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Stress Analysis for Plasticity 

2.1 The Stress–Strain Behavior 

The standard tensile test is unsuitable for obtaining the stress–strain curve of 

metals up to large values of the strain, since the specimen begins to neck 

when the rate of hardening decreases to a critical value. At this stage, the 

increase in load due to strain-hardening is exactly balanced by the decrease 

in load caused by the diminution of the area of cross section. Consequently, 

the load attains a maximum at the onset of necking. The longitudinal load at 

any stage is P = σA, where A is the current cross-sectional area and σ the 

current stress, and the corresponding volume of the specimen is l A, where l 

is the current length. Using the constancy of volume, the maximum load 

condition dP = 0 may be written as: 

𝑑𝜎

𝜎
= −

𝑑𝐴

𝐴
=
𝑑𝑙

𝑙
= 𝑑𝜀 

Thus, the condition for the onset of necking becomes: 

 

𝑑𝜎

𝑑𝜀
= 𝜎………(1) 

When the true stress–strain curve is given, the point on the curve that 

corresponds to the tensile necking can be located graphically from the fact 
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that the slope at this point is equal to the current stress (Figure). A heavily 

prestrained metal will obviously neck as soon as the yield point is exceeded. 

Since dε = de/(1+e), the condition for necking can be expressed in the 

alternative form: 

𝑑𝜎

𝑑𝑒
=

𝜎

1 + 𝑒
………(2) 

 

 

It follows that the maximum load corresponds to the point of contact of the 

tangent to the (σ, e) curve from the point (−1, 0) on the negative strain axis. 

The tensile test becomes unstable when the load reaches its maximum. The 

deformation is confined locally in the neck, while the remainder of the 

specimen recovers elastically under decreasing load until fracture intervenes. 

The stress distribution in the neck assumes a triaxial state which varies 

through the cross section of the neck. The test no longer provides a direct 

measure of the stress–strain behavior.  

The strain-hardening characteristic of metals at large strains is most 

conveniently obtained by compressing a solid cylindrical specimen between a 

pair of parallel platens. In the absence of efficient lubrication, the compression 

test is complicated by the fact that the friction at the platens restricts the metal 

flow at the ends of the specimen, causing barreling as the compression 

proceeds. Since homogeneous compression is thus prevented by friction, the 

stress–strain curve cannot be derived by the direct measurement of the load 

and the change in height of the specimen.   

Homogeneous deformation in the simple compression test can be achieved 

by inserting PTFE (polytetra fluoroethylene) films of suitable thickness 

between the specimen and the compression platens. As well as producing 

effective lubrication, the PTFE films are themselves compressed so as to 

exert radial pressure to the material near the periphery. This inhibits the 

barreling tendency, except when the film thickness is too small. An excessive 

film thickness, on the other hand, produces bollarding in which the diameter of 

the specimen becomes bigger at the ends than at the middle. For a given 

specimen, there is an optimum film thickness for which neither barreling nor 

bollarding would occur. The compression should be carried out incrementally, 
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renewing the PTFE films after each load application. Using the constancy of 

volume, the load required during the homogeneous compression may 

be written as: 

𝑃 = 𝜎𝐴 =
𝜎𝐴0ℎ0
ℎ

=
𝜎𝐴0
1 − 𝑒

………(3) 

 

where A0 is the original area of cross section of the specimen. The graph for P 

against e shows an upward inflection and rises continuously without limit 

(Figure above). Setting d2P/de2 = 0, and using the fact that d/dε=(1−e)d/de, 

the condition for inflection can be found which defines the corresponding point 

on the true stress–strain curve; this point is most conveniently located if the 

stress–strain curve is represented by an empirical equation.  

The work done in changing the height of a specimen from h to h+dh in simple 

compression is −P dh, where P is the current axial load. The incremental work 

done per unit volume of the specimen is therefore equal to −P dh/Ah or σ dε. 

It follows that during the homogeneous compression of a specimen from an 

initial height h0 to a current height h, the work done per unit volume is given by 

the area under the true stress–strain curve up to a total strain of ln(h0/h). 

