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Stress-Strain Relations 

4.1 Introduction 

Once yield occurs, a material will deform plastically. Predicting and modelling 

this plastic deformation is the topic of this section. For the most part, in this 

section, the material will be assumed to be perfectly plastic, that is, there is no 

work hardening. 

4.2 Plastic Strain Increments 

When examining the strains in a plastic material, it should be emphasized that 

one works with increments in strain rather than a total accumulated strain. 

One reason for this is that when a material is subjected to a certain stress 

state, the corresponding strain state could be one of many. Similarly, the 

strain state could correspond to many different stress states. Examples of this 

state of affairs are shown in Figure. 

One cannot therefore 

make use of stress-

strain relations in 

plastic regions (except 

in some special 

cases), since there is no unique relationship between the current stress and 

the current strain. However, one can relate the current stress to the current 

increment in strain, and these are the “stress-strain” laws which are used in 

plasticity theory. The total strain can be obtained by summing up, or 

integrating, the strain increments. 

 

4.3 The Prandtl-Reuss Equations 

An increment in strain dε can be decomposed into an elastic part dεe and a 

plastic part dεp . If the material is isotropic, it is reasonable to suppose that the 

principal plastic strain increments are proportional to the principal deviatoric 

stressess : 
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𝑑𝜀1

𝑝

𝜎1
̷ =

𝑑𝜀2
𝑝

𝜎2
̷ =

𝑑𝜀3
𝑝

𝜎3
̷ = 𝑑𝜆 ≥ 0 ………(1)  

 

This relation only gives the ratios of the plastic strain increments to the 

deviatoric stresses. To determine the precise relationship, one must specify 

the positive scalar dλ. Note that the plastic volume constancy is inherent in 

this relation: 

 

𝑑𝜀1
𝑝 + 𝑑𝜀2

𝑝 + 𝑑𝜀3
𝑝 = 0 

 

Eqns.(1) are in terms of the principal deviatoric stresses and principal plastic 

strain increments. In terms of Cartesian coordinates, one has: 

 

𝑑𝜀𝑥𝑥
𝑝

𝑠𝑥𝑥
=

𝑑𝜀𝑦𝑦
𝑝

𝑠𝑦𝑦
=

𝑑𝜀𝑧𝑧
𝑝

𝑠𝑧𝑧
=

𝑑𝛾𝑥𝑦
𝑝

𝜏𝑥𝑦
=

𝑑𝛾𝑦𝑧
𝑝

𝜏𝑦𝑧
=

𝑑𝛾𝑧𝑥
𝑝

𝜏𝑧𝑥
= 𝑑𝜆 ≥ 0………(2) 

 

These equations are often expressed in the alternative forms: 

 

 
𝑑𝜀𝑥𝑥

𝑝−𝑑𝜀𝑦𝑦
𝑝

𝑠𝑥𝑥−𝑠𝑦𝑦
=

𝑑𝜀𝑦𝑦
𝑝−𝑑𝜀𝑧𝑧

𝑝

𝑠𝑦𝑦−𝑠𝑧𝑧
=

𝑑𝜀𝑧𝑧
𝑝−𝑑𝜀𝑥𝑥

𝑝

𝑠𝑧𝑧−𝑠𝑥𝑥
= 

 

𝑑𝜀𝑥𝑥
𝑝−𝑑𝜀𝑦𝑦

𝑝

𝜎𝑥𝑥−𝜎𝑦𝑦
=

𝑑𝜀𝑦𝑦
𝑝−𝑑𝜀𝑧𝑧

𝑝

𝜎𝑦𝑦−𝜎𝑧𝑧
=

𝑑𝜀𝑧𝑧
𝑝−𝑑𝜀𝑥𝑥

𝑝

𝜎𝑧𝑧−𝜎𝑥𝑥
= 𝑑𝜆 ≥ 0 … …… (3)                          

   

In terms of actual stresses, one has, from (2): 

 

                𝑑𝜀𝑥𝑥
𝑝 =

1

3
 𝑑𝜆(2𝜎𝑥𝑥 − 𝜎𝑦𝑦 − 𝜎𝑧𝑧) 

                𝑑𝜀𝑦𝑦
𝑝 =

1

3
 𝑑𝜆(2𝜎𝑦𝑦 − 𝜎𝑧𝑧 − 𝜎𝑥𝑥) 

