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3.1   Tangents and the derivative at a point 

      To find a tangent to an arbitrary curve ( )xfy =  at a point ( )( )00 , xfxP , we 

calculate the slope of the secant through P  and a nearby point 

( )( )hxfhxQ ++ 00 , , we then investigate the limit of the slope as 0→h . If the 

limit exists, we call it the slope of the curve at P  and define the tangent at P  

to be the line through P  having this slope. 

                

Definition  

The  slope of  the curve ( )xfy =  at the point ( )( )00 , xfxP  is the number 

( ) ( )
h

xfhxf
m

h

00

0
lim

−+
=

→
            (provided the limit exists) 

The tangent line to the curve at P  is the line through P  with this slope. 

Example 1 :  

Find the slope of the curve xy /1=  at any point 0≠= ax .  

1- what is the slope at the point 1−=x ? 

2- Where dose the slope equal 4/1− ? 

Solution  

1- here ( ) xxf /1= . The slope at (a, 1/a) is 

( ) ( ) ( )
( )

( ) ( ) 200

000

11limlim

1lim

11

limlim

ahaahaha
h

haa
haa

hh
aha

h
afhaf

hh

hhh

−=
+
−

=
+

−
=

+
+−

=
−

+=
−+

→→

→→→  

When 1−=x , the slope is 
( )

1
1
1

2 −=
−
−  

2- the slope of  xy /1=  at the point where 2

1
a

−  is 2

1
a

−  .it will be 
4
1

−  

provided that  
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4
11

2 −=−
a

 

This equation is equivalent to 42 =a , so 2=a  or  2−=a  . the curve has slope 

4
1

−  at the two points 







2
1,2  and 






 −−

2
1,2 . 

Definition  

The  derivative of a function f  at a point 0x , denoted  ( )0xf ′ ,  is 

( ) ( ) ( )
h

xfhxf
xf

h

00

00 lim
−+

=′
→

 

Provided this limit exists. 

 

3.2   The derivative as a function  

Definition   The derivative of the function ( )xf  with respect to the 

variable x  is the function f ′  whose value at x  is 

                     ( ) ( ) ( )
h

xfhxfxf
h

−+
=′

→0
lim  

Where xxxh −=∆= 2  

Provided the limit exists. 

       If we write xhz += , then  xzh −=  and h  approaches 0 if and only if z  

approaches x . Therefore, an equivalent definition of the derivative is as 

follows. This formula is sometimes more convenient to use when finding a 

derivative function. 

Alternative formula for the derivative 

                        ( ) ( ) ( )
xz

xfzfxf
xz −

−
=′

→
lim  

and some common alternative notations for the derivative are 

 ( ) ( )xf
dx
d

dx
df

dx
dyyxf ===′=′  
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Example 2 :  

Differentiate ( )
1−

=
x

xxf   

Solution  

We use the definition of the derivative   ( ) ( ) ( )
h

xfhxfxf
h

−+
=′

→0
lim   

( )
1−

=
x

xxf     and    ( ) ( )
( ) 1−+

+
=+

hx
hxhxf  , so 

( ) ( ) ( )

( )
( )

( )( ) ( )
( )( )

( )( )

( )( ) ( )20

0

0

0

0

1
1

11
1lim

11
1lim

11
111lim

11lim

lim

−
−

=
−−+

−
=

−−+
−

⋅=





 −

=−
−−+

−+−−+
⋅=

−
−

−+
+

=

−+
=′

→

→

→

→

→

xxhx

xhx
h

h

bd
cbad

d
c

b
a

xhx
hxxxhx

h

h
x

x
hx

hx
h

xfhxfxf

h

h

h

h

h

 

Example 3 :  

a- find the derivative of ( ) xxf =  for 0>x . 

b- find the tangent line to the curve xy =  at 4=x .  

