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Chapter

FLooDs

7.1 INTRODUCTION

A flood is an unusually high stage in a river, normally the level at which the river
overflows its banks and inundates the adjoining area. The damages caused by floods
in terms of loss of life, property and economic loss due to disruption of economic
activity are all too well known. Thousands of crores of rupees are spent every year in
flood control and flood forecasting. The hydrograph of extreme floods and stages
corresponding to flood peaks provide valuable data for purposes of hydrologic de-
sign. Further, of the various characteristics of the flood hydrograph, probably the most
important and widely used parameter is the flood peak. At a given location in a stream,
flood peaks vary from year to year and their magnitude constitutes a hydrologic series
which enable one to assign a frequency to a given flood-peak value. In the design of
practically all hydraulic structures the peak flow that can be expected with an assigned
frequency (say 1 in 100 years) is of primary importance to adequately proportion the
structure to accommodate its effect. The design of bridges, culvert waterways and
spillways for dams and estimation of scour at a hydraulic structure are some examples
wherein flood-peak values are required.

To estimate the magnitude of a flood peak the following alternative methods are

available:
1. Rational method 2. Empirical method
3. Unit-hydrograph technique 4. Flood-frequency studies

The use of a particular method depends upon (i) the desired objective, (ii) the
available data, and (iii) the importance of the project. Further the rational formula is
only applicable to small-size (< 50 km?) catchments and the unit-hydrograph method
is normally restricted to moderate-size catchments with areas less than 5000 km?.

7.2 RATIONAL METHOD

Consider a rainfall of uniform intensity and very long duration occurring over a
basin. The runoff rate gradually increases from zero to a constant value as indi-
cated in Fig. 7.1. The runoff increases as more and more flow from remote areas
of the catchment reach the outlet. Designating the time taken for a drop of water
from the farthest part of the catchment to reach the outlet as ¢, = time of concentra-
tion, it is obvious that if the rainfall continues beyond ¢,, the runoff will be con-
stant and at the peak value. The peak value of the runoff is given by

0,=CAi fort21, (7.1)
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Fig.7.1 Runoff Hydrograph due to Uniform Rainfall

where C = coefficient of runoff = (runoff/rainfall), 4 = area of the catchment and
i = intensity of rainfall. This is the basic equation of the rational method. Using the
commonly used units, Eq. (7.1) is written for field application as

0,= %C(itc,p)A (7.2)
where 0, = peak discharge (m>/s)
C = coefficient of runoff
(ix,,) = the mean intensity of precipitation (mm/h) for a duration equal
to ¢, and an exceedence probability P
A = drainage area in km?
The use of this method to compute Q, requires three parameters: ,, (i, ,) and C.

TIME OF CONCENTRATION ()

There are a number of empirical equations available for the estimation of the time of
concentration. Two of these are described below.

US PrRACTICE For small drainage basins, the time of concentration is assumed to
be equal to the lag time of the peak flow. Thus

t,=t,0fEq.(6.10)=C, Ll ] (7.3)

Js
where ¢, = time of concentration in hours, C,;, L, L
as in Eq. (6.10) of Chapter 6.

o> 1 and S have the same meaning

KIRPICH EQUATION (1940) This is the popularly used formula relating the time
of concentration of the length of travel and slope of the catchment as
t,=0.01947 077 570385 (7.4)
where ¢, = time of concentration (minutes)
L = maximum length of travel of water (m), and
S = slope of the catchment = A H/L in which
AH = difference in elevation between the most remote point on the catch-
ment and the outlet.
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For easy use Eq. (7.4) is sometimes written as
t,=0.01947 K7 (7.42)
3
where K, = L
AH

RAINFALL INTENSITY (i, ,) The rainfall intensity corresponding to a duration ¢,
and the desired probability of exceedence P, (i.e. return period 7'= 1/P) is found from
the rainfall-frequency-duration relationship for the given catchment area (Chap. 2).
This will usually be a relationship of the form of Eq. (2.15), viz.
_ KT~

(t, +a)"
in which the coefficients K, a, x and n are specific to a given area. Table 2.8 (prefer-
ably in its expanded form) could be used to estimate these coefficients to a specific
catchment. In USA the peak discharges for purposes of urban area drainage are calcu-
lated by using P = 0.05 to 0.1. The recommended frequencies for various types of
structures used in watershed development projects in India are as below:

Lie,p

SI. No Types of structure Return Period
(Years)
1 Storage and Diversion dams having 50-100
permanent spillways
2 Earth dams having natural spillways 25-50
3 Stock water dams 25
4 Small permanent masonry and 10-15
vegetated waterways
5 Terrace outlets and vegetated waterways 10
6 Field diversions 15

RUNOFF COEFFICIENT (C)

The coefficient C represents the integrated effect of the catchment losses and hence
depends upon the nature of the surface, surface slope and rainfall intensity. The effect
of rainfall intensity is not considered in the available tables of values of C. Some
typical values of C are indicated in Table 7.1(a & b).

Equation (7.2) assumes a homogeneous catchment surface. If however, the catchment
is non-homogeneous but can be divided into distinct sub areas each having a different
runoff coefficient, then the runoff from each sub area is calculated separately and
merged in proper time sequence. Sometimes, a non-homogeneous catchment may have
component sub areas distributed in such a complex manner that distinct sub zones
cannot be separated. In such cases a weighted equivalent runoff coefficient C, as below
is used.

C,= (7.5)
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Table 7.1(a) Value of the Coefficient C in Eq. (7.2)

Types of area Value of C
A. Urban area (P = 0.05 to 0.10)
Lawns: Sandy-soil, flat, 2% 0.05-0.10
Sandy soil, steep, 7% 0.15-0.20
Heavy soil, average, 2.7% 0.18-0.22
Residential areas:
Single family areas 0.30-0.50
Multi units, attached 0.60-0.75
Industrial:
Light 0.50-0.80
Heavy 0.60-0.90
Streets 0.70-0.95
B. Agricultural Area
Flat:  Tight clay;cultivated 0.50
woodland 0.40
Sandy loam;cultivated 0.20
woodland 0.10
Hilly: Tight clay;cultivated 0.70
woodland 0.60
Sandy loam;cultivated 0.40
woodland 0.30

Table 7.1(b) Values of C in Rational Formula for Watersheds with Agricul-
tural and Forest Land Covers

SI. No Vegetative cover Soil Texture
and Slope (%) Sandy Loam Clay and Stiff Clay
Silty Loam
1 Cultivated Land
0-5 0.30 0.50 0.60
5-10 0.40 0.60 0.70
10-30 0.52 0.72 0.82
2 Pasture Land
0-5 0.10 0.30 0.40
5-10 0.16 0.36 0.55
10-30 0.22 0.42 0.60
3 Forest Land
0-5 0.10 0.30 0.40
5-10 0.25 0.35 0.50
10-30 0.30 0.50 0.60

where 4; = the areal extent of the sub area i having a runoff coefficient C; and
N = number of sub areas in the catchment.

The rational formula is found to be suitable for peak-flow prediction in small catch-
ments up to 50 km? in area. It finds considerable application in urban drainage designs
and in the design of small culverts and bridges.
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It should be noted that the word rational is rather a misnomer as the method in-
volves the determination of parameters ¢, and C in a subjective manner. Detailed de-
scription and the practice followed in using the rational method in various countries
are given in detail in Ref. 7.

ExampLE 7.1(@) An urban catchment has an area of 85 ha. The slope of the catchment
is 0.006 and the maximum length of travel of water is 950 m. The maximum depth of
rainfall with a 25-year return period is as below:

Duration (min) 5 10 20 30 40 60
Depth of rainfall (mm) 17 26 40 50 57 62

If a culvert for drainage at the outlet of this area is to be designed for a return period
of 25 years, estimate the required peak-flow rate, by assuming the runoff coefficient
as 0.3.

Sorurion.  The time of concentration is obtained by the Kirpich formula [Eq.(7.4)] as
t,=0.01947 x (950)*77 x (0.006) °¥5 = 27.4 minutes

By interpolation,

Maximum depth of rainfall for 27.4-min duration

(50 — 40)
= —— x74+40=474 mm
10
. L. _ 474 _
Average intensity =i, , = 74 x 60 =103.8 mm/h

~ 0.30%103.8x0.85
3.6

=735ms

By Eq. (7.2), 0,

ExampLe 7.1(b) If'in the urban area of Example 7.1(a), the land use of the area and
the corresponding runoff coefficients are as given below, calculate the equivalent runoff

coefficient.
Land use Area (ha) Runoff coefficient
Roads 8 0.70
Lawn 17 0.10
Residential area 50 0.30
Industrial area 10 0.80
N

2G4,
SoLurion.  Equivalent runoff coefficient C, = !
c - [(0.7x8)+(0.1x17)+(0.3x50) + (0.8 x10)]
¢ [8+17+50+10]

=303 936

5

ExampLE 7.2 A 500 ha watershed has the land use/cover and corresponding runoff
coefficient as given below:
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Land use/cover Area (ha) Runoff coefficient
Forest 250 0.10
Pasture 50 0.11
Cultivated land 200 0.30

The maximum length of travel of water in the watershed is about 3000 m and the eleva-
tion difference between the highest and outlet points of the watershed is 25 m. The maxi-
mum intensity duration frequency relationship of the watershed is given by

6.311715%
(D +0.50)"9%
water i = intensity in cm/h, T = Return period in years and D = duration of the rainfall in
hours. Estimate the (i) 25 year peak runoff from the watershed and (ii) the 25 year peak

runoff if the forest cover has decreased to 50 ha and the cultivated land has encroached
upon the pasture and forset lands to have a total coverage of 450 ha.

SoLuUTION.

