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Our goal is a representation of a Hilbert space as a direct sum
which is particularly simple and suitable because it makes use of
orthogonality. To understand the situation and the problem, let us first
introduce the concept of a direct sum. This concept makes sense for
any vector space and is defined as follows.

3.3-3 Definition (Direct sum). A vector space X is said to be the
direct sum of two subspaces Y and Z of X, written

X=YDZ,
if each x € X has a unique representation
xX=y+z vyeEY, z€ Z.

Then Z is called an algebraic complement of Y in X and vice versa,
and Y, Z is called a complementary pair of subspaces in X. 1

For example, Y=R is a subspace of the Euclidean plane R?”.
Clearly, Y has infinitely many algebraic complements in R”, each of
which is a real line. But most convenient is a complement that is
perpendicular. We make use of this fact when we choose a Cartesian
coordinate system. In R? the situation is the same in principle.

Similarly, in the case of a general Hilbert space H, the main
interest concerns representations of H as a direct sum of a closed
subspace Y and its orthogonal complement

Y'={zeH|zl1Y},
which is the set of all vectors orthogonal to Y. This gives our main

result in this section, which is sometimes called the projection theorem,
for reasons to be explained after the proof.

3.3-4 Theorem (Direct sum). Let Y be any closed subspace of a
Hilbert space H. Then

(6) H=Y®Z Z=Y".

Proof. Since H is complete and Y is closed, Y is complete by
Theorem 1.4-7. Since Y is convex, Theorem 3.3-1 and Lemma 3.3-2
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imply that for every x € H there is a y€ Y such that
(7 =y+tz zeZ=Y".
To prove uniqueness, we assume that
x=y+z=y,+2z,

where y,y:€Y and z,z,€Z Then y—y,=2,—2. Since y—y,€Y
whereas z,—z€ Z=Y", we see that y—y, € YN Y*={0}. This implies
y=y;. Hence also z=2z,. 1

y in (7) is called the orthogonal projection of x on Y, (or, briefly,
the projection of x on Y). This term is motivated by elementary
geometry. [For instance, we can take H =R? and project any point
x = (&1, &2) on the &,-axis, which then plays the role of Y; the projec-
tion is y = (&, 0).]

Equation (7) defines a mapping
P. H—>Y
XH—y=Px.

P is called the (orthogonal) projectiom (or projection operator) of H
onto Y. See Fig. 29. Obviously, P is a bounded linear operator. P

Fig. 29. Notation in connection with Theorem 3.3-4 and formula (9)



148 Inner Product Spaces. Hilbert Spaces

maps
H onto Y,
Y onto itself,
Z =YY" onto {0},

and is idempotent, that is,
P?*=P;
thus, for every x € H,
P?x = P(Px) = Px.

Hence P |y is the identity operator on Y. And for Z = Y* our discus-
sion yields

3.3-5 Lemma (Null space). The orthogonal complement Y of a
closed subspace Y of a Hilbert space H is the null space N(P) of the
orthogonal projection P of H onto Y.

An orthogonal complement is a special annihilator, where, by
definition, the annihilator M* of a set M# J in an inner product space
X is the set’

M*={xe X |xl1M}

Thus, x € M* if and only if (x, v)=0 for all v e M. This explains the
name.

Note that M™ is a vector space since x, y € M™* implies for all v e M
and all scalars «, B

(ax+ By, v)=alx, v)+ B(y, v)=0,

hence ax+ Bye M™.
M™ is closed, as the reader may prove (Prob. 8).
(M*)* is written M**, etc. In general we have

(8*) Mc M..L.L

* This causes no conflict with Prob. 13, Sec. 2.10, as wé shall see later (in Sec. 3.8).
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because
xeM — x1lM* — xe (M™h)*.

But for closed subspaces we even have

3.3-6 Lemma (Closed subspace). If Y is a closed subspace of a
Hilbert space H, then

(8) Y=Y,

Proof. Y < Y*" by (8%). We show Y> Y"'. Let xe Y**. Then
=y+2z by 3.3-4, where ye Yc Y by (8*%). Since Y'" is a vector
space and x € Y by assumption, we also have z=x—y e Y, hence
zLY* . But ze Y* by 3.3-4. Together z Lz, hence z =0, so that x =y,
that is, x€ Y. Since x € Y** was arbitrary, this proves Y2>Y"*". 1

(8) is the main reason for the use of closed subspaces in the
present context. Since Z*= Y*" =Y, formula (6) can also be written

H=Z®Z".
It follows that x —— z defines a projection (Fig. 29)
(9) Pz: H— Z

of H onto Z, whose properties are quite similar to those of the
projection P considered before.

Theorem 3.3-4 readily implies a characterization of sets in Hilbert
spaces whose span is dense, as follows.

3.3-7 Lemma (Dense set). For any subset M # J of a Hilbert space
H, the span of M is dense in H if and only if M*={0}.

Proof. (a) Let x€ M™ and assume V =span M to be dense in H.
Then xe€ V= H. By Theorem 1.4-6(a) there is a sequence (x,) in V
such that x, —— x. Since x€ M~ and M* | V, we have {(x,, x)=0. The
continuity of the inner product (cf. Lemma 3.2-2) implies that
{Xn, x)—(x, x). Together, (x,x)=|x|?=0, so that x=0. Since
x € M" was arbitrary, this shows that M* = {0}.
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(b) Conversely, suppose that M*={0}. If x1V, then
so that xe M* and x=0. Hence V*={0}. Noting that V is a

subspace of H, we thus obtain V=H from 3.3-4 with Y=V. 1§

1.

4.

lo.