 Solution  

a- we use the alternative formula to calculate f ′ : 

( ) ( ) ( )

( )
( ) ( )

( ) xxz

xzxz
xz

xz
xz
xz

xfzfxf

xz

xz

xz

xz

2
11lim

lim

lim

lim

=
+

=

+⋅−
−

=

−
−

=

−
−

=′

→

→

→

→
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b- the slope of the curve at 4=x  is 

( )
4
1

42
14 ==′f  

The tangent is the line through the point ( )2,4  with slope ( )4/1  

( )

1
4
1

4
4
12

+=

−+=

xy

xy
 

Example 4 :  

Show that the function xy =  is differentiable on ( )0,∞−  and ( )∞,0  but has no 

derivative at 0=x . 

 Solution  

The derivative of function xy =  to the right of the origin (positive x ) 

( ) ( ) ( ) 11 =⋅== x
dx
dx

dx
dx

dx
d  

And to the left of the origin (negative x ) 

( ) ( ) ( ) 11 −=⋅−=−= x
dx
dx

dx
dx

dx
d  

There is no derivative at the origin because the one-sided derivatives differ 

there:  

Right-hand derivative of x  at zero 

( ) 11lim

lim

lim
00

lim

0

0

00

==

=

=
−+

=

+

+

++

→

→

→→

h

h

hh

h
h

h
h

h
h

 

left-hand derivative of x  at zero 

( ) 11lim

lim

lim
00

lim

0

0

00

−=−=

−
=

=
−+

=

−

−

−−

→

→

→→

h

h

hh

h
h

h
h

h
h
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3.3   Differentiation Rules  

Powers, Multiples, Sums, and Differences  

A simple rule of differentiation is that the derivative of every constant 

function is zero. 

1- Derivative of a constant function 

if f  has the constant value ( ) cxf = , then 

( ) 0== c
dx
d

dx
df  

Proof  we apply the definition of the derivative to ( ) cxf = , the function 

whose outputs have the constant value c , at every value of x , we find that 

( ) ( ) ( ) ( ) 00limlimlim
000

==
−

=
−+

=′
→→→ hhh h

cc
h

xfhxfxf  

2- Power Rule for positive integers: 

if n  is a positive integer, then 

1−⋅= nn xnx
dx
df  

Proof   the formula 

( ) ( )1221 ........ −−−− ++++⋅−=− nnnnnn xzxxzzxzxz  

From the alternative formula for the definition of the derivative, 

( ) ( ) ( )

( ) ( )
( )

1

1221 ........lim

limlim

−

−−−−

→

→→

⋅=

−
++++⋅−

=

−
−

=
−
−

=′

n

nnnn

xz

nn

xzxz

xn
xz

xzxxzzxz
xz
xz

xz
xfzfxf

 

The power rule is actually valid for all real numbers n  (positive or negative). 

For ex.  ( ) 211 −− −==





 xx

dx
d

xdx
d  

             ( ) ( ) 2/12/1

2
1 −== xx

dx
dx

dx
d  
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Example 5 :  

Differentiate the following powers of x  . 

(a) 3x    (b)  3/2x     (c)  2x    (d)  4

1
x

    (e)  3/4−x     (f)  π+2x  

 Solution 

(a) ( ) 2133 33 xxx
dx
d

=⋅= −           (b)  ( ) ( ) ( ) ( ) 3/113/23/2 3/23/2 −− ⋅=⋅= xxx
dx
d  

(c) ( ) 122 2 −⋅= xx
dx
d             (d) ( ) ( ) 5

5144
4

4441
x

xxx
dx
d

xdx
d

−=⋅−=⋅−==





 −−−−  

(e) ( ) ( ) ( ) ( ) ( )3/713/43/4 3/43/4 −−−− ⋅−=⋅−= xxx
dx
d      

(f) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )πππππ πππ xxxx
dx
dx

dx
d

⋅+⋅





=⋅+⋅






=⋅






 +== −+++ 2

2
12

2
1

2
1 2/12/12/12  

 

3- Derivative constant multiple Rule   

If u  is a differentiable function of x , and c  is a constant, then 

                       ( )
dx
duccu

dx
d

=  

In particular, if n  is any real number, then 

                       ( ) ( ) 1−⋅⋅= nn xnccx
dx
d  

Proof    

             

( ) ( ) ( )

( ) ( )

dx
duc

h
xuhxuc

h
xcuhxcucu

dx
d

h

h

⋅=

−+
⋅=

−+
=

→

→

0

0

lim

lim
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Example 6 :  

(a) the derivative formula 23x  is 

( ) ( ) xxx
dx
d 6233 2 =⋅⋅=    

We describe that, the graph of 2xy =  multiplying y-coordinate by 3, then we 

multiply the slope at each point by 3. 

