 5-20b. We have

T 4pL +45N-m)(2m
Saz = ABLAB _ ( ) ) 00716 rad
JG (7/2)(0.010 m}“[SU('lOg} N/mz]

The rotation of end A is therefore determined by adding ¢ 5 and
& a/p. since both angles are in the same direction, Fig. 5-20b. We have

by = dbp+ dyp = 00134rad + 0.0716 rad = +0.0850 rad Ans.



Chapter 7
Shear and Bending diagrams

Members that are slender and support loadings that are applied perpendicular to
their longitudinal axis are called beams and classified as how they are supported as

shown below.
—
FY- ¥y o

To design beams, we need to know the shear and —
- - . - Simply supported beam
bending moment diagrams and find the maximum

values.
Because shear and moment are discontinuous :
functions, we divide their diagrams into regions as Cantilevered beam
shown below.
_—_—mm
= T i
Ll P
l/l/l;l l Overhanging beam
A ﬂﬂ)
— B 2 D
C
—X

X7 {

X3 {

Consider the origin to the left. Then x1 will be used for region AB, x2 for region
BC and x3 for region CD.
Beams sign convention

It is arbitrary but the one often used in engineering practice is as shown below.

wix)

> (AT

When starting from left side of the

beam’ upward forces cause pOSItIVG Positive external distributed load
shear and bending moment and VoV
downward forces cause negative shear ‘l T

and bendmg moment. Positive internal shear

M M

)

Positive internal moment
Beam sign convention
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Fig. 64

Draw the shear and moment diagrams for the beam shown in Fig. 6-4a.

SOLUTION

Support Reactions. The support reactions are shown in Fig. 6-4c.

Shear and Moment Functions. A free-body diagram of the left
segment of the beam is shown in Fig. 6-4b. The distributed loading on
this segment, wx, is represented by its resultant force only after the
segment is isolated as a free-body diagram. This force acts through the
centroid of the area comprising the distributed loading, a distance of
x/2 from the right end. Applying the two equations of equilibrium
yields

WTL—wx—V=U

el
(wo)(2) = M =0

=2(Lx—x)

+13F, =0,

(M

)

Shear and Moment Diagrams. The shear and moment diagrams
shown in Fig. 6-4¢ are obtained by plotting Eqs. 1 and 2. The point of
zero shear can be found from Eq. 1:

NOTE: From the moment diagram, this value of x represents the
point on the beam where the maximum moment occurs, since by

Eq. 6-2 (see Sec. 6.2) the slope V = dM/dx = 0. From Eq. 2, we

) O]

Mmax =




EXAMPLE | 6.2

Draw the shear and moment diagrams for the beam shown in Fig. 6-5a.

Wp 2 -

SOLUTION
Support Reactions. The distributed load is replaced by its resultant 1 [ wox
force and the reactions have been determined as shown in Fig. 6-5b. E(T) WX
WL - L
Shear and Moment Functions. A free-body diagram of a beam 2 f_,-w“”*f u
segment of length x is shown in Fig. 6-5¢. Note that the intensity of (T'J l)
the triangular load at the section is found by proportion, that is, S |‘1 =
w/x = wy/L or w = wyx/L. With the load intensity known, the % 3
resultant of the distributed loading is determined from the area under *
the diagram. Thus, (c)
wol 1 [ wyx
+1ZF, = 0 — —=—x-V =0
T2Fy =0, 2 2( L )x
L
_ Mo 2 2 wyL
V=222 M M
L
- ;
-0 wol”  woL 1 woex (1)_ _ (T'
(FEM =0; 3 > (x) S\ ¥ 3 M=10 w”;‘z )

Wp

— . 3, 2. _ .3 -
M = 7 (-2L% + 3L — x°) Q) = —\
X

These results can be checked by applying Egs. 6-1 and 6-2 of Sec. 6.2,

that 1s, o
_dV _wo o, Wox x
T Ay oK /
dM Wy Wi -
v =22 o200 +302-32) = 2012 - x%) OK _wml?
dx 6L ¥) = = x) —=

(d)
Shear and Moment Diagrams. The graphs of Egs. 1 and 2 are

shown in Fig. 6-5d. Fig. 6-5
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Draw the shear and moment diagrams for the beam shown in Fig. 6-7a.

“ SKN .
80 kKN-m A £ KN-m
JITRNEEY (>
| ——— A
_ B —-m-i-— Xy Vv
| 5m 5m ! 5.75kN
(a) (b)
SOLUTION 15kN 5(x; — 3)
Suppert Reactions. The reactions at the supports have been  gjin.m i
determined and are shown on the free-body diagram of the beam, (' Y I M
Fig. 6-7d. 1 | l)
r
5 Vv
Shear and Moment Functions. Since there is a discontinuity of " Hn—5n-5
distributed load and also a concentrated load at the beam’s center, % 2 2
two regions of x must be considered in order to describe the shear and 575kN
moment functions for the entire beam. (©)
0 = x; < 5m, Fig. 6-7b: 15kN
5kN/m
+13F, =0 STSKN -V =0 80 kN-m VT
V =3575kN (1) (’M C
(tEM = 0; —80kN-m — 5.75kNx; + M =0 AN S B 5
m m
M = (5.75x; + 80) kN -m (2)
) 5.75kN 3425kN
Sm < x; = 10m, Fig. 6-7¢: v (kN)
+TEFJ, =0; 575kN —15kN = 5kN/m(x; —5m) -V =10
V = (1575 — 5x,) kN (3) 55 x(m)
(+ZM =0; —80kN-m — 5.75kN x; + 15kN(x2 — 5m) —9.25
= 5
+ SkN/m(x, — m)(¥) +M=0
T —3425
M = (—2.5x% + 15.75x, + 92.5)kN-m (4) 10875
These results can be checked in part by noting that w = dV/dx ¢,
and V = dM/dx. Also, when x; =0, Egs. 1 and 2 give
V = 575kN and M = 80 kN-m; when x, = 10 m, Eqgs. 3 and 4
give V = —34.25kN and M = 0. These values check with the x(m)
support reactions shown on the free-body diagram, Fig. 6-7d. @
Shear and Moment Diagrams. Equations 1 through 4 are plotted =
in Fig. 6-7d. &




Graphical Method for Constructing Shear and Moment Diagrams

—_————

F wix) - F—k(Ax)
iiNissasaniis :
A il

e S

V+ AV
A

X

Free-body diagram
of segment Ax

(a) (b)
+1zF, =0 V +wx)Ax — (V + AV) =0

AV = wix) Ax

+EMg=0; —V Ax — M — w(x) Ax[k(Ax)] + (M + AM) = 0
AM =V Ax + w(x) k(Ax)?

Dividing by Ax and taking the limit as Ax — 0, the above two equations
become

= wix)
dv
— =w(x
ax " M
slope of distributed (6-1)
shear diagram = load intensity w = negalive increasing
- . slcupe = negative increasing
at each point at each point
(b) x
dM v
—=V V= pcmlne decreasmg "
dx y slope = posnwe decreasing
slope of shear (6-2) Vﬂ 0
moment diagram = at each
at each point point Va _Vp
(c) X




Integrating equations 6-1 and 6-2,

AV = [ w(x)dx
[

change in _ area under
shear  distributed loading

AM = fl«’(x} dx

change in _ area under
moment  shear diagram

(6-3)

(6-4)

(e)

(1)

aM

AV




