CHAPTER

INNER PRODUCT SPACES.
HILBERT SPACES

In a normed space we can add vectors and multiply vectors by scalars,
just as in elementary vector algebra. Furthermore, the norm on such a
space generalizes the elementary concept of the length of a vector.
However, what is still missing in a general normed space, and what we
would like to have if possible, is an analogue of the familiar dot
product

a*b=a;B+azB+as3f;

and resulting formulas, notably
la|=va-a

and the condition for orthogonality (perpendicularity)
a*b=0

which are important tools in many applications. Hence the question
arises whether the dot product and orthogonality can be generalized to
arbitrary vector spaces. In fact, this can be done and leads to inner
product spaces and complete inner product spaces, called Hilbert
spaces.

Inner product spaces are special normed spaces, as we shall see.
Historically they are older than general normed spaces. Their theory is
richer and retains many features of Euclidean space, a central concept
being orthogonality. In fact, inner product spaces are probably the
most natural generalization of Euclidean space, and the reader should
note the great harmony and beauty of the concepts and proofs in this
field. The whole theory was initiated by the work of D. Hilbert (1912)
on integral equations. The currently used geometrical notation and
terminology is analogous to that of Euclidean geometry and was
coined by E. Schmidt (1908), who followed a suggestion of G. Ko-
walewski (as he mentioned on p. 56 of his paper). These spaces have
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been, up to now, the most useful spaces in practical applications of
functional analysis.

Important concepts, brief orientation about main content

An inner product space X (Def. 3.1-1) is a vector space with an
inner product {x, y) defined on it. The latter generalizes the dot product
of vectors in three dimensional space and is used to define

(I) a norm ||| by ||x||={x, x)''?,

(IT) orthogonality by (x, y)=0.
A Hilbert space H is a complete inner product space. The theory of
inner product and Hilbert spaces is richer than that of general normed
and Banach spaces. Distinguishing features are

(i) representations of H as a direct sum of a closed subspace and
its orthogonal complement (cf. 3.3-4),

(ii) orthonormal sets and sequences and corresponding representa-
tions of elements of H (cf. Secs. 3.4, 3.5),

(ii1) the Riesz representation 3.8-1 of bounded linear functionals
by inner products,

(iv) the Hilbert-adjoint operator T* of a bounded linear operator
T (cf. 3.9-1).

Orthonormal sets and sequences are truly interesting only if they
are total (Sec. 3.6). Hilbert-adjoint operators can be used to define
classes of operators (self-adjoint, unitary, normal; cf. Sec. 3.10) which
are of great imporance in applications.

3.1 Inner Product Space. Hilbert Space

The spaces to be considered in this chapter are defined as follows.

3.1-1 Definition (Inner product space, Hilbert space). An inner prod-
uct space (or pre-Hilbert space) is a vector space X with an inner
product defined on X. A Hilbert space is a complete inner product
space (complete in the metric defined by the inner product; cf. (2),
below). Here, an inner product on X is a mapping of X X X into the
scalar field K of X that is, with every pair of vectors x and y there is
associated a scalar which is written

(x, y) :
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and is called the inner productl of x and y, such that for all vectors x, y,
z and scalars @ we have

(Ire1) (x+y, z)={(x, z)+(y, z)
(apP2) (ax, y) = alx, y)
ap3) (x, y)={y, x)

ar4) (x,x)=0

(x, x)=0 <> x=0.
An inner product on X defines a norm on X given by
(88} [lx]| = v{x, x) (=0)

and a metric on X given by

2) d(x, y)=|x—yll=v{(x—y, x—y). ]

Hence inner product spaces are normed spaces, and Hilbert spaces
are Banach spaces.

In (IP3), the bar denotes complex conjugation. Consequently, if X
is a real vector space, we simply have

(x, y)=(y, x) (Symmetry).

The proof that (1) satisfies the axioms (N1) to (N4) of a norm (cf.
Sec. 2.2) will be given at the beginning of the next section.
From (IP1) to (IP3) we obtain the formula

(a) (ax + By, z) = alx, z)+ B(y, z)
3) (b) (x, ay)=alx, y)
(c) (x, ay + Bz) = a{x, y)+ B(x, z)

' Or scalar product, but this must not be confused with the product of a vector by a
scalar in a vector space.

The notation { , ) for the inner product is quite common. In an elementary text such
as the present one it may have the advantage over another popular notation, ( , ), that it
excludes confusion with ordered pairs (components of a vector, elements of a product
space, arguments of functions depending on two variables, etc.).
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which we shall use quite often. (3a) shows that the inner product is
linear in the first factor. Since in (3c) we have complex conjugates &
and B on the right, we say that the inner product is conjugate linear in
the second factor. Expressing both properties together, we say that the
inner product is sesquilinear. This means ‘““13 times linear” and is
motivated by the fact that ‘“‘conjugate linear” is also known as
“semilinear” (meaning ‘“‘halflinear”), a less suggestive term which we
shall not use.