 

(b) negative of a function 

The derivative of the negative of a differentiable function u  is the negative 

of the function's derivative. The constant multiple Rule with 1−=c gives 

( ) ( )
dx
duu

dx
du

dx
du

dx
d

−=⋅−=⋅−=− 11  

 

4- Derivative Sum Rule   

If u  and v  are differentiable function of x , then their Sum vu +  is 

differentiable at every point where u  and v  are both differentiable. At such 

points, 

( )
dx
dv

dx
duvu

dx
d

+=+  

For ex., if xxy 124 += , then y  is the sum of ( ) 4xxu =  and ( ) xxv 12= . We then 

have 

( ) ( ) 12412 34 +=+= xx
dx
dx

dx
dy

dx
d  

 

Example 7 :  

Find the derivative of the polynomial ( ) 153/4 23 +−+= xxxy  
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Solution 

( ) ( )( ) ( ) ( )

( ) ( ) ( ) 53/830523/43

153/4

22

3

−⋅+=+−⋅+=

+−+=

xxxx
dx
dy

dx
dx

dx
dx

dx
dx

dx
d

dx
dy

 

 

5- Derivative Product Rule   

If u  and v  are differentiable function at x , then so is their product uv , and 

                  ( )
dx
duv

dx
dvuvu

dx
d

+=⋅   , in prime notation, ( ) uvvuvu ′+′=′⋅   

 

Example 8 :  

Find the derivative of ( ) ( )31 32 +⋅+= xxy  

Solution 

From the product Rule with ( )12 += xu  and ( )33 += xv , we find 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

xxx
xxxx

xxxx

x
dx
dxx

dx
dxxx

dx
d

635
6233

2331

133131

24

424

322

233232

++=

+++=

⋅++⋅+=

+++++=+⋅+

 

6- Derivative Quotient Rule   

If u  and v  are differentiable function at x  and if ( ) 0≠xv , then the quotient 

vu /  is differentiable at x , and 

                         2v
dx
dvu

dx
duv

v
u

dx
d −

=





    

Example 9 :  

Find the derivative of ( )
( )1

1
3

2

+
−

=
t
ty  
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Solution 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( )
( )

( )
( )23

24

23

244

23

223

23

3223

1
23

1
3322

1
3121

1

1111

+

++−
=

+

+−+
=

+

⋅−−⋅+
=

+

+−−−+
=

t
ttt

t
tttt

t
tttt

t

t
dx
dtt

dx
dt

dx
dy

 

7- Second- and Higher-order Derivatives  

If ( )xfy =  is the differentiable function, then its derivative ( )xf ′  is also a 

function. If f ′  is also differentiable, then we can differentiate f ′  to get a 

new function of x  denoted by f ′′ . The function f ′′  is called the second 

derivative of f  and written in several ways: 

( ) 





==′′=′′

dx
dy

dx
d

dx
ydyxf 2

2

 

If y ′′  is differentiable, its derivative, 33 // dxyddxydy =′′=′′′ , is the third 

derivative of y  with respect to x. also for nth derivative of y  with respect 

to x  for any positive integer n, given as 

( ) ( )








== −

n

n
nn

dx
ydy

dx
dy 1  

Example 10 :  

Find the first four derivatives of 23 23 +−= xxy  are  

first derivative: xxy 63 2 −=′  

second derivative:  66 −=′′ xy  

third derivative:   6=′′′y  

fourth derivative:  ( ) 04 =y  
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3.4   Derivatives of Trigonometric Functions  