 

 

2.2 Empirical stress–strain equations  

For theoretical computations, it is often necessary to represent an 

experimentally determined stress–strain curve by an empirical equation of 

suitable form. When the material is rigid/plastic, it is frequently convenient to 

employ the Ludwik power law 

 

𝜎 = 𝐶𝜀𝑛 ………(4) 

 

where C is a constant stress, and n is a strain-hardening exponent usually 

lying between zero and 0.5. The equation predicts a zero initial stress and an 

infinite initial slope, except for n = 0 which represents a nonhardening 

rigid/plastic material. The higher the value of n, the more pronounced is the 

strain-hardening characteristic of 
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the material (Fig.a). Since dσ/dε = nσ/ε in view of (4), it follows from (1) that 

the magnitude of the true strain at the onset of necking in simple tension is 

equal to n. The work done per unit volume during a homogeneous extension 

or contraction is easily shown to be σε/(1+n), where σ and ε are the final 

values of stress and strain. 

For certain applications involving rigid/plastic materials, it is convenient to use 

an equation suggested by Voce. In its simplest form, the Voce equation may 

be written as: 

𝜎 = 𝐶(1 − 𝑚𝑒−𝑛𝜀)………(5) 

 

where e is the exponential constant. The curves corresponding to varying m 

and n approach the asymptote σ =C (Fig. b above). However, C is unlikely to 

be the saturation stress of a given metal as the rate of hardening becomes 

vanishingly small. 

The rapidity with which the asymptotic value is approached is represented by 

n. The coefficient m defines the initial state of hardening, the fully hardened 

material corresponding to m = 0. The slope of the stress–strain curve given by 

(5) is equal to n(C −σ), which varies linearly with the stress.  

The simple power law (4) may be readily modified by including a constant 

term Y representing the initial yield stress. The stress–strain equation then 

becomes: 
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𝜎 = 𝑌(1 + 𝑚𝜀𝑛)………(6) 

 

where m and n are dimensionless constants. Although this formula represents 

the strict rigid/plastic behavior of metals, it does not give a better fit for an 

actual stress– strain curve over a wide range of strains. When n = 1, the 

above equation represents a linear strain-hardening, which is a reasonable 

approximation for heavily prestrained metals.  

A more successful formula, due to Swift, is the generalized power law 

 

𝜎 = 𝐶(𝑚 + 𝜀)𝑛………(7) 

where C, m, and n are empirical constants. The stress–strain curve 

represented by (7) can be obtained from that given by (4) if the stress axis is 

moved along the positive strain axis through a distance m. Hence m may be 

regarded as the amount of prestrain in a material whose stress–strain curve in 

the annealed state corresponds to m=0, the value of n remaining the same. If 

a given prestrained metal is represented by both (4) and (7), the value of n in 

the two cases will of course be different. The instability strain in simple tension 

according to the Swift equation is n − m for m ≤ n and zero 

for m ≥ n. 

When the elastic and plastic strains are of comparable magnitudes, it is 

necessary to replace ε in the preceding equations by the plastic strain εp. 

Considering the power law (4), the plastic part of the strain may be assumed 

to vary as σm, where m=1/n, 

Since the elastic part of the strain is equal to σ/E, the total strain may be 

expressed by the Ramberg-Osgood equation: 

𝜀 =
𝜎

𝐸
(1 + 𝛼 (

𝜎

𝜎0
)
𝑚−1

)………(8) 
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where σ0 is a nominal yield stress and α a dimensionless constant. The slope 

of the stress–strain curve given by the above equation continuously 

decreases from the value E at the origin (Fig.b). At the nominal yield point σ 

=σ0, the plastic strain is α times the elastic strain, and the secant modulus is 

E/(1+α). The tangent modulus at any point of the curve is given by: 

𝐸

𝐾
= 1 + 𝛼𝑚 (

𝜎

𝜎0
)
𝑚−1

………(9) 

 

The second term on the right-hand side is equal to E/H. The stress– strain 

curve for a range of materials can be reasonably fitted by Equation (8) with α 

= 3/7. For a non- hardening material (m = ∞), the equation degenerates into a 

pair of straight lines  meeting at the yield point σ  = σ0. 

It is sometimes more convenient to employ a stress–strain equation where the 

curve in the plastic range is expressed by a simple power law, the material 

being assumed to have a definite yield point at σ =Y. The empirical 

representation then becomes: 

𝜎 =

{
 
 

 
 𝐸𝜀              𝜀 ≤

𝑌

𝐸

𝑌 (
𝐸𝜀

𝑌
)
𝑛

     𝜀 ≥
𝑌

𝐸

………(10) 
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where n is generally less than 0.5. The slope of the stress–strain curve given 

by (10) changes discontinuously from E to nE at the yield point (Fig.a above). 

The tangent modulus at any point in the plastic range is n times the secant 

modulus. The empirical curve is effectively the Ludwik curve whose initial part 

is replaced by a chord of slope E. 

