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Elastic-Plastic Stresses in Thick Cylinder 

 

6.1 Introduction 

Thick cylinders are used as testing chambers or for the containment of fluid at 

high pressures. A number of important problems, such as the determination of 

stresses and strains in thick-walled pressure vessels are of this type. The 

axisymmetric problem is comparatively more difficult in principle, since there 

are three independent stress components, even when the stresses are 

assumed to vary only in the radial direction.  

 

6.2 Lameʹ equations 

Consider the thick cylinder and the stresses acting on an element of unit 

length at radius r are as shown in Figure.  

 

 

 

                                                                 

                                                                        

 For radial equilibrium of the element: 

(𝜎𝑟 + 𝑑𝜎𝑟)(𝑟 + 𝑑𝑟)𝑑𝜃 − 𝜎𝑟 × 𝑟𝑑𝜃 = 2𝜎𝐻 × 𝑑𝑟 × sin (
𝑑𝜃

2
) 

 

For small angles:  
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sin (
𝑑𝜃

2
) ≅

𝑑𝜃

2
 

 

Therefore, neglecting second-order small quantities: 

 

𝜎𝑟 + 𝑟
𝑑𝜎𝑟
𝑑𝑟

= 𝜎𝐻………(1) 

 

Assuming now that plane sections remain plane, i.e. the longitudinal strain εL  

is constant across the wall of the cylinder:  

𝜀𝐿 =
1

𝐸
(𝜎𝐿 − 𝜈𝜎𝑟 − 𝜈𝜎𝐻) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

It is also assumed that the longitudinal stress σL  is constant across the 

cylinder walls at points remote from the ends: 

 

𝜎𝑟 + 𝜎𝐻 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 2𝐴………(2) 

 

Eqns.(1 and 2) yield: 

2𝑟𝜎𝑟 + 𝑟
2
𝑑𝜎𝑟
𝑑𝑟

− 2𝐴𝑟 = 0 

Therefore, integrating: 

𝑟2𝜎𝑟 − 𝐴𝑟
2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = −𝐵………(3) 

 

Eqns.(2 and 3) yield:        𝜎𝑟 = 𝐴 − 
𝐵

𝑟2
       ;       𝜎𝐻 = 𝐴 + 

𝐵

𝑟2
       ( Lameʹ 

equations) 

 

6.3 Internal pressure 

Consider a thick cylinder, internal radius a and external radius b , is subjected 

to an internal pressure p , the external pressure being zero.  

At 𝑟 = 𝑎 , 𝜎𝑟 = −𝑝  and at 𝑟 = 𝑏 , 𝜎𝑟 = 0 

Substituting the above conditions in Lameʹ equations, one can get: 
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                     𝜎𝐻 = 𝑝 
𝑎2(𝑏2+𝑟2)

𝑟2(𝑏2−𝑎2)
   … … … (4.1)      

                     𝜎𝑟 = −𝑝 
𝑎2(𝑏2−𝑟2)

𝑟2(𝑏2−𝑎2)
…… … (4.2)        

                     𝜎𝐿 = 𝑝 
2𝜈𝑎2

𝑏2−𝑎2
            … … … (4.3) 

Now for ductile materials yield, using Tresca criterion, is deemed to occur 

when: 

 

𝜎𝐻 − 𝜎𝑟 = 𝑌 

 

The internal pressure required to cause yielding at the inner surface, r = a ,  is 

thus: 

 

                     𝑝= 𝑏
2
−𝑎2

2𝑏
2  𝑌 

  

The internal pressure required to 

cause yielding at an intermediate 

surface        ( Figure),  r = c , is 

determined as follows:  

At r = c ‒  , i.e. in the plastic area, 

the radial stress is determined by 

eqn.(1): 

 

𝑟
𝑑𝜎𝑟
𝑑𝑟

= 𝜎𝐻 − 𝜎𝑟 = 𝑌 

 

Integrating with 𝜎𝑟 = −𝑝  at r = a  , the radial stress at any radius in the range 

𝑎 ≤ 𝑟 ≤ 𝑐, is: 

 

𝜎𝑟 = 𝑌𝑙𝑛
𝑟

𝑎
− 𝑝 

and at  r = c ‒ is: 
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𝜎𝑟 = 𝑌𝑙𝑛
𝑐

𝑎
− 𝑝………(5) 

In the elastic area, i.e. in the range ≤ 𝑟 ≤ 𝑏 , replace a by c and Lameʹ 

equations will be: 

