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Chapter Five 

Elastic-Plastic Bending of Beams 

5.1 Introduction 

In a deformable body subjected to external loads of gradually increasing 

magnitude, plastic flow begins at a stage when the yield criterion is first 

satisfied in the most critically stressed element. Further increase in loads 

causes spreading of the plastic zone which is separated from the elastic 

material by an elastic/plastic boundary. The position of this boundary is an 

unknown of the problem, and is generally so complicated in shape that the 

solution of the boundary-value problem often involves numerical methods. 

When the design of components is based upon the elastic theory, e.g. the 

simple bending or torsion theory, the dimensions of the components are 

arranged so that the maximum stresses which are likely to occur under 

service loading conditions do not exceed the allowable working stress for the 

material in either tension or compression. The allowable working stress is 

taken to be the yield stress of the material divided by a convenient safety 

factor (usually based on design codes or past experience) to account for 

unexpected increase in the level of service loads. If the maximum stress in the 

component is likely to exceed the allowable working stress, the component is 

considered unsafe, yet it is evident that complete failure of the component is 

unlikely to occur even if the yield stress is reached at the outer fibres provided 

that some portion of the component remains elastic and capable of carrying 

load, i.e. the strength of a component will normally be much greater than that 

assumed on the basis of initial yielding at any position. To take advantage of 

the inherent additional strength, therefore, a different design procedure is 

used which is often referred to as plastic limit design.  
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5.2 Plastic bending of rectangular beams 

A rectangular beam loaded until the yield stress has just been reached in the 

outer fibres, Figure. Assume the beam is of an elastic perfectly plastic 

material.  

 

The beam is still completely elastic and the bending theory applies, i.e.:  

𝑀 =
𝜎𝐼

𝑦
 

Thus, the maximum elastic moment:  𝑀𝐸 = 𝑌 
𝐵𝐷2

6
  

 

If loading is then increased, it is assumed that instead of the stress at the 

outside increasing still further, more and more of the section reaches the yield 

stress Y.  

 

Partially plastic moment, 𝑀𝑃𝑃 = 𝑌 
𝐵𝑑2

6
+ 𝑌 

𝐵( 𝐷2−𝑑2)

4
 

 

When loading has been continued until the stress distribution is as assumed, 

the beam with collapse, the moment required to produce this fully plastic state 

is: 

 

 

Fully plastic moment, 𝑀𝐹𝑃 = 𝑌 
𝐵𝐷2

4
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This is the moment therefore which produces a plastic hinge in a rectangular 

beam. 

 

5.3 Shape Factor  

The shape factor is defined as the ratio of the moments required to produce 

fully plastic and maximum elastic states: 

shape factor = 
𝑀𝐹𝑃

𝑀𝐸
 

 

It is a factor which gives a measure of the increase in strength or load-

carrying capacity which is available beyond the normal elastic design limits for 

various shapes of section, e.g. for the rectangular section above, 

 

shape factor = 𝑌 
𝐵𝐷2

4
 / 𝑌 

𝐵𝐷2

6
= 1.5 

Thus rectangular beams can carry 50% additional moment to that which is 

required to produce initial yielding at the edge of the beam section before a 

fully plastic hinge is formed.  

 

5.4 Partially plastic bending of unsymmetrical sections 

Consider the T-section 

beam shown in Figure. 

Whilst stresses remain 

within the elastic limit 

the position of the N.A. 

can be obtained in the 

usual way. 

Application of the simple bending theory about the N.A. will then yield the 

value of ME as described previously. 

Whatever the state of the section, be it elastic, partially plastic or fully plastic, 

equilibrium of forces must always be maintained, i.e. at any section the tensile 
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forces on one side of the N.A. must equal the compressive forces on the other 

side. 

 

Σ stress x area above N.A. = Σ stress x area below N.A. 

