
26 
 

Chapter Three 

The Yield Criteria 

3.1 Introduction 

Suppose that an element of material is subjected to a system of stresses of 

gradually 

increasing magnitude. The initial deformation of the element is entirely elastic 

and the original shape of the element is recovered on complete unloading. For 

certain critical combinations of the applied stresses, plastic deformation first 

appears in the element. A law defining the limit of elastic behavior under any 

possible combination of stresses is called yield criterion. 

In developing a mathematical theory, it is necessary to take into account a 

number of idealizations at the outset. Firstly, it is assumed that the conditions 

of loading are such that all strain rate and thermal effects can be neglected. 

Secondly, the Bauschinger effect and the hysteresis loop, which arise from 

nonuniformity on the microscope scale, are disregarded. Finally, the material 

is assumed to be isotropic, so that its properties at each point are the same in 

all directions. 

There is a useful and immediate simplification resulting from the experimental 

fact that yielding is practically unaffected by a uniform hydrostatic tension or 

compression. 

 

3.2 Geometrical representation 

Consider a system of three mutually perpendicular axes with the principal 

stresses taken as rectangular coordinates (Figure). The state of stress at any 

point in a body  

may be represented by a vector emanating from the origin O. Imagine a line 

OH equally inclined to the three axes, so that its direction cosines are (1/√3, 

1/√3, 1/√3).  
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The stress vector OQ, whose components are (σ1,σ2, σ3), may be resolved 

into a vector OG along OH and a vector OP perpendicular to OH. The vector 

OG is of magnitude: (1/√3) (σ1+ σ2+ σ3) or  √3σm and represents the hydrostatic 

stress.          

The vector OP represents the deviatoric stress and: 

 

𝑂𝑃2 = 𝑂𝑄2 − 𝑂𝐺2 = (𝜎1
2 + 𝜎2

2 + 𝜎3)
2 − 

1

3
(𝜎1 + 𝜎2 + 𝜎3)

2 

                                 =
1

3
 [(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎3 − 𝜎1)

2] 

 

 For any given state of stress, the deviatoric stress vector will lie in the plane 

passing through O and perpendicular to OH. This plane is known as the 
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deviatoric plane ( or sometimes π-plane )and its equation is σ1 +σ2 +σ3 = 0 in 

the principal stress space. Since a uniform hydrostatic stress has no effect on 

yielding, it follows that yielding can depend only on the magnitude and 

direction of the deviatoric stress vector OP. 

 

3.3 The Tresca and Mises criteria  

Various criteria have been suggested in the past to predict the yielding of 

metals under complex stresses. Most of them are, however, only of historical 

interest, because they conflict with the experimental finding that a hydrostatic 

stress has no effect on yielding.  

The two entirely satisfactory and widely used criteria are those due to Tresca 

and von Mises. From a series of experiments on the extrusion of metals, 

Tresca concluded that yielding occurred when the maximum shear stress 

reached a critical value; this value can be obtained from a simple experiment. 

For example, in a tension test, σ1= Y ,  σ2=σ3= 0, where Y is the yield stress in 

tension. In a shear test, σ1= τY ,  σ2= 0, σ3= ‒ τY where τY  is the yield stress of a 

material in pure shear. The Tresca yield criterion may be written as: 

𝜎1 − 𝜎3 = 𝑌 = 2𝜏𝑌        ,   𝜎1˃𝜎2˃𝜎3………(1) 

 

Thus, according to Tresca the yield surface is therefore a regular hexagonal 

cylinder which is inscribed within a cylinder of radius √2/3 𝑌 . 

 

Von Mises suggested, from purely theoretical considerations, that yielding 

occurs when the elastic energy of distortion reaches a certain value at the 

yield point. The yield criterion proposed by von Mises may be written as: 

 

(𝜎1 − 𝜎2)
2 + (𝜎2 − 𝜎3)

2 + (𝜎3 − 𝜎1)
2 = 2𝑌2 = 6𝜏𝑌

2………(2) 

 

The yield surface is therefore a right cylinder of radius,  𝑂𝑃 = √2/3 𝑌 and 

whose generators are perpendicular to the deviatoric plane.  

The intersection of both cylinders with the π-plane is shown in the figure 

together with the projection of the three axes of principal stresses on that 

plane. It is customary to make the two criteria agree with each other in 
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uniaxial tension or compression, so that the Mises circle passes through the 

corners of the Tresca hexagon. The two yield loci differ most in a state of pure 

shear. For most metals, the yield criterion of von Mises defines the yield limit 

more accurately than does that of Tresca. 

 

 

 

  

 

                          

 

 

 

 

 

 

 

 

 

 

3.4 The plane stress yield locus 

 In a number of important physical problems, one of the principal stresses 

may be assumed to vanish. The yield criterion may then be represented by a 

closed curve where the nonzero principal stresses are plotted as rectangular 

coordinates. According to Tresca’s yield criterion, the magnitude of the 

numerically greater of the two principal stresses is equal to Y when these 

stresses are of the same sign, while the principal stress difference is of 

magnitude Y when the stresses have opposite signs. Assuming σ3 = 0, the 

Tresca yield locus in the (σ1, σ2) plane is represented by a hexagon defined 

by the straight lines: 

 



30 
 

σ1 = ±Y        ;        σ2 = ±Y             ;         σ1 – σ2 = ±Y  

 

When σ3 =0, the von 

Mises yield criterion (2), 

expressed in terms of 

the principal stresses, 

reduces to: 

 

𝜎1
2 − 𝜎1𝜎2 + 𝜎2

2 = 𝑌2 

 

which is the equation to 

an ellipse whose major 

and minor axes are 

inclined at an angle of 

450 with the σ1 and σ2 

axes (Figure). The Mises ellipse circumscribes the 

Tresca hexagon for a given uniaxial yield stress Y. 

