جامعة الانبار كلية العلوم التطبيقية – هيت قسم الفيزياء الحياتية

Electromagnetism Introduction and Electric Forces

Mohammed Qasim Taha

Electromagnetism

Electromagnetism is one of the fundamental forces in nature, and the dominant force in a vast range of natural and technological phenomena

□ The electromagnetic force is solely responsible for the structure of matter, organic, or inorganic□ Physics, chemistry, biology, materials science

The operation of most technological devices is based on electromagnetic forces. From lights, motors, and batteries, to communication and broadcasting systems, as well as microelectronic devices.

□ Engineering

Electromagnetism

In this course we are going to discuss the fundamental concepts of electromagnetism:

charge	force	field	potential	current
electric	magnetic	induction	alternating	waves
circuit	field		currents	
reflection	refraction	image	interference	diffraction

Once you master these basic concepts, you will be ready to move forward, into more advanced subjects in your specific field of interest

System of Units

We will use the SI system - SI \equiv International System of Units

Fundamental Quantities Length [] meter [m] Mass [] kilogram [kg] Time [] second [s]

Other Units Current 🛛 ampere [A]

Derived Quantities

The Transfer of Charge

Some materials attract electrons more than others.

The Transfer of Charge

Glass Rod

As the glass rod is rubbed against silk, electrons are pulled off the glass onto the silk.

The Transfer of Charge

Glass Rod

Usually matter is charge neutral, because the number of electrons and protons are equal. But here the silk has an excess of electrons and the rod a deficit.

The Transfer of Charge

Glass and silk are insulators: charges stuck on them stay put.

Two positively charged rods repel each other.

History

600 BC Greeks first discover attractive properties of amber when rubbed.
1600 AD Electric bodies repel as well as attract
1735 AD du Fay: Two distinct types of electricity
1750 AD Franklin: Positive and Negative Charge
1770 AD Coulomb: "Inverse Square Law"
1890 AD J.J. Thompson: Quantization of electric charge - "Electron"

Summary of things we know:

- There is a property of matter called electric charge. (In the SI system its units are Coulombs.)
- Charges can be negative (like electrons) or positive (like protons).
- In matter, the positive charges are stuck in place in the nuclei. Matter is negatively charged when extra electrons are added, and positively charged when electrons are removed.
- Like charges repel, unlike charges attract.
- Charges travel in conductors, not in insulators
- Force of attraction or repulsion ~ 1 / r^2

Charge is Quantized

q = multiple of an elementary charge e: e = 1.6 x 10⁻¹⁹ Coulombs

	Charge	Mass	Diameter
electron	- e	1	0
proton	+ e	1836	~10 ⁻¹⁵ m
neutron	0	1839	~10 ⁻¹⁵ m
positron	+ e	1	0

(Protons and neutrons are made up of quarks, whose charge is quantized in multiples of e/3. Quarks can't be isolated.)

Coulomb's Law

 ε_0 = permitivity of free space = 8.86 x 10⁻¹² C²/Nm²

Coulomb's law describes the interaction between bodies due to their charges

Gravitational and Electric Forces in the Hydrogen Atom

Gravitational and Electric Forces in the Hydrogen Atom

m = 9.1 10⁻³¹ kg M = 1.7 10⁻²⁷ kg r_{12} = 5.3 10⁻¹¹ m

Electric Force

$$\vec{F}_g = G \frac{Mm}{r_{12}^2} \hat{r}$$

 $F_{g} = 3.6 \ 10^{-47} \, \text{N}$

Gravitational and Electric Forces in the Hydrogen Atom

Gravitational force

$$\vec{F}_g = G \frac{Mm}{r_{12}^2} \hat{r}$$

$$m = 9.1 \ 10^{-31} \text{ kg}$$
$$M = 1.7 \ 10^{-27} \text{ kg}$$
$$r_{12} = 5.3 \ 10^{-11} \text{ m}$$

Electric Force

$$\vec{F}_e = \left(\frac{1}{4\pi\varepsilon_0}\right) \frac{Qq}{r_{12}^2} \hat{r}$$

$$F_e = 3.6 \ 10^{-8} N$$

 $F_g = 3.6 \ 10^{-47} \ N$

Blue charges fixed, negative, equal charge (-q)

What is force on positive red charge +q?

Blue charges fixed, negative, equal charge (-q)

What is force on positive red charge +q ?

Consider effect of each charge separately:

Blue charges fixed, negative, equal charge (-q)

What is force on positive red charge +q?

Take each charge in turn:

Blue charges fixed, negative, equal charge (-q)

What is force on positive red charge +q?

Create vector sum:

Blue charges fixed, negative, equal charge (-q)

What is force on positive red charge +q?

Find resultant:

Superposition Principle

Example: electricity balancing gravity

Two identical balls, with mass m and charge q, hang from similar strings of length I.

After equilibrium is reached, find the charge q as a function of θ and I

Example: electricity balancing gravity

What forces are acting on the charged balls ?

Example: electricity balancing gravity

- Draw vector force diagram while identifying the forces.
- Apply Newton's 3rd Law, for a system in equilibrium, to the components of the forces.
- Solve!