 

In the fully plastic condition, therefore, when the stress is equal throughout 

the section, the above equation reduces to 

 

Σ areas above N.A. = Σ areas below N.A. … … … (1) 

 

For all unsymmetrical sections the N.A. will move from its normal position 

when the section is completely elastic as plastic penetration proceeds. In the 

ultimate stage when a plastic hinge 

has been formed the N.A. will be 

positioned such that eqn. (1) applies. 

In the partially plastic state, as shown 

in Figure, the N.A. position is again 

determined by applying equilibrium 

conditions to the forces above and below the N.A. The section is divided 

into convenient parts, each subjected to a force = average stress x area, as 

indicated, then: 

                             F1+ F2 = F3 + F4 

 

The sum of the moments of these forces about the N.A. then yields the value 

of the partially plastic moment MPP .  

 

5.5 Collapse loads in beams 

Having determined the moment required to produce a plastic hinge for the 

shape of beam cross-section used in any design it is then necessary to decide 

from a knowledge of the support and loading conditions how many such 

hinges are required before complete collapse of the beam or structure takes 

place, and to calculate the corresponding load. Here it is necessary to 

consider a plastic hinge as a pin-joint and to decide how many pin-joints are 
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required to convert the structure into a "mechanism". If there are a number of 

points of "local" maximum B.M., i.e. peaks in the B.M. diagram, the first plastic 

hinge will form at the numerical maximum; if further plastic hinges are 

required these will occur successively at the next highest value of maximum 

B.M. etc. It is assumed that when a plastic hinge has developed at any cross-

section the moment of resistance at that point remains constant until collapse 

of the whole structure takes place owing to the formation of the required 

number of further plastic hinges. 

 

 (a) Cantilever 

There will only be 

one point of 

maximum B.M. and 

plastic collapse will 

occur with one 

plastic hinge at this 

point (Figure). 

 

𝑃𝐿𝜃 = 𝑀𝑃𝜃 

 

Collapse load,  𝑃 = 
𝑀𝑃

𝐿
 

 

(b) Simply supported beam 

There will only be one 

point of maximum B.M. 

and plastic collapse will 

occur with one plastic 

hinge at this point 

(Figure). 

 

𝑃𝐿𝜃 = 2𝑀𝑃𝜃 
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Collapse load,  𝑃 = 
2𝑀𝑃

𝐿
 

 

 (c) Built-in beam 

In this case there are three 

positions of local maximum B.M., 

two of them being at the 

supports, and three plastic 

hinges are required for collapse 

(Figure). 

 

𝑃𝐿𝜃 = 4𝑀𝑃𝜃 

 

Collapse load,  𝑃 = 
4𝑀𝑃

𝐿
 

 

(d) Propped cantilever 

 

𝑃𝑎𝜃 = 2𝑀𝑃𝛼 +𝑀𝑃𝜃 

 

Since: 𝑎𝜃 = 𝑏𝛼 

 

and:  𝑎 + 𝑏 = 𝐿 

 

 

Thus, Collapse load,  𝑃 = 𝑀𝑃 (
1

𝑎
+

2

𝐿−𝑎
) 

 

Minimum collapse load can be determined through dP/da=0, i.e. when: 

𝑎 = (√2 − 1)𝐿 

 

5.5.1 Residual stresses  

In bending applications, when beams may be subjected to moments 

producing partial plasticity, i.e. part of the beam section remains elastic whilst 
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the outer fibres yield, this permanent set associated with the yielded areas 

prevents those parts of the material which are elastically stressed from 

returning to their unstressed state when load is removed. Residual stresses 

are therefore produced. In order to determine the magnitude of these residual 

stresses it is normally assumed that the unloading process, 

from either partially plastic or fully plastic states, is completely elastic (see 

Figure). The unloading stress distribution is therefore linear and it can be 

subtracted graphically from the stress distribution in the plastic or partially 

plastic state to obtain the residual stresses. 

 

Consider, therefore, the rectangular beam which has been loaded to its fully 

plastic condition as represented by the stress distribution rectangles oabc and 

odef. The bending stresses which are then superimposed during the 

unloading process are given by the line goh and are opposite to sign. 

