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1- Applications of Integrals.

A- Arc Length.

We want to determine the length of the continuous function y = f(x) on the interval [azb] .

We’ll also need to assume that the derivative is continuous on [a. b] :

Initially we’ll need to estimate the length of the curve. We’ll do this by dividing the interval up
into » equal subintervals each of width Ax and we’ll denote the point on the curve at each point
by P;. We can then approximate the curve by a series of straight lines connecting the points.
Here is a sketch of this situation for n =9 .

¥

Now denote the length of each of these line segments by

P, E‘ and the length of the curve will

then be approximately,

P, P

L xsi
i1

and we can get the exact length by taking » larger and larger. In other words, the exact length
will be,

n

L=1lim Z

n—x
i=1

PP

Now, let’s get a better grasp on the length of each of these line segments. First, on each segment
let’s define Ay, =y, —y., = f(x,)— f(x._,). We can then compute directly the length of the

line segments as follows.

P, P

A + Ayf

- \/( Xi =% )2 + (}",- —Via )2 =

By the Mean Value Theorem we know that on the interval [v‘}-1 . x!.] there is a point x; so that,




*

f(‘x:')_f(xi—l ) = f!(xf )(“Ti —Xia )
Therefore, the length can now be written as,
B, RB|= \/( X — X )2 + (,}‘}- — Via )2
= \/ﬂxz + [f'(xf)}j Ax?
- \/1 +[f’(:r:)]2 Ax

Therefore, the length can now be written as,

Py B = =0+ (3= 3)

— \/A,\'z +[f'(x:)]2 Ax?

The exact length of the curve is then,

n
L =lim E
n—>»o0 f:l_

= linli NIES [f'(,\? )T Ax
A

The exact length of the curve is then,

n
L=lm>Y |P, P
n—»0 Py

Py R

> [
o i=1

However, using the definition of the definite integral, this i1s nothing more than,

L :fjﬂllJr[f’(x) ? dx

A slightly more convenient notation (in my opinion anyway) is the following.




In a similar fashion we can also derive a formula for x=h ( h% ) on [c, d ] . This formula is,

Arc Length Formula(s)

where,

: , T
Example 1 Determine the length of y =In(secx) between 0 <x < —.

Solution
In this case we’ll need to use the first ds since the function is in the form y = f/(x). So, let’s get
the derivative out of the way.

2
dy secxtanx dy 2
- = —tanx — | =tan" x
dx secy dx

Let’s also get the root out of the way since there is often simplification that can be done and
there’s no reason to do that inside the integral.

2
1+(d} ) :\/l+t3112 X :\/sec2 X :‘secx‘ =secx

»
Note that we could drop the absolute value bars here since secant is positive in the range given.

The arc length 1s then,

Fa
L= .[04 sec xdx
x
4

= lll‘SEC x+tanx :

:111(\/§+1)
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Example 2 Determine the length of x==(y—1)2 between 1 <y <4.

W | I

Solution

Let’s compute the derivative and the root.

dx
@

~(y=1p N

As you can see keeping the function in the form x = /() is going to lead to a very easy

integral. To see what would happen if we tried to work with the function in the form y = f (\)

see the next example.

Let’s get the length.

Example 3 Redo the previous example using the function in the form y = f(x) instead.

Solution
In this case the function and its derivative would be,

All the simplification work above was just to put the root into a form that will allow us to do the
integral.

Now, before we write down the integral we’ll also need to determine the limits. This particular
ds requires x limits of integration and we’ve got y limits. They are easy enough to get however.
Since we know x as a function of y all we need to do is plug in the original y limits of integration
and get the x limits of integration. Doing this gives,

3
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Not easy limits to deal with, but there they are.

Let’s now write down the integral that will give the length.

2.2
-'5(3]: 3

(3) +1
I

(5)

L= dx

0

That’s a really unpleasant looking integral. It can be evaluated however using the following

substitution.
2 1
3x )3 3x) 3
H—[—\j +1 du—( \J dx
2 2
x=0 = u=1
2. 3
ng(g)z = u=4

Using this substitution the integral becomes,

L= _[4\/;(2’”
1

4
3
23
=—u?
14
3
So, we got the same answer as in the previous example. Although that shouldn’t really be all that
surprising since we were dealing with the same curve.

