2.1 Average Rates of change and secant lines

Given an arbitrary function $y=f(x)$, we calculate the average rate of change of y with respect to x over the interval $\left[x_{1}, x_{2}\right.$] by dividing the change in the value of $\mathrm{y}, \Delta y=f\left(x_{2}\right)-f\left(x_{1}\right)$, by the length $\Delta x=x_{2}-x_{1}=h$ of the interval over which the change occurs (where h is Δx).

Definition

The Average rate of change of $y=f(x)$ with respect to x over the interval $\left[x_{1}, x_{2}\right]$ is
$\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}, \quad h \neq 0$
Geometrically, the rate of change of f over $\left[x_{1}, x_{2}\right]$ is the slope of the line through the points $P\left(x_{1}, f\left(x_{1}\right)\right)$ and $Q\left(x_{2}, f\left(x_{2}\right)\right)$, a line joining two points of a curve is a secant to the curve. The average rate of change of f from x_{1} to x_{2} is identical with the slope of secant PQ.

2.2 Defining the slope of curve

If there is a tangent line to the curve at p - a line that just touches the curve like the tangent to a circle- it would be reasonable to identify the slope of the tangent as the slope of the curve at P .

For circles, A line L is tangent to a circle at a point P if L passes through
 P perpendicular to the radius r at P .

To define tangency for general curves, we need an approach that takes into account the behavior of the secants through P and nearby points Q as Q moves toward P along the curve.

1. Start with what we can calculate, namely the slope of the secant PQ.
2. Investigate the limiting value of the secant slope as Q approaches P along the curve.
3. If the limit exists, take it to be the slope of the curve at P and define the tangent to the curve at P to be the line through P with this slope.

Example 1:

Find the speed of the falling rock from the top of a tall cliff at $\mathrm{t}=1$ and $\mathrm{t}=2$ sec, where $y=4.9 \mathrm{t}^{2}$.

Solution :

We calculate the average speed of the rock over a time interval $\left(t_{0}, t_{0}+h\right)$, where $h=\Delta t$

$$
\frac{\Delta y}{\Delta t}=\frac{4.9\left(t_{0}+h\right)^{2}-4.9\left(t_{0}\right)^{2}}{h} \quad \text { average speed }
$$

We cannot use this formula to calculate speed at $\mathrm{h}=0$, since $\frac{\Delta y}{\Delta t}=\infty$, we can use it to calculate average speeds $\left(\frac{\Delta y}{\Delta t}\right)$ for increasing short time $\Delta t=h=0.00001$ etc. $\Delta t \neq 0$ starting at $t_{0}=1$ and $t_{0}=2$ show as table below

Interval time (h)	Average speed $\left(\frac{\Delta y}{\Delta t}\right)$ starting at $t_{0}=1$	Average speed $\left(\frac{\Delta y}{\Delta t}\right)$ starting at $t_{0}=2$
1	14.7	24.5
0.1	10.29	20.09
0.01	9.849	19.649
0.001	9.8049	19.6049
0.0001	9.80049	19.60049
	$\frac{\Delta y}{\Delta t}=9.8+4.9 \mathrm{~h}$	$\frac{\Delta y}{\Delta t}=19.6+4.9 \mathrm{~h}$

Example 2:

Find the slope of the parabola $\mathrm{y}=\mathrm{x}^{2}$ at the point $\mathrm{P}(2,4)$. Write an equation for the tangent to the parabola at this point.

Solution :

We begin with a secant line through $\mathrm{P}(2,4)$ and $\mathrm{Q}\left(2+\mathrm{h},(2+\mathrm{h})^{2}\right)$ nearby.

Secant slope $=\frac{\Delta y}{\Delta x}=\frac{(2+h)^{2}-(2)^{2}}{h}=\frac{h^{2}+4 h+4-4}{h}=\frac{h^{2}+4 h}{h}=h+4$
In the curve Q approaches P along the curve, h approaches zero and the secant slope ($\mathrm{h}+4$) approaches 4 .