1. Derivative of the Sine Function 

To calculate the derivative of ( ) ( )xxf sin= , for x  measured in radians, we 

combine the limits  

( ) ( ) ( ) ( ) ( )hxhxhx sincoscossinsin +=+  

If ( ) ( )xxf sin= , then 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xxx
h

hx
h
hx

h
hx

h
hx

h
hxhx

h
xhxhx

h
xhx

h
xfhxfxf

hh

hh

hh

hh

cos1cos0sinsinlimcos1coslimsin

sincoslim1cossinlim

sincos1cossinlimsinsincoscossinlim

sinsinlimlim

00

00

00

00

=⋅+⋅=





⋅+






 −

⋅=







 ⋅+






 −

⋅=

+−⋅
=

−+
=

−+
=

−+
=′

→→

→→

→→

→→

 

Since, the derivative of the sine function is the cosine function: 

( ) ( )xx
dx
d cossin =  

Example 11 :  

Find the derivatives of the sine function involving differences, products, and 

quotients:  (a)  ( )xxy sin2 −=       (b)  ( )xxy sin2 ⋅=       (c)  ( )
x

xy sin
=    

Solution 

(a)  ( )xxy sin2 −=  :      ( ) ( )xxx
dx
dx

dx
dy cos2sin2 −=−=             

(b)  ( )xxy sin2 ⋅=   :      ( ) ( ) ( ) ( )xxxxxxx
dx
dx

dx
dy sin2cossin2sin 22 ⋅+⋅=⋅+⋅=  

(c)  ( )
x

xy sin
=        :      

( ) ( ) ( ) ( ) ( )
22

sincos1sinsin

x
xxx

x

xx
dx
dx

dx
dy −⋅

=
⋅−⋅

=      
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2. Derivative of the Cosine Function 

To calculate the derivative of ( ) ( )xxf cos= , for x  measured in radians, we 

combine the limits  

( ) ( ) ( ) ( ) ( )hxhxhx sinsincoscoscos −=+  

If ( ) ( )xxf cos= , then we can compute the limit of the difference quotient: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xxx
h

hx
h
hx

h
hx

h
hx

h
hxhx

h
xhxhx

h
xhx

h
xfhxfxf

hh

hh

hh

hh

sin1sin0cossinlimsin1coslimcos

sinsinlim1coscoslim

sinsin1coscoslimcossinsincoscoslim

coscoslimlim

00

00

00

00

−=⋅−⋅=





⋅−






 −

⋅=







 ⋅−






 −

⋅=

−−⋅
=

−−
=

−+
=

−+
=′

→→

→→

→→

→→

 

Since, the derivative of the cosine function is the negative of the sine 

function: 

( ) ( )xx
dx
d sincos −=  

Example 12 :  

Find the derivatives of the cosine function in combinations with other 

functions:  (a)  ( )xxy cos5 +=       (b)  ( ) ( )xxy cossin ⋅=       (c)  ( )
( )x
xy

sin1
cos
−

=    

Solution 

(a)  ( )xxy cos5 +=       :      ( ) ( ) ( )xx
dx
dx

dx
d

dx
dy sin5cos5 −=+=             

(b)  ( ) ( )xxy cossin ⋅=   :      ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( )xxxxxx

x
dx
dxx

dx
dx

dx
dy

22 sincoscoscossinsin

sincoscossin

−=⋅+−⋅=

⋅+⋅=  
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(c)  ( )
( )x
xy

sin1
cos
−

=     :     

( )( ) ( ) ( ) ( )( )

( )( )
( )( ) ( )( ) ( ) ( )( )

( )( )
( ) ( )( ) ( )

( )( )
( )( )
( )( ) ( )( ) ( ) ( )[ ]1sincos

sin1
1

sin1
sin1

sin1
cossinsin

sin1
cos0cossinsin1

sin1

sin1coscossin1

22
2

2

22

2

2

=+
−

=
−
−

=

−
++−

=

−
−⋅−−⋅−

=

−

−⋅−⋅−
=

xx
xx

x
x

xxx
x

xxxx
x

x
dx
dxx

dx
dx

dx
dy

     