N

4
Case 1: Equivalent runoff coefficient C, = y

_ [(0.10x250) +(0.11x 50) +(0.30 x 200)] 0.181
500 '
3

By Eq. (7.4a) time of concentration ¢, = 0.01947 (K,)*77 with K, = AL_H

, (3000)°
Since L =3000 m and AH=25m K, = 25 = 32863

t.=0.01947 (32863)"77 = 58.5 min = 0.975 h
Calculation of i, ,: Here D =1.=0.975 h. T =25 years. Hence

. 6.311(25)"1523
l= (0.975 +0.50)*9%
Peak Flow by Eq. (7.2), 0, = (1/3.6)(C, i A)
~0.181x 71.23 X (500/100)

36
[(0.10 X 50) +(0.30 x 450)] _

500
i =71.23 mmvh and 4 = 500 ha = 5 (km)?

 0.28%x71.23%5

? 3.6
i =71.23 mm/h and 4 = 500 ha = 5 km?

_ 0.28x71.23%x5
7 3.6

=10.304/1.447 = 7.123 cm/h = 71.23 mm/h

= 64.46 m’/s

0.28

Case 2: Here Equivalent C=C, =

=99.72 m%/s

=99.72 m’/s
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7.3 EMPIRICAL FORMULAE

The empirical formulae used for the estimation of the flood peak are essentially re-
gional formulae based on statistical correlation of the observed peak and important
catchment properties. To simplify the form of the equation, only a few of the many
parameters affecting the flood peak are used. For example, almost all formulae use the
catchment area as a parameter affecting the flood peak and most of them neglect the
flood frequency as a parameter. In view of these, the empirical formulae are applica-
ble only in the region from which they were developed and when applied to other
areas they can at best give approximate values.

FLOOD PEAK-AREA RELATIONSHIPS

By far the simplest of the empirical relationships are those which relate the flood peak
to the drainage area. The maximum flood discharge O, from a catchment area A4 is
given by these formulae as

0,=/(4)
While there are a vast number of formulae of this kind proposed for various parts of
the world, only a few popular formulae used in various parts of India are given below.

DICKENS FORMULA (1865)
0,=Cp A3 (7.6)

where 0, = maximum flood discharge (m>/s) A = catchment area (km?)
Cp = Dickens constant with value between 6 to 30

The following are some guidelines in selecting the value of Cy:

Value of C),
North-Indian plains 6
North-Indian hilly regions 11-14
Central India 14-28
Coastal Andhra and Orissa 22-28

For actual use the local experience will be of aid in the proper selection of Cj,. Dick-
ens formula is used in the central and northern parts of the country.

RYVES FORMULA (1884)

Q,=Crd™”® (7.7)
where 0, = maximum flood discharge (m>/s) A = catchment area (km?)
and Cy = Ryves coefficient

This formula originally developed for the Tamil Nadu region, is in use in Tamil Nadu
and parts of Karnataka and Andhra Pradesh. The values of Cj, recommended by Ryves
for use are:
Cy = 6.8 for areas within 80 km from the east coast
= 8.5 for areas which are 80—160 km from the east coast
= 10.2 for limited areas near hills

INGLIS FORMULA (1930) This formula is based on flood data of catchments in
Western Ghats in Maharashtra. The flood peak 0, in m?/s is expressed as
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124 4
0,=— (7.8)

" Ja+104
where 4 is the catchment area in km?.
Equation (7.8) with small modifications in the constant in the numerator (124) is in
use Maharashtra for designs in small catchments.

OTHER FORMULAE

There are many such empirical formulae developed in various parts of the world.
References 3 and 5 list many such formulae suggested for use in various parts of India
as well as of the world.

There are some empirical formulae which relate the peak discharge to the basin
area and also include the flood frequency. Fuller’s formula (1914) derived for catch-
ments in USA is a typical one of this kind and is given by

05, =CA" (1+0.81log 7) (7.9)

where 07, = maximum 24-h flood with a frequency of T"years in m?/s, A = catchment
area in km?, C,= a constant with values between 0.18 to 1.88.

ENVELOPE CURVES Inregions having same climatological characteristics, if the
available flood data are meagre, the enveloping curve technique can be used to de-
velop a relationship between the maximum flood flow and drainage area. In this method
the available flood peak data from a large number of catchments which do not signifi-
cantly differ from each other in terms of meteorological and topographical character-
istics are collected. The data are then plotted on a log-log paper as flood peak vs
catchment area. This would result in a plot in which the data would be scattered. If an
enveloping curve that would encompass all the plotted data points is drawn, it can be
used to obtain maximum peak discharges for any given area. Envelop curves thus
obtained are very useful in getting quick rough estimations of peak values. If equa-
tions are fitted to these enveloping curves, they provide empirical flood formulae of
the type, Q =f(4).

Kanwarsain and Karpov (1967) have presented enveloping curves representing the
relationship between the peak-flood flow and catchment area for Indian conditions.
Two curves, one for the south Indian rivers and the other for north Indian and central
Indian rivers, are developed (Fig. 7.2). These two curves are based on data covering
large catchment areas, in the range 10° to 10° km?.

Based on the maximum recorded floods throughout the world, Baird and MclIllwraith
(1951) have correlated the maximum flood discharge 0, in m?/s with catchment area
A inkm? as

30254

Op = DA (7.10)

ExampLE 7.3 Estimate the maximum flood flow for the following catchments by using
an appropriate empirical formula:
1. 4,=405 ke for western Ghat area, Maharashtra
2. Ay =40.5 km? in Gangetic plain
3. A;=40.5 km? in the Cauvery delta, Tamil Nadu
4. What is the peak discharge for A = 40.5 km’ by maximum world flood experience?
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Fig. 7.2 Enveloping Curves for Indian Rivers

SoLuTION!

1. For this catchment, the Inglis formula is recommended.
By the Inglis formula [Eq. (7.8)],

124 40.5
= ———— =704m’s

0
P [405+10.4

2. In this case Dickens formula [Eq. (7.6)] with C,, = 6.0 is recommended. Hence
0, =6.0 X (40.5)7 = 96.3 m’/s

3. In this case Ryves formula [Eq. (7.7)] with C = 6.8 is preferred, and this gives
0, = 6.8 (40.5)”* = 80.2 m*/s

4. By Eq. (7.10) for maximum peak discharge based on world experience,
3025 % 40.5

=————————— =1367 m’s.
O (278 + 40.5)%78

7.4 UNIT HYDROGRAPH METHOD

The unit hydrograph technique described in the previous chapter can be used to predict
the peak-flood hydrograph if the rainfall producing the flood, infiltration characteristics
of the catchment and the appropriate unit hydrograph are available. For design purposes,
extreme rainfall situations are used to obtain the design storm, viz. the hydrograph of
the rainfall excess causing extreme floods. The known or derived unit hydrograph of
the catchment is then operated upon by the design storm to generate the desired flood
hydrograph. Details about this use of unit hydrograph are given in Sec. 7.12.

75 FLOOD FREQUENCY STUDIES

Hydrologic processes such as floods are exceedingly complex natural events. They
are resultants of a number of component parameters and are therefore very difficult to
model analytically. For example, the floods in a catchment depend upon the
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characteristics of the catchment, rainfall and antecedent conditions, each one of these
factors in turn depend upon a host of constituent parameters. This makes the estimation
of the flood peak a very complex problem leading to many different approaches. The
empirical formulae and unit hydrograph methods presented in the previous sections
are some of them. Another approach to the prediction of flood flows, and also applicable
to other hydrologic processes such as rainfall etc. is the statistical method of frequency
analysis.

The values of the annual maximum flood from a given catchment area for large
number of successive years constitute a hydrologic data series called the annual se-
ries. The data are then arranged in decreasing order of magnitude and the probability
P of each event being equalled to or exceeded (plotting position) is calculated by the
plotting-position formula

m

P Nl (7.11)
where m = order number of the event and N = total number of events in the data. The
recurrence interval, T (also called the return period or frequency) is calculated as

T=1/P (7.12)
The relationship between T and the probability of occurrence of various events is the
same as described in Sec. 2.11. Thus, for example, the probability of occurrence of the
event » times in # successive years is given by

—_n ron—r — n! ron-r
e TR

where qg=1-P
Consider, for example, a list of flood magnitudes of a river arranged in descending
order as shown in Table 7.2. The length of the record is 50 years.

Table 7.2 Calculation of Frequency T

Order No. Flood magnitude T in years

m 0 (m%/s) =51/m

1 160 51.00

2 135 25.50

3 128 17.00

4 116 12.75
49 65 1.04
50 63 1.02

The last column shows the return period 7 of various flood magnitude, Q. A plot of
0 vs Tyields the probability distribution. For small return periods (i.e. for interpola-
tion) or where limited extrapolation is required, a simple best-fitting curve through
plotted points can be used as the probability distribution. A logarithmic scale for T is
often advantageous. However, when larger extrapolations of 7 are involved, theoreti-
cal probability distributions have to be used. In frequency analysis of floods the usual
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problem is to predict extreme flood events. Towards this, specific extreme-value dis-
tributions are assumed and the required statistical parameters calculated from the avail-
able data. Using these the flood magnitude for a specific return period is estimated.

Chow (1951) has shown that most frequency distribution functions applicable in
hydrologic studies can be expressed by the following equation known as the general
equation of hydrologic frequency analysis:

xp=X +Ko (7.13)

where x,= value of the variate X of a random hydrologic series with a return period 7,
X =mean of the variate, o= standard deviation of the variate, K = frequency factor
which depends upon the return period, 7" and the assumed frequency distribution.
Some of the commonly used frequency distribution functions for the predication of
extreme flood values are

1. Gumbel’s extreme-value distribution,

2. Log-Pearson Type III distribution

3. Log normal distribution.

Only the first two distributions are dealt with in this book with emphasis on appli-
cation. Further details and theoretical basis of these and other methods are available in
Refs. 2, 3, 7 and 8.

