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Lecture No.4:

Overall Order of Irreversible Reactions from the Half-Life t,,. Sometimes, for the

irreversible reaction

dl’ .
_T;’tzk{ji(;%.

If the reactants are present in their stoichiometric ratios, they will remain at
that ratio throughout the reaction. Thus, for reactants A and B at any time
Cy/Cy = Blee, and we may write

aA + BB + -+ - = products Fa

— dcﬂ — a IB )b —_ (ﬁ)b atFte-
k cn
or
{ECA T
T kC%
Integrating for n # 1 gives
Chm = Cly = k(n — 1)t (24)

Defining the half-life of the reaction, t,,, as the time needed for the concentration
of reactants to drop to one-half the original value, we obtain

_O5) -,
2= " = . =l
kin —1) (25)

This expression shows that a plot of log t,, vs. log Ca, gives a straight line of slope 1 -
n, as shown in Fig. 3.5.

L

Ea. 33“'\.".&1 The half-life method requires making a series of runs,

. o’ Slope = 1 - n each at a different initial concentration fractional
£ }""‘(\—ljrder 1 K Orcer > 1 conversion in a given time rises with increased
= concentration for orders greater than one, drops with

Order = 1 . -
-o—ﬂ-"-/o_—f*- increased concentration for orders less than one, and

. " first order
log Cpp —_—

is independent of initial concentration for reactions of

Figure 3.5 Overall order of reaction from

a series of half-life experiments, each at a
different initial concentration of reactant.
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Fractional Life Method ¢;. The half-life method can be extended to any frac-
tional life method in which the concentration of reactant drops to any fractional
value F = C,/C,, in time 7z. The derivation is a direct extension of the half-life

method giving

Fl—u -1

- 1-n
k(n — 1)'5'“'

e

(33b)

Thus, a plot of log t versus log C,, as shown in Fig. 3.5, will give the reac-

tion order.

Irreversible Reactions in Parallel. Consider the simplest case, A decomposing by

two competing paths, both elementary reactions:

t]
A—R
k,
A——=5
ace >
LTI kiCo + kyCy = (ky + ko) Cy (34)
dC
re = fi_IR = k,C, (35)
dC
Fg = _drﬂ =k,Cy (36)

The k values are found using all three differential rate equations. First of all, Eq. 34,

which is of simple first order, is integrated to give

Ca
—In——=(k, + k)t
C,q_n ( 1

(37

When plotted as in Fig. 3.6, the slope is k; + k,. Then dividing Eq. 35 by Eq.

36 we obtain the following (Fig. 3.6).
i+ _ dCR _ ;(1
rg dCs K,
which when integrated gives simply

CR_CRﬂ_k1

Cy— Cy Ky

(38)

This result is shown in Fig. 3.6. Thus, the slope of a plot of Cg versus Cs gives the
ratio k; / ko. Knowing k; / kp as well as ki+ kpgives kjand k,. Typical concentration-
time curves of the three components in a batch reactor for the case where CRo = Cso

=0 and k> kj, are shown in Fig. 3.7.
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Figure 3.6 Evaluation of the rate constants for two competing elementary
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Figure 3.7 Typical concentration-time curves for competing reactions.

Homogeneous Catalyzed Reactions. Suppose the reaction rate for a homogeneous
catalyzed system is the sum of rates of both the uncatalyzed and catalyzed reactions,

dc,
A—!'-k"' R (_E.)] =G
dC
A+C—sR+cC| - (d—;") = kCACe

Che overall rate of disappearance of reactant A is then

dc
- T: = k,Cy, + kyCoCp = (ky + k,Cc)Cy (39)

C
“ln 22 =~ (1 - X,) = (ky + kaCo)t = Koerea? (40)
AD
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kohserved = k) + kaCp, from Eq. 40

Ce

Figure 3.8 Rate constants for a homogeneous catalyzed reaction
from a series of runs with different catalyst concentrations.

Making a series of runs with different catalyst concentrations allows us to find
k, and k,. This is done by plotting the observed k value against the catalyst
concentrations as shown in Fig. 3.8, The slope of such a plot is k, and the
intercept k.