1

. 1 . 1 : .
Example 4 Determine the length of x = 5 y* for 0 <x <—. Assume that y is positive.

(8]

Solution
We’ll use the second ds for this one as the function is already in the correct form for that one.
Also. the other ds would again lead to a particularly difficult integral. The derivative and root

will then be,

dx
dy
Before writing down the length notice that we were given x limits and we will need y limits for
this ds. With the assumption that y is positive these are easy enough to get. All we need to do is
plug x into our equation and solve for y. Doing this gives,
O=y=l

y =

The integral for the arc length is then,
17 5
L= _[0 I+ yv-dy

This integral will require the following trig substitution.

y=tan® dy = sec’ 8de
y=0 = 0=tané — =0
y=1 = l=tan @ — 52%



\/1 +y2 = \/1+‘ran2 g = \Xsecz 0= |sec 6?‘ =secl
The length 1s then.

L :jzsec3 6deo
0

i

- %(sec@tan(ﬁr 111‘sec6'+tan 6‘|) )

0
= E(\EHH(H\E))
B- Surface Area.
The surface area of a frustum 1s given by,
A=2xrl
where,
= é{fﬁ +15) 1, =radius of right end

r, = radius of left end

and / 1s the length of the slant of the frustum.

For the frustum on the mterval [x}._l. xl.] we have,
n=r1(x)
= f (%)

[ = ‘P; P| (length of the line segment connecting P, and P_ )

We know from the previous section that,

i— i

p 2
- * *® . B .
I+ [ S )J Ax where x; 1s some point 1n [x‘_._l,x‘_.]

Before writing down the formula for the surface area we are going to assume that Ax 1is “small”
and since £ (x) is continuous we can then assume that,

fx) = f(x) and Flx)~ f(x))

So, the surface area of the frustum on the mterval [.,\I 152 I] 1s approximately,



<27 f (3 )1+ [ /()]

The surface area of the whole solid is then approximately,

and we can get the exact surface area by taking the limit as » goes to infinity.

If we wanted to we could also derive a similar formula for rotating x =/ (1) on [c, d ] about the

s Fanr (76T

5= 113;2 27 f (5 )1+ /()] ax
- "|";2;rf(.\')1/l+ (7 (x)] ax

v-axis. This would give the following formula.

S = J".dsz}? (¥)y/1 +[h'(y)]2 dy

Surface Area Formulas

S= jZ.n’yds
S = jZﬂ:de

where,

o,

dx

dy

N2
ds = 1+(—'J dx

2
ds = 1+[£} dy

rotation about x —axis

rotation about y —axis

ify=f(x),a<x<bh

ifx=h(y).c<y<d

Example 1 Determine the surface area of the solid obtained by rotating y =+/9—x” ,

—2 < x <2 about the v-axis.

Solution
The formula that we’ll be using here is,

S = I2;ry ds

Let’s first get the derivative and the root taken care of.

@ _
dx 2




Here’s the integral for the surface area,

There 1s a problem however. The dx means that we shouldn’t have any y’s in the mtegral. So,
before evaluating the integral we’ll need to substitute in for y as well.

The surface area is then,

? 3
S= [ 2749 —x? 770’,\*

-2 0 —x°

e

2
=| 6xdx
-2

=24r

Example 2 Determine the surface area of the solid obtained by rotating y = Ix . 1< v=<2
about the y-axis. Use both ds’s to compute the surface area.

Solution

Note that we’ve been given the function set up for the first ds and limits that work for the second
ds.