The Ramberg-Osgood curve represents a continuous transition from the 

elastic to the plastic behavior expressed by a single equation when the 

material work-hardens. 

A similar curve for the ideally plastic material is given by the equation 

 

𝜎 = 𝑌𝑡𝑎𝑛ℎ (
𝐸𝜀

𝑌
) 

 

which is due to Prager. The curve having an initial slope E gradually bends 

over to approach the yield stress Y in an asymptotic manner. The approach is 

so rapid that σ is within 1 percent of Y when ε is only 4Y/E. The tangent 

modulus at any point on the curve is equal to E(1− σ2/Y2), and the 

corresponding plastic modulus is E(Y2/σ2 −1). These moduli soon become 

negligible while the strain is still quite small. 

 

2.3 Deviatoric Stress 

The plastic behavior of materials is often independent of a hydrostatic stress 

and this feature necessitates the study of the deviatoric stress.  

For any given set of cartesian stress components in three dimensions 

principal stress values can be determined by solving the so-called 

“characteristic equation” 

𝜎𝑝
3 − (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧)𝜎𝑝

2

− [(𝜏𝑥𝑦
2 + 𝜏𝑦𝑧

2 + 𝜏𝑧𝑥
2) − (𝜎𝑥𝑥𝜎𝑦𝑦 + 𝜎𝑦𝑦𝜎𝑧𝑧 + 𝜎𝑧𝑧𝜎𝑥𝑥)]𝜎𝑝

− [𝜎𝑥𝑥𝜎𝑦𝑦𝜎𝑧𝑧 + 2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑧𝑥 − (𝜎𝑥𝑥𝜏𝑦𝑧
2 + 𝜎𝑦𝑦𝜏𝑧𝑥

2 + 𝜎𝑧𝑧𝜏𝑥𝑦
2)] = 0 

 

or in the form:                 𝜎𝑝
3 − 𝐼1𝜎𝑝

2 − 𝐼2𝜎𝑝 − 𝐼3 = 0 

where the stress invariants,  

                                 𝐼1 = 𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧 
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                                𝐼2 = (𝜏𝑥𝑦
2 + 𝜏𝑦𝑧

2 + 𝜏𝑧𝑥
2) − (𝜎𝑥𝑥𝜎𝑦𝑦 + 𝜎𝑦𝑦𝜎𝑧𝑧 + 𝜎𝑧𝑧𝜎𝑥𝑥) 

                               𝐼3 = 𝜎𝑥𝑥𝜎𝑦𝑦𝜎𝑧𝑧 + 2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑧𝑥 − (𝜎𝑥𝑥𝜏𝑦𝑧
2 + 𝜎𝑦𝑦𝜏𝑧𝑥

2 +

𝜎𝑧𝑧𝜏𝑥𝑦
2) 

 

If the reference axes x, y, z selected are the principal stress axes 1, 2, 3 in the 

system then: 

                                 𝐼1 = 𝜎1 + 𝜎2 + 𝜎3 

                                𝐼2 = −(𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎3𝜎1) 

                               𝐼3 = 𝜎1𝜎2𝜎3 

 

This state of stress can also be decomposed into a hydrostatic (or mean) 

stress σm and a deviatoric stress s, according to 

[

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

] = [

𝜎𝑚 0 0
0 𝜎𝑚 0
0 0 𝜎𝑚

] + [

𝑠𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝑠𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝑠𝑧𝑧

] 

 

where: 

the hydrostatic stress,  𝜎𝑚 = 
𝜎𝑥𝑥+𝜎𝑦𝑦+𝜎𝑧𝑧

3
 

 

and the deviatoric stresses,  𝑠𝑥𝑥 =
1

3
(2𝜎𝑥𝑥 − 𝜎𝑦𝑦 − 𝜎𝑧𝑧) 

                                             𝑠𝑦𝑦 =
1

3
(2𝜎𝑦𝑦 − 𝜎𝑥𝑥 − 𝜎𝑧𝑧) 

                                             𝑠𝑧𝑧 =
1

3
(2𝜎𝑧𝑧 − 𝜎𝑦𝑦 − 𝜎𝑥𝑥)  

An alternative form of the cubic characteristic equation is obtained by 

replacing σp by σp
̷ + σm , then we have: 

 