The tangent to the parabola at P is the line through P with slope 4 .
$y=4+4(x-2)$
$y=4 x-4$

2.3 Limit of function values

Suppose $f(x)$ is defined on an open interval about $x 0$, except possibly at $x 0$, itself. If $f(x)$ is arbitrarily close $t 0 L$ (as close to L as we like) for all x sufficiently close to x 0 . we say that f approaches the limit L as x approaches x 0 , and write.
$\lim _{x \rightarrow x_{0}} f(x)=L$, which is read " the limit of $\mathrm{f}(\mathrm{x})$ as approaches x 0 is L "

Example 3:

How does the function $f(x)=\frac{\left(x^{2}-1\right)}{(x-1)}$ behaves near $\mathrm{x}=1$?

Solution :

The given formula defines f for all real numbers x except $\mathrm{x}=1$ (we cannot divide by zero). For any $x \neq 1$, we can simplify the formula by factoring the numerator and canceling common factors :

$$
f(x)=\frac{\left(x^{2}-1\right)}{(x-1)}=x+1 \quad \text { for } \quad x \neq 1
$$

The graph of f is the line $y=x+1$ with the point $(1,2)$ removed, This removed point is shown as a "hole" in figure.

Even $f(1)$ is not defined, it is clear that we can make the value of $f(x)$ as close as we want to 2 by choosing x close enough to 1

Chapter two

Limits and Continuity

The closer x gets to 1 , the closer $f(x)=\frac{\left(x^{2}-1\right)}{(x-1)}$ seems to get to 2

Value of x below and above 1	$f(x)=\frac{\left(x^{2}-1\right)}{(x-1)}=x+1$ for $\mathrm{x} \neq 1$
0.9	1.9
1.1	2.1
0.99	1.99
1.01	2.01
0.999	1.999
1.001	2.001
0.999999	2.999999
1.000001	2.000001

Example 4 : this illustrates that the limit value of a function does not depend on how the function is defined at the point being approached. There are three function as below when f has limit as $\mathrm{x} \rightarrow 1$ even though f is not defined at $\mathrm{x}=1$

$f(x)=\frac{\left(x^{2}-1\right)}{(x-1)}$

$$
g(x)=\frac{\left(x^{2}-1\right)}{(x-1)} \quad x \neq 1 \quad h(x)=x+1
$$

$$
1 \quad x=1
$$

The limits of $f(x), g(x)$ and $h(x)$ all equal 2 as x approaches 1 . only $h(x)$ has the same function value as its limit at $\mathrm{x}=1$.

Example 5 :

a- if f is the identity function $f(x)=x$, then for any value of $x 0$

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} x=x_{0}
$$

b- if f is the constant function $\mathrm{f}(\mathrm{x})=\mathrm{k}$ (function with the constant value k), then for any value of x 0

$$
\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} k=k
$$

For instances of each of these rules we have
$\lim _{x \rightarrow 3} x=3 \quad$ and $\quad \lim _{x \rightarrow-7} 4=\lim _{x \rightarrow 2} 4=4$

Constant function

identity function

Example 6 :

Discuss the behavior of the following functions as $\mathrm{x} \rightarrow 0$.
$0 \quad x<0$
a- $U(x)=$

$$
1 x \geq 0
$$

b- $g(x)=\frac{1}{x} \quad x \neq 0$

$$
0 \quad x=0
$$

$$
0 \quad x \leq 0
$$

C- $f(x)=$

$$
\sin \left(\frac{1}{x}\right)_{x>0}
$$

a- It jumps: the unit step function $U(x)$ has no limit as $x \rightarrow 0$ because its values jump at $\mathrm{x}=0$. for negative values of x arbitrarily close to zero, $U(x)=0$. for positive values of x arbitrarily close to zero, $U(x)=1$. there is no single value L approached by $U(x)$ as $x \rightarrow 0$, see figure above.
b- It grows too " large " to have a limit : $\mathrm{g}(\mathrm{x})$ has no limit as $\mathrm{x} \rightarrow 0$ because the values of $\mathrm{g}(\mathrm{x})$ grow arbitrarily large in absolute value as $\mathrm{x} \rightarrow 0$ and do not stay close to any fixed real number, see figure above.
c- It oscillates too much to have a limit: $\mathrm{f}(\mathrm{x})$ has no limit as $\mathrm{x} \rightarrow 0$ because the function's values oscillate between +1 and -1 in every open interval containing 0 . the values do not stay close to any one number as $x \rightarrow 0$, see figure above.