7.6 GUMBELS METHOD

This extreme value distribution was introduced by Gumbel (1941) and is
commonly known as Gumbel’s distribution. It is one of the most widely used prob-
ability distribution functions for extreme values in hydrologic and meteorologic stud-
ies for prediction of flood peaks, maximum rainfalls, maximum wind speed, etc.
Gumbel defined a flood as the largest of the 365 daily flows and the annual series
of flood flows constitute a series of largest values of flows. According to his theory of
extreme events, the probability of occurrence of an event equal to or larger than a

value x is
PX2x)=1-¢°" (7.14)
in which y is a dimensionless variable given by
y=a(x-a) a= X —0.45005 o, a=1.2825/c,
1.285(x —Xx)
Thus y=——"+0577 (7.15)

X
where X =mean and o, = standard deviation of the variate X. In practice it is the value
of X for a given P that is required and as such Eq. (7.14) is transposed as
Y, =-In[-In(1-P)] (7.16)
Noting that the return period 7= 1/P and designating
yr = the value of y, commonly called the reduced variate, for a given T

yp= {m. In TT_ J (7.17)

T

or yr=- {0.834 +2.303 log log T

1} (7.17a)
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Now rearranging Eq. (7.15), the value of the variate X with a return period 7 is

=X +Ka. (7.18)
~0.577
where g Or =057 (7.19)
12825

Note that Eq. (7.18) is of the same form as the general equation of hydrologic-fre-
quency analysis (Eq. (7.13)). Further, Eqs. (7.18) and (7.19) constitute the basic
Gumbel’s equations and are applicable to an infinite sample size (i.e. N — o).

Since practical annual data series of extreme events such as floods, maximum rain-
fall depths, etc., all have finite lengths of record (Eq. (7.19)) is modified to account for
finite NV as given below for practical use.

GUMBEL’S EQUATION FOR PRACTICAL USE

Equation (7.18) giving the value of the variate X with a recurrence interval 7'is used as
xp=X+Ko,, (7.20)

. . Z(x - x)*

where 0,_; = standard deviation of the sample of size N = N1

K = frequency factor expressed as

_ Yr — )_/n
K= —Sn (7.21)
inwhich  y;=reduced variate, a function of T and is given by
T
= —|In.In 7.22
Yr { T— 1} ( )
_ T
or yr= —|:0.834+2.303 log log T 1}

y, = reduced mean, a function of sample size N and is given in
Table 7.3; for N — oo, y, — 0.577

S, = reduced standard deviation, a function of sample size N and
is given in Table 7.4; for N — oo, S, — 1.2825

These equations are used under the following procedure to estimate the flood mag-
nitude corresponding to a given return based on an annual flood series.

1. Assemble the discharge data and note the sample size N. Here the annual flood
value is the variate X. Find X and o, _, for the given data.

Using Tables 7.3 and 7.4 determine y, and S, appropriate to given N.
Find y; for a given T by Eq. (7.22).
Find K by Eq. (7.21).
5. Determine the required x, by Eq. (7.20).
The method is illustrated in Example 7.3.

To verify whether the given data follow the assumed Gumbel’s distribution, the
following procedure may be adopted. The value of x; for some return periods 7 < N
are calculated by using Gumbel’s formula and plotted as x;vs T on a convenient paper
such as a semi-log, log-log or Gumbel probability paper. The use of Gumbel probability
paper results in a straight line for x; vs T plot. Gumbel’s distribution has the property

b
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which gives T=2.33 years for the average of the annual series when N is very large.
Thus the value of a flood with T'= 2.33 years is called the mean annual flood. In
graphical plots this gives a mandatory point through which the line showing variation
of x; with T'must pass. For the given data, values of return periods (plotting positions)
for various recorded values, x of the variate are obtained by the relation 7= (N + 1)/m
and plotted on the graph described above. Figure 7.3 shows a good fit of observed
data with the theoretical variation line indicating the applicability of Gumbel’s
distribution to the given data series. By extrapolation of the straight line x,vs T, values
of x; for > N can be determined easily (Example 7.3).

GUMBEL PROBABILITY PAPER

The Gumbel probability paper is an aid for convenient graphical representation of
Gumbel’s distribution. It consists of an abscissa specially marked for various conven-
ient values of the return period 7. To construct the T scale on the abscissa, first con-
struct an arithmetic scale of y, values, say from —2 to +7, as in Fig. 7.3. For selected
values of T, say 2, 10, 50, 100, 500 and 1000, find the values of yby Eq. (7.22) and
mark off those positions on the abscissa. The 7-scale is now ready for use as shown in

Fig. 7.3.
Tyears
10111 152 3 5 10 20 50 100 500 1000
10 [TTITT [ T [TIT[TIIT I [T T [T1TT T T
- o Computed |
o Plotting positions
g F _
@0
() — —
€
S 6 F -
£ L _
[0
o
c 4 River Bhima at Deorgaon -
§ 1951-77 |
a X=4263 mY¥s
2 on_ 1= 1432.6, N=27 years -
I O A T N T A I | |

0
10111 152 3 5 10152030 50 100 200 500 1000
Recurrence interval T years

| Lol | | | | | J
-2 -1 0 1 2 3 4 5 6 7
Reduced variate y

Fig. 7.3 Flood probability analysis by Gumbel’s Distribution

The ordinate of a Gumbel paper on which the value of the variate, x; (flood dis-
charge, maximum rainfall depth, etc.) are plotted may have either an arithmetic scale
or logarithmic scale. Since by Eqs (7.18) and (7.19) x varies linearly with y;, a Gumbel
distribution will plot as a straight line on a Gumbel probability paper. This property
can be used advantageously for graphical extrapolation, wherever necessary.
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ExampLE 7.4 Annual maximum recorded floods in the river Bhima at Deorgaon, a
tributary of the river Krishna, for the period 1951 to 1977 is given below. Verify whether
the Gumbel extreme-value distribution fit the recorded values. Estimate the flood discharge
with recurrence interval of (i) 100 years and (ii) 150 years by graphical extrapolation.

Year 1951 1952 1953 1954 1955 1956 1957 1958 1959
Max. flood (m%/s) 2947 3521 2399 4124 3496 2947 5060 4903 3757

Year 1960 1961 1962 1963 1964 1965 1966 1967 1968
Max. flood (m%/s) 4798 4290 4652 5050 6900 4366 3380 7826 3320

Year 1969 1970 1971 1972 1973 1974 1975 1976 1977
Max. flood (m%/s) 6599 3700 4175 2988 2709 3873 4593 6761 1971

Sorution.”  The flood discharge values are arranged in descending order and the plot-
ting position recurrence interval 7, for each discharge is obtained as
B N +1 28
= =22

m m
where m = order number. The discharge magnitude Q are plotted against the correspond-
ing 7, on a Gumbel extreme probability paper (Fig. 7.3).

The statistics X and an ¢, | for the series are next calculated and are shown in Table
7.5. Using these the discharge x; for some chosen recurrence interval is calculated by
using Gumbel’s formulae [Egs. (7.22), (7.21) and (7.20)].

Table 7.5 Calculation of T, for Observed Data— Example 7.4

Order Flood T, Order Flood T,

number discharge (years) number discharge (years)
m x (m%/s) m x (m%/s)
1 7826 28.00 15 3873 1.87
2 6900 14.00 16 3757 1.75
3 6761 9.33 17 3700 1.65
4 6599 7.00 18 3521 1.56
5 5060 5.60 19 3496 1.47
6 5050 4.67 20 3380 1.40
7 4903 4.00 21 3320 1.33
8 4798 3.50 22 2988 1.27
9 4652 3.11 23 2947 —
10 4593 2.80 24 2947 1.17
11 4366 2.55 25 2709 1.12
12 4290 2.33 26 2399 1.08
13 4175 2.15 27 1971 1.04
14 4124 2.00

N =27 years, X =4263 m%/s, ¢, | = 1432.6 m*/s
From Tables 7.3 and 7.4, for N=27, y, = 0.5332 and S, = 1.1004.
Choosing T = 10 years, by Eq. (7.22),

yr=—{Inx1n (10/9)] =2.25037
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| 2.25307-0.5332
1.1004

X . =4263 + (1.56 x 1432.6) = 6499 m’/s
Similarly, values of x; are calculated for two more T values as shown below.

K 1.56

T years xr [obtained by Eq. (7.20)] (m3/s)
5.0 5522
10.0 6499
20.0 7436

These values are shown in Fig. 7.3. It is seen that due to the property of the Gumbel’s
extreme probability paper these points lie on a straight line. A straight line is drawn through
these points. It is seen that the observed data fit well with the theoretical Gumbel’s ex-
treme-value distribution.

[Note: In view of the linear relationship of the theoretical x; and 7 on a Gumbel prob-
ability paper it is enough if only two values of 7 and the corresponding x; are calculated.
However, if Gumbel’s probability paper is not available, a semi-log plot with log scale for
T will have to be used and a large set of (x, T) values are needed to identify the theoretical

curve. |
By extrapolation of the theoretical x; vs T relationship, from Fig. 7.3,
At T =100 years, x7= 9600 m*/s
At T =150 years, x7= 10,700 m%/s

[By using Egs (7.20) to (7.22), x;9o = 9558 m?/s and x5, = 10,088 m?/s.]

ExampLe 7.5 Flood-frequency computations for the river Chambal at Gandhisagar
dam, by using Gumbel’s method, yielded the following results:

Return period 7 (years) Peak flood (m?%/s)
50 40,809
100 46,300

Estimate the flood magnitude in this river with a return period of 500 years.

Sorution. By Eq. (7.20),

X0 = X + Kygp Gy X5 = X +Ksy 0,

(K190 — Ks0) 0y = X109 — X509 = 46300 — 40809 = 5491
But K= IO

Su o S
where S, and y, are constants for the given data series.
Oy

o 0’100 = ¥s0) = 5491
By Eq. (7.22) !

