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(a) u;e have
(1) [, = |1x]| vl (Schwarz inequality)

where the equality sign holds if and only if {x, y} is a linearly
dependent set.

(b) That norm also satisfies
(2) llx + yll = |lxl|+ Iyl (Triangle inequality)

where the equality sign holds if and only if> y=0 or x=_cy
(c real and =0).

Proof. (a) If y =0, then (1) holds since (x,0)=0. Let y# 0. For
every scalar a we have

0=|x—ay|?=(x—ay, x —ay)
=(x, x)—a(x, y)—a[(y, x)—a(y, y)].

We see that the expression in the brackets [- - -] is zero if we choose
a =(y, x)/{y, y). The remaining inequality is

- _S&_X_) — 2_|<xa y)lz
0=(x, x) ()’, y><x9 Y> "x" "yuz >

here we used (y, x)=(x, y). Multiplying by ||y|®>, transferring the last
term to the left and taking square roots, we obtain (1).

Equality holds in this derivation if and only if y=0 or
0=|lx— ay|’, hence x—ay=0, so that x=ay, which shows linear
dependence.

(b) We prove (2). We have
lx + Yl = <x +y, x + y) = x| +(x, y)+<y, x)+ Iyl
By the Schwarz inequality,

[¢x, v = Ky, ) =Ix[l lIyll-

-*> Note that this condition for equality is perfectly “symmetric” in x and y since
x =0 is included in x =cy (for ¢ =0) and so is y=kx, k=1/c (for ¢=>0).
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By the triangle inequality for numbers we thus obtain

llx + w1 = llxl* + 2 Kx, y)I +]lyll®
= [|xIP+2 <l Iyl -+ yl?
= (lxll+llylh*.

Taking square roots on both sides, we have (2).
Equality holds in this derivation if and only if

(x, y)+ <y, xy =2 |Ix|| [Iyll-

The left-hand side is 2 Re (x, y), where Re denotes the real part. From
this and (1),

(3) Re (x, y)= x|l lyl[= Kx, y)I-

Since the real part of a complex number cannot exceed the absolute
value, we must have equality, which implies linear dependence by part
(a), say, y=0 or x =cy. We show that c is real and = 0. From (3) with
the equality sign we have Re (x, y)=[(x, y)|. But if the real part of a
complex number equals the absolute value, the imaginary part must be
zero. Hence (x, y)=Re(x, y)=0 by (3), and ¢ =0 follows from

0=(x, y)={(cy, y)=c |yl B

The Schwarz inequality (1) is quite important and will be used in
proofs over and over again. Another frequently used property is the
continuity of the inner product:

3.2-2 Lemma (Continuity of inner product). If in an inner product
space, x, —> x and y, —> y, then (x,, y.) —> {(x, y).

Proof. Subtracting and adding a term, using the triangle inequal-
ity for numbers and, finally, the Schwarz inequality, we obtain

K%ns Yr) = €%, ) = [{Xns Yn) =X, ¥) +{xn, ¥)—(x, ¥)|
= me Yn — y>|+ Kxn — X, }’>|
= [1xall lyn = Yl [lxn — x|] [|¥]l — 0

since y,~y—>0and x, — x——0as n——>oo. |1
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As a first application of this lemma, let us prove that every inner
product space can be completed. The completion is a Hilbert space and
is unique except for isomorphisms. Here the definition of an isomor-
phism is as follows (as suggested by our discussion in Sec. 2.8).

An isomorphism 7T of an inner product space X onto an inner
product space X over the same field is a bijective linear operator
T: X —— X which preserves the inner product, that is, for all
x, ye X,

(Tx, Ty)=(x, y),

where we denoted inner products on X and X by the same symbol, for
simplicity. X is then called isomorphic with X, and X and X are called
isomorphic inner product spaces. Note that the bijectivity and linearity
guarantees that T is a vector space isomorphism of X onto X, so that T
preserves the whole structure of inner product space. T is also an
isometry of X onto X because distances in X and X are determined by
the norms defined by the inner products on X and X.

The theorem about the completion of an inner product space can
now be stated as follows.

3.2-3 Theorem (Completion). For any inner product space X there
exists a Hilbert space H and an isomorphism A from X onto a dense
subspace W < H. The space H is unique except for isomorphisms.