2.4 The Limit Laws

To calculate limits of functions (when $\mathrm{x} \rightarrow \mathrm{x} 0, \mathrm{x} \rightarrow \mathrm{c}, \mathrm{x} \rightarrow \mathrm{a}, \mathrm{x} 0, \mathrm{c}, \mathrm{a}$ are constant values) that are arithmetic combinations of functions having known limits, we can use several easy rules.

Theorm 1 limit Laws if $\mathrm{L}, \mathrm{M}, \mathrm{c}$ and k are real numbers and $\lim _{x \rightarrow c} f(x)=L \quad$ and $\quad \lim _{x \rightarrow c} g(x)=M$, then the properties of limits are :

1. Sum Rule :

$$
\lim _{x \rightarrow c}(f(x)+g(x))=L+M
$$

2. Difference Rule :

$$
\lim _{x \rightarrow c}(f(x)-g(x))=L-M
$$

3. Constant Multiple Rule: $\quad \lim _{x \rightarrow c}(k \cdot f(x))=k \cdot L$
4. Product Rule :

$$
\lim _{x \rightarrow c}(f(x) \cdot g(x))=L \cdot M
$$

5. Quotient Rule :

$$
\lim _{x \rightarrow c}\left(\frac{f(x)}{g(x)}\right)=\frac{L}{M}, \quad \mathrm{M} \neq 0
$$

6. Power Rule : $\quad \lim _{x \rightarrow c}[f(x)]^{n}=L^{n}, \quad \mathrm{n}$ a positive integer
7. Root Rule : $\quad \lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{L}=L^{1 / n}$, n a positive integer
(if n is even, we assume that $\left.\lim _{x \rightarrow c} f(x)=L\right\rangle 0$)

Example 7:

Use the observations $\lim _{x \rightarrow c} k=k$ and $\lim _{x \rightarrow c} x=c$, and the properties of limits to find the following limits.
a- $\lim _{x \rightarrow c}\left(x^{3}+4 x^{2}-3\right)$
b- $\lim _{x \rightarrow c} \frac{\left(x^{4}+x^{2}-1\right)}{x^{2}+5}$
c- $\lim _{x \rightarrow-2} \sqrt{\left(4 x^{2}-3\right)}$

Solution :

a- $\begin{aligned} \lim _{x \rightarrow c}\left(x^{3}+4 x^{2}-3\right) & =\lim _{x \rightarrow c}\left(x^{3}\right)+\lim _{x \rightarrow c}\left(4 x^{2}\right)-\lim _{x \rightarrow c}(3) \\ & =c^{3}+4 c^{2}-3\end{aligned}$

$$
=c^{3}+4 c^{2}-3
$$

b-

$$
\begin{aligned}
\lim _{x \rightarrow c} \frac{\left(x^{4}+x^{2}-1\right)}{x^{2}+5}= & \frac{\lim _{x \rightarrow c}\left(x^{4}+x^{2}-1\right)}{\lim _{x \rightarrow c}\left(x^{2}+5\right)} \\
& =\frac{\lim _{x \rightarrow c}\left(x^{4}\right)+\lim _{x \rightarrow c}\left(x^{2}\right)-\lim _{x \rightarrow c}(1)}{\lim _{x \rightarrow c}\left(x^{2}\right)+\lim _{x \rightarrow c}(5)} \\
& =\frac{c^{4}+c^{2}-1}{c^{2}+5}
\end{aligned}
$$

C-

$$
\begin{aligned}
\lim _{x \rightarrow-2} \sqrt{\left(4 x^{2}-3\right)} & =\sqrt{\lim _{x \rightarrow-2}\left(4 x^{2}-3\right)} \\
& =\sqrt{\lim _{x \rightarrow-2}\left(4 x^{2}\right)-\lim _{x \rightarrow-2}(3)} \\
& =\sqrt{4(-2)^{2}-3} \\
& =\sqrt{16-3} \\
& =\sqrt{13}
\end{aligned}
$$