𝜎𝑝
̷3 − (𝑠𝑥𝑥 + 𝑠𝑦𝑦 + 𝑠𝑧𝑧)𝜎𝑝

̷2

− [(𝜏𝑥𝑦
2 + 𝜏𝑦𝑧

2 + 𝜏𝑧𝑥
2) − (𝑠𝑥𝑥𝑠𝑦𝑦 + 𝑠𝑦𝑦𝑠𝑧𝑧 + 𝑠𝑧𝑧𝑠𝑥𝑥)]𝜎𝑝

̷

− [𝑠𝑥𝑥𝑠𝑦𝑦𝑠𝑧𝑧 + 2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑧𝑥 − (𝑠𝑥𝑥𝜏𝑦𝑧
2 + 𝑠𝑦𝑦𝜏𝑧𝑥

2 + 𝑠𝑧𝑧𝜏𝑥𝑦
2)] = 0 

 

 

or in the form:                 𝜎𝑝
̷3 − 𝐽1𝜎𝑝

̷2 − 𝐽2𝜎𝑝
̷ − 𝐽3 = 0 
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where the deviatoric stress invariants,  

                                 𝐽1 = 𝑠𝑥𝑥 + 𝑠𝑦𝑦 + 𝑠𝑧𝑧 = 0 

                                𝐽2 = (𝜏𝑥𝑦
2 + 𝜏𝑦𝑧

2 + 𝜏𝑧𝑥
2) − (𝑠𝑥𝑥𝑠𝑦𝑦 + 𝑠𝑦𝑦𝑠𝑧𝑧 + 𝑠𝑧𝑧𝑠𝑥𝑥) 

                               𝐽3 = 𝑠𝑥𝑥𝑠𝑦𝑦𝑠𝑧𝑧 + 2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑧𝑥 − (𝑠𝑥𝑥𝜏𝑦𝑧
2 + 𝑠𝑦𝑦𝜏𝑧𝑥

2 + 𝑠𝑧𝑧𝜏𝑥𝑦
2) 

If the reference axes x, y, z selected are the principal stress axes 1ʹ, 2ʹ, 3ʹ in 

the system then: 

                 𝐽1 = 𝜎1
̷ + 𝜎2

̷ + 𝜎3
̷ = 0 

                𝐽2 = −(𝜎1
̷𝜎2

̷ + 𝜎2
̷𝜎3

̷ + 𝜎3
̷𝜎1

̷) 

               𝐽3 = 𝜎1
̷𝜎2

̷𝜎3
̷ 

 

where:       𝜎1
̷ = 𝜎1 − 𝜎𝑚            , from which: 𝜎𝑚 = 

𝜎1+𝜎2+𝜎3

3
 

                  𝜎2
̷ = 𝜎2 − 𝜎𝑚 

                  𝜎3
̷ = 𝜎3 − 𝜎𝑚 

 

2.4 Problems 

1. The stress-strain relations for an isotropic metal at room temperature is 

defined by: 

                                          𝜎 = 𝐸𝜀                              , 𝜀 ≤ 𝜀𝑌  (elastic stress-strain)  

 

                                        𝜎 = (1 − 𝛽)𝑌 + 𝛽𝐸𝜀        , 𝜀˃𝜀𝑌   (inelastic stress-

strain) 

 

where E = 210 GPa, Y = 250 MPa , β = 0.08 , and εY = 0.0012 . The 

intersection of the two lines defines the yield stress Y and yield strain  εY  = 

Y/E.  

(a) Consider the pin-joined structure in the 

figure. Each member has a cross-sectional area 

645 mm2 and is made of the above metal.  

A load P = 170 kN is applied. Compute the 

deflection u. 

(b) Repeat part (a) for P = 270 kN and  
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P = 300 kN. 

(c) Use the results of parts (a) and (b) to plot a load-deflection graph for the 

structure. 

 

2. The structure in the figure consists of a rigid beam AB and five rods placed 

symmetrically about line CD. A load 

P is applied to the beam as shown. 

The members are made of an 

elastic-perfectly plastic steel (E = 

200 GPa), and they each have a 

cross-sectional area of 100 mm2. 

Rods CD, FG, and HJ have a yield point stress equal to Y1 = 200 MPa, and 

rods MN and RS have a yield point equal to Y2 = 500 MPa.  

(a) Ignoring the weight of the beam, determine the magnitude of load P and 

the corresponding displacement of beam AB for P = PY , the load for which 

yield first occurs in the structure. 

(b) Repeat part (a) for P = Pp, the fully plastic load, that is, the load for which 

all rods have yielded. 

(c) Construct the load-displacement diagram for beam AB. 

(d) The fully plastic load PP is gradually removed. Determine the residual 

forces that remain in the rods of the structure. 