Y100 =—1InxIn (100/99)] = 4.60015
Y50 =—[In x1n (50/99)] = 3.90194
O

. 491 = 7864
S (4.60015 — 3.90194)

n
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For T'=500 years, by Eq. (7.22),
Vs00 =— [Inx1n (500/499)] = 6.21361

O-n—l _
(500 = Y100) S = X500 ~ X100

(6.21361 — 4.60015) x 7864 = x5y — 46300
X500 = 58988, say 59,000 m?/s

ExampLe 7.6 The mean annual flood of a river is 600 m’/s and the standard deviation
of the annual flood time series is 150 m’/s. What is the probability of a flood of magnitude
1000 m*/s occurring in the river within next 5 years? Use Gumbel'’s method and assume
the sample size to be very large.

Sorurion: X =600 m¥s and o, | = 150 m%/s x;=X +Ko, |
1000 = 600 + K(150)
yr —0.577
K=26667T= ——"—
1.2825
Hence yr=13.9970
T
Also, =3.9970= —|In-In
SO yr |: T_ 1:|
L 101854
T-1

T = 54.9 years, say 55 years
Probability of occurrence of a flood of magnitude 1000 m*/s = p = 1/55 = 0.0182
The probability of a flood of magnitude 1000 m>/s occurring at least once in 5 years =
pr=1-(1-p)°=1-(0.9818)°=0.0877 = 11.4%

CONFIDENCE LIMITS

Since the value of the variate for a given return period, x, determined by Gumbel’s
method can have errors due to the limited sample data used, an estimate of the confi-
dence limits of the estimate is desirable. The confidence interval indicates the limits
about the calculated value between which the true value can be said to lie with a
specific probability based on sampling errors only.

For a confidence probability ¢, the confidence interval of the variate x; is bounded
by values x, and x, given by®

xip =xpEfle) S, (7.23)
where f(c) = function of the confidence probability ¢ determined by using the table of
normal variates as

¢ in per cent 50 68 80 90 95 99
flo) 0.674 1.00 1.282 1.645 1.96 2.58

O,

n—1

N

S, = probable error = b (7.23a)

b= J1+13K+1.1K>
K = frequency factor given by Eq. (7.21)
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o,

7 _ 1 = standard deviation of the sample

N = sample size.
It is seen that for a given sample and 7, 80% confidence limits are twice as large as the
50% limits and 95% limits are thrice as large as 50% limits.

ExampLe 7.7 Data covering a period of 92 years for the river Ganga at Raiwala
yielded the mean and standard derivation of the annual flood series as 6437 and 2951 m*/s
respectively. Using Gumbel’s method estimate the flood discharge with a return period of
500 years. What are the (a) 95% and (b) 80% confidence limits for this estimate.

Sorurion.  From Table 7.3 for N=92 years, y, =0.5589 and S, = 1.2020 from Table 7.4.
Y500 =—[In x1n (500/499)] = 6.21361

6.21361—0.5589
0= —————— =47044
1.2020

X500 = 6437 + 4.7044 x 2951 = 20320 m*/s
From Eq. (7.33a)

b= 1+1.3(4.7044) +1.1(4.7044) =561

S, = probable error = 5.61 x 251 1726
92
(a) For 95% confidence probability f{c) = 1.96 and by Eq. (7.23)
¥y = 20320 £ (1.96 x 1726) x, = 23703 m%/s and x, = 16937 m*/s

Thus estimated discharge of 20320 m?/s has a 95% probability of lying between 23700
and 16940 m’/s
(b) For 80% confidence probability, f{c) = 1.282 and by Eq. (7.23)
x5 = 20320 £ (1.282 x 1726) x, = 22533 m*/s and x, = 18107 m%/s
The estimated discharge of 20320 m?/s
has a 80% probability of lying between
22530 and 18110 ms.

For the data of Example 7.7, the values of
xpfor different values of T are calculated and
shown plotted on a Gumbel probability pa-
per in Fig. 7.4. This variation is marked as 22
“fitted line” in the figure. Also showninthis  oq
plot are the 95 and 80% confidence limits for
various values of 7. It is seen that as the con-
fidence probability increases, the confidence 16
interval also increases. Further, an increase 14
in the return period 7 causes the confidence
band to spread. Theoretical work by Alexeev 12
(1961) has shown that for Gumbel’s distri- 10 S !
bution the coefficient of skew C; — 1.14 for 101520 50 _1 00 ?OO 500 10°
very low values of N. Thus the Gumbel’s dis- Return period Tin years
tribution will give erroneous results if the Fig.7.4 Confidence Bands for
sample has a value of C; very much different Gumbels Distribution—
from 1.14. Example 7.7

Reduced variate y 1

I
2 3 4 5 6 7
—

24

Gumbel’s distribution /_
Confidence bands . 7

18

T T S I




The McGraw-Hill Companies

Floods [ 263

7.7 LOG-PEARSON TYPE Il DISTRIBUTION

This distribution is extensively used in USA for projects sponsored by the US Gov-
ernment. In this the variate is first transformed into logarithmic form (base 10) and the
transformed data is then analysed. If X is the variate of a random hydrologic series,
then the series of Z variates where

z=1log x (7.24)
are first obtained. For this Z series, for any recurrence interval 7, Eq. (7.13) gives
;=7 +K. 0, (7.25)

where K, = a frequency factor which is a function of recurrence interval T" and the
coefficient of skew C,,
o, = standard deviation of the Z variate sample

= (=22 /(N -1) (7.25a)
and C, = coefficient of skew of variate Z
NX(z-2)}
(7.25b)

(N-1)(N=-2)(0.)

z =mean of the z values

N = sample size = number of years of record
The variations of K, =f(C,, T') is given in Table 7.6.
After finding z; by Eq. (7.25), the corresponding value of x; is obtained by
Eq. (7.24) as

xp = antilog (zp) (7.26)
Sometimes, the coefficient of skew C,, is adjusted to account for the size of the sample
by using the following relation proposed by Hazen (1930).

A 1+8.5
C, = CS[ j (7.27)
N

where és = adjusted coefficient of skew. However, the standard procedure for use of
log-Pearson Type III distribution adopted by U.S. Water Resources Council does not
include this adjustment for skew.

When the skew is zero, i.e. C,; =0, the log-Pearson Type III distribution reduces to
log normal distribution. The log-normal distribution plots as a straight line on loga-
rithmic probability paper.

Table7.6 K = F(C, T) for Use in Log-Pearson Type III Distribution

Coefficient of Recurrence interval 7 in years
skew, C; 2 10 25 50 100 200 1000
3.0 -0.396 1.180 2.278 3.152 4.051 4.970 7.250
2.5 -0.360 1.250 2.262 3.048 3.845 4.652 6.600
2.2 -0.330 1.284 2240 2970 3.705 4444 6.200
2.0 -0.307  1.302 2219 2912 3.605 4298 5910
1.8 -0.282 1.318 2.193 2.848 3499 4.147 5.660
1.6 -0.254 1.329 2.163 2.780 3.388 3990 5.390
1.4 -0.225 1.337 2.128 2.706 3271 3.828 5.110

(Contd.)



The McGraw-Hill Companies

264 Engineering Hydrology

(Contd.)
1.2 -0.195 1.340 2.087 2.626 3.149 3.661 4.820
1.0 -0.164 1.340 2.043 2542 3.022 3.489 4.540
0.9 -0.148 1.339 2018 2498 2957 3401 4.395
0.8 -0.132  1.336 1998 2453 2891 3312 4.250
0.7 -0.116  1.333 1.967 2407 2.824 3.223 4.105
0.6 -0.099 1.328 1939 2359 2755 3.132 3.960
0.5 -0.083 1.323 1910 2311 2686 3.041 3.815
0.4 -0.066 1.317 1.880 2261 2615 2949 3.670
0.3 -0.050 1.309 1.849 2211 2544 2856 3.525
0.2 -0.033 1.301 1.818 2.159 2472 2763 3.380
0.1 -0.017 1292 1.785 2.107 2400 2.670 3.235
0.0 0.000 1.282 1.751 2.054 2326 2.576 3.090
-0.1 0.017 1270 1.716 2.000 2252 2482 2.950
-0.2 0.033 1.258 1.680 1945 2.178 2388 2.810
-0.3 0.050 1.245 1.643 1.890 2.104 2294 2.675
-0.4 0.066 1.231 1.606 1.834 2.029 2201 2.540
—-0.5 0.083 1.216 1.567 1.777 1955 2.108 2.400
-0.6 0.099 1200 1.528 1.720 1.880 2.016 2.275
-0.7 0.116 1.183 1488 1.663 1.806 1926 2.150
-0.8 0.132 1.166 1448 1.606 1.733 1.837 2.035
-0.9 0.148 1.147 1407 1.549 1.660 1.749 1910
-1.0 0.164 1.128 1366 1492 1.588 1.664 1.880
-1.4 0.225 1.041 1.198 1270 1318 1351 1.465
1.8 0.282 0945 1.035 1.069 1.087 1.097 1.130
2.2 0.330 0.844 0.888 0.900 0905 0907 0910
-3.0 0.396 0.660 0.666 0.666 0.667 0.667 0.668

[Note: C,; = 0 corresponds to log-normal distribution]

ExampLe 7.8 For the annual flood series data given in Example 7.4, estimate the
flood discharge for a return period of (a) 100 years (b) 200 years and (c) 1000 years by
using log-Pearson Type Il distribution.