Theorm 2 limits of Polynomials

if $\quad P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots \ldots \ldots \ldots \ldots . .+a_{0}$ is the polynomial function, then

$$
\lim _{x \rightarrow c} P(x)=P(c)=a_{n} c^{n}+a_{n-1} c^{n-1}+a_{n-2} c^{n-2}+\ldots \ldots \ldots \ldots . .+a_{0}
$$

Theorm 3 limits of Rational functions

if $P(x)$ and $Q(x)$ are polynomial functions and $Q(c) \neq 0$, then

$$
\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)}
$$

Example 8 :

The following calculation illustrates Theorems 2 and 3 :
$\lim _{x \rightarrow-1} \frac{\left(x^{3}+4 x^{2}-3\right)}{x^{2}+5}=\frac{(-1)^{3}+4(-1)^{2}-3}{(-1)^{2}+5}=\frac{0}{6}=0$

Example 9 :

Evaluate $\quad \lim _{x \rightarrow-1} \frac{\left(x^{2}+x-2\right)}{x^{2}-x}$

Solution :

We cannot substitute $x=1$ because it makes the denominator zero. We test the numerator to see if it, too, is zero at $x=1$. it is, so it has a factor of ($x-1$) in common with the denominator. Canceling the ($\mathrm{x}-1$)'s given a simpler fraction with the same values as the original for $x \neq 1$:
$\frac{\left(x^{2}+x-2\right)}{x^{2}-x}=\frac{(x-1)(x+2)}{x(x-1)}=\frac{(x+2)}{x} \quad, \quad$ if $x \neq 1$
Using the simpler fraction, we find the limit of these values as $x \rightarrow 1$ by substitution :
$\lim _{x \rightarrow-1} \frac{\left(x^{2}+x-2\right)}{x^{2}-x}=\lim _{x \rightarrow-1} \frac{(x+2)}{x}=\frac{1+2}{1}=3$

Example 10 :

Evaluate $\quad \lim _{x \rightarrow 0} \frac{\sqrt{\left(x^{2}+100\right)}-10}{x^{2}}$

Solution

We can create a common factor by multiplying both numerator and denominator by the conjugate radical expression $\left(\sqrt{\left(x^{2}+100\right)}+10\right)$

$$
\begin{aligned}
\frac{\sqrt{\left(x^{2}+100\right)}-10}{x^{2}} & =\frac{\sqrt{\left(x^{2}+100\right)}-10}{x^{2}} \cdot \frac{\sqrt{\left(x^{2}+100\right)}+10}{\sqrt{\left(x^{2}+100\right)}+10} \\
& =\frac{x^{2}+100-100}{x^{2}\left(\sqrt{\left(x^{2}+100\right)}+10\right)}=\frac{x^{2}}{x^{2}\left(\sqrt{\left(x^{2}+100\right)}+10\right)} \\
& =\frac{1}{\left(\sqrt{\left(x^{2}+100\right)}+10\right)}
\end{aligned}
$$

Therefore;

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{\left(x^{2}+100\right)}-10}{x^{2}} & =\lim _{x \rightarrow 0} \frac{1}{\left(\sqrt{\left(x^{2}+100\right)}+10\right)} \\
& =\frac{1}{\left(\sqrt{\left(0^{2}+100\right)}+10\right)} \\
& =\frac{1}{20}=0.05
\end{aligned}
$$

Theorm 4 The Sandwich Theorem

Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in some open interval containing c , except possibly at $\mathrm{x}=\mathrm{c}$ itself. Suppose also that
$\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L$
Then $\lim _{x \rightarrow c} f(x)=L$
The Sandwich Theorem is also called the Squeeze Theorem or Pinching Theorem.

Example 11:

Given that $\quad 1-\frac{x^{2}}{4} \leq u(x) \leq 1+\frac{x^{2}}{2} \quad$ for all $\mathrm{x} \neq 0$
Find $\lim _{x \rightarrow 0} u(x)$, no matter how complicated u is.