                 𝑑𝜀𝑧𝑧
𝑝 =

1

3
 𝑑𝜆(2𝜎𝑧𝑧 − 𝜎𝑥𝑥 − 𝜎𝑦𝑦) 
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This plastic stress-strain law is known as a flow rule. Other flow rules are 

existing. The full elastic-plastic stress-strain relations are now, using Hooke’s 

law: 

 

               𝑑𝜀𝑥𝑥 =
1

𝐸
(𝑑𝜎𝑥𝑥 − 𝜈𝑑𝜎𝑦𝑦 − 𝜈𝑑𝜎𝑧𝑧) +

1

3
 𝑑𝜆(2𝜎𝑥𝑥 − 𝜎𝑦𝑦 − 𝜎𝑧𝑧) 

 

              𝑑𝜀𝑦𝑦 =
1

𝐸
(𝑑𝜎𝑦𝑦 − 𝜈𝑑𝜎𝑧𝑧 − 𝜈𝑑𝜎𝑥𝑥) +

1

3
 𝑑𝜆(2𝜎𝑦𝑦 − 𝜎𝑧𝑧 − 𝜎𝑥𝑥) 

 

               𝑑𝜀𝑧𝑧 =
1

𝐸
(𝑑𝜎𝑧𝑧 − 𝜈𝑑𝜎𝑥𝑥 − 𝜈𝑑𝜎𝑦𝑦) +

1

3
 𝑑𝜆(2𝜎𝑧𝑧 − 𝜎𝑥𝑥 − 𝜎𝑦𝑦) 

 

These expressions are called the Prandtl-Reuss equations. If the first, 

elastic, terms are neglected, they are known as the Lévy-Mises equations.  

The magnitude of the plastic straining is determined by the multiplier dλ . This 

can be evaluated by noting that plastic deformation proceeds so long as the 

stress state remains on the yield surface, the so-called consistency 

condition. By definition, a perfectly plastic material is one whose yield 

surface remains unchanged during deformation. 

 

4.4 The Yield Criterion Requirement 

Note that one cannot propose a flow rule which gives the plastic strain 

increments as explicit functions of the stress, otherwise the yield criterion 

might not be met (in particular, when there is strain hardening); one must 

include the to-be-determined scalar plastic multiplier λ . The plastic multiplier 

is determined by ensuring the stress state lies on the yield surface during 

plastic flow. 

When dealing with combined stress systems in the elastic-plastic range, it is 

common to use the equivalent or generalized stress-strain coordinates ( 𝜎, 𝜀 ̅). 

Thus, the Tresca yield criterion may be written as: 

 

𝜎 = 𝜎1 − 𝜎3 = 𝑌 = 2𝜏𝑌        ,   𝜎1˃𝜎2˃𝜎3 

 



37 
 

 

Similarly, Von Mises criterion may be written as: 

 

𝜎 = √
1

2
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2] = 𝑌 = √3𝜏𝑌 

 

 

4.5 Example 

Consider the constrained 

compression of a thick block, 

Figure. The block is subjected 

to an increasing pressure p.  

 

The solution to the elastic 

problem is obtained as 

follows. 

Since: 

𝜎𝑥𝑥 = −𝑝  

𝜎𝑦𝑦 = 𝜀𝑧𝑧 = 0 

 

Thus:  

𝜎𝑧𝑧 = −𝜈𝑝 

 

𝜀𝑥𝑥 = −
𝑝

𝐸
(1 − 𝜈2) 

 

𝜀𝑦𝑦 =
𝑝

𝐸
𝜈(1 + 𝜈) 

 

and all other stress and strain components are zero. In this elastic phase, the 

principal stresses are clearly: 

𝜎1(= 0) > 𝜎2(= −𝜈𝑝) > 𝜎3(= −𝑝) 
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The Prandtl-Reuss equations are, then: 

 

               𝑑𝜀𝑥𝑥 =
1

𝐸
(𝑑𝜎𝑥𝑥 − 𝜈𝑑𝜎𝑧𝑧) +

1

3
 𝑑𝜆(2𝜎𝑥𝑥 − 𝜎𝑧𝑧) 

 