Solution 1
This solution will use the first ds listed above. We’ll start with the derivative and root.

o1 2
ﬁ p— i ;‘:
dx 3

4 4
Ox? +1 \/9,\‘3 +1
4
9x3 3x

|

We’ll also need to get new limits. That isn’t too bad however. All we need to do 1s plug in the
given y’s mto our equation and solve to get that the range of x’s 1s 1 < x <8 . The integral for the

surface area is then,
. 8 i
VOx3 +1

S=| 2ax———dx

) 3x

s 1[4
:2—E| V9x? +1dx
3 J1

(PSR



Using the substitution
4 1

u=9x%+1 du =12x3 dx
the integral becomes,

T pl145
S :ELO \/;dn

3145
I 3
=—1"
27 i
[ 3 3
=— 1452 -10% [=199.48
27

Solution 2
This time we’ll use the second ds. So, we’ll first need to solve the equation for x. We’ll also go
ahead and get the derivative and root while we’re at it.

The surface area is then,

2
S = [ 27x\1+9y* dy

We used the original y limits this time because we picked up a dv from the ds. Also note that the
presence of the dv means that this time, unlike the first solution, we’ll need to substitute in for the

x. Doing that gives,
3 3 N o 4
S—jl 2ry 149y dy u=1+9y

T pl45
:E . \/;a’u

' 3 3
= 11452 102 | =199.48
27

Note that after the substitution the integral was identical to the first solution and so the work was
skipped.
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2- Parametric Equations and Curves.
To this point (in both Calculus I and Calculus IT) we’ve looked almost exclusively at functions in
the form y = f(x) or x=/(y) and almost all of the formulas that we’ve developed require

that functions be in one of these two forms. The problem is that not all curves or equations that
we’d like to look at fall easily into this form.

Take, for example, a circle. It is easy enough to write down the equation of a circle centered at
the origin with radius 7.

2 2 2
XT+y =r

However, we will never be able to write the equation of a circle down as a single equation in
either of the forms above. Sure we can solve for x or v as the following two formulas show

pl pl
y =+t =7 X = J_q/rz -y

but there are in fact two functions in each of these. Each formula gives a portion of the circle.

y= 2y (‘rop) x=+r - yz (1‘ight side)

2

2 ( 2 2 / :
y=—r —x" (bottom) x=—yr =y (left side)
There are also a great many curves out there that we can’t even write down as a single equation in
terms of only x and v. So, to deal with some of these problems we introduce parametric
equations. Instead of defining y in terms of x (y = f(x)) orx in terms of y (x =h(y)) we

define both x and v in terms of a third variable called a parameter as follows,
x=f(1) v=g(t)

Each value of ¢ defines a point (x, ) =(/(#).g(#)) that we can plot. The collection of points
that we get by letting 7 be all possible values 1s the graph of the parametric equations and 1s called
the parametric curve.
Example 1 Sketch the parametric curve for the following set of parametric equations.
x=1t>+t y=2-1
Solution

At this point our only option for sketching a parametric curve is to pick values of 7, plug them into
the parametric equations and then plot the points. So. let’s plug in some #’s.

I X v
2 2 | -
-1 0

N

[
)

-2

4 |1

1
2
0
|

-1
1

o O

We have one more idea to discuss before we actually sketch the curve. Parametric curves have a
direction of motion. The direction of motion is given by increasing t. So, when plotting parametric
curves we also include arrows that show the direction of motion.

12



Here i1s the sketch of this parametric curve.

¥
1+ e o
— t=1
-
1 — —-‘_-T 1 | x
— 1 2
a1
«
=—1l4 7L
i 5# 2

|t=-1
3%
4l T <

— ) 3

=5k R N

Example 2 Sketch the parametric curve for the following set of parametric equations.
x=1 +t y=2t-1 —l<r<l
Solution
Note that the only difference here is the presence of the limits on 7. All these limits do 1s tell us

that we can’t take any value of ¢ outside of this range. Therefore, the parametric curve will only
be a portion of the curve above. Here is the parametric curve for this example.