Solution

Since $\quad \lim _{x \rightarrow 0}\left(1-\frac{x^{2}}{4}\right)=1 \quad$ and $\quad \lim _{x \rightarrow 0}\left(1+\frac{x^{2}}{2}\right)=1$
The Sandwich Theorem implies that $\lim _{x \rightarrow 0} u(x)=1$, see figure above

Example 12 :

The Sandwich Theorem help us establish several important limit rules:
(a) $\lim _{x \rightarrow \theta} \sin (\theta)=0$
(b) $\lim _{x \rightarrow \theta} \cos (\theta)=1$
(c) for any function $\mathrm{f}, \lim _{x \rightarrow c}|f(x)|=0$ implies $\lim _{x \rightarrow c} f(x)=0$

Solution

(a) we established that $-|\theta| \leq \sin \theta \leq|\theta|$ for all θ (see fig.)

Since $\lim _{\theta \rightarrow 0}(-|\theta|)=\lim _{\theta \rightarrow 0}(|\theta|)=0$, we have $\lim _{\theta \rightarrow 0} \sin (\theta)=0$
(b) from $0 \leq 1-\cos \theta \leq|\theta|$ for all θ (see fig.), and we have
$\lim _{\theta \rightarrow 0}(1-\cos (\theta))=0$ or $\lim _{\theta \rightarrow 0}(\cos (\theta))=1$
(c) since $-|f(x)| \leq f(x) \leq|f(x)|$ and $-|f(x)|$ and $|f(x)|$ have limit 0 as $\mathrm{x} \rightarrow \mathrm{c}$ it follows that $\lim _{x \rightarrow c}|f(x)|=0$.

Theorm 5 if $f(x) \leq g(x)$ for all x in some open interval containing c, except possibly at $x=c$ itself, and the limits of f and g both exist as x approaches c, then

$$
\lim _{x \rightarrow c} f(x) \leq \lim _{x \rightarrow c} g(x)
$$

Example 13: what values of x satisfy the inequality $|2 x-8|\langle 2$?

Solution

To find out, we solve the inequality:

$$
\begin{aligned}
& |2 x-8|\langle 2 \\
& -2\langle 2 x-8\langle 2 \\
& 6\langle 2 x\langle 10 \\
& 3\langle x<5
\end{aligned}
$$

Theorm 6

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \quad(\theta \text { in radians }) \quad \text { (the proof page } 70 \text { in book) }
$$

Example 14: show that
a- $\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}=0 \quad$ and \quad b- $\lim _{x \rightarrow 0} \frac{\sin 2 x}{5 x}=\frac{2}{5}$

Solution

a- Using the half-angle formula $\cos (h)=1-2 \sin ^{2}(h / 2)$, we calculate

$$
\begin{array}{rlr}
\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h} & =\lim _{h \rightarrow 0}-\frac{2 \sin ^{2}(h / 2)}{h} \\
& =-\lim _{h \rightarrow 0} \frac{\sin (\theta)}{\theta} \sin \theta \\
& =-(1)(0)=0 & \text { let } \theta=h / 2
\end{array}
$$

b- we produce it by multiplying numerator and denominator by (2/5):

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{5 x} & =\lim _{x \rightarrow 0}-\frac{\left(\frac{2}{5}\right) \cdot \sin (2 x)}{\left(\frac{2}{5}\right) \cdot 5 x} \\
& =\left(\frac{2}{5}\right) \lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x} \quad \text { let } \theta=2 x \quad \text { sin } c e \quad \lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x}=1 \\
& =\left(\frac{2}{5}\right)(1)=\frac{2}{5}
\end{aligned}
$$

Example 15: find $\lim _{t \rightarrow 0} \frac{\tan (t) \sec (2 t)}{3 t}$

Solution

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\tan (t) \sec (2 t)}{3 t} & =\frac{1}{3} \lim _{t \rightarrow 0} \frac{\sin (t)}{t} \cdot \frac{1}{\cos (t)} \cdot \frac{1}{\cos (2 t)} & & \text { when } \quad \tan (t)=\frac{\sin (t)}{\cos (t)} \\
& =\frac{1}{3}(1)(1)(1)=\frac{1}{3} & \text { also } & \sec (2 t)=\frac{1}{\cos (2 t)}
\end{aligned}
$$

Theorem 7

All the limit laws in Theorem1 are true when we replace $\lim _{x \rightarrow c}$ by $\lim _{x \rightarrow \infty}$ or $\lim _{x \rightarrow-\infty}$.
That is, the variable x may approach a finite number c or $\pm \infty$.