                     𝜎𝐻 = 𝑝 
𝑐2(𝑏2+𝑟2)

𝑟2(𝑏2−𝑐2)
       ;      𝜎𝑟 = −𝑝 

𝑐2(𝑏2−𝑟2)

𝑟2(𝑏2−𝑐2)
 

 

Tresca yield at r = c +:       𝜎𝐻 − 𝜎𝑟 = 𝑝 
𝑐2(𝑏2+𝑐2)

𝑐2(𝑏2−𝑐2)
 +𝑝 

𝑐2(𝑏2−𝑐2)

𝑐2(𝑏2−𝑐2)
= 𝑌 

 

or:                                    𝑝 = 𝑌
𝑏
2
−𝑐2

2𝑏
2  

 

This is the " internal" pressure required in the elastic portion of the cylinder in 

order to onset yielding at its inner surface, i.e. at r = c +. In addition, this 

pressure is exerted by the radial stress at the outer surface of the plastic 

portion of cylinder, i.e. that given by eqn.(5). Thus:   

                               

                                          𝑌𝑙𝑛 
𝑐

𝑎
 −𝑝 = −𝑌 

𝑏2−𝑐2

2𝑏2
  

 

or:                                      𝑝 = 𝑌 (𝑙𝑛 
𝑐
𝑎
+
𝑏
2
−𝑐2

2𝑏
2 )………(6) 

 

which is the internal pressure in the cylinder required to bring yielding to a 

radius c. 

In summary, following are the stresses induced in a thick cylinder internally 

loaded with pressure of: 

                                      𝑝 = 𝑌 (𝑙𝑛 
𝑐
𝑎
+
𝑏
2
−𝑐2

2𝑏
2 ) 

Plastic region: 𝑎 ≤ 𝑟 ≤ 𝑐                                      Elastic region: 𝑐 ≤ 𝑟 ≤ 𝑏 

𝜎𝐻 = 𝑌 (
𝑏
2
+𝑐2

2𝑏
2 − 𝑙𝑛 

𝑐
𝑟
 )   ……… (7.1)              𝜎𝐻 = 𝑌

𝑐2(𝑏
2
+𝑟2)

2𝑏
2
𝑟2

   ……… (7.3)  
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 𝜎𝑟 = −𝑌(𝑙𝑛 
𝑐
𝑟
+ 𝑏

2
−𝑐2

2𝑏
2 )………(7.2)            𝜎𝑟 = −𝑌

𝑐2(𝑏
2
−𝑟2)

2𝑏
2
𝑟2

………(7.4)    

 

 

    

The above equations 

are shown in Figure. 

 

 

 

 

 

 

 

 

6.4 Residual Stresses 

If the pressure inside the cylinder is increased beyond the initial yield value so 

that plastic penetration occurs only partly into the cylinder wall then, on 

release of the pressure, the elastic zone attempts to return to its original 

dimensions but is prevented from doing so by the permanent deformation or 

“set” of the yielded material. The result is that residual stresses are 

introduced, the elastic material being held in a state of residual tension whilst 

the inside layers are brought into residual compression. On subsequent 

loading cycles, therefore, the cylinder is able to withstand a higher internal 

pressure since the compressive residual stress at the bore has to be 

overcome before this region begins to experience tensile stresses. This 

process is called autofrettage .  

The autofrettage process has the same effect as shrinking one tube over 

another without the complications of the shrinking process. With careful 

selection of cylinder dimensions and autofrettage pressure the resulting 

residual compressive stresses can significantly reduce or even totally 

eliminate tensile stresses which would otherwise be achieved at the bore 

under working conditions. As a result the fatigue life and the safety factor at 
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the bore are considerably enhanced and for this reason gun barrels and other 

pressure vessels are often pre-stressed in this way prior to service. 

The autofrettage pressure required for yielding to any radius c, is given by 

eqn.(4) and if the unloading process is fully elastic, the unloaded elastic 

stresses are obtained by applying a negative autofrettage pressure and 

substituting into eqns.(3), i.e.: 

 

                     𝜎𝐻 = −𝑌(𝑙𝑛 
𝑐
𝑎
+
𝑏
2
−𝑐2

2𝑏
2 ) 

𝑎2(𝑏2+𝑟2)

𝑟2(𝑏2−𝑎2)
   … … … (8.1)      

                    

                     𝜎𝑟 = 𝑌 (𝑙𝑛 
𝑐
𝑎
+
𝑏
2
−𝑐2

2𝑏
2 ) 

