DEPARTMENT OF MATHEMATICS COLLEGE OF EDUCATION FOR PURE SCIENCE UNIVERISTY OF ANBAR

ASSIST. PRF. DR. MUSTAFA I. NAIF

BY

PROBABILITY AND STATISTICS 2

LECTURE NOTE

Dutline :- LECTURE 9#

- Continuous distributions
 2- Gamma distribution
- Definition
- **Expected value Variance**
- Moment generating function
- Characteristic function
- **Distribution function**
- Two special Distributions
- Solved exercises

Let us take two parameters $\alpha > 0$ and $\beta > 0$. Gamma function $\Gamma(\alpha)$ is defined by: $\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$(*) Let $y = \beta x \longrightarrow x = \frac{y}{\beta}$ and then $dx = \frac{1}{\beta} dy$. Then,

If we divide both sides of (*) by $\Gamma(\alpha)$ we get :

$$1 = \int_0^\infty \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x} dx = \int_0^\infty \frac{1}{\Gamma(\alpha)\beta^\alpha} y^{\alpha-1} e^{-\frac{y}{\beta}} dy \quad \dots \quad (**)$$

Then the integration in (**) will be a probability density function since it is nonnegative and it integrates to one.

Therefore, we get the following definition:

Definition : A continuous random variable X is said to have a gamma distribution if its probability density function is given by:

$$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha) \, \theta^{\alpha}} \, x^{\alpha - 1} \, e^{-\frac{x}{\theta}} & \text{if } 0 < x < \infty \\\\ 0 & \text{otherwise,} \end{cases}$$

where $\alpha > 0$ and $\theta > 0$. We denote a random variable with gamma distribution as $X \sim GAM(\theta, \alpha)$. The following diagram shows the graph of the gamma density for various values of values of the parameters θ and α .

Theorem: If $X \sim GAM(\theta, \alpha)$, then, $E(X) = \theta \alpha$, $Var(X) = \theta^2 \alpha$ and

$$M(t) = \left(\frac{1}{1-\theta t}\right)^{\alpha}, \quad \text{if} \quad t < \frac{1}{\theta}.$$

Proof: First, we derive the moment generating function of X and then we compute the mean and variance of it. The moment generating function:

The first derivative of the moment generating function is:

$$M'(t) = \frac{d}{dt} (1 - \theta t)^{-\alpha}$$

= $(-\alpha) (1 - \theta t)^{-\alpha - 1} (-\theta)$
= $\alpha \theta (1 - \theta t)^{-(\alpha + 1)}$.

Hence from above, we find the expected value of X to be $E(X) = M'(0) = \alpha \theta$. Similarly, $M''(t) = \frac{d}{dt} \left(\alpha \theta \left(1 - \theta t \right)^{-(\alpha+1)} \right)$

$$M^{-}(t) = \frac{1}{dt} \left(\alpha \theta \left(1 - \theta t \right)^{-(\alpha+2)} \right)$$
$$= \alpha \theta \left(\alpha + 1 \right) \theta \left(1 - \theta t \right)^{-(\alpha+2)}$$
$$= \alpha \left(\alpha + 1 \right) \theta^{2} \left(1 - \theta t \right)^{-(\alpha+2)}.$$

Thus, the variance of X is

$$Var(X) = M''(0) - (M'(0))^{2} = \alpha (\alpha + 1) \theta^{2} - \alpha^{2} \theta^{2} = \alpha \theta^{2}$$

Theorem: The characteristic function of a Gamma random variable X is:

$$\varphi(t) = \frac{1}{(1 - \theta i t)^{\alpha}}.$$

Proof: By the same procedure for m.g.f.

Distribution function: The distribution function of a Gamma random variable is:

 $F(X) = P(X \le x) = \frac{\Gamma_x(\alpha)}{\Gamma(\alpha)}$, where $\Gamma_x(\alpha)$ is incomplete gamma function and it has the formula:

$$\Gamma_x(\alpha) = \int_0^x y^{\alpha - 1} e^{-y} dy$$

Remark: Two special cases of gamma-distributed random variables merit particular consideration.(two special distributions)

Exponential Distribution

Definition: A continuous random variable is said to be an exponential random variable with parameter θ if its probability density function is of the form:

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & \text{if } x > 0\\ 0 & \text{otherwise,} \end{cases}$$
, where $\theta > 0$. If a random variable X has an exponential

density function with parameter θ , then we denote it by writing X ~ EXP(θ).

Note: An exponential distribution is a special case of the gamma distribution. If the parameter $\alpha = 1$, then the gamma distribution reduces to the exponential distribution. Hence most of the information about an exponential distribution can be obtained from the gamma distribution.

Example: Let X have the density function : f

n:
$$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha) \, \theta^{\alpha}} \, x^{\alpha - 1} \, e^{-\frac{x}{\theta}} & \text{if } 0 < x < \infty \\ 0 & \text{otherwise,} \end{cases}$$

where $\alpha > 0$ and $\theta > 0$. If $\alpha = 4$, what is the mean of $\frac{1}{X^3}$?

Exponential Distribution

Answer:

$$E(X^{-3}) = \int_0^\infty \frac{1}{x^3} f(x) dx$$

= $\int_0^\infty \frac{1}{x^3} \frac{1}{\Gamma(4)\theta^4} x^3 e^{-\frac{x}{\theta}} dx$
= $\frac{1}{3!\theta^4} \int_0^\infty e^{-\frac{x}{\theta}} dx$
= $\frac{1}{3!\theta^3} \int_0^\infty \frac{1}{\theta} e^{-\frac{x}{\theta}} dx$
= $\frac{1}{3!\theta^3}$ since the integrand is GAM($\theta, 1$).
Exponential Distributions
Exponential Distributions
= $\frac{1}{3!\theta^3}$ for $\frac{1}{\theta} e^{-\frac{x}{\theta}} dx$

Chi-square Distribution

Definition: A continuous random variable X is said to have a chi-square distribution with r degrees of freedom if its probability density function is of the form:

$$f(x) = \begin{cases} \frac{1}{\Gamma\left(\frac{r}{2}\right)2^{\frac{r}{2}}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}} & \text{if } 0 < x < \infty\\ 0 & \text{otherwise,} \end{cases}$$

where r > 0. If X has a chi-square distribution, then we denote it by writing $X \sim \chi^2(r)$. Note: The gamma distribution reduces to the

chi-square distribution if $\alpha = \frac{r}{2}$ and $\theta = 2$. Thus, the chi-square distribution is a special case of the gamma distribution. Hence most of the information about an chi-square distribution can be obtained from the gamma distribution.

Example: If $X \sim GAM(1, 1)$, then what is the probability density function of the random variable 2X?

Answer: We will use the moment generating method to find the distribution of 2X. The moment generating function of a gamma random variable is given by

$$M(t) = (1 - \theta t)^{-\alpha}, \quad \text{if} \quad t < \frac{1}{\theta}.$$

Since $X \sim GAM(1, 1)$, the moment generating function of X is given by :

Hence, if X is an exponential with parameter 1, then 2X is chi-square with 2 degrees of freedom.

SEE YOU IN THE NEXT LECTURE