LECTURE NOTE

ON

PROBABILITY AND SATISTICS 2

BY

ASSIST, PRF. DR. MUSTAFA I. NAIF

DEPARTMENT OF MATHEMATICS
 COLLEGE OF EDUCATION FOR PURE SCIENCE UNIVERISTY OF ANBAR

LECTURE 4\#

Some examples for some discrete distributions

Example1

What is the probability of rolling at most two sixes in 5 independent casts of a fair die?
Sol:
Let the random variable X denote number of sixes in 5 independent casts of a fair die. Then X is a binomial random variable with probability of success p and $n=5$. The probability of getting a six is $p=\frac{1}{6}$. Hence, the probability of rolling at most two sixes is:

$$
\begin{aligned}
P(X \leq 2) & =F(2)=f(0)+f(1)+f(2) \\
& =\binom{5}{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{5}+\binom{5}{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{4}+\binom{5}{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{3} \\
& =\sum_{k=0}^{2}\binom{5}{k}\left(\frac{1}{6}\right)^{k}\left(\frac{5}{6}\right)^{5-k} \\
& =\frac{1}{2}(0.9421+0.9734)=0.9577 \quad \text { (from binomial table) }
\end{aligned}
$$

Example2

Let $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ be three independent Bernoulli random variables with the same probability of success p. What is the probability density function of the random variable $X=X 1+X 2+X 3$? What is the mean and the variance of X ?
Sol:
The sample space of the three independent Bernoulli trials is S $=\{$ FFF, FFS, FSF, SFF, FSS, SFS, SSF, SSS $\}$.
The random variable $\mathrm{X}=\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3$ represents the number of successes in each element of S. The following diagram illustrates this.

Example2

Let p be the probability of success. Then

$$
\begin{aligned}
& f(0)=P(X=0)=P(F F F)=(1-p)^{3} \\
& f(1)=P(X=1)=P(F F S)+P(F S F)+P(S F F)=3 p(1-p)^{2} \\
& f(2)=P(X=2)=P(F S S)+P(S F S)+P(S S F)=3 p^{2}(1-p) \\
& f(3)=P(X=3)=P(S S S)=p^{3} .
\end{aligned}
$$

Hence

$$
f(x)=\binom{3}{x} p^{x}(1-p)^{3-x}, \quad x=0,1,2,3
$$

Thus, $\mathrm{x} \sim \operatorname{BIN}(3, \mathrm{p})$. In general, if $X_{i} \sim \operatorname{BER}(p)$, then $\sum_{i=1}^{n} X_{i} \sim \operatorname{BIN}(n, p)$ and hence

$$
E\left(\sum_{i=1}^{n} X_{i}\right)=n p \quad, \quad \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=n p(1-p)
$$

Example3

If $X \sim \operatorname{BER}(\mathrm{p})$, What is the $\mathrm{p} . \mathrm{m} . \mathrm{f}$. of $\mathrm{Y}=1-\mathrm{X}$?
Sol:
Since $\mathrm{X}^{\sim} \operatorname{BER}(\mathrm{p})$, then $\mathrm{P}(\mathrm{x})=p^{x}(1-p)^{1-x}$. Now, if $\mathrm{x}=0$, then $\mathrm{y}=1$ and if $\mathrm{x}=1$, then $\mathrm{y}=0$. Also, $\mathrm{Y}=1-\mathrm{X}$.
Therefore, $\mathrm{P}(\mathrm{y}=1-\mathrm{x})=p^{1-y}(1-p)^{y}=q^{y}(1-q)^{1-y}, y=0,1$

That is mean: $Y=1-X \sim B E R(q)$.

Example4

Let X be the number of heads (successes) in $n=7$ independent tosses of an unbiased coin. The pmf of X is:

$$
p(x)= \begin{cases}\binom{7}{x}\left(\frac{1}{2}\right)^{x}\left(1-\frac{1}{2}\right)^{7-x} & x=0,1,2, \ldots, 7 \\ 0 & \text { elsewhere. }\end{cases}
$$

Then X has the mgf

$$
M(t)=\left(\frac{1}{2}+\frac{1}{2} e^{t}\right)^{7},
$$

has mean $\mu=n p=\frac{7}{2}$, and has variance $\sigma^{2}=n p(1-p)=\frac{7}{4}$. Furthermore, we have

$$
P(0 \leq X \leq 1)=\sum_{x=0}^{1} p(x)=\frac{1}{128}+\frac{7}{128}=\frac{8}{128}
$$

and

$$
P(X=5)=p(5)=\frac{7!}{5!2!}\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{2}=\frac{21}{128} .
$$

Example5

The mgf of a random variable X is $\left(\frac{2}{3}+\frac{1}{3} e^{t}\right)^{9}$. Show that

$$
P(\mu-2 \sigma<X<\mu+2 \sigma)=\sum_{x=1}^{5}\binom{9}{x}\left(\frac{1}{3}\right)^{x}\left(\frac{2}{3}\right)^{9-x}
$$

Sol:

Since $n=9$ and $p=1 / 3, \mu=3$ and $\sigma^{2}=2$. Hence, $\mu-2 \sigma=3-2 \sqrt{2}$ and $\mu+2 \sigma=3+2 \sqrt{2}$ and $P(\mu-2 \sigma<X<\mu+2 \sigma)=P(X=1,2, \ldots, 5)$.

Example6

If $X \sim \operatorname{BIN}(n, p)$, show that: $\quad E\left(\frac{X}{n}\right)=p$ and $E\left[\left(\frac{X}{n}-p\right)^{2}\right]=\frac{p(1-p)}{n}$.
Sol:

$$
\begin{aligned}
E\left(\frac{X}{n}\right) & =\frac{1}{n} E(X)=\frac{1}{n}(n p)=p \\
E\left[\left(\frac{X}{n}-p\right)^{2}\right] & =\frac{1}{n^{2}} E\left[(X-n p)^{2}\right]=\frac{n p(1-p)}{n^{2}}=\frac{p(1-p)}{n} .
\end{aligned}
$$

Example7

Suppose that X has a Poisson distribution with $\mu=2$. Compute $P(1 \leq X)$
Sol: The pmf of X is

$$
p(x)= \begin{cases}\frac{2^{-} e^{-2}}{x!} & x=0,1,2, \ldots \\ 0 & \text { elsewhere. }\end{cases}
$$

Then $\quad P(1 \leq X)=1-P(X=0)$

$$
=1-p(0)=1-e^{-2}=0.865,
$$

Example8

If the random variable X has a Poisson distribution such that $P(X=1)=P(X=2)$, find $P(X=4)$.
Sol:

$$
\frac{e^{-\mu \mu} \mu}{1!}=\frac{e^{-\mu} \mu^{2}}{2!} \Rightarrow \mu=2 \text { and } P(X=4)=\frac{e^{-2} 2^{4}}{4!}
$$

Example9

1-The mgf of a random variable X is $e^{4\left(e^{t}-1\right)}$. Show that

$$
P(\mu-2 \sigma<X<\mu+2 \sigma)=0.931
$$

Sol:
Try to solve
2- Let X have a Poisson distribution with mean 1.
Compute, if it exists, the expected value $E(X!)$.?