 

3. Derivatives of the other Basic Trigonometric Functions 

Because ( )xsin  and ( )xcos  are differentiable functions of x , the related 

functions   ( ) ( )
( )x
xx

cos
sintan = ,    ( ) ( )

( )x
xx

sin
coscot = ,    ( ) ( )x

x
cos

1sec = ,    ( ) ( )x
x

sin
1csc = , 

are differentiable at every value of x  at which they are defined. Their 

derivatives, calculated from the Quotient Rule, are given by the following 

formulas: 

( ) ( )xx
dx
d 2sectan =                                  ( ) ( )xx

dx
d 2csccot −=    

( ) ( ) ( )xxx
dx
d tansecsec ⋅=                              ( ) ( ) ( )xxx

dx
d cotcsccsc ⋅−=  

Example 13 :   Find     ( )x
dx
d tan     

Solution 

( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )( )
( )

( ) ( )
( ) ( ) ( )x

xx
xx

x
xxxx

x

x
dx
dxx

dx
dx

x
x

dx
dx

dx
d

2
22

22

2

2

sec
cos

1
cos

sincos

cos
sinsincoscos

cos

cossinsincos

cos
sintan

==
+

=








 −⋅−⋅
=

















 ⋅−⋅
=








=
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Example 14 :   Find     y ′′  if  ( )xy sec=    

Solution 
( ) ( )

( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )( )xxx

xxx
xxxxx

x
dx
dxx

dx
dx

xx
dx
dy

xxy

22

23

2

tansecsec
sectansec

tansectansecsec

sectantansec

tansec

tansec

+⋅=

⋅+=

⋅+⋅=

⋅+⋅=

⋅=′′

⋅=′

 

 

3.5   The chain Rule   

If ( )uf  is differentiable at the point ( )xgu =  and ( )xg  is differentiable at x , 

then the composite function ( )( ) ( )( )xgfxgf =  is differentiable at x , and 

( ) ( ) ( )( ) ( )xgxgfxgf ′⋅′=′
  

In Leibniz's notation, if ( )ufy =  and ( )xgu = , then 

dx
du

du
dy

dx
dy

⋅=  

Where 
du
dy  is evaluated at ( )xgu = . 

 

Example 15 :   Find the derivative of the function ( )22 13 += xy    

Solution 

The function here is composite of ( ) 2uufy ==  and ( ) 13 2 +== xxgu , 

therefore, ( ) uuf
du
dy 2=′=  and ( ) xxg

dx
du 6=′=   

( ) xxxxxu
dx
du

du
dy

dx
dy 1236613262 22 +=⋅+⋅=⋅=⋅=   
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Example 16 :   An object moves along the x-axis so that its position at any 

time 0≥t  is given by ( ) ( )22 1cos += ttx . Find the velocity of the object as a 

function of t .  

Solution 

We know that the velocity is 
dt
dx . In this instance, x is a composite function: 

( )ux cos=  and 12 += tu , we have 

( )u
du
dx sin−=  and t

dt
du 2=  

  

By the chain Rule, 

( ) ( ) ( )1sin221sin2sin 22 +−=⋅+−=⋅−=⋅= tttttu
dt
du

du
dx

dt
dx   

 

Example 17 :   Differentiate ( )xx +2sin  with respect to x .   