              𝑑𝜀𝑦𝑦 =
1

𝐸
(−𝜈𝑑𝜎𝑧𝑧 − 𝜈𝑑𝜎𝑥𝑥) +

1

3
 𝑑𝜆(−𝜎𝑧𝑧 − 𝜎𝑥𝑥) 

 

               𝑑𝜀𝑧𝑧 =
1

𝐸
(𝑑𝜎𝑧𝑧 − 𝜈𝑑𝜎𝑥𝑥) +

1

3
 𝑑𝜆(2𝜎𝑧𝑧 − 𝜎𝑥𝑥) 

 

The Tresca yield criterion states that yield occurs when 𝜎𝑥𝑥 = −𝑌 , where 

Y is the uniaxial yield stress (in compression). Assume further perfect 

plasticity, so that 𝜎𝑥𝑥 = −𝑌 holds during all subsequent plastic flow.  

Thus, 𝑑𝜎𝑥𝑥 = 𝑑𝜀𝑧𝑧 = 0 

The Prandtl-Reuss equations are now:         

              𝑑𝜀𝑥𝑥 =
1

𝐸
(−𝜈𝑑𝜎𝑧𝑧) +

1

3
 𝑑𝜆(−2𝑌 − 𝜎𝑧𝑧) 

              𝑑𝜀𝑦𝑦 =
1

𝐸
(−𝜈𝑑𝜎𝑧𝑧) +

1

3
 𝑑𝜆(−𝜎𝑧𝑧 + 𝑌) 

               0 =
1

𝐸
(𝑑𝜎𝑧𝑧) +

1

3
 𝑑𝜆(2𝜎𝑧𝑧 + 𝑌) 

Solving these equations, one can obtain: 

 

𝑑𝜆 = −
3

𝐸

𝑑𝜎𝑧𝑧
2𝜎𝑧𝑧 + 𝑌

 

 

                                  𝐸𝑑𝜀𝑥𝑥 = −𝜈𝑑𝜎𝑧𝑧 + 
𝑑𝜎𝑧𝑧

2𝜎𝑧𝑧+𝑌
 (2𝑌 + 𝜎𝑧𝑧) 

 

                                 𝐸𝑑𝜀𝑦𝑦 = −𝜈𝑑𝜎𝑧𝑧 − 
𝑑𝜎𝑧𝑧

2𝜎𝑧𝑧+𝑌
 (−𝜎𝑧𝑧 + 𝑌) 

 

 

Using the initial (yield point) conditions, i.e.  p = Y  as follows: 

 

𝜎𝑧𝑧 = −𝜈𝑝 = −𝜈𝑌 
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𝜀𝑥𝑥 = −
𝑝

𝐸
(1 − 𝜈2) = −

𝑌

𝐸
(1 − 𝜈2) 

 

𝜀𝑦𝑦 =
𝑝

𝐸
𝜈(1 + 𝜈) =

𝑌

𝐸
𝜈(1 + 𝜈) 

 

one can integrate to get: 

 

𝐸

𝑌
𝜀𝑥𝑥 = −

3

4
𝑙𝑛(

1 − 2𝜈

1 +
2𝜎𝑧𝑧
𝑌

) +
1

2
(1 − 2𝜈)

𝜎𝑧𝑧
𝑌
−
1

2
(2 − 𝜈)         ,   

𝜎𝑧𝑧
𝑌
< −𝜈 

 

 

𝐸

𝑌
𝜀𝑦𝑦 =

3

4
𝑙𝑛(

1 − 2𝜈

1 +
2𝜎𝑧𝑧
𝑌

) +
1

2
(1 − 2𝜈)

𝜎𝑧𝑧
𝑌
+
3

2
𝜈                          ,   

𝜎𝑧𝑧
𝑌
< −𝜈 

 

The stress-strain 

curves are shown 

in the Figure for ν 

= 0.3. Note that, 

for a typical metal, 

E /Y ~ 103 , and 

so the strains are 

very small right 

through the plastic compression; the plastic strains are of comparable size to 

the elastic strains. There is a rapid change of stress and then little change 

once 𝜎𝑧𝑧 has approached close to its limiting value of − Y / 2 . 

The above plastic analysis was based on 𝜎𝑥𝑥 remaining the minimum principal 

stress. 