¥
1+ .
~ o t=1
- -1 \ 1 x
!_,.-"--' 1 2
14
Ale=1
«
E=-g¢-2F
»
Y O -1

Example 3 Sketch the parametric curve for the following set of parametric equations. Clearly indicate
direction of motion.

x=>5cost y=2sint 0<t<2m
Solution

13



An alternate method that we could have used here was to solve the two parametric equations for
sine and cosine as follows,

J . Vv
cosf=— smi=—
5 2

Then, recall the trig identity we used above and these new equation we get,

2 N2 L2
1:c052r+sin2r=(%J +(l] _x Ly
5 2 25 4

So, here 1s a table of values for this set of parametric equations.

t x|y
0 510
Z 102
T S0
% 01-2
27 | 510

It looks like we are moving in a counter-clockwise direction about the ellipse and it also looks
like we’ll make exactly one complete trace of the ellipse in the range given.

Here is a sketch of the parametric curve.

¥ (==

YO
1k ~

£=ﬂ'."/ \-£=0,2¢?T
Aé PR R R SR B PR R B PR x
5 -4 -3 2 - 1 2 3 4
" i .
—_— e

TR

f=2=

]

Example 4

The path of a particle is given by the following set of parametric equations.
x=3cos(2t) y =1+cos’(2¢)

Completely describe the path of this particle. Do this by sketching the path, determining limits on

x and y and giving a range of #’s for which the path will be traced out exactly once (provide it

traces out more than once of course).

Solution

14



Eliminating the parameter this time will be a little different. We only have cosines this time and
we’ll use that to our advantage. We can solve the x equation for cosine and plug that into the
equation for y. This gives,

2 2
c:0s(2.f):1 v:l+(iJ — 142
3 ’ 3 9
This time we’ve got a parabola that opens upward. We also have the following limits on x and y.
—1<cos(2f)<1 —3<3cos(21)<3 —3<x<3
0<cos’(2f)<1 1<1+cos”(2f)<2 1<y<2

So, again we only trace out a portion of the curve. Here’s a set of evaluations so we can
determine a range of #’s for one trace of the curve.

t | x|y
3 ]2
Z 1ol
4
s
L1302
2
3
T1lol1
4
T | 3|2

So, it looks like the particle, again, will continuously trace out this portion of the curve and will
make one trace in the range 0 <# <% . Here is a sketch of the particle’s path with a few value of
tonit.

¥
=7 =0,
. 2+ .
~a a
~—— e
D P
ERLE
| | | | | | x
-3 -2 -1 0 1 2 3
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3- Tangents with Parametric Equations.
In this section we want to find the tangent lines to the parametric equations given by,

x=f(1) v=gl(?)

To do this let’s first recall how to find the tangent line to y = F"(x) at x = a. Here the tangent
line 1s given by,
dy

J.-":F(G)+m(x—a). where m=— :F'(a)
»

xX=a

: . . dy :
Now. notice that if we could figure out how to get the derivative _d from the parametric
»

equations we could simply reuse this formula since we will be able to use the parametric
equations to find the x and v coordinates of the point.

So, just for a second let’s suppose that we were able to eliminate the parameter from the
parametric form and write the parametric equations in the form y = F (\) . Now, plug the

parametric equations in for x and y. Yes, it seems silly to eliminate the parameter, then
immediately put it back in, but it’s what we need to do in order to get our hands on the derivative.
Doing this gives,

g(t)=F(f(1))
Now, differentiate with respect to ¢ and notice that we’ll need to use the Chain Rule on the right
hand side.

g (N =1'(f(1) /(1)

Let’s do another change in notation. We need to be careful with our derivatives here.
Derivatives of the lower case function are with respect to 7 while derivatives of upper case
functions are with respect to x. So, to make sure that we keep this straight let’s rewrite things as
follows.

dy dx
_r - F’ ( X ) P
dt dt
At this point we should remind ourselves just what we are after. We needed a formula for d or
»

F' (\) that 1s in terms of the parametric formulas. Notice however that we can get that from the

above equation.