Solution  We apply the Chain Rule directly and find 

( ) ( ) ( )12cossin 22 +⋅+=+ xxxxx
dx
d  

 

Example 18 :   Find the derivative of the function ( ) ( )( )ttg 2sin5tan −=    

Solution 

( ) ( )( )[ ]

( )( ) ( )( )

( )( ) ( ) ( )

( )( ) ( )( ) ( )
( )( ) ( )( )tt

tt

t
dt
dtt

t
dt
dt

t
dt
dtg

2sin5sec2cos2
22cos2sin5sec

22cos02sin5sec

2sin52sin5sec

2sin5tan

2

2

2

2

−⋅−=

⋅−⋅−=







 ⋅−⋅−=

−⋅−=

−=′
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The Chain Rule with Powers of function 

If f  is a differentiable function of u  and if u  is a differentiable function of 

x , then substituting ( )ufy =  into the Chain Rule formula 

dx
du

du
dy

dx
dy

⋅=  

Leads to the formula 

( ) ( )
dx
duufuf

dx
d ′=  

If n  is any real number and f  is a power function, ( ) nuuf = , the power rule 

tells us that ( ) 1−=′ nnuuf . if u  is a differentiable function of x , then we can 

use the chain rule to extend this to the Power Chain Rule.  

( )
dx
duunu

dx
d nn 1−⋅=  

Example 19 :   Find the derivative of a power of an expressions follows: 

(a)   ( )7435 xx
dx
d

−        (b)   







− 23
1

xdx
d          (c)   ( )( )x

dx
d 5sin  

Solution 

(a)  

( ) ( ) ( )
( ) ( )
( ) ( )32643

32643

43643743

41557

43557

5575

xxxx

xxxx

xx
dx
dxxxx

dx
d

−⋅−⋅=

−⋅⋅−⋅=

−⋅−⋅=−

   

 

(b)  

( )

( ) ( )

( ) ( )

( )2

2

2

1

23
3

3231

23231

23
23

1

−
−=

⋅−⋅−=

−⋅−⋅−=

−=







−

−

−

−

x

x

x
dx
dx

x
dx
d

xdx
d
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(c)   ( )( ) ( ) ( )

( ) ( )xx

x
dx
dxx

dx
d

cossin5

sinsin5sin

4

45

⋅⋅=

⋅⋅=    

Example 20 :  show that the slope of every line tangent to the curve 

( ) 








−
= 321

1
x

y  is positive. 

Solution    

we find the derivative: 

( )( )
( )( ) ( )

( )( ) ( )

( )4

4

4

3

21
6

2213

21213

21

x

x

x
dx
dx

x
dx
d

dx
dy

−
=

−⋅−⋅−=

−⋅−⋅−=

−=

−

−

−

 

At any point ( )yx,  on the curve, 2/1≠x  and the slope of the tangent line is 

( )421
6

xdx
dy

−
=  

The quotient of two positive numbers. 

 

3.6   Implicit Differentiation   

Most of the functions described by an equation of the form ( )xfy = . Another 

situation occurs when we encounter equations like 

0933 =−+ xyyx ,        02 =− xy ,       02522 =−+ yx  

To calculate these types of function, we treat ( )y  as a differentiable implicit 

function of ( )x  and apply the usual rules to differentiate both sides of the 

defining equation. 

1. differentiate both sides of the equation with respect to ( )x , treating ( )y  

as a differentiable function of  ( )x . 
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2. collect the terms with 
dx
dy  on one side of the equation and solve for 

dx
dy  

Example 21 :  find 
dx
dy  if xy =2 . 

Solution    

The equation xy =2  defines two differentiable functions of x that we can 

actually find, namely xy =1  and xy −=2 , then 

xdx
dy

2
11 =  

xdx
dy

2
12 −=  

By other way to find 
dx
dy , we simply differentiable both sides of the equation 

xy =2  with respect to x , treating ( )xfy =  as a differentiable function of x : 

 

xy =2      the chain rule gives ( ) ( )[ ] ( ) ( )
dx
dyyxfxfxf

dx
dy

dx
d 2222 =′==  

ydx
dy

dx
dyy

2
1

12

=

=⋅
 

 

This one formula gives the derivative we calculated for both explicit 

solutions xy =1  and xy −=2 : 

xydx
dy

2
1

2
1

1

1 ==  

( ) xxydx
dy

2
1

2
1

2
1

2

2 −=
−

==  
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Example 22 :  find the slope of the circle 2522 =+ yx  at the point (3,-4). 