Sorurion:  The variate z = log x is first calculated for all the discharges (Table 7.7).
Then the statistics Z , o, and C, are calculated from Table 7.7 to obtain

Table 7.7 Variate Z— Example 7.8

Year Flood z=logx Year Flood z=log x
x (m/s) x (m%/s)
1951 2947 3.4694 1965 4366 3.6401
1952 3521 3.5467 1966 3380 3.5289
1953 2399 3.3800 1967 7826 3.8935
1954 4124 3.6153 1968 3320 3.5211
1955 3496 3.5436 1969 6599 3.8195
1956 2947 3.4694 1970 3700 3.5682

(Contd.)
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1957 5060 3.7042 1971 4175 3.6207
1958 4903 3.6905 1972 2988 3.4754
1959 3751 3.5748 1973 2709 3.4328
1960 4798 3.6811 1974 3873 3.5880
1961 4290 3.6325 1975 4593 3.6621
1962 4652 3.6676 1976 6761 3.8300
1963 5050 3.7033 1977 1971 3.2947
1964 6900 3.8388
27 % 0.0030
o, = 0.1427 =
(26) (25) (0.1427)}
Z =3.6071 C, = 0.043

The flood discharge for a given T is calculated as below. Here, values of K, for
given T and C, = 0.043 are read from Table 7.6.

Z =3.6071 o, = 0.1427 C,=0.043
Kz
T (years) (from Table 7.6) x,p= antilog z,
(for C, = 0.043) Ko, Z;=Z +Ko, (m%/s)
100 2.358 0.3365 3.9436 8782
200 2.616 0.3733 3.9804 9559
1000 3.152 0.4498 4.0569 11400

ExampLE 7.9 For the annual flood series data analyzed in Example 7.8 estimate the
flood discharge for a return period of (a) 100 years, (b) 200 years, and (c) 1000 years by
using log-normal distribution. Compare the results with those of Example 7.8.

Sorution.  Log-normal distribution is a special case of log-Pearson type III distribu-
tion with C; = 0. Thus in this case C; is taken as zero. The other statistics are z =3.6071
and o, = 0.1427 as calculated in Example 7.8.

The value of K for a given return period 7 and C; = 0 is read from Table 7.6. The
estimation of the required flood discharge is done as shown below.

7 =3.6071 o, = 0.1427 C,=0
T (years) K, K. o, Z; Xr
(from Table 7.6) =Z +K, 0, =antilogz;(m’s)
100 2.326 0.3319 3.9390 8690
200 2.576 0.3676 3.9747 9434
1000 3.090 0.4409 4.0480 11170

On comparing the estimated x, with the corresponding values in Example 7.8, it is
seen that the inclusion of the positive coefficient of skew (C, = 0.047) in log-Pearson
type III method gives higher values than those obtained by the log-normal distribution
method. However, as the value of C; is small, the difference in the corresponding
values of x; by the two methods is not appreciable.

[Vote: 1If the coefficient of skew is negative, the log-Pearson type III method gives
consistently lower values than those obtained by the log-normal distribution method. ]
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7.8 PARTIAL DURATION SERIES

In the annual hydrologic data series of floods, only one maximum value of flood per
year is selected as the data point. It is likely that in some catchments there are more
than one independent floods in a year and many of these may be of appreciably high
magnitude. To enable all the large flood peaks to be considered for analysis, a flood
magnitude larger than an arbitrary selected base value are included in the analysis.
Such a data series is called partial-duration series.

In using the partial-duration series, it is necessary to establish that all events con-
sidered are independent. Hence the partial-duration series is adopted mostly for rain-
fall analysis where the conditions of independency of events are easy to establish. Its
use in flood studies is rather rare. The recurrence interval of an event obtained by
annual series (7)) and by the partial duration series (7),) are related by

Tp= 1
InT,-In(T,-1)
From this it can be seen that the difference between 7, and T is significant for
T, <10 years and that for 7, > 20, the difference is negligibly small.

(7.28)

7.9 REGIONAL FLOOD FREQUENCY ANALYSIS

When the available data at a catchment is too short to conduct frequency analysis, a
regional analysis is adopted. In this a hydrologically homogeneous region from the
statistical point of view is considered. Available long time data from neighbouring
catchments are tested for homogeneity and a group of stations satisfying the test are
identified. This group of stations constitutes a region and all the station data of this
region are pooled and analysed as a group to find the frequency characteristics of the
region. The mean annual flood Q,,,, which corres-ponds to a recurrence interval of
2.33 years is used for nondimensionalising the results. The variation of O,,, with drain-
age area and the variation of Q;/Q,,, with T where Oy is the discharge for any T are the
basic plots prepared in this analysis. Details of the method are available in Ref. 2.

7.10 DATA FOR FREQUENCY STUDIES

The flood-frequency analysis described in the previous sections is a direct means of
estimating the desired flood based upon the available flood flow data of the catch-
ment. The results of the frequency analysis depend upon the length of data. The mini-
mum number of years of record required to obtain satisfactory estimates depends
upon the variability of data and hence on the physical and climatological characteris-
tics of the basin. Generally a minimum of 30 years of data is considered as essential.
Smaller lengths of records are also used when it is unavoidable. However, frequency
analysis should not be adopted if the length of records is less than 10 years.

In the frequency analysis of time series, such as of annual floods, annual yields and
of precipitation, some times one comes across very long (say of the order of 100
years) times series. In such cases it is necessary to test the series for Homogeneity to
ascertain that there is no significant difference in the causative hydrological processes
over the span of the time series. A time series is called time-homogeneous (also known
as stationary) if identical events under consideration in the series are likely to occur at
all times. Departure from time homogeneity is reflected either in trend or periodicity
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or persistence of the variable over time. Potential non-homogeneity region, (if any),
could be detected by (i) mass curve or (ii) by moving mean of the variable. Statistical
tests like F-fest for equality of variances and ¢-fest for significance of differences of
means are adopted to identify non- homogeneous region/s in the series. Only the
contiguous homogeneous region of the series covering the recent past is to be adopted
for frequency analysis. However, it is prudent to test all time series, whether long or
short, for time-homogeneity before proceeding with the frequency analysis. Thus the
cardinal rule with the data of time series would be that the data should be reliable and
homogeneous.

Flood frequency studies are most reliable in climates that are uniform from year to
year. In such cases a relatively short record gives a reliable picture of the frequency
distribution.

7.11 DESIGN FLOOD

In the design of hydraulic structures it is not practical from economic considerations
to provide for the safety of the structure and the system at the maximum possible flood
in the catchment. Small structures such as culverts and storm drainages can be de-
signed for less severe floods as the consequences of a higher than design flood may
not be very serious. It can cause temporary inconvenience like the disruption of traffic
and very rarely severe property damage and loss of life. On the other hand, storage
structures such as dams demand greater attention to the magnitude of floods used in
the design. The failure of these structures causes large loss of life and great property
damage on the downstream of the structure. From this it is apparent that the type,
importance of the structure and economic development of the surrounding area dic-
tate the design criteria for choosing the flood magnitude. This section highlights the
procedures adopted in selecting the flood magnitude for the design of some hydraulic
structures.
The following definitions are first noted.

DEsIGN FLoob Flood adopted for the design of a structure.

SPILLWAY DESIGN FLoob Design flood used for the specific purpose of de-
signing the spillway of a storage structure. This term is frequently used to denote the
maximum discharge that can be passed in a hydraulic structure without any damage or
serious threat to the stability of the structure.

STANDARD PROJECT FLooD (SPF) The flood that would result from a se-
vere combination of meteorological and hydrological factors that are reasonably ap-
plicable to the region. Extremely rare combinations of factors are excluded.

PROBABLE MAXIMUM FLoob (PMF) The extreme flood that is physically
possible in a region as a result of severemost combinations, including rare combina-
tions of meteorological and hydrological factors.

The PMF is used in situations where the failure of the structure would result in loss
of life and catastrophic damage and as such complete security from potential floods is
sought. On the other hand, SPF is often used where the failure of a structure would
cause less severe damages. Typically, the SPF is about 40 to 60% of the PMF for the
same drainage basin. The criteria used for selecting the design flood for various
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Table 7.8 Guidelines for Selecting Design Floods (CWC, India)"

S. No. Structure Recommended design flood

1. Spillways for majorand medium  (a) PMF determined by unit hydrograph
projects with storages more than and probable maximum precipitation
60 Mm® (PMP)
(b) If(a)isnot applicable or possible flood-
frequency method with 7= 1000 years

2. Permanent barrage and minor  (a) SPF determined by unit hydrograph
dams with capacity less than and standard project storm (SPS)
60 Mm® which is usually the largest recorded
storm in the region
(b) Flood with a return period of 100 years.
(a) or (b) whichever gives higher value.

Flood with a return period of 100 or 50

3. Pickup weirs years depending on the importance of the
project.
4. Aqueducts Flood with 7= 50 years
(a) Waterway Flood with 7= 100 years

(b) Foundations and free board Empirical formulae

5. Project with very scanty or in-
adequate data

hydraulic structures vary from one country to another. Table 7.8 gives a brief summary
of the guidelines adopted by CWC India, to select design floods.

THE INDIAN STANDARD GUIDELINES FOR DESIGN OF FLOODS
FOR DAMS

“IS : 11223—1985 : Guidelines for fixing spillway capacity” (Ref. 4) is currently used
in India for selection of design floods for dams. In these guidelines, dams are classi-
fied according to size by using the hydraulic head and the gross storage behind the
dam. The hydraulic head is defined as the difference between the maximum water
level on the upstream and the normal annual average flood level on the downstream.
The classification is shown in Table 7.9(a). The overall size classifications for dams
would be greater of that indicated by either of the two parameters. For example, a dam
with a gross storage of 5 Mm?® and hydraulic head of 15 m would be classified as
Intermediate size dam.

Table 7.9(a) Size Classification of Dams

Class Gross storage (Mm®) Hydraulic head (m)
Small 0.5 to 10.0 7.5 t0 12.0
Intermediate 10.0 to 60.0 12.0 to 30.0

Large > 60.0 >30.0
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The inflow design flood (IDF) for safety of the dam is taken for each class of dam
as given in Table 7.9(b).