Example 16: find
a- $\lim _{x \rightarrow \infty}\left(5+\frac{1}{x}\right)$
b- $\lim _{x \rightarrow-\infty}\left(\frac{\pi \sqrt{3}}{x^{2}}\right)$

Solution

a- $\lim _{x \rightarrow \infty}\left(5+\frac{1}{x}\right)=\lim _{x \rightarrow \infty}(5)+\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)=5+0=5$
b-

$$
\begin{aligned}
\lim _{x \rightarrow-\infty}\left(\frac{\pi \sqrt{3}}{x^{2}}\right)= & \lim _{x \rightarrow-\infty}\left(\pi \sqrt{3} \cdot \frac{1}{x} \cdot \frac{1}{x}\right) \\
& =\lim _{x \rightarrow-\infty}(\pi \sqrt{3}) \cdot \lim _{x \rightarrow-\infty}\left(\frac{1}{x}\right) \cdot \lim _{x \rightarrow-\infty}\left(\frac{1}{x}\right) \\
& =(\pi \sqrt{3}) \cdot(0) \cdot(0)=0
\end{aligned}
$$

Example 17: find

a- $\lim _{x \rightarrow \infty}\left(\frac{5 x^{2}+8 x-3}{3 x^{2}+2}\right)$ b- $\lim _{x \rightarrow-\infty}\left(\frac{11 x+2}{2 x^{3}-1}\right)$

Solution

a- (divide numerator and denominator by x^{2})

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\frac{5 x^{2}+8 x-3}{3 x^{2}+2}\right) & =\lim _{x \rightarrow \infty}\left(\frac{5+(8 / x)-\left(3 / x^{2}\right)}{3+\left(2 / x^{2}\right)}\right) \\
& =\frac{5+0-0}{3+0}=\frac{5}{3}
\end{aligned}
$$

b- (divide numerator and denominator by x^{3})

$$
\begin{aligned}
\lim _{x \rightarrow-\infty}\left(\frac{11 x+2}{2 x^{3}-1}\right) & =\lim _{x \rightarrow-\infty}\left(\frac{\left(11 / x^{2}\right)+\left(2 / x^{3}\right)}{2-\left(1 / x^{3}\right)}\right) \\
& =\frac{0+0}{2-0}=0
\end{aligned}
$$

Example 18 : find $a-\lim _{x \rightarrow \infty} \sin \left(\frac{1}{x}\right)$ and b- $\lim _{x \rightarrow \pm \infty} x \cdot \sin \left(\frac{1}{x}\right)$

Solution

a- We introduce the new variable $t=\left(\frac{1}{x}\right)$, we know that $t \rightarrow 0^{+}$as $x \rightarrow \infty$ therefore,

$$
\lim _{x \rightarrow \infty} \sin \left(\frac{1}{x}\right)=\lim _{t \rightarrow 0^{+}} \sin (t)=0
$$

b- By the same way, we calculate the limits as $x \rightarrow \infty$ and $x \rightarrow-\infty$:

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} x \cdot \sin \left(\frac{1}{x}\right)=\lim _{t \rightarrow 0^{+}}\left(\frac{\sin t}{t}\right)=1 \quad \text { and } \\
& \lim _{x \rightarrow-\infty} x \cdot \sin \left(\frac{1}{x}\right)=\lim _{t \rightarrow 0^{-}}\left(\frac{\sin t}{t}\right)=1
\end{aligned}
$$

Example 19 : find $\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+16}\right)$

