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Thus, by integration,

V(x) =
q

4πε0 x
+ V0, (5.21)

where V0 is an arbitrary constant. Finally, making use of the fact that V = V(r),

we obtain

V(r) =
q

4πε0 r
. (5.22)

Here, we have adopted the common convention that the potential at infinity is

zero. A potential defined according to this convention is called an absolute poten-

tial.

Suppose that we have N point charges distributed in space. Let the ith charge

qi be located at position vector ri. Since electric potential is superposable, and

is also a scalar quantity, the absolute potential at position vector r is simply the

algebraic sum of the potentials generated by each charge taken in isolation:

V(r) =

N∑

i=1

qi

4πε0 |r − ri|
. (5.23)

The work W we would perform in taking a charge q from infinity and slowly

moving it to point r is the same as the increase in electric potential energy of

the charge during its journey [see Eq. (5.4)]. This, by definition, is equal to the

product of the charge q and the increase in the electric potential. This, finally, is

the same as q times the absolute potential at point r: i.e.,

W = q V(r). (5.24)

5.5 Worked Examples

Example 5.1: Charge in a uniform electric field

Question: A charge of q = +1.20 µC is placed in a uniform x-directed electric

field of magnitude Ex = 1.40 × 103 N C−1. How much work must be performed in

order to move the charge a distance c = −3.50 cm in the x-direction? What is the

potential difference between the initial and final positions of the charge? If the
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electric field is produced by two oppositely charged parallel plates separated by

a distance d = 5.00 cm, what is the potential difference between the plates?

Solution: Let us denote the initial and final positions of the charge A and B,

respectively. The work which we must perform in order to move the charge from

A to B is minus the product of the electrostatic force on the charge due to the

electric field (since the force we exert on the charge is minus this force) and the

distance that the charge moves in the direction of this force [see Eq. (5.1)]. Thus,

W = −q Ex c = −(1.2 × 10−6) (1.40 × 103) (−3.50 × 10−2) = +5.88 × 10−5 J.

Note that the work is positive. This makes sense, because we would have to do

real work (i.e., we would lose energy) in order to move a positive charge in the

opposite direction to an electric field (i.e., against the direction of the electrostatic

force acting on the charge).

The work done on the charge goes to increase its electric potential energy, so

PB − PA = W. By definition, this increase in potential energy is equal to the

product of the potential difference VB − VA between points B and A, and the

magnitude of the charge q. Thus,

q (VB − VA) = PB − PA = W = −q Ex c,

giving

VB − VA = −Ex c = −(1.40 × 103) (−3.50 × 10−2) = 49.0 V.

Note that the electric field is directed from point B to point A, and that the former

point is at a higher potential than the latter.

It is clear, from the above formulae, that the magnitude of the potential differ-

ence between two points in a uniform electric field is simply the product of the

electric field-strength and the distance between the two points (in the direction

of the field). Thus, the potential difference between the two metal plates is

∆V = Ex d = (1.40 × 103) (5.00 × 10−2) = 70.0 V.

If the electric field is directed from plate 1 (the positively charged plate) to plate

2 (the negatively charged plate) then the former plate is at the higher potential.
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Example 5.2: Motion of an electron in an electric field

Question: An electron in a television set is accelerated from the cathode to the

screen through a potential difference of +1000 V. The screen is 35 mm from the

cathode. What is the net change in the potential energy of the electron during

the acceleration process? How much work is done by the electric field in accel-

erating the electron? What is the speed of the electron when it strikes the screen?

Solution: Let call the cathode point A and the screen point B. We are told that

the potential difference between points B and A is +1000 V, so

VB − VA = 1000 V.

By definition, the difference in electric potential energy of some charge q at points

B and A is the product of the charge and the difference in electric potential

between these points. Thus,

PB − PA = q (VB − VA) = (−1.6 × 10−19) (1000) = −1.6 × 10−16 J,

since q = −1.6 × 10−19 C for an electron. Note that the potential energy of the

electron decreases as it is accelerated towards the screen. As we have seen, the

electric potential energy of a charge is actually held in the surrounding electric

field. Thus, a decrease in the potential energy of the charge corresponds to a

reduction in the energy of the field. In this case, the energy of the field decreases

because it does work W ′ on the charge. Clearly, the work done (i.e., energy lost)

by the field equals the decrease in potential energy of the charge,

W ′ = −∆P.