Subtracting the two distributions produces the shaded areas which then 

indicate the residual stresses which remain after unloading the plastically 

deformed beam. It should be observed that the loading and unloading 

moments must be equal, i.e. the moment of the force due to the rectangular 

distribution oabc about the N .A. must equal the moment of the force due to 

the triangular distribution oag. Now: 

 

𝑎𝑔

2
× 𝐴 ×

2𝑜𝑎

3
= 𝑌𝐴 ×

𝑜𝑎

2
 

 

𝑎𝑔 = 1.5𝑌 
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Thus the residual stresses at the outside surfaces of the beam = 0.5 Y. The 

maximum residual stresses occur at the N.A. and are equal to the yield stress.  

 

In loading cases 

where only 

partial plastic 

bending has 

occurred in the 

beam prior to 

unloading the stress distributions obtained are shown in Figure.  Again, the 

unloading process is assumed elastic and the line goh in this case is 

positioned such that the moments of the loading and unloading stress 

distributions are once more equal, i.e. the stress at the outside fibre ag is 

determined by considering the plastic moment M pp applied to the beam 

assuming it to be elastic; thus: 

 

𝑎𝑔 =
𝑀𝑃𝑃

𝐼

𝐷

2
 

 

In this case the maximum residual stress may occur either at the outside or at 

the inner boundary of the yielded portion depending on the depth of plastic 

penetration. There is no residual stress at the centre of the beam. 

 

5.6 Collapse loads in oval links  

The Figure shows a link symmetrical about center-

line AB. To find the collapse 

load due purely to bending , 

and neglecting shear forces, 

assume plastic hinges as 

shown in the Figure for half of 

the link. 

  

𝑃. 𝐵𝐵ʹ̅̅ ̅̅ ̅ = 4𝑀𝑃𝜃 
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𝐵𝐵ʹ̅̅ ̅̅ ̅ = 𝑁𝐵ʹ̅̅ ̅̅ ̅ − 𝐵𝑁̅̅ ̅̅  

       = 𝐶 ʹ𝐵ʹ̅̅ ̅̅ ̅ cos(𝛼 − 𝜃) − 𝐵𝑁̅̅ ̅̅   

 

Since: 𝐶 ʹ𝐵ʹ̅̅ ̅̅ ̅ = 𝐶𝐵̅̅ ̅̅  

and:  cos 𝜃 = 1 

          sin 𝜃 = 𝜃 

 

Thus, Collapse load,  

 

 𝑃 = 
4𝑀𝑃

𝐶𝑁̅̅ ̅̅
 

 

 

 

 

5.7 Collapse loads in rings  

The Figure shows a circular ring 

carrying three loads acting radially 

outwards and spaced uniformly at an 

interval of 2π/3 radians. To find the 

collapse load due purely to bending , 

and neglecting shear forces, assume 

plastic hinges as shown in the Figure 

for one third of the ring. 

 

𝑃. 𝐵𝐵ʹ̅̅ ̅̅ ̅ = 4𝑀𝑃𝜃 

 

𝐵𝐵ʹ̅̅ ̅̅ ̅ = 𝑁𝐵ʹ̅̅ ̅̅ ̅ − 𝐵𝑁̅̅ ̅̅  

       =
sin (60+𝜃)

𝑠𝑖𝑛60
 𝑅 − 𝑅 

 

Since:   cos 𝜃 = 1 
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             sin 𝜃 = 𝜃 

 

Thus, Collapse load,  

 

 𝑃 = 
4√3𝑀𝑃

𝑅
 

 

 

5.8 Collapse loads in stud oval links 

Assume a rigid stud is fixed diametrally as shown in the Figure. To find the 

collapse load due purely to bending , and neglecting shear forces, assume 

plastic hinges occur at A, B, and C as shown in the Figure for one quarter of 

the link. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Following the principle of instantaneous center of 

rotation of the sub-link BC, one can get: 

 

