Thyroid Hormone

- Secreted by the thyroid gland
- Gland secret major hormone;
 - Thyroxine (T4)
 - Triiodothyronine (T3)
- Controlled by the primarily TSH (Thyroid stimulating hormone) secreted by the ant Pituitary gland.
- Gland also secrete calcitonin (imp hormone in calcium metabolism).

lodine metabolism

- lodine is required for the formation of thyroid (150-200μg/day) (sr 5-10 μg/dL)
- About 80% is stored in Thyroid gland.
- Ingredients which prevent the utilization of lodine are called as Goitrogens.

Synthesis & secretion of Thyroxin

Uptake of Salvaging of Release lodine lodine Transport of Oxidation of Hydrolysis Thyroid lodine Hormones Catabolism of Iodination Utilization thyroid Hormones Coupling Storage

Effect of Thyroid Hormones

Effect of Thyroid Hormones

- · Fat mobilization.
- Oxidation of FA
- Inversely related to hormone levels.

Lipid metabolism

- Enhance insulin dependent glucose entry
- Increased gluconeogenesis & glycogenolysis.

Carbohydrate metabolism

· For normal growth.

Growth

 Physical and mental development in fetal, neonatal, young and adult.

Development

- Cardiovascular
- Central nervous system
- Reproductive system
- Hemopoiesis
- Skeletal, GIT, Kidney

Other effect

Thyroid Disorders

Cretinism

Hyperthyroidism

Hypothyroidism

Euthyroid Goiter

Steroid Hormones

- Steroid hormones: produced in the adrenal cortex, testis, ovary, and some peripheral tissues (adipose tissue, the brain!)
- All steroid hormones share a typical (but not identical) ring structure.

Steroid hormones

- All steroid hormones are derived from cholesterol and differ only in the ring structure and side chains attached to it.
- All steroid hormones are lipid soluble

Types of steroid hormones

- Glucocorticoids; cortisol is the major representative in most mammals
- Mineralocorticoids; aldosterone being most prominent
- Androgens such as testosterone
- Estrogens, including estradiol and estrone
- Progestogens (also known a progestins) such as progesterone

Steroid hormones

- Steroid hormones are not water soluble so have to be carried in the blood complexed to specific binding globulins.
- Corticosteroid binding globulin carries cortisol
- Sex steroid binding globulin carries testosterone and estradiol
- In some cases a steroid is secreted by one cell and is converted to the active steroid by the target cell: an example is androgen which secreted by the gonad and converted into estrogen in the brain

Functions of Steroid Hormones

- Steroid hormones play important roles in:
 - carbohydrate regulation (glucocorticoids)
 - mineral balance (mineralocorticoids)
 - reproductive functions (gonadal steroids)
- Steroids also play roles in inflammatory responses, stress responses, bone metabolism, cardiovascular fitness, behavior, cognition, and mood.

Sources of Cholesterol for Steroid Synthesis

- Cholesterol is also taken up by the cell in the form of low density lipoprotein (LDL).
 - LDL is a complex composed of cholesterol, phospholipids, triglycerides, and proteins (proteins and phospholipids make LDL soluble in blood).
 - LDL is taken into cells via LDL receptors, and broken down into esterified cholesterol, and then free cholesterol:

Adrenal Steroids

- The adrenal glands are located immediately superior to the kidneys.
- There are three classes of adrenal steroids:
 - mineralocorticoids,
 - glucocorticoids, and
 - androgens

Parathyroid Hormone

- provides a powerful mechanism for controlling extracellular calcium and phosphate concentrations by regulating:
- intestinal reabsorption
- renal excretion
- exchange between the extracellular fluid and bone of these ions.

- Excess activity of the parathyroid gland causes rapid absorption of calcium salts from the bones, with resultant hypercalcemia in the extracellular fluid;
- conversely, hypofunction of the parathyroid glands causes hypocalcemia, often with resultant tetany.

Chemistry of Parathyroid Hormone

- synthesized in the form of a preprohormone
- cleaved to a prohormone
- ■then to the hormone itself with 84 amino acids by the endoplasmic reticulum and Golgi apparatus
- finally is packaged in secretory granules in the cytoplasm of the cells.

Effect on Ca⁺ and Phosphate Concentrations in the ECF

- suddenly infusing PTH
- calcium ion concentration begins to rise and reaches a plateau in about 4 hours.
- the phosphate concentration, however, falls more rapidly than the calcium rises and reaches a depressed level within 1-2 hours.

Figure 79-18

Approximate changes in calcium and phosphate concentrations during the first 5 hours of parathyroid hormone infusion at a moderate rate.

- PTH † calcium and phosphate absorption from the bone
- □PTH ↓excretion of calcium by the kidneys.
- ■PTH ↑renal phosphate excretion **

** an effect that is usually great enough to override increased phosphate absorption from the bone.

Figure 79-18

Approximate changes in calcium and phosphate concentrations during the first 5 hours of parathyroid hormone infusion at a moderate rate.

PTH 个calcium and phosphate absorption from the bone

First phase	Second phase
rapid	slow
Minutes-hours	Days-weeks
Activation of already existing osteocytes /osteoblasts	Proliferation of osteoclasts
Receptor protiens on octeocytes/osteoblasts that bind PTH and activate calcium pump	Activated osteocytes/osteoblasts send secondary signals to osteoclasts
Promote calcium and phosphate absorption	Osteoclastic absorption of bone itself

Disorders of PTH

- hypoparathyroidism
- Primary hyperparathyroidism
- Secondary hyperparathyroidism

Hypoparathyroidism

- □↓PTH→↓Ca+ reabsorption from bone→↓ Ca+ level in body fluids
- Bone remains strong
- If parathyroid glands are suddenly removed:
- ✓ Ca⁺ levels fall from 9.4mg/dl to 6-7 within few days
- Phosphate concentration may double
- √ ↓Ca⁺→tetany
- □ Laryngeal muscles tetany → obstructs respiration → death

Hypoparathyroidism

- ■Treatment
- hypoparathyroidism is usually not treated with PTH administration.
- ✓ large quantities of vitamin D daily
- ✓ 1-2 grams of Calcium
- √ 1,25-dihydroxycholecalciferol

Primary Hyperparathyroidism

- Osteoblastic activity in the bones also increases greatly in attempt to make up for the old bone absorbed by the osteoclastic activity.
- When the osteoblasts become active, they secrete large quantities of alkaline phosphatase. Therefore, one of the important diagnostic findings in hyperparathyroidism is a high level of plasma alkaline phosphatase.

Primary Hypeparathyroidism

- ■Tumor in parathyroid glands (females mainly) → excess PTH → ↑Ca concentration in ECF. ↓Phosphate
- In severe hyperparathyroidism the bone may be eaten away entirely.
- Indeed, the reason a <u>hyperparathyroid person seeks</u> medical attention is often a broken bone.

Kidney stones

- Mild hyperparathyroidism leads to formation of kidney stones(calcium phosphate, calcium oxalate stones)
- ■Kidney stones are more common in alkaline urine(low solubility in alkaline media) → treatment include acidotic diet & acidic drugs.

Secondary hyperparathyroidism

- high levels of PTH occur as a compensation for hypocalcemia
- this contrasts with primary hyperparathyroidism, which is associated with hypercalcemia.
- caused by vitamin D deficiency or chronic renal disease in which the damaged kidneys are unable to produce sufficient amounts of the active form of vitamin D