Thus,

W ′ = 1.6 × 10−16 J.

The total energy E of the electron is made up of two components—the electric

potential energy P, and the kinetic energy K. Thus,

E = P + K.
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Of course,

K =
1

2
m v2,

where m = 9.11 × 10−31 kg is the mass of the electron, and v its speed. By

conservation of energy, E is a constant of the motion, so

KB − KA = ∆K = −∆P.

In other words, the decrease in electric potential energy of the electron, as it is

accelerated towards the screen, is offset by a corresponding increase in its kinetic

energy. Assuming that the electron starts from rest (i.e. vA = 0), it follows that

1

2
m v 2

B = −∆P,

or

vB =

√

√

√

√

−2 ∆P

m
=

√

√

√

√

−2 (−1.6 × 10−16)

9.11 × 10−31
= 1.87 × 107 m s−1.

Note that the distance between the cathode and the screen is immaterial in this

problem. The final speed of the electron is entirely determined by its charge, its

initial velocity, and the potential difference through which it is accelerated.

Example 5.3: Electric potential due to point charges

Question: A particle of charge q1 = +6.0 µC is located on the x-axis at the point

x1 = 5.1 cm. A second particle of charge q2 = −5.0 µC is placed on the x-axis at

x2 = −3.4 cm. What is the absolute electric potential at the origin (x = 0)? How

much work must we perform in order to slowly move a charge of q3 = −7.0 µC

from infinity to the origin, whilst keeping the other two charges fixed?

Solution: The absolute electric potential at the origin due to the first charge is

V1 = ke

q1

x1

= (8.988 × 109)
(6 × 10−6)

(5.1 × 10−2)
= 1.06 × 106 V.

Likewise, the absolute electric potential at the origin due to the second charge is

V2 = ke

q2

|x2|
= (8.988 × 109)

(−5 × 10−6)

(3.4 × 10−2)
= −1.32 × 106 V.
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The net potential V at the origin is simply the algebraic sum of the potentials due

to each charge taken in isolation. Thus,

V = V1 + V2 = −2.64 × 105 V.

The work W which we must perform in order to slowly moving a charge q3

from infinity to the origin is simply the product of the charge and the potential

difference V between the end and beginning points. Thus,

W = q3 V = (−7 × 10−6) (−2.64 × 105) = 1.85 J.

Example 5.4: Electric potential due to point charges

a
c

b c
q

b 

a
q

qx

y

Question: Suppose that three point charges, qa, qb, and qc, are arranged at the

vertices of a right-angled triangle, as shown in the diagram. What is the absolute

electric potential of the third charge if qa = −6.0 µC, qb = +4.0 µC, qc = +2.0 µC,

a = 4.0 m, and b = 3.0 m? Suppose that the third charge, which is initially at

rest, is repelled to infinity by the combined electric field of the other two charges,

which are held fixed. What is the final kinetic energy of the third charge?

Solution: The absolute electric potential of the third charge due to the presence

of the first charge is

Va = ke

qa

c
= (8.988 × 109)

(−6 × 10−6)

(
√

42 + 32)
= −1.08 × 104 V,
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where use has been made of the Pythagorean theorem. Likewise, the absolute

electric potential of the third charge due to the presence of the second charge is

Vb = ke

qb

b
= (8.988 × 109)

(4 × 10−6)

(3)
= 1.20 × 104 V.

The net absolute potential of the third charge Vc is simply the algebraic sum of

the potentials due to the other two charges taken in isolation. Thus,

Vc = Va + Vb = 1.20 × 103 V.

The change in electric potential energy of the third charge as it moves from its

initial position to infinity is the product of the third charge, qc, and the difference

in electric potential (−Vc) between infinity and the initial position. It follows that

∆P = −qc Vc = −(2 × 10−6) (1.2 × 103) = −2.40 × 10−3 J.

This decrease in the potential energy of the charge is offset by a corresponding

increase ∆K = −∆P in its kinetic energy. Since the initial kinetic energy of the

third charge is zero (because it is initially at rest), the final kinetic energy is

simply

K = ∆K = −∆P = 2.40 × 10−3 J.
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