Solution    

The circle is combined graphs of two differentiable functions, 2
1 25 xy −=  

and 2
2 25 xy −−= . The point (3,-4) lies on the graph of 2y , so we can find 

the slope by calculating the derivative directly, using the power chain rule: 

( )( ) ( ) ( )xxx
dx
d 225

2
125 2/122/12 −⋅−−=



 −−

−  , then 

4
3

8
6

162
6

9252
6

252
2

3
2

3

2 ==
−

−=
−

−
−=

−

−
−=

== xx x
x

dx
dy  

We can solve this problem more easily by differentiable the given equation 

of the circle implicitly with respect to x  : 

( ) ( ) ( )

y
x

dx
dy

dx
dyyx

dx
dy

dx
dx

dx
d

−=

=+

=+

022

2522

    

The slope at (3,-4) is 
( ) 4

3
4

3

4,3

=
−

−=−
−y

x  

Example 23 :  find 
dx
dy  if ( )xyxy sin22 += . 

Solution    

We differentiate the equation implicitly  

( )

( ) ( ) ( )( )

( )( ) ( )

( )( ) 





 +⋅+=

⋅+=

+=

+=

dx
dyxyxyx

dx
dy

xy
dx
dxyx

dx
dy

xy
dx
dx

dx
dy

dx
d

xyxy

cos22

cos22

sin

sin

22

22
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( )( ) ( )

( )( )[ ] ( )

( )
( )xyxy
xyyx

dx
dy

xyyx
dx
dyxyxy

xyyx
dx
dyxxy

dx
dyy

cos2
cos2

cos2cos2

cos2cos2

−
+

=

+=





⋅−

+=





⋅−

 

 

Derivatives of Higher Order 

Implicit differentiation can also be used to find higher derivatives. 

Example 24 :  find 2

2

dx
yd  if 832 23 =− yx . 

Solution    

To start, we differentiable both sides of the equation with respect to x  in 

order to find 
dx
dyy =′ . 

( ) ( )

0

066

832

2

2

23

≠=′

=′−

=−

ywhen
y

xy

yyx
dx
dyx

dx
d

 

We now apply the quotient rule to find y ′′  

y
y
x

y
x

y
yxxy

y
x

dx
dy ′−=

′−
=








=′′ 2

2

2

22 22  

We substitute 
y

xy
2

=′  to express y ′′  in terms of x and y. 

022
3

42

2

2

≠−=⋅−=′′ ywhen
y
x

y
x

y
x

y
x

y
xy  
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Example 25 :  show that the point (2, 4) lies on the curve 0933 =−+ xyyx . 

Then find the tangent. 

 

Solution    

The point (2, 4) lies on the curve because its coordinates satisfy the equation 

given for the curve : ( ) ( ) 07264842942 33 =−+=⋅⋅−+ . 

To find the slope of the curve at (2, 4), we first use implicit differentiation to 

find a formula for 
dx
dy : 

( ) ( ) ( ) ( )

( )

( ) ( )
( )
( )xy

xy
dx
dy

xy
dx
dyxy

yx
dx
dyxy

dx
dxy

dx
dyx

dx
dyyx

dx
dxy

dx
dy

dx
dx

dx
d

xyyx

3
3

3333

09393

0933

09

09

2

2

22

22

22

33

33

−
−

=

−=−

=−+−

=





 +−+

=−+

=−+

 

We then evaluate the derivative at (x, y)= (2, 4): 

( )

( )
( ) ( )

( )( )
( )( )

( )
( ) 5

4
10
8

616
412

234
243

3
3

2

2

4,2
2

2

4,2

==
−
−

=
⋅−
−⋅

=
−
−

=
xy

xy
dx
dy  

The tangent at (2, 4) is the line through (2, 4) with slope (4/5) : 

( )
( ) ( ) ( )

( )
5

12
5
42

5
44

2
5
44

5
4

2
4

5
4

0

0

+=⇒−⋅





+=

−⋅





=−⇒=

−
−

=
−
−

xyxy

xy
x
y

xx
yy

 