7

dy _ dt . dx

E_ﬂ provided driO
di

16



Derivative for Parametric Equations

dx
dx . dy
__di . provided —=0
dy 4y dt
dt
Example 1 Find the tangent line(s) to the parametric curve given by
x=1 -4 y=t
at (0.4).
Solution
The first thing that we should do is find the derivative so we can get the slope of the tangent line.
dy
dy 4 2t 2
dx dx 54127 S5£ 12t
dt

At this point we ve got a small problem. The derivative is in terms of 7 and all we’ve got 1s an x-v
coordinate pair. The next step then is to determine the value(s) of 7 which will give this point.
We find these by plugging the x and y values into the parametric equations and solving for 7.

0=1—4r = (1 —4) = t=0,%2

4=t = =12
r =-2

Since we already know the x and y-coordinates of the point all that we need to do is find the slope
of the tangent line.

m= d—} - l
dx|,__, 8
The tangent line (at r = -2) 1s then,
1
=4——x
? 8
r =2
Again, all we need 1s the slope.
dy ]
m=— =—
dx|,_, 8
The tangent line (at 7 = 2) 1s then,
1
=4+—x
? 8

17



A quick graph of the parametric curve will explain what is going on here.

| ] | | A A I I | |
=25 =20 -15 -10 -5 3 10 15 20 25

Horizontal Tangent for Parametric Equations

ﬁ =0, provided ﬂ =0
dit dt

Vertical tangents will occur where the derivative is not defined and so we’ll get vertical tangents
at values of 7 for which we have,

Vertical Tangent for Parametric Equations

Zs =0, provided Z =0
dt dt

Example 2 Determine the x-y coordinates of the points where the following parametric
equations will have horizontal or vertical tangents.

x=1 -3t y=3-9
Solution
We’ll first need the derivatives of the parametric equations.
dx p ' _ dy
“ =37 -3=3( 1) D _ 6t
dt dt

Horizontal Tangents
We’ll have horizontal tangents where,

6r=0 = tr=0

Now, this is the value of 7 which gives the horizontal tangents and we were asked to find the x-»
coordinates of the point. To get these we just need to plug 7 into the parametric equations.
Therefore, the only horizontal tangent will occur at the point (0.-9).

Vertical Tangents
In this case we need to solve,

3(17-1)=0 = t=+1

18




The two vertical tangents will occur at the points (2.-6) and (-2.-6).

For the sake of completeness and at least partial verification here is the sketch of the parametric
curve.

-.‘lL_"'\-. - S — _‘

_-1— lDbI';_D

4- Arc Length with Parametric Equations.

In this section we will look at the arc length of the parametric curve given by,

x= £ (1) y=glr) as<t<p

We will also be assuming that the curve 1s traced out exactly once as 7 increases from a to 5. We
will also need to assume that the curve is traced out from left to right as 7 increases. This is
equivalent to saying,

% >0 for a<t<p
To use this we’ll also need to know that,
- dx
dx = f"(t)dt =—dt
f(nydr==

The arc length formula then becomes,

19



| BT £
@ dt dt dt

a | dt

Now. making use of our assumption that the curve is being traced out from left to right we can
drop the absolute value bars on the derivative which will allow us to cancel the two derivatives
that are outside the square root and this gives,

Arc Length for Parametric Equations

[ &) (2] o

Notice that we could have used the second formula for ds above if we had assumed 1nstead that
dy
dt

Example 1 Determine the length of the parametric curve given by the following parametric
equations.

>0 for a<t<p

,\»:33111(;‘) ).-':3005(3‘) 0<r<2x7
Solution

So, we can use the formula we derived above. We’ll first need the following,
dx . dy .

=3cos(7) — =-3sin(r)

dt dt

The length 1s then,

:j \/93111 t)+9cos’ (1) dt
:I \/sm ()+cos’ (1) dt

20



Example 2 Use the arc length formula for the following parametric equations.
x = 3sin(3¢) ¥ =3cos(3t) 0<t<27
Solution
Notice that this 1s the identical circle that we had in the previous example and so the length 1s still
6. However. for the range given we know it will trace out the curve three times instead once as

required for the formula. Despite that restriction let’s use the formula anyway and see what
happens.

