Coulomb's Law
. Jixdía
1

i-d)
比;
 - OL ए Lefót
 स"

Tr
ونِّنِّ

$$
F \propto \frac{q_{1} q_{2}}{r^{2}} \cdots(-1)
$$

", مْنَ
 ,

$$
\vec{F}=K \frac{q_{1} q_{2}}{r^{2}} \hat{r} \cdots(-2)
$$

 1 行 1/ - Unit Vector

وحداً السْمْحَ

ا́

 با SI 「

$$
K \approx 9 \times 10 \mathrm{Nm}^{2} \mathrm{c}^{-2}
$$

3
-

$$
K=\frac{1}{4 \pi \epsilon_{0}} \quad \ldots-\dot{\dot{c}} \dot{(1-3)}
$$

Permitivity of Vacuum
وكليَ

$$
\bar{F}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \ldots(1-4)
$$

$$
\epsilon_{0}=8.85 \times 10^{-12} \mathrm{c}^{2} N^{-1} \mathrm{~m}^{-2}
$$

$$
F=\frac{1}{4 \pi \epsilon} \frac{q_{1} q_{2}}{r^{2}} \hat{r}=\frac{1}{4 \pi k \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} r^{2} \cdots(1-5)
$$

 O Permitivity of medium

 - ciega $K=\epsilon / \epsilon$ 。

هـ غُ
(ل)

$$
=5.3 \times 10^{-11} \mathrm{~m}
$$

$$
\begin{aligned}
F_{c} & =\frac{1}{4 \pi t_{0}} \frac{q_{1} q_{2}}{r^{2}}-19 \\
& =\frac{9 \times 10^{2} \times 1.6 \times 10^{-19} \times 106 \times 10^{-19}}{\left(5.3 \times 10^{-11)^{2}}\right.} \\
F_{c} & =8.2 \times 10^{-8} \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
F_{g} & = \\
& \frac{G m_{1} m_{2}}{r^{2}} \\
& =\frac{6.67 \times 10^{-11} \times 9.1 \times 10^{-31} \times 1.67 \times 10^{-27}}{\left(5.3 \times 10^{-11}\right)^{2}} \\
& =3.7 \times 10^{-47} \mathrm{~N} .
\end{aligned}
$$

$$
\frac{F_{c}}{F_{g}}=\frac{8.2 \times 10^{-8}}{3.7 \times 10^{-47}}=2.2 \times 10^{3,} \quad \text { ís, }
$$

5
 - ($4.0 \times 10^{-16} \mathrm{~m}$)

$$
F=\frac{9 \times 10^{9} \times 1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{\left(4 \times 10^{-16}\right)^{2}}=14 \mathrm{~N}
$$

$$
\begin{array}{ll}
q_{1}=+1 \mu c ; & q_{2}=-3.6 \mu c ; \quad q_{3}=+4.8 \mu \mathrm{c} \\
r_{13}=4 \mathrm{~m} ; & r_{12}=3 \mathrm{~m} .
\end{array}
$$

$$
\therefore \quad F_{21}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r_{r_{12}^{2}}^{\prime}}=36 \times 10^{-4} \mathrm{~N}
$$

$$
\begin{aligned}
& F=\sqrt{\left(F_{i 1}\right)^{2}+\left(F_{31}\right)^{2}}=\sqrt{\left(36 \times 10^{-4}\right)^{2}+\left(27 \times 10^{-4}\right)^{2}} \\
&=4.5 \times 10^{-4} \mathrm{~N}
\end{aligned}
$$

6
أُ

$$
\tan \theta=\frac{F_{31}}{F_{21}}=\frac{27 \times 10^{-4}}{36 \times 10^{4}}=0.75
$$

or $\theta=36.9^{\circ}$

和 diédód

$$
q_{1}=\Pi \| c, q_{2}=-1 \mu c ; q_{3}=-2 \mu c
$$

$$
q_{y}=2 \mu \mathrm{c} ; \quad r=10 \mathrm{~cm}
$$

$$
\begin{aligned}
& F_{14}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{4}}{r^{2}}=\frac{9 \times 10^{9} \times 1 \times 10^{-6} \times 2 \times 10^{-6}}{\left(10 \times 10^{-2}\right)^{2}}=1.8 \mathrm{~N} \\
& F_{24}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{2} q_{4}}{r_{24}^{2}}=0.9 \mathrm{~N} \quad \begin{array}{l}
r_{24}^{2}=r^{2}+r^{22} \\
r_{24}^{2}=2 r^{2} \\
r_{24} q_{4}=3.6 \mathrm{~N} \\
r_{24}=\sqrt{2}
\end{array}
\end{aligned}
$$

$$
F_{34}=\frac{1}{4 \pi 6_{0}} \frac{q_{3} q_{4}}{r^{2}}=3.6 \mathrm{~N}
$$

$$
\vec{F}=\vec{F}_{14}+\vec{F}_{24}+\vec{F}_{34}
$$

7
ونَ do désio

$$
\begin{aligned}
F_{x} & =F_{34}+F_{24} \cos \theta \\
& =3.6+0.9 \cos 45 \\
& =3.6+0.6=4.2 \mathrm{~N} \\
F_{y} & =F_{24} \sin \theta-F_{14} \\
& =0.9 \sin 45=1.8 \\
& =0.6-1.8=-1.2 \mathrm{~N}
\end{aligned}
$$

الاُنْ كُ

$$
\begin{aligned}
F= & \sqrt{\left(F_{x}\right)^{2}+\left(F_{y}\right)^{2}} \\
& =\sqrt{(4.2)^{2}+(1.2)^{2}}=4.4 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \tan \phi=\frac{F_{y}}{F_{x}}=\frac{1.2}{4.2}=0.29 \\
& \therefore \phi=16
\end{aligned}
$$

, ds

 كَ

لنשٌ
-

$$
\begin{aligned}
& F_{1}=\frac{1}{4 \pi t_{0}} \frac{9 \times 400 \times 10^{-6}}{x^{2}} \\
& F_{2}=\frac{1}{4 \pi \epsilon_{0}} \frac{9 \times 900 \times 10^{-6}}{(0.5+x)^{2}}
\end{aligned}
$$

حو

$$
\begin{aligned}
& \frac{1}{4 \pi \epsilon_{0}} \frac{q \times 400 x 10^{-6}}{x^{2}}=\frac{1}{4 \pi t_{0}} \frac{q \times 900 x 1_{0}^{-6}}{(0-5+x)^{2}} \\
& \therefore \quad 9 x^{2}=4(0.5+x)^{2} \\
& 3 x=2(0.5+x) \\
& 3 x=1+2 x \\
& x=1 m
\end{aligned}
$$