This assumption has proved to be valid, since 𝜎𝑧𝑧 remains between 0 and −Y 

in the plastic region. 
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4.6 Problems 

1. Consider the combined tension/torsion of a thin-walled tube as in the Taylor 

and Quinney tests. The tube is twisted up to the yield point. Torsion is then 

halted and tension is applied, holding the angle of twist constant. Take the 

Von Mises criterion and assume perfect plasticity, reduce the Prandtl-Reuss 

equations and give an expression for the normal strain. 

 

2. Repeat the above question taking the Tresca criterion. 

 

3. Consider the uniaxial straining of a perfectly plastic isotropic Von Mises 

metallic block. There is only one non-zero strain, 𝜀𝑥𝑥. One only need consider 

two stresses, 𝜎𝑥𝑥, 𝜎𝑦𝑦 since  𝜎𝑧𝑧 = 𝜎𝑦𝑦 by isotropy. 

(i) Write down the two relevant Prandtl-Reuss equations. 

(ii) Evaluate the stresses and strains at first yield. 

(iii) For plastic flow, show that 𝑑𝜎𝑥𝑥 = 𝑑𝜎𝑦𝑦 and that the plastic modulus is: 

 

𝑑𝜎𝑥𝑥
𝑑𝜀𝑥𝑥

=
𝐸

3(1 − 2𝜈 ) 
 

 

 

4. Consider the combined tension-torsion of a thin-walled cylindrical tube. The 

tube is made of a perfectly plastic Von Mises metal and Y is the uniaxial yield 

strength in tension. The axial strain is increased from zero until yielding 

occurs (with 𝛾𝑥𝑦 = 0). From first yield, the axial strain is held constant and the 

shear strain is increased up to its final value of  (1 + 𝜈)𝑌/√3𝐸 

(i) Write down the yield criterion in terms of  𝜎 and 𝜏 only and sketch the yield 

locus in 𝜎 − 𝜏 space. 

(ii) Evaluate the stresses and strains at first yield. 

(iii)Evaluate 𝑑𝜆 in terms of  𝜎, 𝑑𝜎. 

(iv)Relate 𝜎, 𝑑𝜎 to 𝜏, 𝑑𝜏 and hence derive a differential equation for shear 

strain in terms of  𝜏 only 



41 
 

(v) Solve the differential equation and evaluate any constant of integration. 

(vi)Evaluate the shear stress when 𝛾𝑥𝑦 reaches its final value of (1 + 𝜈)𝑌/√3𝐸 

. 

 

5. A closed-ended thin-walled tube of initial mean radius 𝑟0 is subjected to an 

internal pressure p, and an external pressure α p on the cylindrical surface. 

The loading is continued into the plastic range by maintaining a constant 

value of α >0. Assuming the deformation to be uniform, and using the Lévy-

Mises flow rate, determine the total equivalent strain 𝜀 ̅ at any stage as a 

function of α , r and 𝑟0, where r is the current mean radius.  
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Chapter Five 

Elastic-Plastic Bending of Beams 

5.1 Introduction 

In a deformable body subjected to external loads of gradually increasing 

magnitude, plastic flow begins at a stage when the yield criterion is first 

satisfied in the most critically stressed element. Further increase in loads 

causes spreading of the plastic zone which is separated from the elastic 

material by an elastic/plastic boundary. The position of this boundary is an 

unknown of the problem, and is generally so complicated in shape that the 

solution of the boundary-value problem often involves numerical methods. 

When the design of components is based upon the elastic theory, e.g. the 

simple bending or torsion theory, the dimensions of the components are 

arranged so that the maximum stresses which are likely to occur under 

service loading conditions do not exceed the allowable working stress for the 

material in either tension or compression. The allowable working stress is 

taken to be the yield stress of the material divided by a convenient safety 

factor (usually based on design codes or past experience) to account for 

unexpected increase in the level of service loads. If the maximum stress in the 

component is likely to exceed the allowable working stress, the component is 

considered unsafe, yet it is evident that complete failure of the component is 

unlikely to occur even if the yield stress is reached at the outer fibres provided 

that some portion of the component remains elastic and capable of carrying 

load, i.e. the strength of a component will normally be much greater than that 

assumed on the basis of initial yielding at any position. To take advantage of 

the inherent additional strength, therefore, a different design procedure is 

used which is often referred to as plastic limit design.  

  