𝑎2(𝑏2−𝑟2)

𝑟2(𝑏2−𝑎2)
       … … … (8.2)    

 

The residual stresses are, then, the sum of eqns. ( 5 and 6), i.e.: 

Plastic region: 𝑎 ≤ 𝑟 ≤ 𝑐 

 

𝜎𝐻 = 𝑌 [
𝑏2 + 𝑐2

2𝑏2
− 𝑙𝑛 

𝑐

𝑟
− (𝑙𝑛 

𝑐

𝑎
+
𝑏2 − 𝑐2

2𝑏2
) 
𝑎2(𝑏2 + 𝑟2)

𝑟2(𝑏2 − 𝑎2)
] 

 

𝜎𝑟 = −𝑌 [𝑙𝑛 
𝑐
𝑟
+ 𝑏

2
−𝑐2

2𝑏
2  − (𝑙𝑛 

𝑐
𝑎
+
𝑏
2
−𝑐2

2𝑏
2 ) 

𝑎2(𝑏
2
−𝑟2)

𝑟2(𝑏
2
−𝑎2)

 ]       

 

  Elastic region: 𝑐 ≤ 𝑟 ≤ 𝑏 

 

𝜎𝐻 = 𝑌
𝑏2 + 𝑟2

𝑟2
[
𝑐2

2𝑏2
− (𝑙𝑛 

𝑐

𝑎
+
𝑏2 − 𝑐2

2𝑏2
) 

𝑎2

𝑏2 − 𝑎2
 ] 

 

 𝜎𝑟 = −𝑌
𝑏
2
−𝑟2

𝑟2
[
𝑐2

2𝑏
2− (𝑙𝑛 

𝑐
𝑎
+
𝑏
2
−𝑐2

2𝑏
2 ) 

𝑎2

𝑏
2
−𝑎2

]        

 

The above equations are shown in Figures. 
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6.5 Working stress  

Finally, if the stresses due to an elastic internal working pressure PW are 

superimposed on the residual stress state then the final working stress state 

is produced as in Figures.  

The elastic working stresses are given by eqns.(3).  

 

The final stress 

distributions show that the 

maximum tensile stress, 

instead of being at the bore 

as in the plain cylinder, is 

now at the elastic/plastic 

interface position.  

 

 

 

 

 

 

 

 

6.6 Problems 

1. A thick cylinder, inside radius 62.5 mm and outside radius 190 mm, forms 

the pressure vessel of an isostatic compacting press used in the manufacture 

of sparking plug components. Determine, using the Tresca theory of elastic 

failure, the safety factor on initial yield of the cylinder when an internal working 

pressure PW, of 240 MN/m2 is applied. 

(c) In view of the relatively low value of safety factor which is achieved at this 

working pressure, the cylinder is now subjected to an autofrettage pressure of 

580 MN/m2. Determine the residual stresses produced at the bore of the 

cylinder when the autofrettage pressure is removed and hence determine the 
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new value of the safety factor at the bore when the working pressure P, is 

applied. 

The yield stress of the cylinder material Y = 850 MN/m2 and axial stresses 

may be ignored. 

 

2. A thick cylinder of inner radius of 60 mm and outer radius 190 mm, is 

constructed from material with a yield stress of 850 MN/m2 and tensile 

strength 1 GN/m2. In order to prepare it for operation at a working pressure of 

248 MN/m2 it is subjected to an initial autofrettage pressure of 584 MN/m2. 

Ignoring axial stresses, compare the safety factors against initial yielding of 

the bore of the cylinder obtained with and without the autofrettage process.  

 

3. A thick cylinder, of inner radius of 50 mm and outer radius 200 mm. What is 

the maximum autofrettage pressure which should be applied in order to 

achieve yielding to the geometric mean radius? 

Determine the radius of zero hoop residual stress produced by the application 

and release of this pressure. Yield stress is 800 MN/m2 . 

 

4. A thick cylinder, of inner radius of 40 mm and outer radius 160 mm. What is 

the minimum autofrettage pressure which should be applied in order to 

achieve yielding through 90% of the cylinder thickness? 

Determine the radius of maximum radial residual stress produced by the 

application and release of this pressure. Yield stress is 600 MN/m2 . 

                            

                                 

 

Elastic-Plastic Stresses in Thick Sphere 

 

7.1 Introduction 

Thick spheres are used as testing chambers or for the containment of fluid at 

high pressures. A number of important problems, such as the determination of 

stresses and strains in thick-walled pressure vessels are of this type.   