Problems

Let H be a Hilbert space, M < H a convex subset, and (x,) a sequence
in M such that ||x, || — d, where d = inf [[x|l- Show that (x,.) converges

in H. Give an illustrative example in R* or R”.

Show that the subset M ={y = (n,) | X n; = 1} of complex space C" (cf.
3.1-4) is complete and convex. Find the vector of minimum norm in M.

(a) Show that the vector space X of all real-valued continuous func-
tions on [—1,1] is the direct sum of the set of all even continuous
functions and the set of all odd continuous functions on [—1,1].
(b) Give examples of representations of R* as a direct sum (i) of a
subspace and its orthogonal complement, (i) of any complementary
pair of subspaces.

(a) Show that the conclusion of Theorem 3.3-1 also holds if X is a
Hilbert space and M < X is a closed subspace. (b) How could we use
Appolonius’ identity (Sec. 3.1, Prob. 5) in the proof of Theorem 3.3-1?

Let X=R? Find M* if M is (a) {x}, where x=(&,&)#0, (b) a
linearly independent set {x,, x.} < X.

Show that Y ={x | x = (&) e’ &, =0, neN} is a closed subspace of [I*
and find Y*. What is Y* if Y =span{e,,- - -, e,} = I°, where ¢; = (8,.)?

Let A and B> A be nonempty subsets of an inner product space X.
Show that
(a) A=A™, (b) B*= A%, (c) A =A%

Show that the annihilator M™* of a set M# & in an inner product space
X is a closed subspace of X.

Show that a subspace Y of a Hilbert space H is closed in H if and only
if Y=Y\

If M# & is any subset of a Hilbert space H, show that M"" is the
smallest closed subspace of H which contains M, that is, M*" is
contained in any closed subspace Y < H such that Y = M.
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3.4 Orthonormal Sets and Sequences

Orthogonality of elements as defined in Sec. 3.1 plays a basic role in
inner product and Hilbert spaces. A first impression of this fact was
given in the preceding section. Of particular interest are sets whose
elements are orthogonal in pairs. To understand this, let us remember
a familiar situation in Euclidean space R>. In the space R?, a set of that
kind is the set of the three unit vectors in the positive directions of the
axes of a rectangular coordinate system; call these vectors e, e, ei.
These vectors form a basis for R?, so that every x € R? has a unique
representation (Fig. 30)

X = @ e+ azex + ases.
Now we see a great advantage of the orthogonality. Given x, we can
readily determine the unknown coefficients «,, a», a; by taking inner

products (dot products). In fact, to obtain «,;, we must multiply that
representation of x by e,, that is,

(x, e;) = a{e1, e1)+ ax(ez, 1)+ asles, e1) = a,,

and so on. In more general inner product spaces there are similar and
other possibilities for the use of orthogonal and orthonormal sets and
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Fig. 30. Orthonormal set {e,, e,, e;}in R? and representation x = a, e, + aze, + aze;
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sequences, as we shall explain. In fact, the application of such sets and
sequences makes up quite a substantial part of the whole theory of
inner product and Hilbert spaces. Let us begin our study of this
situation by introducing the necessary concepts.

3.4-1 Definition (Orthonormal sets and sequences). An orthogonal
set M in an inner product space X is a subset M = X whose elements
are pairwise orthogonal. An orthonormal set M < X is an orthogonal
set in X whose elements have norm 1, that is, for all x, ye M,

|0 if x#y
- R {1 if x =y,

If an orthogonal or orthonormal set M is countable, we can
arrange it in a sequence (x,) and call it an orthogonal or orthonormal
sequence, respectively.

More generally, an indexed set, or family, (x.), a €I, is called
orthogonal if x,1lxg for all a, Bel, a# B. The family is called
orthonormal if it is orthogonal and all x, have norm 1, so that for all
a, Bl we have

0 if
@) () =t={y  H2TE

Here, 8. is the Kronecker delta, as in Sec. 2.9. 1

If the reader needs help with families and related concepts, he
should look up A1.3 in Appendix 1. He will note that the concepts in
our present definition are closely related. The reason is that to any
subset M of X we can always find a family of elements of X such that
the set of the elements of the family is M. In particular, we may take
the family defined by the natural injection of M into X, that is, the
restriction to M of the identity mapping x—— x on X.

We shall now consider some simple properties and examples of
orthogonal and orthonormal sets.

For orthogonal elements x, y we have (x, y)= 0, so that we readily
obtain the Pythagorean relation

3) Il + w1I* = llx[l* + [yl
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Fig. 31. Pythagorean relation (3) in R?

Figure 31 shows a familiar example.—More generally, if {x,, - - -, x,.}
is an orthogonal set, then

(4) |y + - - '+xn"2=”x1“2+' = '+"x"”2'
In fact, (x;, xx) =0 if j# k; consequently,

Iz': xjll = <; Xj» Z‘ xk>= ; ; (xp xicy = 2 {3 ) = 2. ||

(summations from 1 to n). We also note

2

3.4-2 Lemma (Linear independence). An orthonormal set is linearly
independent.

Proof. Let {e,, - o e.} be orthonormal and consider the equa-
tion

aieq+ - '+a,.e,.=0.

Multiplication by a fixed e; gives
<Z A Cr» ei> - Z alex, €)= aj{e;, ¢;) =a; =0
k i

and proves linear independence for any finite orthonormal set. This
also implies linear independence if the given orthonormal set is in-
finite, by the definition of linear independence in Sec. 2.1. §

Examples
3.4-3 Euclidean space R*. In the space R?, the three unit vectors

(1,0,0), (0,1,0), (0,0,1) in the direction of the three axes of a
rectangular coordinate system form an orthonormal set. See Fig. 30.