Table 7.9(b) Inflow Design Flood for Dams

Size/Class Inflow design flood for safety
(based on Table 7.9(a))
Small 100-year flood
Intermediate Standard project flood (SPF)
Large Probable Maximum flood (PMF)

7.12 DESIGN STORM

To estimate the design flood for a project by the use of a unit hydrograph, one needs
the design storm. This can be the storm-producing probable maximum precipitation
(PMP) for deriving PMF or a standard project storm (SPS) for SPF calculations. The
computations are performed by experienced hydrometeorologists by using meteoro-
logical data. Various methods ranging from highly sophisticated hydrometeorological
methods to simple analysis of past rainfall data are in use depending on the availabil-
ity of reliable relevant data and expertise.

The following is a brief outline of a procedure followed in India:

o The duration of the critical rainfall is first selected. This will be the basin lag if
the flood peak is of interest. If the flood volume is of prime interest, the duration
of the longest storm experienced in the basin is selected.

e Past major storms in the region which conceivably could have occurred in the
basin under study are selected. DAD analysis is performed and the enveloping
curve representing maximum depth—duration relation for the study basin obtained.

e Rainfall depths for convenient time intervals (e.g. 6 h) are scaled from the en-
veloping curve. These increments are to be arranged to get a critical sequence
which produces the maximum flood peak when applied to the relevant unit
hydrograph of the basin.

The critical sequence of rainfall increments can be obtained by trial and er-
ror. Alternatively, increments of precipitation are first arranged in a table of
relevant unit hydrograph ordinates, such that (i) the maximum rainfall incre-
ment is against the maximum unit hydrograph ordinate, (ii) the second highest
rainfall increment is against the second largest unit hydrograph
ordinate, and so on, and (iii) the sequence of rainfall increments arranged above
is now reversed, with the last item first and first item last. The new sequence
gives the design storm (Example 7.8).

e The design storm is then combined with hydrologic abstractions most condu-
cive to high runoff, viz. low initial loss and lowest infiltration rate to get the
hyetograph of rainfall excess to operate upon the unit hydrograph.

Further details about the above procedure and other methods for computing
design storms are available in Ref. 7. Reference 1 gives details of the estimation
of the design flood peak by unit hydrographs for small drainage basins of areas
from 25-500 km”.

ExampLe 7.10 The ordinates of cumulative rainfall from the enveloping maximum
depth—duration curve for a basin are given below. Also given are the ordinates of a 6-h
unit hydrograph. Design the critical sequence of rainfall excesses by taking the @ index to
be 0.15 cm/h.
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Sor.ution.” The critical storm and rainfall excesses are calculated in a tabular form in
Table 7.10.

Time from

start (h) 0 6 12 18 24 30 36 42 48 54 60
Cumulative

rainfall (cm) 0 15 241 30 34 37 39 40.5 413

6-h UH

ordinate (m*s) 0 20 54 98 126 146 154 152 138 122 106

Time from
start (h) 66 72 78 84 90 96 102 108 114 129 132
6-h UH
ordinate (m3/s) 92 79 64 52 40 30 20 14 10 6 0

Table 7.10 Calculation of Critical Storm — Example 7.10

Time Cumulative 6-h Ordinate  First Design  Infiltra- Rainfall

(h) rainfall incre- of 6-h arrange- sequence tion  excess of
(cm) mental UH ment of of rainfall loss (cm)  design
rainfall (m%s) rainfall  incre- storm
(cm) incre- ment (cm)
ment
1 2 3 4 5 6 7 8
0 0 0 0 0 0
6 15.0 15.0 20 1.5 0.9 0.6
12 24.1 9.1 54 2.0 0.9 1.1
18 30.0 5.9 98 0.8 4.0 0.9 3.1
24 34.0 4.0 126 3.0 9.1 0.9 8.2
30 37.0 3.0 146 5.9 15.0 0.9 14.1
36 39.0 2.0 154 15.0 59 0.9 5.0
42 40.5 1.5 152 9.1 3.0 0.9 2.1
48 41.3 0.8 138 4.0 0.8 0.9 0
54 122 2.0
60 106 1.5
66 92
72 79
78 64
84 52
90 40
96 30
102 20
108 14
114 10
120 6
132 0

1. (Column 6 is reversed sequence of column 5)
2. Infiltration loss = 0.15 cm/h = 0.9 cm/6 h
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7.13 RISK, RELIABILITY AND SAFETY FACTOR
RISK AND RELIABILITY

The designer of a hydraulic structure always faces a nagging doubt about the risk of
failure of his structure. This is because the estimation of the hydrologic design values
(such as the design flood discharge and the river stage during the design flood) in-
volve a natural or inbuilt uncertainty and as such a hydrological risk of failure. As an
example, consider a weir with an expected life of 50 years and designed for a flood
magnitude of return period 7' = 100 years. This weir may fail if a flood magnitude
greater than the design flood occurs within the life period (50 years) of the weir.

The probability of occurrence of an event (x = x;) at least once over a
period of n successive years is called the risk, R . Thus the risk is given by

R =1 — (probability of non-occurrence of the event x > xin n years)

R=1-(1-pP)
1 n
=l-|1-= 7.29
(%) 02)
where P = probability P (x = x;) = %

T = return period
The reliability R,, is defined as

R=1-R~= (1—%)'1 (7.30)

It can be seen that the return period for which a structure should be designed depends
upon the acceptable level of risk. In practice, the acceptable risk is governed by eco-
nomic and policy considerations.

SAFETY FACTOR

In addition to the hydrological uncertainty, as mentioned above, a water resource de-
velopment project will have many other uncertainties. These may arise out of struc-
tural, constructional, operational and environmental causes as well as from non-tech-
nological considerations such as economic, sociological and political causes. As such,
any water resource development project will have a safety factor for a given hydro-
logical parameter M as defined below.

Actual value of the parameter M

adopted in the design of the project
Safety factor (for the parameter M) = (S F),, =

Value of the parameter M obtained
from hydrological considerations only

C

am
= — (7.31)

Chm
The parameter M includes such items as flood discharge magnitude, maximum river
stage, reservoir capacity and free board. The difference (C,,, — C},,) is known as safety

margin.
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The concepts of risk, reliability and safety factor form the building blocks of the
emerging field of reliability based design.

ExampLe 7.11 A bridge has an expected life of 25 years and is designed for a flood
magnitude of return period 100 years. (a) What is the risk of this hydrologic design? (b) If
a 10% risk is acceptable, what return period will have to be adopted?

SOLUTION!
_ Y
(a) Therisk R =1- (I—F)
Here n =25 years and 7= 100 years
_ 25
R =1- (1—Lj =0.222
100

Hence the inbuilt risk in this design is 22.2%

_ 25
(b) If R =10%=0.10 0.10=1— (1—%)

25
(1 - %) =090 and T =238 years=say 240 years.

Hence to get 10% acceptable risk, the bridge will have to be designed for a flood of return
period T = 240 years.

ExampLe 7.12 Analysis of annual flood series of a river yielded a sample mean of
1000 m*/s and standard deviation of 500 m’/s. Estimate the design flood of a structure on
this river to provide 90% assurance that the structure will not fail in the next 50 years.
Use Gumbel's method and assume the sample size to be very large.

Sorurion, X =1000 m%s and o, | = 500 m%/s
50
Reliability R, =0.90 = (1 - %)

- % = (0.90)"5 = 0.997895

T =475 ¥ +K g 21037
= ears Xpr= X O, e —
Y r nl 1.2825
Also, yr= - In-In—33 | —6.16226
(475-1)
6.16226 —0.577
- T T —4355
1.2825

xy= 1000 + (4.355) x 500 = 3177 m*/s

ExampLe 7.13 Annual flood data of the river Narmada at Garudeshwar covering the
period 1948 to 1979 yielded for the annual flood discharges a mean of 29,600 m*/s and a
standard deviation of 14,860 m*/s. For a proposed bridge on this river near this site it is
decided to have an acceptable risk of 10% in its expected life of 50 years. (a) Estimate the
flood discharge by Gumbel's method for use in the design of this structure (b) If the actual
flood value adopted in the design is 125,000 m*/s what are the safety factor and safety
margin relating to maximum flood discharge?

Sorumion. Risk R =0.10
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Life period of the structure n = 50 years

Hence E

1\
0.10=1- (1——)
T

(1-0.10)"°° = 0.997895

(-4)

=475 years

Gumbel’s method is now used to estimate the flood magnitude for this return period of
T =475 years.
Record length N = 1948 to 1979 = 32 years

From Tables 7.3 and 7.4, y, = 0.5380 and S, = 1.1193

yr= | in—L—|=—|In.n—2 | = 6.16226
T—1 (475-1)
~%,  (6.16226 05380
k=2 S ) 50048
S 1.1193

xp=Xxr +Ko,
= 29600 + (5.0248 x 14860) = 104268
say = 105,000 m?/s = hydrological design flood magnitude

Actual flood magnitude adopted in the project is = 125,000 m*/s
Safety factor = (SF)g.0q = 125,000/105,000 = 1.19
Safety margin for flood magnitude = 125,000 — 105,000 = 20,000 m>/s

N A WKN

=)
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: REvisioN QUESTIONS :

7.1

7.2
7.3

7.4

7.5

7.6

Explain the rational method of computing the peak discharge of a small catchment.
Where is this method commonly used and what are its merits and demerits?

Discuss the factors affecting the runoff coefficient C in rational formula.

What do you understand by time of concentration of a catchment? Describe briefly meth-
ods of estimation of the time of concentration.

What is the importance of time of concentration of a catchment in the estimation of
flood by rational formula?

Annual flood series having N consecutive entries are available for a catchment. Describe
a procedure to verify whether the data follow Gumbel’s distribution.