𝑃. 𝐼𝐶̅̅̅. 𝛺 = 2𝑀𝑃(𝜔 + 𝛺) + 2𝑀𝑃𝜔 + 2𝑀𝑃𝛺 

 

Since:   𝑣𝐵 = 𝐼𝐵̅̅ ̅. 𝛺 = 𝐴𝐵̅̅ ̅̅ . 𝜔 



52 
 

 

Thus, Collapse load,  

 

 𝑃 = 4𝑀𝑃. 
𝐴𝐵̅̅ ̅̅ +𝐼𝐵̅̅ ̅

𝐴𝐵̅̅ ̅̅ .𝐼𝐶̅̅ ̅
=

4𝑀𝑃

𝐵𝐷̅̅ ̅̅
 

 

P is least when 𝐵𝐷̅̅ ̅̅  is greatest, which defines the position of hinge B. This is 

the point on the link at which the tangent is parallel to 𝐴𝐶̅̅ ̅̅ . 

 

5.9 Problems 

1. Find the shape factor for a 150 mm x 75 

mm channel in pure bending with the plane of 

bending perpendicular to the web of the 

channel. The dimensions are shown in Figure 

and  Z = 21 x 10‒6 m3. 

 

2. The cross-section of a beam is a channel, symmetrical about a vertical 

centre line. The overall width of the section is 150 mm and the overall depth 

100 mm. The thickness of both the horizontal web and each of the vertical 

flanges is 12 mm. By comparing the behaviour in both the elastic and plastic 

range determine the shape factor of the section. Work from first principles in 

both cases. 

 

3. The T-section beam shown in Figure is 

subjected to increased load so that yielding 

spreads to within 50 mm of the lower edge of 

the flange.  

Determine the bending moment required to 

produce this condition. 

Y = 240 MN/ m2 
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4. (a) A rectangular section beam is 80 mm wide, 120 mm deep and is simply 

supported at each end over a span of 4 m. Determine the maximum uniformly 

distributed load that the beam can carry: 

(i) if yielding of the beam material is permitted to a depth of 40 mm; 

(ii) before complete collapse occurs. 

(b) What residual stresses would be present in the beam after unloading from 

condition (a) (i)? 

The yield stress of the material of the beam = 280 MN/m2. 

 

5. Determine the maximum intensity of loading that can be sustained by a 

simply supported beam, 75 mm wide x 100 mm deep, assuming elastic 

perfect -plastic behaviour with a yield stress in tension and compression of 

135 MN/m2. The beam span is 2 m.  

What will be the distribution of residual stresses in the beam after unloading?  

 

6. A circular beam of length L, is 

cantilevered at both sides and 

loaded as shown.  

i. Derive a formula for the load W 

required to set a complete collapse of the beam.                                                

ii. Determine the location of the load W such that its value would be least. 

7. An oval (elliptical) link, of 

rectangular cross section, is 

loaded and constrained as 

shown.  

a = 2b = 100mm, Mp = 100Nm.  

Determine the load P required 

to set a complete collapse of the 

link.                                          
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Elastic-Plastic Stresses in Thick Cylinder 

 

6.1 Introduction 

Thick cylinders are used as testing chambers or for the containment of fluid at 

high pressures. A number of important problems, such as the determination of 

stresses and strains in thick-walled pressure vessels are of this type. The 

axisymmetric problem is comparatively more difficult in principle, since there 

are three independent stress components, even when the stresses are 

assumed to vary only in the radial direction.  

 

6.2 Lameʹ equations 

Consider the thick cylinder and the stresses acting on an element of unit 

length at radius r are as shown in Figure.  

 

 

 

                                                                 

                                                                        

 For radial equilibrium of the element: 

(𝜎𝑟 + 𝑑𝜎𝑟)(𝑟 + 𝑑𝑟)𝑑𝜃 − 𝜎𝑟 × 𝑟𝑑𝜃 = 2𝜎𝐻 × 𝑑𝑟 × sin (
𝑑𝜃

2
) 

 

For small angles:  