The reader may show by a simple straightforward calculation that
a norm on an inner product space satisfies the important parallelogram
equality

@ llx + yI” + llx = yl* = 2(llx |+ Iy |P)-

This name is suggested by elementary geometry, as we see from Fig.
23 if we remember that the norm generalizes the elementary concept
of the length of a vector (cf. Sec. 2.2). It is quite remarkable that such
an equation continues to hold in our present much more general
setting.

We conclude that if a norm does not satisfy (4), it cannot be
obtained from an inner product by the use of (1). Such norms do exist;
examples will be given below. Without risking misunderstandings we
may thus say:

Not all normed spaces are inner product spaces.

Before we consider examples, let us define the concept of or-
thogonality, which is basic in the whole theory. We know that if the
dot product of two vectors in three dimensional spaces is zero, the
vectors are orthogonal, that is, they are perpendicular or at least one of
them is the zero vector. This suggests and motivates the following

:‘«\«'9

x

Fig. 23. Parallelogram with sides x and y in the plane
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3.1-2 Definition (Orthogonality). An element x of an inner product
space X is said to be orthogonal to an element y e X if

(x, y)=0.
We also say that x and y are orthogonal, and we write x _Ly. Similarly,

for subsets A, B< X we write x1 A if x 1 a for all ae A, and A 1B if
alb for all ae A and all be B. 1

Examples

3.1-3 Eudidean space R". The space R" is a Hilbert space with inner
product defined by

(5) (x, y)=&m+- - -+ &M

where x =(§j) — (gls Saifis .fn) and )’ = (nj)__-(nls = Ve nn)'
In fact, from (5) we obtain

lloell={o; )Y 2= (&2* 4+ -+ £)2
and from this the Euclidean metric defined by
d(x, y)=llx—yl=(x—y, x=y)'"? =& —m)*+- - - + (& — 1)’

cf. 2.2-2. Completeness was shown in 1.5-1.
If n =3, formula (5) gives the usual dot product

(x, y)=x-y=&m+&naté&a3ms
of x = (&, &, &) and y = (m1, M2, Mm3), and the orthogonality
(x,y)=x-y=0

agrees with the elementary concept of perpendicularity.

3.1-4 Unitary space C". The space C" defined in 2.2-2 is a Hilbert
space with inner product given by

(6) (x, y)= &t - -+ Ll
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In fact, from (6) we obtain the norm defined by
Ixl| = (&:&: +- - -+ &)= (& +- - - + &)

Here we also see why we have to take complex conjugates 7; in (6);
this entails (y, x) =(x, y), which is (IP3), so that {(x, x) is real.

3.1-5 Space L’[a, b). The norm in Example 2.2-7 is defined by

y = ( J:x(t)2 dt)u2

and can be obtained from the inner product defined by

b

(7) (x, y)= '[ x(t)y(1) dt.

a

In Example 2.2-7 the functions were assumed to be real-valued,
for simplicity. In connection with certain applications it is advanta-
geous to remove that restriction and consider complex-valued functions
(keeping t€[a, b] real, as before). These functions form a complex
vector space, which becomes an inner product space if we define

b

() (x, y)= j. x(1)y (1) dt.

a

Here the bar denotes the complex conjugate. It has the effect that
(IP3) holds, so that (x, x) is still real. This property is again needed in
connection with the norm, which is now defined by

b 1/2
= ([ 1xcoP ac)

because x(t)x(1) = |x ().

The completion of the metric space corresponding to (7) is the real
space ?[a, b]; cf. 2.2-7. Similarly, the completion of the metric space
corresponding to (7%) is called the complex space L*[a, b]. We shall see
in the next section that the inner product can be extended from an
inner product space to its completion. Together with our present
discussion this implies that L*[a, b] is a Hilbert'space.



3.1 Inner Product Space. Hilbert Space 133

3.1-6 Hilbert sequence space I°. The space I (cf. 2.2-3) is a Hilbert
space with inner product defined by

(8) (x, y)= 2, &y

i=1

Convergence of this series follows from the Cauchy-Schwarz inequality
(11), Sec. 1.2, and the fact that x, y € I?, by assumption. We see that (8)
generalizes (6). The norm is defined by

= 1/2
Il = 2= (2 16P) "

Completeness was shown in 1.5-4.

I? is the prototype of a Hilbert space. It was introduced and
investigated by D. Hilbert (1912) in his work on integral equations. An
axiomatic definition of Hilbert space was not given until much later, by
J. von Neumann (1927), pp. 15-17, in a paper on the mathematical
foundation of quantum mechanics. Cf. also J. von Neumann (1929-
30), pp. 63-66, and M. H. Stone (1932), pp. 3—-4. That definition
included separability, a condition which was later dropped from the
definition when H. Lowig (1934), F. Rellich (1934) and F. Riesz
(1934) showed that for most parts of the theory that condition was an
unnecessary restriction. (These papers are listed in Appendix 3.)