Write a brief note on frequency factor and its estimation in Gumbel’s method.
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1.7

7.8

7.9

7.10

7.11

If the annual flood series data for a catchment are available for N consecutive years,
explain a procedure to determine a flood discharge with a return period of 7, (where 7>
N), by using

(a) Log-Pearson type III distribution, and (b) Log-normal distribution.

What are the limitations of flood frequency studies?

Explain briefly the following terms:

(a) Design flood (b) Standard project flood

(c) Probable maximum flood (d) Design storm

What are the recommended design floods for

(a) Spillways of dams (b) Terrace outlets and vegetated waterways
(c) Field diversions (d) Permanent barrages

(e) Waterway for aqueducts
Explain briefly the following terms:
(a) Risk (b) Reliability (c) Safety margin

7.1

7.2

7.3

7.4

7.5

: PRrRoBLEMS |}

A catchment of area 120 ha has a time of concentration of 30 min and runoff coefficient
of 0.3. If a storm of duration 45 min results in 3.0 cm of rain over the catchment estimate
the resulting peak flow rate.

Information on the 50-year storm is given below.

Duration (minutes) 15 30 45 60 180
Rainfall (mm) 40 60 75 100 120

A culvert has to drain 200 ha of land with a maximum length of travel of 1.25 km.
The general slope of the catchment is 0.001 and its runoff coefficient is 0.20. Estimate
the peak flow by the rational method for designing the culvert for a 50-year flood.

A basin is divided by 1-h isochrones into four sub-areas of size 200, 250, 350 and 170
hectares from the upstream end of the outlet respectively. A rainfall event of
5-h duration with intensities of 1.7 cm/h for the first 2 h and 1.25 cm/h for the next 3 h
occurs uniformly over the basin. Assuming a constant runoff coefficient of 0.5, estimate
the peak rate of runoff.

(Note: An isochrone is a line on the catchment map joining points having equal time of
travel of surface runoff. See Sec. 8.8.)

An urban catchment of area 3.0 km? consists of 52% of paved areas, 20% parks, 18%
multi-unit residential area. The remaining land use can be classified as light industrial
area. The catchment is essentially flat and has sandy soil. If the time of concentration is
50 minutes, estimate the peak flow due to a design storm of depth 85 mm in 50 minutes.
In estimating the peak discharge of a river at a location X the catchment area was divided
into four parts 4, B, C and D. The time of concentration and area for different parts are
as follows

Part Time of Concentration Area (in ha)
A One Hour 600
B Two Hours 750
C Three Hours 1000
D Four Hours 1200

Records of a rain storm lasting for four hours as observed and the runoff factors during
different hours are as follows:
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Time (in hours) Rainfall (mm) Runoff factor
From To
0 1 25.0 0.50
1 2 50.0 0.70
2 3 50.0 0.80
3 4 23.5 0.85

Calculate the maximum flow to be expected at X in m*/s assuming a constant base flow
of 42.5 m’/s.
A catchment area has a time of concentration of 20 minutes and an area of 20 ha. Esti-
mate the peak discharge corresponding to return period of 25 yrs. Assume a runoff
coefficient of 0.25. The intensity-duration-frequency for the storm in the area can be
expressed by i = KT*/(D + a)", where i = intensity in cm/h, 7= retum period in years, and
D = duration of storm in hours, with coefficients K= 6.93, x =0.189, a = 0.50, n = 0.878.
A 100 ha watershed has the following characteristics

i. Maximum length of travel of water in the catchment = 3500 m

ii. Difference in elevation between the most remote point on the catchment and the

outlet = 65 m

iii. Land use/cover details:

Land use/cover Area (ha) Runoff coefficient
Forest 30 0.25
Pasture 10 0.16
Cuiltivated land 60 0.40

The maximum intensity — duration — frequency relationship for the watershed is
given by
3.97 T0.165

(D +0.15)%73
where i = intensity in cm/h, 7'= Return period in years and D = duration of rainfall
in hours. Estimate the 25-year peak runoff from the watershed that can be expected
at the outlet of the watershed.

A rectangular paved area 150 m X 450 m has a longitudinal drain along one of its longer

edges. The time of concentration for the area is estimated to be 30 minutes and consists

of 25 minutes for over land flow across the pavement to the drain and 5 minutes for the
maximum time from the upstream end of the drain to the outlet at the other end.

(a) Construct the isochrones at 5 minutes interval for this area.

(b) A rainfall of 7 cm/h occurs on this plot for D minutes and stops abruptly. Assuming
a runoft coefficient of 0.8 sketch idealized outflow hydrographs for D = 5 and 40
minutes.

A rectangular parking lot is 150 m wide and 300 m long. The time of overland flow

across the pavement to the longitudinal gutter along the centre is 20 minutes and the

estimated total time of concentration to the downstream end of the gutter is 25 minutes.

The coefficient of runoff is 0.92. If a rainfall of intensity 6 cm/h falls on the lot for 10

minutes and stops abruptly determine the peak rate of flow.

A flood of 4000 m3/s in a certain river has a return period of 40 years. (a) What is its

probability of exceedence? (b) What is the probability that a flood of 4000 m*/s or

greater magnitude may occur in the next 20 years? (¢c) What is the probability of occur-
rence of a flood of magnitude less than 4000 m3/s?

Complete the following:

(a) Probability ofa 10 year flood occurring at least once in the next 5 years is

i
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7.12

7.13

7.14

7.15

7.16

717

7.18

(b) Probability that a flood of magnitude equal to or greater than the 20 year flood will
not occur in the next 20 years is
(c) Probability of a flood equal to or greater than a 50 year flood occurring next year is

(d) Probability of a flood equal to or greater than a 50 year flood occurring three times
in the next 10 years is

(e) Probability of a flood equal to or greater than a 50 year flood occurring at least once
in next 50 years is

A table showing the variation of the frequency factor K in the Gumbel’s extreme value

distribution with the sample size N and return period 7 is often given in books. The

following is an incomplete listing of K for 7= 1000 years. Complete the table.

Sample size, N 25 30 35 40 45 50 55 60 65 70
Value of K
(T, N) for T=
1000 years 5842 5727 — 5576 — 5478 — — — 5359

The following table gives the observed annual flood values in the River Bhagirathi at
Tehri. Estimate the flood peaks with return periods of 50, 100 and 1000 years by using:
(a) Gumbel’s extreme value distribution, (b) log-Pearson type III distribution, and
(c) log-normal distribution

Year 1963 1964 1965 1966 1967 1968 1969
Flood discharge m?/s 3210 4000 1250 3300 2480 1780 1860
Year 1970 1971 1972 1973 1974 1975

Flood discharge m%/s 4130 3110 2320 2480 3405 1820

A hydraulic structure on a stream has been designed for a discharge of 350 m?/s. If the
available flood data on the stream is for 20 years and the mean and standard deviation
for annual flood series are 121 and 60 m*/s respectively, calculate the return period for
the design flood by using Gumbel’s method.

In a frequency analysis of rainfall based on 15 years of data of 10 minutes storm, the
following values were obtained:

Arithmetic mean of data = 1.65 cm

Standard deviation = 0.45 cm

Using Gumbel’s extremal distribution, find the recurrence interval of a storm of 10 min-
utes duration and depth equal to 3.0 cm. Assume the sample size to be very large.

For a data of maximum-recorded annual floods of a river the mean and the standard
deviation are 4200 m>/s and 1705 m%/s respectively. Using Gumbel’s extreme value
distribution, estimate the return period of a design flood of 9500 m?/s. Assume an infi-
nite sample size.

The flood data of a river was analysed for the prediction of extreme values by Log-
Pearson Type III distribution. Using the variate z = log O, where Q = flood discharge in
the river, it was found that z = 2.510, o, = 0.162 and coefficient of skew C; = 0.70. (a)
Estimate the flood discharges with return periods of 50, 100, 200 and 1000 years in this
river. (b) What would be the corresponding flood discharge if log-normal distribution
was used?

The frequency analysis of flood data of a river by using Log Pearson Type III distribu-
tion yielded the following data:

Coefficient of Skewness = 0.4

Return Period (T) (in yrs) Peak Flood (m?/s)

50 10,000
200 15,000




The McGraw-Hill Companies

Floods 277

7.19

7.20

7.21

7.22

7.23

7.24

Given the following data regarding the variation of the frequency factor K with the
return period 7 for C; = 0.4, estimate the flood magnitude in the river with a return
period of 1000 yrs.

Return Period (7) : 50 200 1000
Frequency Factor (K) : 2.261 2.949 3.670

A river has 40 years of annual flood flow record. The discharge values are in m*/s. The
logarithms to base 10 of these discharge values show a mean value of 3.2736, standard
deviation of 0.3037 and a coefficient of skewness of 0.07. Calculate the 50 year return
period annual flood discharge by,

(a) Log-normal distribution and

(b) Log-Pearson type III distribution.

The following data give flood-data statistics of two rivers in UP:

S. No. River Length of Mean annual G,

n-1

records (years) flood (m%/s)
1 Ganga at Raiwala 92 6437 2951
2 Yamuna at Tajewala 54 5627 3360

(a) Estimate the 100 and 1000 year floods for these two rivers by using Gumbel’s method.
(b) What are the 95% confidential intervals for the predicted values?

For a river, the estimated flood peaks for two return periods by the use of Gumbel’s
method are as follows:

Return Period (years) Peak flood (m®/s)
100 435
50 395

What flood discharge in this river will have a return period of 1000 years?

Using 30 years data and Gumbel’s method the flood magnitudes, for return periods of
100 and 50 years for a river are found to be 1200 and 1060 m?/s respectively.

(a) Determine the mean and standard deviation of the data used, and

(b) Estimate the magnitude of a flood with a return period of 500 years.