Proof. By Theorem 2.3-2 there exists a Banach space H and an
isometry A from X onto a subspace W of H which is dense in H. For
reasons of continuity, under such an isometry, sums and scalar multi-
ples of elements in X and W correspond to each other, so that A is
even an isomorphism of X onto W, both regarded as normed spaces.
LLemma 3.2-2 shows that we can define an inner product on H by
setting

(%, ¥)= lim_(xn, yn),

the notations being as in Theorem 2.3-2 (and 1.6-2), that is, (x,) and
(y.) are representatives of X H and y € H, respectively. Taking (9)
and (10), Sec. 3.1, into account, we see that A is an isomorphism of X
onto W, both regarded as inner product spaces.

Theorem 2.3-2 also guarantees that H is unique except for
isometries, that is, two completions H and H of X are related by an
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isometry T: H——> H. Reasoning as in the case of A, we conclude
that T must be an isomorphism of the Hilbert space H onto the
Hilbert space H. 1§

A subspace Y of an inner product space X is defined to be a
vector subspace of X (cf. Sec. 2.1) taken with the inner product on X
restricted to Y X Y. o

Similarly, a subspace Y of a Hilbert space H is defined to be a
subspace of H, regarded as an inner product space. Note that Y need
not be a Hilbert space because Y may not be complete. In fact, from
Theorems 2.3-1 and 2.4-2 we immediately have the statements (a) and
(b) in the following theorem.

3.2-4 Theorem (Subspace). ILet Y be a subspace of a Hilbert space H.
Then:

(a) Y is complete if and only if Y is closed in H.
(b) If Y is finite dimensional, then Y is complete.

(¢) If H is separable, so is Y. More generally, every subset of a
separable inner product space is separable.

The simple proof of (¢) is left to the reader.

Problems

1. What is the Schwarz inequality in R? or R*? Give another proof of it in
these cases.

2. Give examples of subspaces of I°.

3. Let X be the inner product space consisting of the polynomial x =0
(cf. the remark in Prob. 9, Sec. 2.9) and all real polynomials in ¢, of
degree not exceeding 2, considered for real t €[ a, b], with inner product
defined by (7), Sec. 3.1. Show that X is complete. Let Y consist of all
x € X such that x(a)=0. Is Y a subspace of X? Do all x € X of degree
2 form a subspace of X?

4. Show that y 1L x, and x, —— x together imply x L y.

5. Show that for a sequence (x,) in an inner product space the conditions
lx. )| — llx|| and (x,, x) — {(x, x) imply convergence x, —> x.
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6. Prove the statement in Prob. 5 for the special case of the complex
plane.

7. Show that in an inner product space, x Ly if and only if we have
[|x + ay|| = ||x — ay|| for all scalars «. (See Fig. 25.)

x+ay

¥ x — ay

x — ay
lx +ayl=|lx —ayl lx +ayl# |l x — ay |

Fig. 25. Illustration of Prob. 7 in the Euclidean plane R?

8. Show that in an inner product space, x Ly if and only if ||x + ay| =[x
for all scalars a.

9. Let V be the vector space of all continuous complex-valued functions
on J=[a,b]. Let X,=(V,||.), where ||x||m=n.131x |x(¢)]; and let
X, =(V,||l.), where

b

x> = (x, x)''2, (x,y)= I x () y (1) dt.

Show that the identity mapping x —— x of X, onto X, is continuous.
(It is not a homeomorphism. X, is not complete.)

10. (Zero operator) Let T: X —— X be a bounded linear operator on a
complex inner product space X. If (Tx, x)=0 for all x € X, show that
T=0.

Show that this does not hold in the case of a real inner product
space. Hint. Consider a rotation of the Euclidean plane.
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3.3 Orthogonal Complements and Direct Sums

In a metric space X, the distance & from an element x€ X to a
nonempty subset M < X is defined to be

5= inf d(x, ¥) (M#D).

yeEM
In a normed space this becomes

(1) = inf [lx — || (M#D).
yeEM

A simple illustrative example is shown in Fig. 26.

We shall see that it is important to know whether there is a ye M
such that

(2) 8 =|lx—yll,

that is, intuitively speaking, a point y € M which is closest to the given
x, and if such an element exists, whether it is unique. This is an
existence and uniqueness problem. It is of fundamental importance,
theoretically as well as in applications, for instance, in connection with
approximations of functions.