In this case the derivatives are,

ﬁ:9005(3)‘) dy =—9sin(3¢)
dt dt
and the length formula gives,

L= LHJSISinZ (#)+81lcos’ () dt

2T
=| 9dt
0
=187
The arc length formula can be summarized as,
L= jds
where,
ds = ify=f(x).a<x<b
ds = ifx=h(y).csy=<d
2
ds = J dt ifx=f(t).y=g(t).a<t=<p

5- Surface Area with Parametric Equations.

In this final section of looking at calculus applications with parametric equations we will take a
look at determining the surface area of a region obtained by rotating a parametric curve about the
X Or y-axis.

We will rotate the parametric curve given by,

x=f(t) y=g(t) a<t<p
about the x or y-axis. We are going to assume that the curve 1s traced out exactly once as 7
increases from a to 4. At this point there actually isn’t all that much to do. We know that the

surface area can be found by using one of the following two formulas depending on the axis of
rotation (recall the Surface Area section of the Applications of Integrals chapter).

S= _[271' vds rotation about x — axis

S= _[271'.\' ds rotation about y —axis

21



All that we need is a formula for ds to use and from the previous section we have,

dx\ (dyY
ds = (dr} +(d—:‘J dt ifx=f(t).y=gl(t), a<st<p

which 1s exactly what we need.

Example 1 Determine the surface area of the solid obtained by rotating the following
parametric curve about the x-axis.

: T
x=cos” 6 y=sin’ @ 05935
Solution
We’ll first need the derivatives of the parametric equations.
dx : dy :
= 3cos’Osind — =3sin’ @cos b
dt dt

Before plugging into the surface area formula let’s get the ds out of the way.
ds = \/9 cos’ @sin’ @ +9sin* @cos® 0 dt

=3 ‘cos fsin 9‘\/ cos’ @ +sin’ @

=3cos@siné

Notice that we could drop the absolute value bars since both sine and cosine are positive in this
range of #given.

Now let’s get the surface area and don’t forget to also plug in for the .
S = '[2;1'_1-’ ds

= 2,7:!'.'.055&113 6(3cosBsinb) db
= 673"[0E sin® @cos O db u=smé

= 671'_‘.01 u® du

67
5

22



First year/ 2" Semester - 2018-2019- Chemical and Petroleum Engineering
Department

By
Ms.C. Yasir R. Al-hamdan

Lecture Eight

Problems &Tutorial

23



Problems: Sheet No. 3
Problems.

A- Arc Length.

1. Set up, but do not evaluate, an integral for the length of y =+vx+2 . 1<x <7 using,

Iy

2
dx
b) ds = ’ 2oy
(b) ds 1+L{J dy

[T
a) ds=,|1+| = | dx
® Lf} ‘

2. Set up, but do not evaluate, an integral for the length of x = cos( y) . 0<x<1 using,
(@) ds =
-2
dx
(b) ds=,[l+|— | dy
Ly |

)

. Determine the length of y =7(6+ x)% . 189 =<y <875.

4. Determine the length of x =4(3+ y)2 <y <4
B- Surface Area.
1. Set up. but do not evaluate, an integral for the surface area of the object obtained by rotating

x=+/y+5, \/E < x <3 about the y-axis using,

2

(a) ds = dx

r,o2

M) ds= |1+ |

2. Set up. but do not evaluate, an integral for the surface area of the object obtained by rotating
y=sin(2x) , 0 <x <% about the x-axis using,

T
ds=,|1+| —| dx
(a) ds {dx} X

24



Problems: Sheet No. 3

3. Set up, but do not evaluate, an integral for the surface area of the object obtained by rotating
y=x"+4 ,1<x<5 about the given axis. You can use either ds.
(a) x-axis

(b) v-axis

4. Find the surface area of the object obtained by rotating y =4 + 3x? ., 1<x <2 about the y-
axis.

5. Find the surface area of the object obtained by rotating y =sin(2x) . 0 <x <Z about the x-
axis.

C- Parametric Equations and Curves.