 

 

 

3.5 Experiments of Taylor and Quinney  

In order to test whether the Von Mises or Tresca criteria best modelled the 

real behavior of metals, G I Taylor & Quinney (1931), in a series of classic 

experiments, subjected a number of thin-walled cylinders made of copper and 

steel to combined tension and torsion, Figure. 
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The cylinder wall is in a state of plane stress, with σxx = σ , τxy = τ  and all 

other stress components zero. The principal stresses corresponding to such a 

stress-state are: 

 

𝜎1 =
1

2
𝜎 +

1

2
√𝜎2 + 4𝜏2 

𝜎2 =
1

2
𝜎 −

1

2
√𝜎2 + 4𝜏2 

 

and so Tresca's condition reduces to: 

(
𝜎

𝑌
)
2

+ (
𝜏

𝑌/2
)
2

= 1 

 

The Mises condition reduces to:  

(
𝜎

𝑌
)
2

+ (
𝜏

𝑌/√3
)

2

= 1 

 

Thus both models predict an elliptical yield locus in (σ , τ ) stress space, but 

with different ratios of principal axes, Figure. The origin in the figure 

corresponds to an  
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unstressed state. The horizontal axes refer to uniaxial tension in the absence 

of shear, whereas the vertical axis refers to pure torsion in the absence of 

tension. When there is a combination of σ and τ , one is off-axes. If the 

combination remains “inside” the yield locus, the material remains elastic; if 

the combination is such that one reaches anywhere along the locus, then 

plasticity ensues. 

Taylor and Quinney, by varying the amount of tension and torsion, found that 

their measurements were closer to the Mises ellipse than the Tresca locus, a 

result which has been repeatedly confirmed by other workers. 

 

3.6 Problems 

1. A material is to be loaded to a stress state: 

 

[

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

] = [
50 −30 0
−30 90 0
0 0 0

] MPa 

 

What should be the minimum uniaxial yield stress of the material so that it 

does not fail, according to the 

(a) Tresca criterian 

(b) Von Mises criterion 

What do the theories predict when the yield stress of the material is 80MPa?  

 

2. Suppose that, in the Taylor and Quinney tension-torsion tests, one has σ = 

0.5Y and τ =  0.433Y . Plot this stress state in the 2D principal stress state. 

Keeping now the normal stress at 0.5Y , what value can the shear stress be 

increased to before the material yields, according to the von Mises criterion? 

 

3. An isotropic material exhibiting no Bauschinger effect is found to yield 

under biaxial stresses of 100 and −200 MPa. Show that the plane stress yield 

locus must pass through the stress points (100, −200), (− 100, 200), (300, 

100), (300, 200), (−300, −100), (−300, −200), as well as those obtained by 
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interchanging each pair of coordinates, whatever the form of the yield 

criterion. Find the ratio of the uniaxial yield stress predicted by the Tresca 

criterion to that by the Mises criterion. 

 

4. A closed-ended thin-walled tube of thickness t and mean radius r is 

subjected to an axial tensile force P, which is less than the value P0 

necessary to cause yielding. If a gradually increasing internal pressure p is 

now applied, what value of p such that the tube will yield according to the 

Tresca criterion when: i. P = 0.4P0 and ii. P = 0.6P0 

 

5. A thin-walled tube with closed ends is subjected to an internal pressure p 

as well as a torque that produces a shear stress τ. If p0 is the pressure 

required to produce a hoop stress equal to Y, show that yielding occurs 

according to the Mises criterion when: 

 

(
𝑝

𝑝0
)
2

+ 4(
𝜏

𝑌
)
2

=
4

3
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Stress-Strain Relations 

4.1 Introduction 

Once yield occurs, a material will deform plastically. Predicting and modelling 

this plastic deformation is the topic of this section. For the most part, in this 

section, the material will be assumed to be perfectly plastic, that is, there is no 

work hardening. 

4.2 Plastic Strain Increments 

When examining the strains in a plastic material, it should be emphasized that 

one works with increments in strain rather than a total accumulated strain. 

One reason for this is that when a material is subjected to a certain stress 

state, the corresponding strain state could be one of many. Similarly, the 

strain state could correspond to many different stress states. Examples of this 

state of affairs are shown in Figure. 

One cannot therefore 

make use of stress-

strain relations in 

plastic regions (except 

in some special 

cases), since there is no unique relationship between the current stress and 

the current strain. However, one can relate the current stress to the current 

increment in strain, and these are the “stress-strain” laws which are used in 

plasticity theory. The total strain can be obtained by summing up, or 

integrating, the strain increments. 

 

4.3 The Prandtl-Reuss Equations 

An increment in strain dε can be decomposed into an elastic part dεe and a 

plastic part dεp . If the material is isotropic, it is reasonable to suppose that the 

principal plastic strain increments are proportional to the principal deviatoric 

stressess : 