Figure 27 illustrates that even in a very simple space such as the
Euclidean plane R?, there may be no y satisfying (2), or precisely one
such y, or more than one y. And we may expect that other spaces, in
particular infinite dimensional ones, will be much more complicated in
that respect. For general normed spaces this is the case (as we shall see
in Chap. 6), but for Hilbert spaces the situation remains relatively

Fig. 26. Illustration of (1) in the case of tife plane R?
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Kx T x } x
\ 1\
5 | 5/ «| \ 8
\\ :8 // 5| \\
|
(No y) (A unique y) (Infinitely many y's)

(a) (b) (c)

Fig. 27. Existence and uniqueness of points y € M satisfying (2), where the given M < R®
is an open segment [in (a) and (b)] and a circular arc [in (c)]

simple. This fact is surprising and has various theoretical and practical
consequences. It is one of the main reasons why the theory of Hilbert
spaces is simpler than that of general Banach spaces.

To consider that existence and uniqueness problem for Hilbert
spaces and to formulate the key theorem (3.3-1, below), we need two
related concepts, which are of general interest, as follows.

The segment joining two given elements x and y of a vector space
X is defined to be the set of all z € X of the form

z=ax+(1—a)y (aeR,0=a=1).

A subset M of X is said to be convex if for every x, y € M the segment
joining x and y is contained in M. Figure 28 shows a simple example.
For instance, every subspace Y of X is convex, and the intersec-
tion of convex sets is a convex set.
We can now provide the main tool in this section:

Fig. 28. Illustrative example of a segment in a convex set
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3.3-1 Theorem (Minimizing vector). Let X be an inner product space
and M# (5 a convex subset which is complete (in the metric induced by
the inner product). Then for every given x € X there exists a unique y e M
such that

3) & = inf [|x—yll=[x—yll
. jeEM

Proof. (a) Existence. By the definition of an infimum there is¥a
sequence (y,) in M such that ~

(4) 8, —> & where 8. =|lx — yall-
We show that (y,) is Cauchy. Writing y,, — x = v,,, we have ||v,||= 8, and
lon + Vmll =llyn + ym —2x]| =2 [5(yn + ym) — x[| =25

because M is convex, so that %(y,.+y,,.)e M. Furthermore, we have
Yn — ¥m = Un — Up,. Hence by the parallelogram equality,

I¥n = Yl = 1o = vmll* = —llva + vml* + 2[oal* +[lom]*)

=—(28)*+2(8.%+ 80),

and (4) implies that (y,) is Cauchy. Since M is complete, (y,.) con-
verges, say, y, —> y € M. Since y€ M, we have |x—y||=35. Also, by

(4),
Ix = yll=lx=yall+llyn =yl = 8 +llya =yl — &
This shows that |[x —y||= &.

(b) Uniqueness. We assume that ye M and yo,€ M both
satisfy

lx—yll=28 and llx = yoll = &
and show that then y,= y. By the parallelogram equality,

ly = yol> = lI(y — x) — (yo— )|
=2|ly —x[P+2 lyo— x|P = I(y — x) + (yo— x)I?
=28%+28%—22 |3y + yo) — x[I%.
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On the right, 3(y + yo) € M, so that

“%(Y + yo) — x|| = 4.

This implies that the right-hand side is less than or equal to
28%+28%—48%=0. Hence we have the inequality ||y — yo||=0. Clearly,
lly — yol|= 0, so that we must have equality, and yo=y. §

Turning from arbitrary convex sets to subspaces, we obtain a
lemma which generalizes the familiar idea of elementary geometry that
the unique point y in a given subspace Y closest to a given x is found
by “dropping a perpendicular from x to Y.”

3.3-2 Lemma (Orthogonality). In Theorem 3.3-1, let M be a com-
plete subspace Y and x € X fixed. Then z = x—Yy is orthogonal to Y.

Proof. 1If z1Y were false, there would be a y, € Y such that

(5) (z, y1)=B#0.
Clearly, y, # O since otherwise (z, y;) = 0. Furthermore, for any scalar «,
|z — ay:|>=(z —ayi, z—ay:)
=(z, z)— @({z, y1)— al{y:, 2) —aly:, y1)]

=(z, z)—aB —a[B—aiy:, yl

The expression in the brackets [- - -] is zero if we choose

ae B
(¥1, y1)
From (3) we have ||z||=||x — y||= 8, so that our equation now yields
2
e = ayilP =llzlP - 1Bl < 5.
But this is impossible because we have
Z—ay;=x—yz where y2=y+ay, €Y,

so that ||z — ay,||= 8 by the definition of 8. Hence (5) cannot hold, and
the lemma is proved. §
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