For problems 1 — 6 eliminate the parameter for the given set of parametric equations, sketch the
graph of the parametric curve and give any limits that might exist on x and y.

l.x=4-2t y=3+6t—4r

2

x=4-2t 346—4t7 0<t<3

Cx=A1+1 }sz t>-1

8]

f+1
4. x=3sin(r) y=-4cos(r) 0<t<2r7
5.x=3sin(2f) y=-4cos(2f) 0<t<27
6. x=3sin(lr) y=-4cos(dr) 0<t<2rx

For problems 7 — 11 the path of a particle is given by the set of parametric equations. Completely
describe the path of the particle. To completely describe the path of the particle you will need to
provide the following information.

(7) A sketch of the parametric curve (including direction of motion) based on the equation you
get by eliminating the parameter.

(77) Limits on x and y.

(7ii) A range of ¢’s for a single trace of the parametric curve.
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Problems: Sheet No. 3
7. x=3-2cos(3r) y=1+4sin(3t)

8. x=4sin(+7) y=1-2cos’(47) —S2r<t<34r
9. A’Z\/4+COS(;§I) y=1+1cos(57) — 487 <t<2xw
10. x =2’ y:cos('lJrejr) 0<r<2

1l x=Le™ y=e"+2e"-8

D- Tangents with Parametric Equations.

_ dy d’y : . : .
For problems 1 and 2 compute — and 7 5- for the given set of parametric equations.
X x
1 x=4F > +7¢ y=t'-6
2. x=e"+2 y=6e" +e” —4t

For problems 3 and 4 find the equation of the tangent line(s) to the given set of parametric
equations at the given point.

3. x=2cos(3t)—4sin(3r) y=3tan(6f) at r==%

3

4 x=1=2-11 y=t(t-4) =3t*(t-4)" +7 at (-3,7)

5. Find the values of 7 that will have horizontal or vertical tangent lines for the following set of
parametric equations.

x=0£ =713 y=2cos(3t)+4t

E- Area with Parametric Equations.

For problems 1 and 2 determine the area of the region below the parametric curve given by the set
of parametric equations. For each problem you may assume that each curve traces out exactly
once from right to left for the given range of 7. For these problems you should only use the given
parametric equations to determine the answer.

1. x=4 -+ y=t"+2t7 1<t<3

2. x=3-cos’(t) y=4+sin(r) 0<r<xz
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Problems: Sheet No. 3
F- Arc Length with Parametric Equations.
For problems 1 and 2 determine the length of the parametric curve given by the set of parametric

equations. For these problems you may assume that the curve traces out exactly once for the
given range of 7’s.

T

3
1. x=8¢7 y=3+(8-1) 0<t<4

2

cx=3t+1  y=4-17 -2<1<0

3. A particle travels along a path defined by the following set of parametric equations. Determine
the total distance the particle travels and compare this to the length of the parametric curve itself.

x=4sin(+7) y=1-2cos’(L7) —S52r <t<34rx
For problems 4 and 5 set up, but do not evaluate, an integral that gives the length of the

parametric curve given by the set of parametric equations. For these problems you may assume
that the curve traces out exactly once for the given range of #’s.

4. x=2+¢1 v=e'sin(2t) 0<r<3

5. x=cos’(2t) y:sin(l—rz) -3<t<0

G- Surface Area with Parametric Equations.

For problems1 — 3 determine the surface area of the object obtained by rotating the parametric
curve about the given axis. For these problems you may assume that the curve traces out exactly
once for the given range of ’s.

1. Rotate x =3+ 2¢ y=9-3t 1=<t<4 about the y-axis.

.Rotate x =9+ 2¢° y=4t 0=t=<2 about the x-axis.

2

‘Rotate x=3cos(7t)  y=5t+2 0<t<L about the y-axis.

[¥8)

For problems 4 and 5 set up. but do not evaluate, an integral that gives the surface area of the
object obtained by rotating the parametric curve about the given axis. For these problems you
may assume that the curve traces out exactly once for the given range of 7’s.

4. Rotate x =1+ 111(5 + rz) y=2t-2" 0<t<2 about the x-axis.

5. Rotate x =1+3¢ y=sin(2t)cos(47) 0<t<< about the y-axis.
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