The ordinates of a mass curve of rainfall from a severe storm in a catchment is given.
Ordinates of a 12-h unit hydrograph applicable to the catchment are also given. Using
the given mass curve, develop a design storm to estimate the design flood for the catch-
ment. Taking the @index as 0.15 cm/h, estimate the resulting flood hydrograph. Assume
the base flow to be 50 m*/s.

Time (h) 0 12 24 36 48 60 72 84 96 108 120 132
Cumulative

rainfall (cm) 0 102 30.5 34.0 36.0

12-h UH

ordinate (m*s) 0 32 96 130 126 98 75 50 30 15 7 0

A 6-hour unit hydrograph is in the form of a triangle with a peak of 50 m?/s at 24 hours
from start. The base is 54 hours. The ordinates of a mass curve of rainfall from a severe
storm in the catchment is as below:

Time (h) 0 6 12 18 24
Cumulative Rainfall (cm) 0 5 12 15 17.6

Using this data, develop a design storm and estimate the design flood for the catchment.
Assume ¢ index = 0.10 cm/h and the base flow = 20 m?/s.
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7.25

7.26

7.27

7.28

7.29

7.30

A water resources project has an expected life of 20 years. (a) For an acceptable risk of
5% against the design flood, what design return period is to be adopted? (b) If the above
return period is adopted and the life of the structure can be enhanced to 50 years, what is
the new risk value?

A factory is proposed to be located on the edge of the 50 year flood plain of a river. If the
design life of the factory is 25 years, what is the reliability that it will not be flooded
during its design life?

A spillway has a design life of 20 years. Estimate the required return period of a flood if the
acceptable risk of failure of the spillway is 10% (a) in any year, and (b) over its design life.
Show that if the life of a project » has a very large value, the risk of failure is 0.632 when
the design period is equal to the life of the project, n.

n

(Hint: Show that (1 - l) = ¢! for large values of n)

The regression analysis of a 30 year flood data at a poin{l on a river yielded sample mean

of 1200 m?/s and standard deviation of 650 m*/s. For what discharge would you design

the structure to provide 95% assurance that the structure would not fail in the next 50

years? Use Gumbel’s method. The value of the mean and standard deviation of the

reduced variate for N = 30 are 0.53622 and 1.11238 respectively.

Analysis of the annual flood peak data of river Damodar at Rhondia, covering a period

of 21 years yielded a mean of 8520 m?/s and a standard deviation of 3900 m3/s. A

proposed water control project on this river near this location is to have an expected life

of 40 years. Policy decision of the project allows an acceptable reliability of 85%.

(a) Using Gumbel’s method recommend the flood discharge for this project.

(b) If a safety factor for flood magnitude of 1.3 is desired, what discharge is to be
adopted? What would be the corresponding safety margin?

7.1

7.2

7.3

7.4

7.5

7.6

: OBJECTIVE QUESTIONS I

A culvert is designed for a peak flow O, on the basis of the rational formula. If a storm
of the same intensity as used in the design but of duration twice larger occurs the result-
ing peak discharge will be

@ O, ®) 20, © 0,2 @ 03

A watershed of area 90 ha has a runoff coefficient of 0.4. A storm of duration larger than
the time of concentration of the watershed and of intensity 4.5 cm/h creates a peak
discharge of

(a) 11.3 ms (b) 0.45 m’/s (c) 450 m’/s (d) 4.5 m’s

A rectangular parking lot, with direction of overland flow parallel to the larger side, has
a time of concentration of 25 minutes. For the purpose of design of drainage, four rain-
fall patterns as below are to be considered.

A =35 mm/h for 15 minutes, B =45 mm/h for 10 minutes,

C =10 mm/h for 60 minutes, D = 15 mm/h for 25 minutes,
The greatest peak rate of runoff is expected in the storm

(a) 4 (b) B () C (d D

For an annual flood series arranged in decreasing order of magnitude, the return period
for a magnitude listed at position m in a total of N entries, by Weibull formula is

(a) m/N (b) m/(N+1) () (N+1)/m (d) N/(m+1).

The probability that a hundred year flood may not occur at all during the 50 year life of
a project is

(a) 0.395 (b) 0.001 (c) 0.605 (d) 0.133

The probability of a flood, equal to or greater than 1000 year flood, occurring next year is
(a) 0.0001 (b) 0.001 (c) 0.386 (d) 0.632
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1.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

717

7.18

7.19

7.20

The probability of a flood equal to or greater than 50 year flood, occurring at least one in
next 50 years is

(a) 0.02 (b) 0.636 (c) 0.364 (d 1.0

The general equation for hydrological frequency analysis states that x; = value of a
variate with a return period of 7 years is given by x; =

(@) X -Ko (b) X/Ko (¢) Ko (d x +Ko
For a return period of 100 years the Gumbel’s reduced variate y is
(a) 0.0001 (b) 0.001 (c) 0.386 (d) 0.632

An annual flood series contains 100 years of flood data. For a return period of 200 years
the Gumbel’s reduced variate can be taken as

(a) 5.296 (b) —4.600 (c) 1.2835 (d) 0.517

To estimate the flood magnitude with a return period of 7 years by the Log—Pearson
Type III method, the following data pertaining to annual flood series is sufficient

(a) Mean, standard deviation and coefficient of skew of discharge data

(b) Mean and standard deviation of the log of discharge and the number of years of data
(c) Mean, standard deviation and coefficient of skew of log of discharge data

(d) Mean and standard deviation of the log of discharges

If the recurrence interval of an event is 7, in annual series and 7, in partial duration
series, then

(a) T,isalways smaller than T,

(b) Difference between T, and 7, is negligible for 7, <5 years

(c) Difference between T, and 7, is negligible for T, > 10 years

(d) Difference between T, and 7, is not negligible till 7, > 100 years

The term mean annual flood denotes

(a) Mean floods in partial-duration series

(b) Mean of annual flood flow series

(c) A flood with a recurrence interval of 2.33 years

(d) A flood with a recurrence interval of N/2 years, where N = number of years of record.
The use of unit hydrographs for estimating floods is generally limited to catchments of
size less than

(a) 5000 km? (b) 500 km? (c) 10° km? (d) 5000 ha

The probable maximum flood is

(a) The standard project flood of an extremely large river

(b) A flood adopted in the design of all kinds of spillways

(c) An extremely large but physically possible flood in the region

(d) The maximum possible flood that can occur anywhere in the country

The standard project flood is

(a) Smaller than probable maximum flood in the region

(b) The same as the design flood used for all small hydraulic structures

(c) Larger than the probable maximum flood by a factor implying factor of safety

(d) The same as the probable maximum flood

A hydraulic structure has been designed for a 50 year flood. The probability that exactly
one flood of the design capacity will occur in the 75 year life of the structure is

(a) 0.02 (b) 0.220 (c) 0.336 (d) 0.780

The return period that a designer must use in the estimation of a flood for a hydraulic
structure, if he is willing to accept 20% risk that a flood of that or higher magnitude will
occur in the next 10 years is

(a) 95 years (b) 75 years (c) 45 years (d) 25 years

A hydraulic structure with a life of 30 years is designed for a 30 year flood. The risk of
failure of the structure during its life is

(a) 0.033 (b) 0.638 (c) 0.362 (d) 1.00

A bridge is designed for a 50 year flood. The probability that only one flood of the
design capacity or higher will occur in the 75 years life of the bridge is

(a) 0.020 (b) 0.220 (c) 0.786 (d) 0.336
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Chapter

FLoob RouTING

8.1 INTRODUCTION

The flood hydrograph discussed in Chap. 6 is in fact a wave. The stage and discharge
hydrographs represent the passage of waves of the river depth and discharge respec-
tively. As this wave moves down the river, the shape of the wave gets modified due to
various factors, such as channel storage, resistance, lateral addition or withdrawal of
flows, etc. When a flood wave passes through a reservoir, its peak is attenuated and
the time base is enlarged due to the effect of storage. Flood waves passing down a
river have their peaks attenuated due to friction if there is no lateral inflow. The addi-
tion of lateral inflows can cause a reduction of attenuation or even amplification of a
flood wave. The study of the basic aspects of these changes in a flood wave passing
through a channel system forms the subject matter of this chapter.

Flood routing is the technique of determining the flood hydrograph at a section of
ariver by utilizing the data of flood flow at one or more upstream sections. The hydro-
logic analysis of problems such as flood forecasting, flood protection, reservoir de-
sign and spillway design invariably include flood routing. In these applications two
broad categories of routing can be recognised. These are:

1. Reservoir routing, and 2. Channel routing.

In Reservoir routing the effect of a flood wave entering a reservoir is studied.
Knowing the volume-elevation characteristic of the reservoir and the outflow-elevation
relationship for the spillways and other outlet structures in the reservoir, the effect of
a flood wave entering the reservoir is studied to predict the variations of reservoir
elevation and outflow discharge with time. This form of reservoir routing is essential
(1) in the design of the capacity of spillways and other reservoir outlet structures, and
(ii) in the location and sizing of the capacity of reservoirs to meet specific requirements.

In Channel routing the change in the shape of a hydrograph as it travels down a
channel is studied. By considering a channel reach and an input hydrograph at the
upstream end, this form of routing aims to predict the flood hydrograph at various
sections of the reach. Information on the flood-peak attenuation and the duration of
high-water levels obtained by channel routing is of utmost importance in flood-fore-
casting operations and flood-protection works.

A variety of routing methods are available and they can be broadly classified into
two categories as: (i) hydrologic routing, and (ii) hydraulic routing. Hydrologic-routing
methods employ essentially the equation of continuity. Hydraulic methods, on the
other hand, employ the continuity equation together with the equation of motion of
unsteady flow. The basic differential equations used in the hydraulic routing, known
as St. Venant equations afford a better description of unsteady flow than hydrologic
methods.