 

3. In a certain annealed material, the yield point is taken as that for which the 

permanent strain is one-quarter of the recoverable elastic strain. The true 

stress–strain curve for the material in the plastic range may be represented by 

the empirical equation  

                                                     𝜎 =
𝐸

180
𝜀0.25  

where E isYoung’s modulus. Determine the stress Y at the yield point as a 

fraction of E, and compute the true and nominal values of the uniaxial 

instability stress in terms of Y. 

 

4. Determine the true stress and the natural strain at the onset of instability in 

uniaxial tension according to Voce equation for the stress–strain curve. 
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5. In the simple compression of a short cylinder, the curve representing the 

variation of the load with the amount of compression shows a point of 

inflection. If the true stress–strain curve of the material is expressed by the 

empirical equation σ =Cεn, determine the natural strain corresponding to the 

point of inflection. 

For what range of values of n will this strain exceed the instability strain in 

simple tension? 

6. The effect of elastic deformation of the material on the instability strain may 

be estimated by considering the stress–strain equation in the Ramberg-

Osgood form 

𝜀 =
𝜎

𝐸
+
3𝜎0
7𝐸

(
𝜎

𝜎0
)
1/𝑛

 

where σ0 is the nominal yield stress and n is the strain-hardening exponent.  

Determine the true strain at the onset of necking in simple tension. 

 

7. Two uniform vertical wires shown in 

the figure, support a load W acting at 

the free end of an initially horizontal 

rigid hinged bar. The lower ends of 

the wires are attached to blocks which 

can slide along a frictionless groove in 

the rigid bar. The strain-hardening 

exponent for the wires is n and 2n so 

that plastic instability is to occur 

simultaneously in them when the load is 

increased to a critical value, determine 

the ratio b/a for such case. 

 

8. The figure illustrates the perforation 

of a uniform plate of thickness t0 by a 

smooth cylindrical drift of radius a having a conical end. Each element of the 

raised lip may be assumed to form under a uniaxial tensile hoop stress of 
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varying intensity. Show that the height of the lip is h= 2a/3, and that its 

thickness varies as the cube root of the distance from the outer edge.  

 

9. What are the hydrostatic and deviatoric stresses for the uniaxial stress σxx 

= σ0  

What are the hydrostatic and deviatoric stresses for the state of pure shear 

τxy= τ ? 

In both cases, verify that the first invariant of the deviatoric stress is zero. 

 

10. For the stress state[

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

] = [
1 2 4
2 2 1
4 1 3

], calculate 

(a) the hydrostatic stress 

(b) the deviatoric stresses 

(c) the deviatoric invariants 

 

11. Prove that:                𝐽2 = −(𝜎1
̷𝜎2

̷ + 𝜎2
̷𝜎3

̷ + 𝜎3
̷𝜎1

̷) =
1

2
(𝜎1

̷2 + 𝜎2
̷2 + 𝜎3

̷2) 

 

12. Prove that: 

                𝐽2 = −(𝜎1
̷𝜎2

̷ + 𝜎2
̷𝜎3

̷ + 𝜎3
̷𝜎1

̷) =
1

6
[(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎3 − 𝜎1)

2] 

 

13.  Prove that:                      𝐽2 =
1

3
(𝐼1

2 − 3𝐼2) 

𝐽3 =
1

27
(2𝐼1

3 − 9𝐼1𝐼2 + 27𝐼3) 
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Chapter Three 

The Yield Criteria 

3.1 Introduction 

Suppose that an element of material is subjected to a system of stresses of 

gradually 

increasing magnitude. The initial deformation of the element is entirely elastic 

and the original shape of the element is recovered on complete unloading. For 

certain critical combinations of the applied stresses, plastic deformation first 

appears in the element. A law defining the limit of elastic behavior under any 

possible combination of stresses is called yield criterion. 

In developing a mathematical theory, it is necessary to take into account a 

number of idealizations at the outset. Firstly, it is assumed that the conditions 

of loading are such that all strain rate and thermal effects can be neglected. 

Secondly, the Bauschinger effect and the hysteresis loop, which arise from 

nonuniformity on the microscope scale, are disregarded. Finally, the material 

is assumed to be isotropic, so that its properties at each point are the same in 

all directions. 

There is a useful and immediate simplification resulting from the experimental 

fact that yielding is practically unaffected by a uniform hydrostatic tension or 

compression. 

 

3.2 Geometrical representation 

Consider a system of three mutually perpendicular axes with the principal 

stresses taken as rectangular coordinates (Figure). The state of stress at any 

point in a body  

may be represented by a vector emanating from the origin O. Imagine a line 

OH equally inclined to the three axes, so that its direction cosines are (1/√3, 

1/√3, 1/√3).  