3.1-7 Space I°. The space I’ with p# 2 is not an inner product space,
hence not a Hilbert space.

Proof. Our statement means that the norm of [* with p#2
cannot be obtained from an inner product. We prove this by showing
that the norm does not satisfy the parallelogram equality (4). In fact,
let us take x=(1,1,0,0,---)e€!l” and y=(1,-1,0,0,---)el” and
calculate

lxll = liyll = 2%, llx + yll=llx =yl = 2.

We now see that (4) is not satisfied if p# 2.

I” is complete (cf. 1.5-4). Hence [” with p#2 is a Banach space
which is not a Hilbert space. The same holds for the space in the next
example.
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3.1-8 Space Cla, b). The space Cla, b] is not an inner product space,
hence not a Hilbert space.

Proof. We show that the norm defined by

x| = max [x(2)] ., J=[a, b]

N

cannot be obtained from an inner product since this norm does not
satisfy the parallelogram equality (4). Indeed, if we take x(¢)=1 and
y(t)=(t—a)/(b—a), we have ||x||=1, |lyll=1 and

t—
x()+y()=1 +b-—a
t—a
p =1- s
x (1) —y(1) R
Hence |[x+y||=2, |[x—y||=1 and
llx + yI* +llx — yl* =5 but 2(lx P +lIylP) = 4.

This completes the proof. §

We finally mention the following interesting fact. We know that to
an inner product there corresponds a norm which is given by (1). It is
remarkable that, conversely, we can ‘‘rediscover’ the inner product
from the corresponding norm. In fact, the reader may verify by
straightforward calculation that for a real inner product space we have

%) (x, yy=a(lx +ylF = llx - yI*)
and for a complex inner product space we have

Re (x, y) =2(lx + yI*—|lx — yI®)
Im (x, y) =3(||x + iy|* = llx — iy[*).

(10)

Formula (10) is sometimes called the polarizatiun identity.
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Problems

1. Prove (4).

2. (Pythagorean theorem) If xly in an inner product space X, show

5.

that (Fig. 24)

llx + vl = x| + [l yIl*.

Extend the formula to m mutually orthogonal vectors.

x Y

| I

x

Fig. 24. Illustration of the Pythagorean theorem in the plane

If X in Prob. 2 is real, show that, conversely, the given relation implies
that x L y. Show that this may not hold if X is complex. Give examples.

If an inner product space X is real, show that the condition [|x||=]y||
implies (x + y, x —y) = 0. What does this mean geometrically if X = R??
What does the condition imply if X is complex?

(Appolonius’ identity) Verify by direct calculation that for any ele-
ments in an inner product space,

iz = x| +llz = yIF =2 llx = yIP +2 ]z = 3(x + y)IP.

Show that this identity can also be obtained from the parallelogram
equality.

Let x# 0 and y# 0. (a) If x L y, show that {x, y} is a linearly independ-
ent set. (b) Extend the result to mutually orthogonal nonzero vectors
xls STy xm'

If in an inner product space, (x, u)=(x, v) for all x, show that u=o.
Prove (9).

Prove (10).
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10.

11.

12,

13.

14.

15.

3.2

Inner Product Spaces. Hilbert Spaces

Let z, and z, denote complex numbers. Show that (z,, z,)= 2,2,
defines an inner product, which yields the usual metric on the complex
plane. Under what condition do we have orthogonality?

Let X be the vector space of all ordered pairs of complex numbers.
Can we obtain the norm defined on X by

llx]l = &1 + | &l [x = (&, &)]
from an inner product?

What is |x|| in 3.1-6 if x=(&,&, ), where (a) & =2 "2,
(b) &, =1/n?

Verify that for continuous functions the inner product in 3.1-5 satisfies
(IP1) to (IP4).

Show that the norm on Cla, b] is invariant under a linear transforma-
tion t= a7+ B. Use this to prove the statement in 3.1-8 by mapping
[a, b] onto [0,1] and then considering the functions defined by
x(r)=1, y(r)= 7, where 7€[0, 1].

If X is a finite dimensional vector space and (¢;) is a basis for X, show
that an inner product on X is completely determined by its values
Yix ={€;, €,). Can we choose such scalars y;, in a completely arbitrary
fashion?

Further Properties of Inner Product Spaces

First of all, we should verify that (1) in the preceding section defines a

norm:

(N1) and (N2) in Sec. 2.2 follow from (IP4). Furthermore, (N3) is
obtained by the use of (IP2) and (IP3); in fact,

lax|® = (ax, ax) = aa@{x, x)=|a|* ||x|J.

Finally, (N4) is included in

3.2-1 Lemma (Schwarz inequality, triangle inequality). An inner prod-
uct and the corresponding norm satisfy the Schwarz inequality and the
triangle inequality as follows. ‘

10