Autocatalytic Reactions. A reaction in which one of the products of reaction
acts as a catalyst is called an autocatalytic reaction. The simplest such reaction is

A+R—=R+R (41a)
for which the rate equation is
dC
—ry = — Trﬂ =kC,Cq (41b)

Because the total number of moles of A and R remain unchanged as A is
consumed, we may write that at any time

Thus, the rate equation becomes
dC
dt

= kCy(Cy— Cy)

Rearranging and breaking into partial fractions, we obtain

dc, 1 (a’CA_I_ dc, )=kdf

HEA(CU_CAJ=_EI] Ca G—Cy
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which on integration gives

Co(Cy— C) CplC
In AP0 ALy SRR Oy = (Cg + Cg) ki
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Figure 3.9 Conversion-time and rate-concentration curves for autocatalytic reaction
of Eq. 41. This shape is typical for this type of reaction.

In terms of the initial reactant ratio M = Cp,/C,, and fractional conversion of
A, this can be written as

M+ X,

I —x,)

= Cpo(M + 1)kt = (C,, + Cgy)kt (43)

For an autocatalytic reaction in a batch reactor some product R must be present
if the reaction is to proceed at all. Starting with a very small concentration of
R, we see qualitatively that the rate will rise as R is formed. At the other extreme,
when A is just about used up the rate must drop to zero. This result is given in
Fig. 3.9, which shows that the rate follows a parabola, with a maximum where
the concentrations of A and R are equal.

To test for an autocatalytic reaction, plot the time and concentration coordi-
nates of Eq. 42 or 43, as shown in Fig. 3.10 and see whether a straight line passing
through zero is obtained.

Irreversible Reactions in_Series. We first consider consecutive unimolecular type
first-order reactions such as

A—R——S5
—~
e
é.: Slope = Cpk
=
=
5
el = - Eq. 42 or 43
.z
Gl\-: -
il -~
= o

Figure 3.10 Test for the autocatalytic reaction of Eq. 41.
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whose rate equations for the three components are

dC .

ry = d: = —k,C, (44)
dc

' = ﬁ‘_:{ =k Cp — kyCr (43)
dC.

re="2"=kCr (46)

Let us start with a concentration Cap of A, no R or S present, and see how the
concentrations of the components change with time. By integration of Eq. 44 we find

the concentration of A to be

—In Ca kit or Ch= Cpe ™™
CA#:'

(47

To find the changing concentration of R, substitute the concentration of A from Eq.
47 into the differential equation governing the rate of change of R, Eq. 45; thus

dCy + kyCr = kyCage k! (48) | which is a first-order linear
dt differential equation of the form
dy

—_ =

dx Py=¢0 By multiplying through with the integrating factor el PAX the solution is

el e = e/Pdr dx + constant
¥

Applying this general procedure to the integration of Eq. 48:

The integrating factor=eX2t, The constant of integration= —k;Cpo / (k1 — ko) from the
initial conditions Cgo = 0 at t = 0, the final expression for the changing concentration

of Ris

. gkt gkt
Cr = Lmk] (kz - kl ' k] -k,

(49)

Noting that there is no change in total number of moles, the stoichiometry relates the

concentrations of reacting components by

Cap=Cy + Gy + G
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which with Eqs. 47 and 49 gives|

k
CS = CAI:I (1 T 2 E_kﬂ =

-’if] e kzz) {5“}
kl - k: kz - kl

Thus, we have found how the concentrations of components A, R, and S vary

with time.
Now if k; is much larger than k&, Eq. 50 reduces

Lo

CS = CAU {1. - E_";'.!}.‘ kz = k|

In other words, the rate is determined by k, or the first step of the two-step

reaction.
If k; is much larger than k,, then

Cs=Cyp (1 —e7™™), ky =k,

which is a first-order reaction governed by k,, the slower step in the two-step
reaction. Thus, in general, for any number of reactions in series it is the slowest
step that has the greatest influence on the overall reaction rate.

As may be expected, the values of k, and k, also govern the location and
maximum concentration of R. This may be found by differentiating Eq. 49 and
setting dCy/dt = 0. The time at which the maximum concentration of R occurs

is thus

1 _ In (kzllllk'l

)

i‘I'l'l3|ii = k

log mean kl - I;‘:]

(51)

The maximum concentration of R is found by combining Eqgs. 49 and 51 to give

CR FILAx (Ji"‘-l)J%-E‘ll:-.lv-z_kltI

(52)

IC“-."-'I.U kZ
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Figure 3.11 Typical concentration-time curves
for consecutive first-order reactions.

Figure 3.11 shows the general
characteristics of the concentration-time
curves for the three components; A
decreases exponentially, R rises to a
maximum and then falls, and S raises
continuously, the greatest rate of increase
of S occurring where R is a maximum. In
particular, this figure shows that one can
evaluate k; and k, by noting the
maximum concentration of intermediate
and the time when this maximum is
reached.




