PROTEIN SYNTHESIS

The Protein-making Process

Professor Dr. Mushtak T.S.Al-Ouqaili

Protein Synthesis (Gene Expression) Notes

Proteins (Review)

• Proteins make up all <u>living</u> materials

- Proteins are composed of <u>amino acids</u> there are <u>20</u> different amino acids
- Different <u>proteins</u> are made by <u>combining</u> these 20 amino acids in different combinations

Proteins are manufactured (made) by the <u>ribosomes</u>

- Function of proteins:
 - 1. Help fight <u>disease</u>
 - 2. Build new body <u>tissue</u>
 - **3.** <u>Enzymes</u> used for digestion and other chemical reactions are proteins

(Enzymes **<u>speed up</u>** the **<u>rate</u>** of a reaction)

4. Component of all <u>cell membranes</u>

MAKING PROTEINS

Step 1: Transcription

The "Central Dogma" of Molecular Genetics

Protein synthesis

Protein Synthesis (mRNA) Nucleus messenger Ribosomes RNA DNA (protein synthesis) carries blueprint "Code of ribosomal RNA Life amino acido (RNA) assembles transfer RNA (tANA) gathers amino acids proteins cytoplasm proteins

Making a Protein—Transcription

• First Step: Copying of genetic information from DNA to RNA called Transcription

<u>Why</u>? DNA has the <u>genetic code</u> for the <u>protein</u> that needs to be made, but proteins are made by the ribosomes—ribosomes are outside the <u>nucleus</u> in the <u>cytoplasm</u>.

DNA is too <u>large</u> to leave the nucleus (<u>double</u> stranded), but RNA <u>can leave</u> the nucleus (<u>single</u> stranded).

 Part of DNA temporarily <u>unzips</u> and is used as a <u>template</u> to assemble <u>complementary</u> nucleotides into <u>messenger RNA</u> (mRNA).

 mRNA then goes through the pores of the nucleus with the DNA code and attaches to the ribosome.

MAKING PROTEINS

Step 2: Translation

Making a Protein—Translation

- <u>Second Step</u>: <u>Decoding</u> of mRNA into a <u>protein</u> is called <u>Translation</u>.
- Transfer RNA (tRNA) carries <u>amino acids</u> from the cytoplasm to the <u>ribosome</u>.

These amino acids come from the <u>food we eat</u>. Proteins we eat are broken down into individual <u>amino acids</u> and then simply <u>rearranged</u> into new <u>proteins</u> according to the needs and directions of our <u>DNA</u>.

 A series of <u>three</u> adjacent <u>bases</u> in an mRNA molecule codes for a specific amino acid—called a <u>codon</u>.

- Each <u>tRNA</u> has 3 nucleotides that are <u>complementary</u> to the <u>codon</u> in mRNA.
- Each <u>tRNA</u> codes for a <u>different</u> amino acid.

Amino acids are joined together to make a protein.

Ribosome

Polypeptide = **Protein**

Use one of the codon charts on the next page to find the amino acid sequence coded for by the following mRNA strands.

CAC/CCA/UGG/UGA

AUG/AAC/GAC/UAA

AUG/AAC/GAC/UAA

Stop

Methionine / Asparagine / Aspartic Acid/____

Protein Synthesis

Protein synthesis in motion

PROTEIN SYNTHESIS