Solution

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+16}\right) & =\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+16}\right) \frac{\left(x+\sqrt{x^{2}+16}\right)}{\left(x+\sqrt{x^{2}+16}\right)} \\
& \left.=\lim _{x \rightarrow \infty} \frac{\left(x^{2}-\left(x^{2}+16\right)\right)}{\left(x+\sqrt{x^{2}+16}\right)}=\lim _{x \rightarrow \infty} \frac{-16}{\left(x+\sqrt{x^{2}+16}\right.}\right)
\end{aligned}
$$

As $x \rightarrow \infty$, the denominator becomes large, therefore dividing numerator and denominator by (x).
$\left.\lim _{x \rightarrow \infty} \frac{-16}{\left(x+\sqrt{x^{2}+16}\right.}\right)=\lim _{x \rightarrow \infty} \frac{\frac{-16}{x}}{\left(1+\sqrt{\frac{x^{2}}{x^{2}}+\frac{16}{x^{2}}}\right)}=\frac{0}{(1+\sqrt{1+0})}=0$

Infinite limits

$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}\right)=\infty$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}\right)=-\infty$

Example 20 : find $\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}$ and $\lim _{x \rightarrow 1^{-}} \frac{1}{x-1}$

Solution

Think about the number $(x-1)$ and its reciprocal. As $x \rightarrow 1^{+}$, we have $(x-1) \rightarrow 0^{+}$and $1 /(x-1) \rightarrow \infty$. As $x \rightarrow 1^{-}$, we have $(x-1) \rightarrow 0^{-}$and $1 /(x-1) \rightarrow-\infty$. As shown below:
$\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=\infty$
$\lim _{x \rightarrow 1^{-}} \frac{1}{x-1}=-\infty$
Example 21 : find the limit of the rational functions a- $\lim _{x \rightarrow 2} \frac{(x-2)^{2}}{\left(x^{2}-4\right)}$

$$
\text { b- } \lim _{x \rightarrow 2} \frac{(x-2)}{\left(x^{2}-4\right)} \text { c- } \lim _{x \rightarrow 2^{+}} \frac{(x-3)}{\left(x^{2}-4\right)} \text { d- } \lim _{x \rightarrow 2^{-}} \frac{(x-3)}{\left(x^{2}-4\right)} \text { e- } \lim _{x \rightarrow 2} \frac{(x-3)}{\left(x^{2}-4\right)} \text { f- } \lim _{x \rightarrow 2} \frac{(2-x)}{(x-2)^{3}}
$$

Solution

a- $\lim _{x \rightarrow 2} \frac{(x-2)^{2}}{\left(x^{2}-4\right)}=\lim _{x \rightarrow 2} \frac{(x-2)(x-2)}{(x-2)(x+2)}=\lim _{x \rightarrow 2} \frac{(x-2)}{(x+2)}=\frac{0}{4}=0$
b- $\lim _{x \rightarrow 2} \frac{(x-2)}{\left(x^{2}-4\right)}=\lim _{x \rightarrow 2} \frac{(x-2)}{(x-2)(x+2)}=\lim _{x \rightarrow 2} \frac{1}{(x+2)}=\frac{1}{4}$
c- $\lim _{x \rightarrow 2^{+}} \frac{(x-3)}{\left(x^{2}-4\right)}=\lim _{x \rightarrow 2^{+}} \frac{(x-3)}{(x-2)(x+2)}=-\infty \quad$ the value are negative for $x>2$, xnear 2
d- $\lim _{x \rightarrow 2^{-}} \frac{(x-3)}{\left(x^{2}-4\right)}=\lim _{x \rightarrow 2^{-}} \frac{(x-3)}{(x-2)(x+2)}=\infty \quad$ the value are negative for $x<2$, xnear 2
e- $\lim _{x \rightarrow 2} \frac{(x-3)}{\left(x^{2}-4\right)}=\lim _{x \rightarrow 2} \frac{(x-3)}{(x-2)(x+2)} \quad$ does not exist
f- $\lim _{x \rightarrow 2} \frac{(2-x)}{(x-2)^{3}}=\lim _{x \rightarrow 2} \frac{-(x-2)}{(x-2)(x-2)(x-2)}=\lim _{x \rightarrow 2} \frac{-1}{(x-2)^{2}}=-\infty$

